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Abstract. In this paper we study the existence of nonnegative supersolutions
of the nonlinear elliptic problem −�u + |∇u|q = λup in the half-space R

N
+ , where

N ≥ 2, q > 1, p > 0 and λ > 0. We obtain Liouville theorems for positive,
bounded supersolutions, depending on the exponents q and p, the dimension N ,
and, in some critical cases, also on the parameter λ > 0.

1 Introduction

Liouville type theorems (LTT) play an important role in the theory of elliptic and
parabolic PDE. Similarly to the original Liouville result on bounded harmonic
functions, a LTT usually states that a PDE has no nontrivial solutions, and in most
cases is restricted to signed solutions in some kind of an unbounded domain.

The discovery of various LTT for nonlinear PDE in the last forty years was
instrumental in the development of the theory of such equations. Probably the
most outstanding theorem of this type is attached to the equation

(1.1) −�u = up in R
N ,

where p > 0, and was obtained in [26]. It was shown there that there do not exist
positive solutions of (1.1) provided that 1 < p < N+2

N−2 (see also [17], [13] or [38]
for different proofs).

Another important and more general question concerns nonexistence theorems
for positive supersolutions of equations such as (1.1). Then one actually asks what
is the smallest power p such that the “concavity” (more precisely, superharmonicity)
induced by the negative Laplacian does not prevent supersolutions to exist globally.
Specifically, for (1.1) it was shown in [25] that if

p ≤ N
N − 2

,
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then no positive supersolutions may exist, and this range is optimal. It turns out
that this property remains true when the equation is set only in an exterior domain,
instead of RN (see [12] and the references there).

Problem (1.1) admits many generalizations, which mainly consist in replacing
the Laplacian with different elliptic operators in divergence or non-divergence
form, the power nonlinearity with a more general positive function or both. We
refer the reader to [32], [20], [6], [21], [35], [5], [34], [30], and the references
therein.

A generalization which has a somewhat different flavor is obtained when the
differential operator contains a gradient term, to obtain a problem like

(1.2) −�u + |∇u|q = λup

in R
N \ BR0 , where q > 1 and λ > 0. Here and in what follows, BR0 stands for the

ball of radius R0 centered at the origin.
It is outside the scope of this paper to list all the various gradient-dependent

problems which have (1.2) as a model case, and which appear in practice. We
will only note here that gradient-dependent problems are particularly abundant in
PDE which arise from control theory and economic applications. Problems which
generalize (1.2) also appear in the theory of mean-field games, which witnesses
quick development in the last years. The interested reader may consult for instance
[19], [16], and the many references given in these works. For classical results on
gradient-dependent problems we refer to [28], [15].

Problems like (1.2) are also of theoretical importance, since they do not have
many of the properties which have been heavily used in previous nonexistence
results. In particular, the differential operator in (1.2) does not have any variational
structure, nor is it homogeneous when q > 1. Also, supersolutions of (1.2) are not
necessarily superharmonic. The introduction of the gradient term thus forces us to
search for alternative proofs.

Problem (1.2) in an exterior domain has been analyzed recently by some of
the authors in [3] (see also [1] for slightly more general nonlinearities and [4] for
the case q = 1). There are also some previous results available, which however
almost exclusively dealt with radially symmetric solutions. See [18], [39], [35],
[41], [23], [24] and [40].

Another line of research on nonexistence results for solutions of problems
related to (1.1) arises when the underlying domain is different from R

N or an
exterior domain. Such results appeared for instance in [8], [9], [11], [10], [29],
and [6], where cone-like domains (and in particular half-spaces) were studied. All
these works do not allow the appearance of a gradient term as in (1.2). We remark



LIOUVILLE THEOREMS IN HALF-SPACES 561

that one of the most important technical difficulties when dealing with this type
of domains arises because their boundary is not compact; this might explain the
absence of nonexistence results for gradient-dependent problems set in domains
with a noncompact boundary.

The present paper can be viewed as a first step in this direction. We analyze
bounded supersolutions of the problem (1.2) in a half-spaceRN

+ ={x∈R
N : xN >0}

(we are adopting the usual convention to write x = (x′, xN ) for a point x ∈ R
N ):

(1.3) −�u + |∇u|q ≥ λup, u > 0 in R
N
+ , u ∈ C1(RN

+ ) ∩ L∞(RN
+ ).

In our subsequent discussion, we will always assume that N ≥ 2, q > 1, p > 0
and λ > 0 are parameters.

Supersolutions of (1.3) will be defined in the weak sense, that is,∫
RN

+

∇u∇φ +
∫
RN

+

|∇u|qφ ≥ λ

∫
RN

+

upφ

for every nonnegative φ ∈ C∞
0 (RN

+ ). By shifting the half-space, if necessary, we
can always assume that u ∈ C1(RN

+ ) and that u > 0 in RN
+ .

The following two theorems are our main results. They fully describe the
solvability of (1.3), in terms of the parameters of this problem.

Theorem 1. Assume 1 < q < N+1
N . Then if

(1.4) p <
q

2 − q
,

the problem (1.3) does not have a solution. If p = q
2−q , then there exists

λ0 = λ0(q,N ) > 0

such that for λ > λ0 the same conclusion holds.

Theorem 2. Assume q ≥ N+1
N . Then if

(1.5) p <
N + 1
N − 1

,

the problem (1.3) does not have a solution. In addition, if q > N+1
N and p = N+1

N−1 ,
the same conclusion holds.

Theorem 3. For all values of N ≥ 2, q > 1, p, λ > 0 not covered by the
previous two theorems, there exists a solution of (1.3).
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We nowdiscuss the threshold values for p and q which appear in these theorems,
and explain their appearance.

First, recall that the problem without gradient dependence

(1.6) −�u ≥ λup

does not have positive supersolutions in a half-space if and only if p ≤ N+1
N−1 , by the

well-known result of [9]. That is, if p is large enough, positive solutions which are
small at infinity may exist, since the right-hand side of (1.6) is sufficiently small
to accommodate the superharmonicity.

