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Abstract. We combine a classical idea of Postnikov (1956) with the method
of Korobov (1974) for estimating double Weyl sums, deriving new bounds on
short character sums when the modulus q has a small core

∏
p|q p. Using this

estimate, we improve certain bounds of Gallagher (1972) and Iwaniec (1974) for
the corresponding L-functions. In turn, this allows us to improve the error term
in the asymptotic formula for primes in short arithmetic progressions modulo a
power of a fixed prime. As yet another application of our bounds, we substantially
extend the classical zero-free region (which might include Siegel zeros). Finally,
we improve the previous best value L = 12

5 = 2.2 of the Linnik constant for primes
in arithmetic progressions modulo powers of a fixed prime to L < 2.1115.

1 Introduction

1.1 Background. The core (or kernel) of a positive integer q is the prod-
uct q� of the distinct prime divisors p of q, that is,

q� =
∏
p|q

p.

For a modulus q with a small core q�, a nonprincipal character χ modulo q, and
integers M and N ≥ 1, we study the character sum Sχ(M,N ) defined by

Sχ(M,N ) =
M+N∑

n=M+1

χ(n).

In the case of a prime power modulus q = pγ, where q� = p is prime and γ is a
large integer, it has been known since the work of Postnikov [16, 17] that these
sums satisfy bounds that are superior to those which can be established for arbi-
trary moduli (in full generality, the Burgess bound still gives the strongest known
results; see, e.g., Iwaniec and Kowalski [12, Theorem 12.6]). Further advances and
modifications have been achieved by Gallagher [5] along with applications to L-
functions and to the distribution of primes in progressionsmodulo pγ. Iwaniec [11]
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has extended those results to any moduli q that have a small core q�. Both Gal-
lagher [5] and Iwaniec [11] also give estimates for Dirichlet L-functions L(s, χ)
(where s = σ + it ∈ C with σ = �s and t = �s) when σ is close to one and χ
is a primitive character modulo q; their estimates are uniform in the parameters q
and t, where q = pγ (in [5]) or q has a small core (in [11]). Further results in this
direction have been obtained by Chang [2].

1.2 Outline of results. In this paper we combine the method of Postnikov
[16, 17] with a different approach to estimating exponential sums with polynomials
which is due toKorobov [14]. This allows us to improve knownbounds on character
sums and Dirichlet polynomials, which in turn leads to new bounds on Dirichlet L-
functions and their zero-free regions. In particular, we improve some of the main
results of Gallagher [5] and Iwaniec [11] and substantially extend the classical
zero-free region (which might include Siegel zeros). See Sections 2 and 3 below
for a precise description of our results and techniques.

Furthermore, as an application of our results on Dirichlet L-functions, in Sec-
tion 3.3 we give a new asymptotic formula for the number of primes in arithmetic
progressions relative to a large prime power modulus.

Finally, we give an improvement of the Linnik exponent L for the least prime
in an arithmetic progression in the special case of progressions modulo powers
of a fixed prime number. In this situation, our results on the zero-free region
can be combined with a result of Harman [8] to improve the previous best value
L = 12

5 = 2.2 to a value L < 2.1115. Unfortunately, our results do not yield an
improvement of L for the entire class of progressions considered in this paper (that
is, moduli with a small core; see [2, 11] for the latest results in this direction) since
we are unable to exploit the specific form of the bound (3.2) below to strengthen
existing zero density estimates.

1.3 Further applications. We remark that our results imply a rich pro-
fusion of primes p such that p − 1 contains a very large power of a small prime.
Such primes appear in some algorithmic applications; see [13, 23]. Furthermore,
for the cryptographic construction of [3] one needs the existence of primes p with
any given bit size such that p − 1 contains very large powers of two distinct small
primes; this is also guaranteed by our results.

It is likely that Theorem 3.2 and other results of this work will find other
interesting applications in number theory and beyond.
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2 Bounds of character sums

2.1 New bounds on short character sums. For a given prime p, let vp
denote the standard p-adic valuation; in other words, if n �= 0 and vp(n) = ν, then ν
is the largest integer for which pν | n. In this paper, we show that there are absolute,
effectively computable constants γ0, ξ0 > 0 with the following property. For any
modulus q satisfying

(2.1) min
p|q {vp(q)} ≥ 0.7γ with γ = max

p|q {vp(q)} ≥ γ0,

the bound

(2.2) Sχ(M,N ) ≤ AN 1−ξ0/�2
(M,N ∈ Z, N ≥ q

γ0

� )

holds, where � is determined via the relation N � = q, and A is an absolute and
effective constant.