In the same line of thought, when a gradient term is added to the left-hand side
of (1.6), one may expect that there will be a threshold value for the power of the
gradient, which determines the solvability of (1.3). The theorems above uncover
the value of this threshold, as well as describe the interplay between p and q.
When q is large, the gradient term turns out to be “too small to make a difference,”
and the full problem is solvable just when (1.6) is solvable. On the other hand, for
small q it becomes “easier” to satisfy the inequality, and the nonexistence range
for p is reduced. More specifically, (1.3) is not solvable if and only if (p, q) is
above the hyperbola given by (1.4).

Observe the particular (and even surprising at first sight) phenomenon which
appears in the “critical” case p = q/(2 − q)—the existence of a threshold value for
the multiplicative parameter λ > 0. This critical case is certainly the most difficult
one to study. In a sense, it is also the most important one, since it is precisely in this
critical case that the equation is invariant with respect to a “blow-up”, i.e., rescaling
of the dependent and independent variables. Specifically, if we set u(x) = tαũ(y),
y = tx, t > 0, the function ũ satisfies

−tα+2�ũ + tq(α+1)|∇ũ|q ≥ λtαpũp

and the three powers of t in this expression can be equalized by a suitable choice
of α if and only if p = q/(2 − q).

We recall that one of the most frequent and fundamental uses of Liouville type
theorems is that they imply a priori bounds for positive solutions of elliptic PDE in
bounded domains, through the “blow-up” method of Gidas and Spruck [26]. There
have been works where this method was applied to equations with weak gradient
dependence which disappears after the blow-up—see [22]. Our results here (and
those in [3] which cover Liouville theorems in the whole space) now make it
possible to apply the Gidas–Spruck method to problems with strong dependence
in the gradient, in which the gradient stays after a blow-up change of scale.
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Let us give a brief hint to our proofs of Theorems 1 and 2, which borrow tools
from [7] and Section 5 of [6]. When q < N+1

N , we construct and use a subsolution�
of problem (1.3) with λ = 0, vanishing on ∂RN

+ \ {0}, which plays a similar role as
the fundamental solution used in [6]. We assume a positive supersolution of (1.3)
exists and we define the quantity

ρ(R) = inf
x∈RN

+|x|=R

u(x)
�(x)

, R > 0.

A contradiction is reached by obtaining suitable upper and lower bounds for this
quantity. The lower bounds follow because of the comparison principle, while
the upper bounds are a consequence of arguments which involve the “doubling
lemma” in [36]. Much more work is needed in the critical case p = q

2−q . In
addition, in this case some arguments of [6] need to be extended and adapted to our
situation. It turns out that the fundamental monotonicity property of ρ is valid only
for sufficiently large values of λ. It is also worth mentioning that when q ≥ N+1

N ,
the function� which makes the procedure work is not exactly a subsolution of the
homogeneous problem, but a fundamental solution of the Laplacianwhich vanishes
on ∂RN

+ \ {0}. In this case we need to show that a subsolution of a rescaled version
of (1.3) with λ = 0 (see (5.3)) does not decay too quickly at infinity and then use
a comparison argument in rescaled dyadic balls in order to reach a contradiction.

In the end we comment on the possibility of extending our results to more
general cones in R

N than half-spaces. The only part of the proofs presented below
which would require substantial modifications when dealing with more general
cones is the construction of explicit subsolutions in Lemmas 4, 6, and 11. One
would need to look for subsolutions as powers of the radial variable and functions
of the angular variables of the cone. We will not deal with this rather technical
question here, leaving it to a further study.

The rest of the paper is organized as follows: in Section 2 we obtain lower
bounds for all positive supersolutions. Section 3 is dedicated to obtaining upper
bounds for some special supersolutions, while Sections 4 and 5 deal with the proofs
of Theorems 1, 2 and 3.

2 Lower bounds

The purpose of this section is to obtain lower bounds for all positive supersolutions
of (1.3). These lower bounds will be obtained by comparing with appropriate
subsolutions of the equation

(2.1) −�u + |∇u|q = 0 in R
N
+
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which vanish on ∂RN
+ \{0}. Note that when q > 1, in the context of weak solutions,

the comparison principle is furnished for instance by Theorem 3.5.1 in [37] (see
also Theorem 10.1 in [27] for classical solutions).

It turns out that the cases 1 < q < N+1
N and q ≥ N+1

N have to be analyzed
separately. We begin with the first one and look for a subsolution involving the
function

(2.2) �(x) :=
xαN
|x|β , xN > 0,

where x = (x′, xN ) and α, β > 0. Our first result is a simple calculation.

Lemma 4. Assume 1 < q < N+1
N . The function A� is a classical subsolution

of (2.1) provided that 0 < A ≤ A0, where

(2.3)

⎧⎪⎪⎨
⎪⎪⎩
α = θ − N + 2,

β = 2θ − N + 2,

A0 = (α(α−1)
θq )

1
q−1 ,

and θ = 2−q
q−1 .

Proof. After straightforward calculations, we see that � being a classical
subsolution of (2.1) is equivalent to

(2.4)
−xα−2

N

|x|β
(
β(β − 2α + 2 − N )

x2
N

|x|2 + α(α− 1)
)

+ Aq−1 x(α−1)q
N

|x|βq
∣∣∣(β2 − 2αβ)

x2
N

|x|2 + α2
∣∣∣ q

2 ≤ 0

if xN > 0. Since β > 0 and β − 2α = N − 2 > 0, we have

∣∣∣(β2 − 2αβ)
x2
N

|x|2 + α2
∣∣∣ = (β2 − 2αβ)

x2
N

|x|2 + α2 ≤ (β − α)2 = θ2

so that (2.4) is implied by

−α(α− 1) + θqAq−1 x(α−1)q−α+2
N

|x|β(q−1)
≤ 0.

However, this last inequality is easily seen to hold since (α−1)q−α+2 = β(q−1)
and −α(α − 1) + θqAq−1 ≤ 0 (observe also that α > 1 is a consequence of
q < N+1

N ). �
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To proceed further, we introduce the notation B+
R = {x ∈ R

N
+ : |x| < R},

S+
R = {x ∈ R

N
+ : |x| = R}, for R > 0. For a given positive function u which satisfies

(1.3), we consider the function

(2.5) ρ(R) = inf
x∈S+

R

u(x)
�(x)

, R > 0,

where � is given by (2.2) with the choice of α, β in (2.3). Observe that u/� is
bounded from below by a positive constant on S+

R, according to Hopf’s principle
(applied to −�u + c(x)|∇u| ≥ 0 with c = |∇u|q−1) and to the fact that α > 1.
Therefore we always have ρ(R) > 0.

The first important property of the function ρwhen u is a positive supersolution
of (1.3) is the following:

Lemma 5. Assume u ∈ C1(RN
+ ) is a positive weak supersolution of (1.3) and

let ρ be defined by (2.5). Then

lim inf
R→+∞ ρ(R) > 0.

Moreover, the function ρ(R) is increasing in any interval where it verifies
0 < ρ(R) < A0 (A0 is the constant from the previous lemma), and if ρ(R1) = A0 for

some R1 > 0, then ρ(R) ≥ A0 for every R > R0.

Proof. Let us show that if ρ(R1) < A0 for some R1, then ρ(R) > ρ(R1) for
every R > R1, where A0 is given in (2.3).

Choose ε > 0. Observe that � ≤ R−θ
2 ≤ ε/ρ(R1) on |x| = R2 if R2 is

large enough, thus u + ε ≥ ε ≥ ρ(R1)� on S+
R2

. By definition, we also have
u+ε ≥ u ≥ ρ(R1)� on S+

R1
. Since ρ(R1) < A0, the function ρ(R1)� is a subsolution

of −�v + |∇v |q ≤ 0 in A+(R1,R2) := {x ∈ R
N
+ : R1 < |x| < R2} by Lemma 4, and

using comparison we get

u + ε ≥ ρ(R1)� in A+(R1,R2).

Letting R2 → +∞ and then ε → 0, we arrive at u ≥ ρ(R1)� in R
N
+ ∩ {|x| > R1},

in other words,

ρ(R1) = inf
x∈RN

+ \BR1

u(x)
�(x)

.

In particular, by (2.5), ρ(R) ≥ ρ(R1) for every R > R1, as was to be shown. As
an immediate consequence, we have lim infR→+∞ ρ(R) > 0, which concludes the
proof. �
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In the case q ≥ N+1
N , we look for a subsolution of (2.1) similar to the one

discovered before:

(2.6) �ε(x) =
x1+ε
N

|x|N+2ε ,

where ε > 0 (observe that when ε = 0, this function reduces to one of the
fundamental solutions of the Laplacian in R

N
+ which vanish on ∂RN

+ \ {0}). The
proof of the next result is similar to that of Lemma 4.

Lemma 6. Assume q ≥ N+1
N . For ε > 0, the function A�ε is a classical

subsolution of (2.1) in R
N
+ \ B+

1 , provided that

0 < A ≤
( ε(1 + ε)
(N − 1 + ε)q

) 1
q−1
.

Proof. It suffices to have, for xN > 0 and |x| > 1,

(2.7) −ε(1 + ε) + (N − 1 + ε)qAq−1 x1+ε(q−1)
N

|x|(N+2ε)(q−1)
≤ 0.

Since q ≥ N+1
N , we see that (N + 2ε)(q − 1) ≥ 1 + ε(q − 1), hence we deduce for

|x| > 1
x1+ε(q−1)
N

|x|(N+2ε)(q−1) ≤
(xN

|x|
)1+ε(q−1) ≤ 1.

Then inequality (2.7) is a consequence of our choice of A. The proof is
concluded. �

In analogy with (2.5), for a given positive function u defined inR
N
+ we introduce

the function of R:

(2.8) ρε(R) = inf
x∈S+

R

u(x)
�ε(x)

, R > 1.

The following property can be shown with an entirely similar proof to that of
Lemma 5, and will thus be omitted.

Lemma 7. Assume u ∈ C1(RN
+ ) is a positive weak supersolution of (1.3) and

let ρε be defined by (2.8). Then

lim inf
R→+∞ ρε(R) > 0.

3 Upper bounds

Our next task is to obtain upper bounds for positive, bounded supersolutions of the
problem

(3.1) −�u + |∇u|q = λup in R
N
+ .
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Our tool to achieve them is the doubling lemma proved in [36]. But in order
to be able to use the results there, we first need to get supersolutions with some
additional regularity properties.

Actually, in the case 1 < q ≤ 2, the existence of a positive, bounded, weak su-
persolution suffices to guarantee the existence of a bounded solution with bounded
derivatives.

Lemma 8. Assume 1 < q ≤ 2 and u ∈ C1(RN
+ ) is a positive, bounded weak

supersolution of (3.1). Then there exists a positive classical solution v ∈ C2(RN
+ )

of (3.1) verifying ‖v‖C2(RN
+ ) < +∞.

Proof. Set ϒ = � when 1 < q < N+1
N while ϒ = �ε for q ≥ N+1

N , where �
and �ε are given by (2.2) and (2.6), respectively, and ε is small enough. Fix
R1 > 0 and for R2 > R1 denote again A+(R1,R2) = {x ∈ R

N
+ : R1 < |x| < R2}. By

Lemmas 5 and 7 we have u ≥ δϒ for x ∈ R
N
+ , |x| > R1 and some small positive δ .

Next, consider the problem

(3.2)

⎧⎨
⎩−�v + |∇v |q = λvp in A+(R1,R2),

v = δϒ on ∂A+(R1,R2).

It is clear that u is a weak supersolution of (3.2), while v = δϒ is a weak
subsolution, and they are ordered. Since q ≤ 2, we may apply the classical method
of sub- and supersolutions to obtain a weak solution vR2 verifying δϒ ≤ vR2 ≤ u

in A+(R1,R2) (cf. [14]). Notice that vR2 is classical by standard regularity (see [31]
and [27]).

In particular, the set {vR2}R2>R1 is uniformly bounded. Using, for instance,
Theorem 7 in [2] we deduce that the set {|∇vR2|}R2>R1 is locally bounded. Thus
we obtain also local bounds for {|�vR2 |}R2>R1 , which by standard theory provide
with C1,α local bounds and therefore C2,α local bounds. Thus, by compactness
and using a diagonal argument, we may select a sequence R2,n → +∞ such that
vR2,n → v in C2

loc(R
N
+ \ BR1 ). Hence v is a classical solution of

−�v + |∇v |q = λvp in R
N
+ \ BR1,

verifying in addition v ≥ δϒ. Thus v > 0 in R
N
+ \ BR1 .