In earlier versions of this result, all bounds have been of the somewhat weaker
form

(2.3) Sχ(M,N ) ≤ exp(a�(1 + log �)2)N 1−ξ0/(�2 log�)

with an absolute constanta (see, e.g., [12, Theorem12.16]). One advantageof (2.2)
over (2.3) is the absence of log� in the denominator of the “savings” term in the
exponent of N . A more crucial advantage, however, is that our bound (2.2) has
an absolute constant A instead of the superexponential function of � that appears
in (2.3); this ultimately accounts for our improvement of the exponent 3/4 in (2.5)
down to 2/3 in (2.4) below.

We note that the recent work of Chang [2] also extends the class of moduli q to
which the method of Postnikov [16, 17] applies but provides weaker bounds than
ours.

Milićević [15] also uses the method of Postnikov [16, 17]. However, the main
goal of [15] is to estimate L-functions L(s, χ) in the different extreme case in
which s = 1/2, as opposed to the case s = 1 (or more generally, σ close to one)
which is the case considered here. It turns out that for applications to L(1/2, χ) the
strength of the bound of the character sums is more important than its range. Thus,
Milićević [15] works in a different regime of long character sums, whereas we are
mainly interested in short sums that are decisive for estimating L(s, χ) when σ is
close to one.

To give a brief comparison of the strengths of our bound (2.2), which stems
from our approach via double sums, and of (2.3), which is based on standard Weyl
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sums, we note that (2.2) is nontrivial for

(2.4) N ≥ exp((log q)2/3+ε)

whereas (2.3) requires that

(2.5) N ≥ exp((logq)3/4+ε).

Our approach to (2.2) relies on an idea of Korobov [14] coupled with the
use of Vinogradov’s mean value theorem in the explicit form given by Ford [4].
Specifically, we employ a precise bound on the quantity Nk,d (P) that is defined to
be the number of solutions to the system of equations

(2.6) yr
1 + · · · yr

k = zr
1 + · · · + zr

k (1 ≤ r ≤ d, 1 ≤ yr, zr ≤ P).

It is worth remarking that subsequent improvements of Vinogradov’s mean value
theorem due to Wooley [20, 21, 22], and more recently, to Bourgain, Demeter and
Guth [1] (the latter providing a bound that is essentially optimal with respect to P),
are not suitable for our purposes here as they contain implicit constants that depend
on k and d , whereas our methods require that k and d be permitted to grow with P.

Bearing in mind potential applications to L-functions (some of which are given
below) we establish the following generalization of the bound (2.2). For a given
polynomial G(x) with real coefficients, let

Sχ(M,N ;G) =
M+N∑

n=M+1

χ(n)e(G(n)),

where e(t) = e2πit for all t ∈ R.
For given functions U and V , the notations U � V , V � U and U = O(V )

are all equivalent to the statement that the inequality |U | ≤ c|V | holds with some
constant c > 0. Throughout the paper, we indicate explicitly the parameters on
which the implied constants may depend.

Theorem 2.1. For any real number C > 0 there are effectively computable

constants γ0, ξ0 > 0 that depend only on C and have the following property. For
any modulus q satisfying (2.1) and any primitive character χ modulo q, the bound

(2.7) Sχ(M,N ;G) � N 1−ξ0/�2

holds uniformly for all M,N ∈ Z and G ∈ R[x] subject to the conditions

(2.8) q ≥ N ≥ qγ0

� and degG ≤ C�,

where � = (log q)/ logN and implied constant in (2.7) is effective and depends
only on C.
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As an application of Theorem 2.1, we also study Dirichlet polynomials of the
form

Tχ(M,N ; t) =
M+N∑

n=M+1

χ(n)nit (t ∈ R).

Approximating Tχ(M,N ; t) by sums Sχ(M,N ;G) with appropriately chosen poly-
nomials G, we derive the following bound.