Finally, since u ∈ L∞(RN
+ ), we also have v ∈ L∞(RN

+ \BR1 ), and usingTheorem7
in [2] again this implies |∇v | ∈ L∞(RN

+ \ BR1 ) ∩ {xN > 2R1}). By classical theory
we deduce also |D2v | ∈ L∞(RN

+ \BR1 )∩{xN > 3R1}). Now a convenient shift ṽ of v
gives a solution of problem (3.1) inRN

+ , verifying ṽ ∈ C2(RN
+ ) and ‖ṽ‖C2(RN

+ ) < +∞.
This concludes the proof. �
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The case q > 2 is a bit more delicate, since standard theory is not available.
Nevertheless, gradient estimates can still be used, and they allow us to obtain a
slightly weaker result, however enough for our purposes below.

Lemma 9. Assume q ≥ 2 and u ∈ C1(RN
+ ) is a positive, bounded weak super-

solution of (3.1). Then there exists a positive, weak supersolution v ∈ C1,α(RN
+ ) of

(3.1) with ‖v‖C1,α(RN
+ ) < +∞ for every α ∈ (0, 1).

Proof. Our intention is to apply the method of sub- and supersolutions again,
but since now q > 2, we have to work with some more care.

Fix R2 > R1 > 0. By Lemma 7, we obtain u ≥ δ�ε in R
N
+ \BR1 for some small

enough δ . Consider the unique solution z of the problem⎧⎨
⎩−�z = λup in A+(R1,R2),

z = δ�ε on ∂A+(R1,R2).

By standard regularity, z ∈ W 2,s(A+(R1,R2)) ∩ C1,α(A+(R1,R2)) for every s > 1
and every α ∈ (0, 1) (cf. [27]). Thus it is clear that z is a (strong) supersolution of

(3.3)

⎧⎨
⎩−�v + |∇v |q = λup in A+(R1,R2),

v = δ�ε on ∂A+(R1,R2),

while δ�ε is a strong subsolution of the same problem, and they coincide on the
boundary. By the comparison principle we have z ≥ δ�ε in A+(R1,R2).

We may then use Theorem III.1 in [33] (we remark that the proof there can
be adapted to deal with nonhomogeneous Dirichlet problems, provided only that
the sub- and supersolution coincide on the boundary) to ensure the existence of a
strong solution vR2 ∈ W 2,s(A+(R1,R2)) of (3.3). Again by comparison, u ≥ vR2 in
A+(R1,R2), so that the family {vR2}R2>R1 is locally bounded in R

N
+ \ BR1 .

We can pass to the limit in a similar way as in Lemma 8 to obtain that, for
some sequence R2,n → +∞, vR2,n → v in C1

loc(R
N
+ \ BR1 ). Of course, this function

verifies
−�v + |∇v |q = λup ≥ λvp in R

N
+ \ BR1

in the weak sense. Observe that both v and u are bounded in R
N
+ \ BR1 . Thus, we

may use again Theorem 7 in [2] to conclude that |∇v | is also bounded in xN > 2R1.
By classical regularity, ‖v‖C1,α(RN

+ \BR1 ) is finite for every α ∈ (0, 1) and we may take
as before a shift of v to obtain the sought supersolution in R

N
+ . �

Once we have appropriate positive supersolutions of (3.1), we can obtain ade-
quate information on their decay at infinity with the “doubling method”, introduced
in [36].
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Lemma 10. Assume 1 < q ≤ 2 and v ∈ C2(RN
+ ) is a positive classical

solution of (3.1), or q > 2 and v ∈ C1(RN
+ ) is a positive weak supersolution of

(3.1). Assume in addition that ‖v‖C1,α(RN
+ ) < +∞ for some α ∈ (0, 1) and one of

the following conditions hold:
(a) 1 < q ≤ N+1

N and 0 < p < q
2−q ;

(b) 1 < q ≤ N+1
N , p = q

2−q and λ is large enough;
(c) q > N+1

N and p ≤ N+1
N−1 .

Then there exists a constant C > 0 such that

(3.4) v(x) ≤ Cx
− 2

p−1

N , |∇v(x)| ≤ Cx
− p+1

p−1

N , for x ∈ R
N
+ .

Proof. Let us show first that

(3.5) lim
xN →+∞ v(x) = lim

xN →+∞ |∇v(x)| = 0.

For this, choose an arbitrary sequence {xn}n∈N such that xn,N → +∞, where xn,N

stands for the N -th component of xn. Let wn(x) = v(x + xn), which solves (3.1)
in xN > −xn,N . By hypothesis {wn}n∈N is bounded in C1,α

loc (RN ), so we obtain,
passing to a subsequence, that wn → w in C1

loc(R
N ), where w is a nonnegative,

bounded weak solution of

−�w + |∇w|q ≥ λwp in R
N .

Now we observe that our assumptions (a), (b), (c) imply that one of the following
cases occurs:

(i) 1 < q < N
N−1 and 0 < p < q

2−q ;
(ii) 1 < q < N

N−1 , p = q
2−q and λ is large enough;

(iii) q ≥ N
N−1 and p < N

N−2 .
Therefore we can use the results in [3] (specifically Theorems 1, 2 and 3 therein)
to obtain that w ≡ 0. Thus v(xn) → 0, |∇v(xn)| → 0, and this shows (3.5).

Next assume (3.4) does not hold and introduce the function

M (x) := v(x)
p−1
2 + |∇v(x)| p−1

p+1 , x ∈ R
N
+ .

Then there exist points yk ∈ R
N
+ such that

M (yk) > 2ky−1
k,N for every k ∈ N.

We may use Lemma 5.1 in [36] (see also Remark 5.2 (b) there) to obtain points
xk ∈ R

N
+ such that M (xk) ≥ M (yk), M (xk) > 2kx−1

k,N and

M (x) ≤ 2M (xk) if |x − xk| ≤ kM (xk)
−1.
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Define the functions

zk(y) = μ
2

p−1

k v(xk + μky), y ∈ Bk

(Bk stands for the ball with radius k centered at the origin), where μk = M (xk)−1.
Observe that M is a bounded function by hypothesis, therefore xk,N ≥ 2k/C for
some positive constant C, hence xk,N → +∞ as k → +∞. Thus

M (xk) = v(xk)
p−1
2 + |∇v(xk)|

p−1
p+1 → 0

by (3.5), so that μk → +∞.
From this moment on, we need to distinguish the cases 1 < q ≤ 2 and q > 2. In

the first case, v is a solution of (3.1), so it is not hard to check that the functions zk

verify

−�zk + μ
2p

p−1 − p+1
p−1 q

k |∇zk|q = λzp
k in Bk

together with
zk(0)

p−1
2 + |∇zk(0)| p−1

p+1 = μkM (xk) = 1

and

zk(y)
p−1
2 + |∇zk(y)|

p−1
p+1 = μkM (xk + μky) ≤ 2μkM (xk) = 2 in Bk.

Using that both zk and its gradient are bounded in Bk, we deduce that �zk is
bounded in Bk , so that by standard regularity we obtain C1,α local bounds for zk.
This entails that actually �zk is locally bounded in Cα, which in turn gives C2,α

local bounds. Passing to a subsequence through a diagonal procedure, we may
assume zk → z in C2

loc(R
N ), where z verifies z(0)

p−1
2 + |∇z(0)| p−1

p+1 = 1 and is a
nonnegative classical solution of

−�z = λzp in R
N

when p < q
2−q or

−�z + |∇z|q = λzp in R
N

when p = q
2−q . By the strong maximum principle we see that z > 0 in R

N . In the
first case we obtain a contradiction with Theorem 1.1 in [26], while in the second
a contradiction is also reached with Theorem 1 in [3] if λ is large enough. This
shows (3.4) in cases (a), (b) and (c) when q ≤ 2.

Thus only the case q > 2 in (c) remains to be proved. In this situation the
functions zk verify

−�zk + μ
2p

p−1 − p+1
p−1 q

k |∇zk|q ≥ λzp
k in Bk
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and the exponent of μk is negative. Since |∇zk| is bounded we have, by passing
to a subsequence, that zk → z uniformly in compact sets of R

N and zk ⇀ z in

H 1
loc(R

N ). As μ
2p

p−1 − p+1
p−1 q

k → 0, we deduce −�z ≥ λzp in R
N in the H 1-weak sense,

and since z is continuous also in the viscosity sense. This contradicts for instance
Theorem 2.1 in [6], since p ≤ N+1

N−1 <
N

N−2 . This contradiction proves (3.4) in case
(c) and the proof is concluded. �

4 The case 1 < q < N+1
N

We devote this section to the proof of Theorem 1. Our first step is to obtain a
slightly more accurate version of Lemma 5 which will be used when we analyze
the critical case p = q

2−q . For this purpose we consider the problem

(4.1) −�u + |∇u|q = B�p in R
N
+

for B > 0, where � is given by (2.2). The key point is to obtain a positive
subsolution of (4.1) vanishing on ∂RN

+ \{0}. The next lemma is similar to Lemma 4.

Lemma 11. Assume 1 < q < N+1
N and p = q

2−q . With α and θ as given in

Lemma 4 set

(4.2) λ0 =
θq(q − 1)

p − 1

( θq(p − q)
α(α− 1)(p − 1)

) p−q
q−1
.

Then the function A� is a classical subsolution of (4.1) provided that

A ≤
( B
λ0

) 1
p
.

Proof. Similarly as in the proof of Lemma 4, we see that being a classical
subsolution of (4.1) is implied by

−Aα(α− 1) + Aqθq x(α−1)q−α+2
N

|x|β(q−1)
≤ B

xαp−α+2
N

|x|β(p−1)
in xN > 0.

Taking into account that (α− 1)q − α + 2 = β(q − 1) and α(p − 1) + 2 = (p − 1)β,
this reduces to

(4.3) −Aα(α− 1) + Aqθq
(xN

|x|
)β(q−1) ≤ B

(xN

|x|
)β(p−1)

for xN > 0.

Denote temporarily a = Aα(α− 1), b = Aqθq, c = B , s = β(q − 1), t = β(p − 1),
and consider the function G(ξ ) = −a + bξ s − cξ t for ξ ∈ [0, 1]. Then (4.3) will
hold in R

N
+ when G(ξ ) ≤ 0 in [0, 1].
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Observe that with our hypotheses p > q, so that t > s. Then it is not hard to
see that

G(ξ ) ≤ −a +
b
t

(bs
ct

) s
t−s

(t − s) ≤ 0

provided we take a to verify a ≥ b
t (

bs
ct )

s
t−s (t − s). After some calculations, we see

that this inequality is equivalent to Apλ0 ≤ B . This concludes the proof. �
With a similar procedure as in the proof of Lemma 5, the subsolution given by

Lemma 11 can be used to obtain the following property:

Lemma 12. Let λ0 be given by (4.2). Then, if u ∈ C1(RN ) is a positive weak
supersolution of (1.3) with p = q

2−q and λ > λ0, the function ρ given by (2.5) is

increasing in R > 0.

Proof. Observe first that Lemma 5 shows that ρ is increasing as long as
ρ < A0. Also, if there exists R1 > 0 such that ρ(R1) = A0, then ρ(R) ≥ A0 for
every R > R1.

Thus assume the existence of such a R1. Then

(4.4) −�u + |∇u|q ≥ λAp
0�

p in |x| ≥ R1.

Set A1 = A0(λ/λ0)
1
p > A0. If ρ(R2) < A1 for some R2 > R1, then ρ(R2)� is

a subsolution of (4.4) by Lemma 11, while u + ε is a supersolution for small
positive ε. Thus an argument like the one used in the proof of Lemma 5 shows that
ρ(R) ≥ ρ(R2) for R ≥ R2. Thus ρ(R) is nondecreasing as long as A0 ≤ ρ(R) < A1

and if ρ reaches the value A1 it always stays above this value. Defining recursively
Ak = Ak−1(λ/λ0)

1
p we deduce that ρ is increasing as long as Ak−1 ≤ ρ(R) < Ak ,

and since limk→+∞ Ak = +∞ we obtain that ρ is increasing in R > 0. �
Our proof in the critical case p = q

2−q follows arguments introduced in [6].
For this, several ideas have to be generalized. The next property is essentially an
adaptation of the so-called ‘quantitative maximum principle’ there (Lemma 2.2 in
[6]).