Theorem 2.2. For any real number C > 0 there are effectively computable
constants γ0, ξ0 > 0 that depend only on C and have the following property. For

any modulus q satisfying (2.1) and any primitive character χ modulo q, the bound

(2.9) Tχ(M,N ; t) � M 1−ξ0/�2

holds uniformly for all M,N ∈ Z and t ∈ R subject to the conditions

(2.10) M ≥ N, q ≥ N ≥ qγ0

� and |t| ≤ qC,

where � = (log q)/ logN and implied constant in (2.9) is effective and depends

only on C.

Theorem 2.2 improves [5, Lemma 5] in the special case that |t| is bounded
by a fixed power of the modulus of the character χ. For larger values of |t|,
our approach incorporating ideas of Korobov (Lemma 4.2) breaks down, and
in this case the method of Gallagher (which relies only on general estimates of
Vinogradov [18, 19]) yields the best known result.

3 Applications

3.1 Bounds on L-functions. As in [5, 11], we can apply our bound on
the sums Tχ(M,N ; t) to estimate the size of L-functions inside the critical strip.

Theorem 3.1. Fix C > 0 and η ∈ (0, 1
3 ). There is an effectively computable

constant γ0 > 0 that depends only on C and has the following property. Let q be a

modulus satisfying (2.1) and χ a primitive character modulo q. If the inequalities
σ > 1 − η and |t| ≤ qC hold, then for s = σ + it with σ = �s and t = �s, we have

|L(s, χ)| ≤ η−1 exp(O(max{η log q�, η
3/2�, η�2/3(log �)1/3})),

where � = log q(|t| + 3) and the implied constant depends only on C.

To illustrate the strength of the bound, we note that with the specific choice

η =
1

�1/2(log �)3/4
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considered by Iwaniec [11], our Theorem 3.1 yields the bound

|L(s, χ)| ≤ qo(1)
� exp(O(�1/4(log �)−9/8))

for σ > 1 − η provided that |t| is polynomially bounded in terms of q, where o(1)
is a function that tends to zero as q → ∞. In particular, this improves the bound
of [11, Theorem 1], i.e.,

|L(s, χ)| ≤ qo(1)
� exp(100�1/4),

under the same condition on t (we point out, however, that the Iwaniec bound
also holds for all larger values of t). It is important to note that for all known
applications to the distribution of primes, only values of s = σ + it with t bounded
by a small power of q (typically, |t| ≤ q) play an important rôle; see Section 3.3
where we give one application of this type.

Taking η somewhat smaller, namely

η =
(log �)2/3

�2/3

(in other words, taking values of s that lie closer to the edge of the critical strip),
Theorem 3.1 yields the bound

|L(s, χ)| ≤ qo(1)
� (log q)O(1)

for σ > 1 − η provided that |t| is polynomially bounded in terms of q.
Choosing η even smaller, namely

η =
1

�2/3(log �)1/3
,

we obtain the following attractive bound:

(3.1) |L(s, χ)| ≤ qo(1)
� (log q)2/3(log log q)1/3

for σ > 1−η provided that |t| is polynomially bounded in terms of q. In particular,
the bound (3.1) applies to L(1, χ) and is therefore of special interest as it is presently
unknown whether the estimate

L(1, χ) = o(logq)

holds for general moduli q (although the bound L(1, χ) � log log q is implied by
the GRH); for the strongest unconditional upper bounds on |L(1, χ)|, see Granville
and Soundararajan [6].

We conclude this subsectionwith the remark that, in our setting, one can define �
more simply as � = log q. In Theorem 3.1 and in the above examples, we have
used the definition � = log q(|t|+3) solely for the purpose of comparing our results
to those of [11, Theorem 1].
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3.2 The zero-free region. We apply our new bounds on L-functions to
extend the zero-free region on low-lying zeros. Note that we formulate the results
of this section only for primitive characters χ modulo q satisfying (2.1); for other
characters, our results can be formulated in terms of the conductor of χ.

Theorem 3.2. For every C > 0, there is an effectively computable constant

γ0 > 0 that depends only on C and has the following property. Let q be a modulus
satisfying (2.1). There is a constant A > 0, which depends only on C and q�, such

that if

(3.2) ϑ =
A

(log q)2/3(log log q)1/3
,

then there exists at most one primitive character χ modulo q such that L(s, χ) has

a zero in the region {s ∈ C : σ > 1 − ϑ, |t| ≤ qC}, where σ = �s and t = �s. If
such a character exists, then it is a real character, and the zero is unique, real and

simple.