Lemma 13. Let � be a bounded Lipschitz domain of RN and v, z ∈ C2(�)
verifying ⎧⎨

⎩−�v + |∇v |q ≥ −�z + 2q−1|∇z|q + f in �,

v ≥ z on ∂�,

where f ∈ L∞(�), f ≥ 0, f �≡ 0. Then for every �′ ⊂⊂ � there exists

c = c( f,�′) > 0 such that

v ≥ z + c in �′.
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Proof. Let φ be the unique (positive) solution of

⎧⎨
⎩−�φ + 2q−1|∇φ|q = f in �

φ = 0 on ∂�

(this problem is uniquely solvable since q ≤ 2). Since

−�(z + φ) + |∇(z + φ)|q ≤ −�z −�φ + 2q−1|∇z|q + 2q−1|∇φ|q
= −�z + 2q−1|∇z|q + f

≤ −�v + |∇v |q

in �, with z + φ = z ≤ v on ∂�, we deduce by comparison that z + φ ≤ v in �.
The conclusion of the lemma follows with c = inf�′ φ. �

For our last preliminary resultwe introduce some notation: letC be an open cone
with vertex at zero contained in R

N
+ with ∂C ∩ ∂RN

+ = {0}. Denote D = B+
4 \ B+

1/2,
E = (B+

2 \ B+
1 ) ∩ C. The following is a version of Lemma 5.5 in [6].

Lemma 14. For every b > 0, there exists ε = ε(b) ∈ (0, 1
2 ) such that, for

every v, z ∈ C2(D) ∩ C(D) verifying

⎧⎪⎪⎨
⎪⎪⎩

−�v + |∇v |q ≥ −�z + 2q−1|∇z|q in D

v ≥ z on ∂RN
+ ∩ (B4 \ B1/2)

v ≥ z + b on E

and v ≥ z − ε in D, we have that v ≥ z in B+
2 \ B+

1 .

Proof. Let ε > 0 be small and φε the solution of the problem

(4.5)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�φ + |∇φ|q = 0 in D \ E,

φ = 0 on ∂RN
+ ∩ (B4 \ B1/2),

φ = b on ∂E,

φ = −ε on the rest of ∂(D \ E).

We claim that there exists ε > 0 such that φε > 0 on B+
2 \ B+

1 .

If this were not true, there would exist sequences εn → 0 and points xn ∈ B+
2 \B+

1

with φεn(xn) ≤ 0. Passing to subsequences we may assume xn → x0 ∈ B+
2 \ B+

1 ,
φn → φ uniformly in D \E , and also in C1

loc((D \E)∪(∂RN
+ ∩(B4 \B1/2))), where φ

is the solution of (4.5) with ε = 0.
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Since φ > 0 in D\E and φ(x0) ≤ 0, we deduce x0 ∈ ∂RN
+ ∩(B2\B1). According

to Hopf’s principle, ∂φ
∂xN

(x0) > 0, so that there exists a neighborhood of x0 with
∂φεn
∂xN

> 0. Hence φεn > 0 in this neighborhood, contradicting φεn(xn) ≤ 0. This
shows the claim.

We next argue as in the proof of Lemma 13: we have

−�(z + φε) + |∇(z + φε)|q ≤ −�v + |∇v |q in D \ E,

with z + φε ≤ v on ∂(D \ E). By comparison z + φε ≤ v in D \ E , and since
φε > 0 in B+

2 \B+
1 for small ε, we deduce that z ≤ v in B+

2 \B+
1 if ε is small enough

(depending only on b). This concludes the proof. �
We can finally proceed to the proof of Theorem 1.

Proof of Theorem 1. Assume there exists a positive, bounded, weak
supersolution of (1.3). Thanks to Lemma 8, there exists a classical solution v of
(1.3) verifying ‖v‖C2(RN

+ ) < +∞. Consider the function ρ defined by (2.5), with u
replaced by v . According to Lemma 5, we have ρ(R) ≥ c > 0 for large R. On the
other hand, by Lemma 10

(4.6) ρ(R) ≤ v(ReN )
�(ReN )

= Rθv(ReN ) ≤ CRθ−
2

p−1 .

In the case p < q
2−q , since θ < 2

p−1 , we obtain an immediate contradiction by
letting R go to infinity.

Thus, we focus on the critical case p = q
2−q . With a minor modification of the

proof of Lemmas 11 and 12, we see that there exists an increasing sequence {Bk}∞k =1

of nonnegative numbers with limk→+∞ Bk = +∞, such that, if Bk−1 ≤ A < Bk then

−�(A�) + 2q−1|∇(A�)|q ≤ λ

2
Bp

k−1�
p in R

N
+ ,

provided that λ is larger than some value λ0 = λ0(q).
By Lemma 12, ρ is increasing and it is bounded by (4.6) (since θ = 2

p−1 ), hence
we may set � = limR→+∞ ρ(R). We may choose k so that

Bk−1 ≤ ρ
(R

2

)
< � < Bk

for sufficiently large R (if � = Bk for some k we can modify the choice of Bk by
replacing λ/2 by something slightly larger).

For large R, let w(x) = Rθv(Rx) (recall that θ = 2−q
q−1 ). Since ρ(R) is increasing

w(x) ≥ Rθρ
(R

2

)
�(Rx) = ρ

(R
2

)
�(x)
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when |x| ≥ 1
2 . Moreover

−�w + |∇w|q ≥ λρ
(R

2

)p
�p ≥ λBp

k−1�
p

while

−�
(
ρ
(R

2

)
�
)

+ 2q−1
∣∣∣∇(

ρ
(R

2

)
�
)∣∣∣q ≤ λ

2
Bp

k−1�
p

in D. Using Lemma 13 we obtain

w ≥ ρ
(R

2

)
� + c in E

for some c > 0, independent of R. Since � is bounded from above in E we get
indeed

w ≥
(
ρ
(R

2

)
+ c

)
� in E

(the constant c need not be the same but the only important point is that it is
independent of R). Diminishing c if necessary we may also assume 0 < c < 1 and

Bk−1 ≤ ρ
(R

2

)
+ c < � + c < Bk

for large R. Take ε ∈ (0, 1
2 ). We have

−�
((
ρ
(R

2

)
+ cε

)
�
)

+ 2q−1
∣∣∣∇(

ρ
(R

2

)
+ cε

)
�
∣∣∣q ≤ λBp

k�
p in D.

Observe that

w ≥
(
ρ
(R

2

)
+ cε

)
� in ∂RN

+ \ (B4 \ B1/2),

w−
(
ρ
(R

2

)
+ cε

)
� ≥ c(1 − ε)� ≥ c

2
� ≥ b > 0 in E,

w−
(
ρ
(R

2

)
+ cε

)
� ≥ −cε� ≥ −Kε in D,

for some K, b > 0. If we now choose ε = ε(b) as in Lemma 14 we deduce

w ≥
(
ρ
(R

2

)
+ cε

)
� in B+

2 \ B+
1 .

In particular, if |x| = 1 we obtain

v(Rx)
�(Rx)

=
w(x)
�(x)

≥ ρ
(R

2

)
+ cε,

so that ρ(R) ≥ ρ(R
2 ) + cε. Since c and ε do not depend on R, we may let R go to

infinity to arrive at � ≥ � + cε, a contradiction. This contradiction shows that no
positive supersolutions of (1.3) exist. �
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5 The case q ≥ N+1
N

We finally consider the case where the gradient term is ‘negligible’ when compared
with the Laplacian. In this case, the relevant function to compare with is the
fundamental solution of the Laplacian in R

N
+ which vanishes on ∂RN

+ \{0} and goes
to zero at infinity, namely

�(x) =
xN

|x|N , xN > 0.

We introduce again the quantity

(5.1) ρ̃(R) = inf
x∈S+

R

v(x)
�(x)

, R > 0,

which will be relevant when dealing with the borderline situation p = N+1
N−1 . Indeed,

we have the following important property:

Lemma 15. Assume q > N+1
N and p = N+1

N−1 . Let v ∈ C1,α(RN
+ ) with

‖v‖C1,α(RN
+ ) < +∞ be a positive weak supersolution of (3.1). If ρ̃ is given by

(5.1), then

lim
R→+∞ ρ̃(R) = 0.

Proof. Let Rk → +∞ be an arbitrary sequence. Define

wk(y) = RN−1
k v(RkeN + Rky), yN > 0.

Using Lemma 10, we see that for some positive constant C

wk(y) ≤ C(1 + yN )1−N , |∇wk(y)| ≤ C(1 + yN )−N , yN > 0.

Thus, we may choose a subsequence, still denoted by wk, such that wk → w

uniformly in compact sets of RN
+ and wk ⇀ w in H 1

loc(R
N
+ ).

On the other hand, it is not hard to see that

(5.2) −�wk + RN+1−qN
k |∇wk|q ≥ λw

p
k in R

N
+ ,

so that we may pass to the limit in the weak formulation of (5.2) to obtain that
−�w ≥ λwp in R

N
+ in the weak sense (therefore in the viscosity sense). Taking

into account that p = N+1
N−1 <

N
N−2 and using Theorem 2.1 in [6] we have w ≡ 0,

hence
ρ̃(Rk) ≤ v(RkeN )

�(RkeN )
= RN−1

k v(RkeN ) = wk(0) → 0.

Since {Rk} is an arbitrary sequence we deduce limR→+∞ ρ̃(R) = 0, as was to be
shown. The proof is concluded. �
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Before giving the proof of Theorem 2 we still need to introduce an auxiliary
function, which somehow connects the fundamental solution of the Laplacian �
with the problem including a gradient term.

Lemma 16. Assume q > N+1
N and let γ = qN − (N + 1). Fix γ′ ∈ (0, γ). Then

there is a value R0 = R0(γ, γ′) > 0 with the following property: for every R > R0,

there exists a positive, bounded function ψR ∈ C2(RN
+ \ B+

1 ) which verifies

(5.3)

⎧⎨
⎩−�ψR + R−γ|∇ψR|q ≤ 0 in R

N
+ \ B+

1

ψR = � on ∂(RN
+ \ B+

1 ),

together with

lim|x|→+∞ψR(x) = 0.

In addition, there exists a positive constant C such that

(5.4) ψR(x) ≥ (1 − CR−γ′
)�(x), x ∈ S+

2 .

Proof. Set q′ = min{q, 2}, and for R > 1 consider the problem⎧⎨
⎩−�ψ + R−γ′ |∇ψ|q′

= 0 in R
N
+ \ B+

1 ,

ψ = � on ∂(RN
+ \ B+

1 ).

It is clear that � is a supersolution, while 0 is a subsolution of this problem.
Therefore,with an argument similar to that in Lemma 8, and since q′ ≤ 2, we obtain
the existence of a classical solution ψR ∈ C2(RN

+ \ B+
1 ) verifying 0 < ψR < �. By

standard regularity, |∇ψR| ≤ C in R
N
+ \ B+

1 for some positive constant C which
does not depend on R.

Observe that ψR trivially verifies (5.3) for R > 1 when q ≤ 2, because γ′ < γ.
When q > 2, (5.3) will be verified provided that

R−γ|∇ψR|q ≤ R−γ′ |∇ψR|2

inR
N
+ \B+

1 . This is certainly true for large R, since |∇ψR| is bounded independently
of R. This shows the existence of R0 as in the statement of the lemma.

We now turn to prove (5.4). Let φ ∈ C2(RN
+ \ B+

1 ) be the unique, bounded
positive solution of ⎧⎨

⎩−�φ = 1 in R
N
+ \ B+

1

φ = 0 on ∂(RN
+ \ B+

1 )



578 J. GARCÍA-MELIÁN, A. QUAAS AND B. SIRAKOV

and observe that, according to standard regularity, there exists a constant C > 0
with φ ≤ CxN in B+

3 \ B+
1/2, say. Moreover, since⎧⎨

⎩−�(�− ψR) = R−γ′ |∇ψR|q′ ≤ CR−γ′
in R

N
+ \ B+

1 ,

�− ψR = 0 on ∂(RN
+ \ B+

1 ),

we obtain by the Phragmèn–Lindelöf maximum principle that �− ψR ≤ CR−γ′
φ

in R
N
+ \ B+

1 . In particular,

�− ψR ≤ CR−γ′
xN ≤ CR−γ′

� in B+
3 \ B+

1/2.