It is worth mentioning that, under the same conditions as in Theorem 3.2,
the previous result of Iwaniec [11, Theorem 2] yields a similar bound with
(log q(|t| + 3))3/4(log log q(|t| + 3))3/4 in the denominator of ϑ instead of our
(log q)2/3(log log q)1/3, but with no restriction on |t|. Of course, for applications to
exceptional characters the restriction on |t| is irrelevant as any Siegel zero must lie
on the real axis, and thus Theorem 3.2 reveals a substantially larger portion of the
real interval [0, 1] that is zero-free with at most one exception.

Corollary 3.3. Let q be a modulus satisfying (2.1). There is a constant A > 0,

which depends only on q�, with the following property. Let ϑ be given by (3.2).
Then there exists at most one primitive real characterχ modulo q such that L(σ, χ)
has a zero in the region 1 ≥ σ > 1 − ϑ, and any such zero must be simple.

We remark that, in the most interesting case in which q = pγ is a power of
a fixed prime p, the condition (2.1) is satisfied automatically once γ ≥ γ0, and
thus Theorem 3.2 yields the following statement for all characters modulo a prime
power q = pγ.

Corollary 3.4. Let q = pγ with a prime p and γ ∈ N. There is a constant
A0 > 0, which depends only on p, such that for any character χ modulo q, the

function L(s, χ) does not vanish in the region

R0 = {s ∈ C : σ > 1 − ϑ0, |t| ≤ T0},
where

ϑ0 =
A0

(log q)2/3(log log q)3/4
and T0 = exp((logq)8/9).
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3.3 Primes in arithmetic progressions and the Linnik constant. As
usual we use � to denote the von Mangoldt function, which is given by

�(n) =

⎧⎨
⎩log r if n is a power of the prime r,

0 if n is not a prime power,

and we set
ψ(x; q, a) =

∑
n≤x

n≡a mod q

�(n).

The asymptotic formula in Theorem 3.5 below has a smaller error term than that
which appears in any other asymptotic formula of this type. As in [5, 11] our
result depends on density estimates for the zeros of Dirichlet L-functions. More
specifically, let Nq(α,T ) be the total number of zeros s = σ + it for all L-functions
modulo q that occur in the rectangle α < σ < 1, |t| ≤ T . In order to state a general
result suitable for further advances, we assume that for some constant b > 1 the
uniform bound

(3.3) Nq(α,T ) � (qT )b(1−α)�O(1)

holds, where � = log q(|t| + 3) as before. By a result of Huxley [10] we can take
b = 12

5 in (3.3); see also [12, Equation (18.13)].

Theorem 3.5. Suppose that (3.3) holds with the constant b > 1. Fix a prime p
and a real number ε > 0. There is a constant c0 > 0, which depends only on b, ε

and p, such that the following holds. For any modulus q = pγ with γ ∈ N, any

integer a coprime to p, and any positive real number x in the range

qx1−1/b+ε ≤ x ≤ q1/ε,

we have

ψ(x; q, a) =
x
ϕ(q)

(1 + Oε(exp(−c0(log x)1/3(log log x)−3/4))),

where ϕ is the Euler totient function.

In particular, using the value b = 12
5 we see that Theorem 3.5 can be applied

throughout the range qA ≥ x ≥ q12/5+ε for any fixed positive A and ε.
Our proof of Theorem 3.5 closely follows that of Gallagher [5, Theorem 2],

however we apply Corollary 3.4 at an appropriate place. We remark that the results
of Gallagher [5] and Iwaniec [11] imply a weaker form of Theorem 3.5 with
the error term O(x exp(−c0(log x)1/4(log log x)3/4)); on the other hand, the results
of [5, 11] also apply to short intervals, that is, to ψ(x + h; q, a) − ψ(x; q, a).
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Furthermore, combining our bound on the zero-free region with the result of
Harman [8] we obtain a new bound on the Linnik constant for prime power moduli
q = pγ with a fixed prime p, improving the previously known bound 12

5 . In fact the
following value

(3.4) L =
1

0.4736
< 2.1115

seems to be the lowest value known for any infinite family of moduli.

Theorem 3.6. For any modulus q = pγ with an integer γ > γ0(p), where γ0(p)
depends only on p, any integer a coprime to p, and any positive real number

x > qL

with L given by (3.4), we have

ψ(x; q, a) � x
ϕ(q)

,

where ϕ is the Euler totient function.

4 Preliminaries

4.1 Notation. For a real number t > 0, �t� denotes the greatest integer not
exceeding t, and 
t� denotes the least integer that is not less than t.

Throughout the paper, we use the symbolsO, �, � and � along with their stan-
dard meanings; any constants or functions implied by these symbols are absolute
unless specified otherwise.

4.2 Polynomial representationof characters. FollowingGallagher [5],
for an integer d ≥ 1 we use Fd to denote the polynomial approximation to log(1+x)
given by

(4.1) Fd (x) =
d∑

r =1

(−1)r−1 xr

r
.

The earliest version of the following result is due to Postnikov [16, 17]. The present
form is due to Iwaniec [11, Lemma 2]; it extends an earlier result of Gallagher [5,
Lemma 2].

Lemma 4.1. Let χ be a primitive character modulo q. Let d be an integer

such that q2 | qd
� , and put

τ =

⎧⎨
⎩2, if 4 | q,

1, otherwise.
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Then χ(1 + τq�x) = e( f (x)), where f is a polynomial of the form

f (x) = q−1m · Fd (τq�x)

with an integer m for which gcd(m, q) = 1, and r | m for every integer r ∈ [1, d ]
coprime to q.

4.3 Bounds of exponential sums. Suppose d ≥ 2, and

g(x) = α1x + · · · + αd xd

with each αr ∈ R. Suppose further that each αr has a rational approximation of
the form

αr =
ar

br
+
ϑr

b2
r
, ar ∈ Z, br ∈ N, gcd(ar, br) = 1, |ϑr | ≤ 1.

Let S denote the double exponential sum

(4.2) S =
P∑

y,z=1

e(g(yz)).

The next result is due to Korobov [14, Lemma 3]; it provides a bound on S in
terms of Nk,d (P) (the number of solutions to (2.6)) and a product involving the
denominators of the coefficients of g.

Lemma 4.2. For any natural number k, the sum (4.2) admits the upper bound

|S|2k2 ≤ (64k2 log(3Q))d/2WP2k(2k−1)Nk,d (P),

where

Q = max{br : 1 ≤ r ≤ d} and W =
d∏

r =1

min{Pr,Prb−1/2
r + b1/2

r }.

We also use the following weakened and simplified version of a result of Ford [4,
Theorem 3].

Lemma 4.3. For every integer d ≥ 129 there is an integer k ∈ [2d2, 4d2]
such that

Nk,d (P) ≤ d3d3
P2k−0.499d2

(P ≥ 1).
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5 Proof of bounds of character sums

5.1 Simple character sums: Proof of Theorem 2.1. Let γ0 and ε be
positive constants such that

(5.1) γ0 ≥ e200, ε ≤ 1/200 and εγ0 ≥ 2.

Put d0 = 2γ. Since γ = maxp|q{vp(q)}, the condition q2 | qd0
� of Lemma 4.1 is

clearly met. Also, the parameter � lies in [1, γ/γ0] since

log q =
∑
p|q
vp(q) logp ≤ γ

∑
p|q

log p = γ log q�,

whereas by (2.8) we have
logN ≥ γ0 log q�.

Put s = �εγ/��. Since εγ/� ≥ εγ0 ≥ 2, it follows that

(5.2)
1
2
εγ/� ≤ εγ/�− 1 < s ≤ εγ/�,

and thus s � γ/�. Using (5.1) and (5.2) we deduce that

(5.3) log γ ≥ 200 and 2 ≤ s ≤ γ/200.

Finally, we record the simple inequality

(5.4) t ≤ et/1250 (t ≥ γ0).

Let N be the set of integers coprime to q in the interval [M +1,M +N ]. Shifting
the interval [M + 1,M + N ] by the amount qs

�yz, where 1 ≤ y, z ≤ qs
�, we have the

uniform estimate

Sχ(M,N ;G) =
M+N∑

n=M+1

χ(n)e(G(n)) =
M+N∑

n=M+1

χ(n + qs
�yz)e(G(n + qs

�yz)) + O(q3s
� ).