Then inequality (5.4) follows, concluding the proof of the lemma. �

Proof of Theorem 2. Assume there exists a positive, bounded, weak
supersolution of (3.1). By Lemmas 8 and 9, there exists a positive function v
which is a classical solution of (3.1) with ‖v‖C2(RN

+ ) < +∞ when N+1
N ≤ q ≤ 2 or

a weak supersolution of (3.1) with ‖v‖C1,α(RN
+ ) < +∞ for every α ∈ (0, 1) when

q > 2.
Consider first the case q ≥ N+1

N with p < N+1
N−1 . By Lemmas 7 and 10 we see

that
c�ε(x) ≤ v(x) ≤ Cx

− 2
p−1

N , x ∈ R
N
+ ,

where �ε is given by (2.6) and c,C are positive constants. Setting x = ReN where
R > 0, this implies

cR−(N−1+ε) ≤ v(ReN ) ≤ CR− 2
p−1 , R > 0.

Choosing ε small enough, we get a contradiction for large R.
Therefore to conclude the proof we may restrict ourselves to the case q > N+1

N

with p = N+1
N−1 . Observe that we may apply Lemma 15 to have limR→+∞ ρ̃(R) = 0,

where ρ̃ is given by (5.1).
Consider the scaled function vR(x) = RN−1v(Rx), which verifies

−�vR + R−γ|∇vR|q ≥ 0 in R
N
+ ,

with γ = qN − (N + 1), and let ψR be the function given by Lemma 16 for some
γ′ ∈ (0, γ). Since ρ̃(R) < 1 for large R, we obtain for sufficiently small ε:

−�(vR + ε) + R−γ|∇(vR + ε)|q ≥ −�(ρ̃(R)ψR) + R−γ|∇(ρ̃(R)ψR)|q

in R
N
+ \ B+

1 . Also, by the definition of ρ̃(R),

vR + ε ≥ ρ̃(R)� = ρ̃(R)ψR
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on S+
1 , while the same inequality is true at infinity since ψR(x) → 0 as |x| → +∞.

By comparison we get the same inequality in R
N
+ \B+

1 , and letting ε → 0 we obtain
in particular

vR ≥ ρ̃(R)ψR on S+
2 .

Taking into account (5.4), we have vR ≥ ρ̃(R)(1−CR−γ′
)� on S+

2 for some positive
constant C, which is equivalent to

(5.5) ρ̃(2R) ≥ (1 − CR−γ′
)ρ̃(R).

Next, fix a value R > 0 so that 1 − CR−γ′
> 0. An iteration of inequality (5.5)

yields

ρ̃(2kR) ≥
k−1∏
i =0

(1 − C(2iR)−γ
′
)ρ̃(R),

for every k ∈ N. Letting k → +∞ and observing that the infinite product

∞∏
i =0

(1 − C(2iR)−γ
′
)

is convergent to a positive constant, we have the contradiction 0 ≥ Cρ̃(R). This
contradiction proves the nonexistence of positive supersolutions of (3.1) in this
case. �

Proof of Theorem 3. Let us check that, in all cases not covered by our
theorems, positive, bounded (classical) supersolutions can indeed be constructed.
There are several cases to consider:

(a) 0 < q < N+1
N and p > q

2−q ;
(b) 0 < q < N+1

N and p = q
2−q , but λ is small enough;

(c) q ≥ N+1
N and p > N+1

N−1 ;
(d) q = N+1

N and p = N+1
N−1 .

Case (c) is straightforward: we can take a (bounded) supersolution of the problem

−�u = up in R
N
+

(cf. [30]), which will clearly be also a supersolution of (1.3). Thus we may assume
in what follows that q ≤ N+1

N . Moreover, observe that it is enough to construct
a supersolution u of (1.3) in R

N
+ \ B+

R for some R > 0, since then the function
v(x) = u(x + 2ReN ) will be a supersolution of (1.3) defined in all RN

+ .
We look for a supersolution of the form

u(x) = A
xN

|x|β , xN > 0,
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for A > 0 and β > 1 to be chosen. This will imply that u is bounded in R
N
+ \ B+

R

for every R > 0. It is sufficient to have the inequality

−Aβ(β − N )
xN

|x|β+2 +
Aq

|x|βq
∣∣∣(β2 − 2β)

x2
N

|x|2 + 1
∣∣∣ q

2 ≥ λAp xp
N

|x|βp
when xN > 0 and |x| ≥ R ≥ 1. Notice that, when β < 2,

(β2 − 2β)
x2
N

|x|2 + 1 ≥ β2 − 2β + 1 = (β − 1)2,

while for β ≥ 2 this quantity is simply greater than or equal to 1. Thus, u will be
a supersolution of (1.3) provided that

(5.6) −Aβ|β − N | xN

|x|β+2 +
Aqγq

|x|βq ≥ λAp xp
N

|x|βp
for xN > 0, |x| ≥ R, where γ = min{β − 1, 1}. We now choose β = p

p−q > 1 and
observe that, since xN ≤ |x|, inequality (5.6) will be implied by

(5.7) −Aβ|β − N | xN

|x|β(1−q)+2
+ Aqγq ≥ λAp.

Next, consider case (a). Choose a small A so that Aqγq > λAp (notice that p > q

with the present assumptions), and let ε be small so that Aqγq − ε > λAp. It is not
hard to check that β(1 − q) + 2 > 1, and we deduce

Aβ|β − N | xN

|x|β(1−q)+2
≤ ε

xN

|x| ≤ ε

when |x| ≥ R and R is large enough. Therefore (5.7) is a consequence of our
choice of A and ε.

As for case (b), we see that β(1 − q) + 2 = 1, so that (5.7) reduces to showing
that a value of A can be chosen to have

(5.8) −Aβ|β − N | + Aqγq ≥ λAp.

It is always possible to achieve (5.8) for a suitable value of A, provided that λ
verifies

(5.9) 0 < λ ≤ sup
t>0

γqtq − β|β − N |t
tp

.

Finally, case (d) falls under the assumption p = q
2−q , so that the discussion just

made applies, with the only important difference that β = N in this case. Thus
the supremum in (5.9) is infinite and no restriction on the size of λ is indeed
needed. �
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