Averaging over all such y and z, it follows that

(5.5) Sχ(M,N ;G) = q−2s
� V + O(q3s

� ),

where

V =

qs
�∑

y,z=1

∑
n∈N

χ(n + qs
�yz)e(Hn(yz))

and Hn is the polynomial given by

Hn(x) = G(n + qs
�x).
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For every n ∈ N, let n be an integer such that nn ≡ 1 mod q. Using the multiplica-
tivity of χ, we have

V =
∑
n∈N

χ(n)

qs
�∑

y,z=1

χ(1 + qs
�nyz)e(Hn(yz)).

Applying Lemma 4.1 (noting that s ≥ 2 and thus τq� | qs
�) we see that

(5.6) V =
∑
n∈N

χ(n)

qs
�∑

y,z=1

e( fn(yz) + Hn(yz)),

where fn is a polynomial of the form

fn(x) = q−1m · Fd0 (q
s
�nx)

with some integer m such that gcd(m, q) = 1 and r | m for any integer r ∈ [1, d0]
coprime to q. To apply Lemma 4.2, we need to control the denominators of the
coefficients of fn + Hn for each n ∈ N.

Using (4.1) we see that the r-th coefficient of fn is the rational number

αr = (−1)r−1qrs
� q−1mnrr−1.

Write

αr =
ar

br
, ar ∈ Z, br ∈ N, gcd(ar, br) = 1 (1 ≤ r ≤ d0).

Since r | m for every integer r ∈ [1, d0] coprime to q, and gcd(mn, q) = 1, it
follows that br is the numerator of the rational number

qq−rs
�

∏
p|gcd(r,q)

pvp(r)

when the latter is expressed in reduced form (in particular, br is composed solely
of primes that divide q). Consequently,

vp(br) = max{0, vp(q) − rs + vp(r)}
for every prime p dividing q.

Let us denote
L =

⌊3
2

log d0

⌋
=
⌊3
2

log 2γ
⌋
.

As the inequality vp(r) ≤ L holds for every positive integer r ≤ d0, we have

(5.7) max{0, vp(q) − rs} ≤ vp(br) ≤ max{0, vp(q) − rs + L }
for any prime p | q.
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Now put

(5.8) d = max
p|q

⌊vp(q) + L

s

⌋
=
⌊γ + L

s

⌋
.

Note that d ≥ 200 since γ/s ≥ 200 by (5.3); in particular, we are able to apply
Lemma 4.3 above with this choice of d .

For any integer r ≥ d , it follows from (5.7) that br = 1; in other words, αr ∈ Z.
Therefore, defining

gn(x) = q−1m · Fd (q
s
�nx) (n ∈ N),

the polynomial fn − gn lies in Z[x] for every n ∈ N; therefore, in view of (5.6) we
have

(5.9) V =
∑
n∈N

χ(n)

qs
�∑

y,z=1

e(hn(yz)),

where
hn(x) = gn(x) + Hn(x).

Suppose that ε is initially chosen to be small enough, depending on C, so that
C ≤ (3ε)−1. In view of (5.2), the second inequality in (2.8) implies

(5.10) degG ≤ γ/(3s).

We now use approximations with denominators br = 1 for the initial �γ/(3s)�
coefficients of hn (i.e., for 1 ≤ r ≤ γ/(3s)) and with the denominators br = br

considered above for remaining coefficients of hn (i.e., for r > γ/(3s)), which
by (5.10) are the same as the coefficients of gn(x).

Put

Q = max{br : 1 ≤ r ≤ d} and W =
d∏

r =1

min{qrs
� , q

rs
� b

−1/2
r + b1/2

r }.

Applying Lemma 4.2 with P = qs
� we derive the bound

(5.11)
∣∣∣∣

qs
�∑

y,z=1

e(hn(yz))
∣∣∣∣
2k2

≤ (64k2 log(3Q))d/2Wq2sk(2k−1)
� Nk,d (qs

�)

with any natural number k. Using (5.7) we have that

(5.12) qq−rs
� ≤ br ≤ qq−rs+L

� (1 ≤ r ≤ d ).
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In particular, Q ≤ qqL
� , which implies (since q ≤ qγ� )

(5.13) log(3Q) ≤ 2γ log q�.

Next, note that the hypothesis (2.1) immediately yields the bound

log q =
∑
p|q
vp(q) logp ≥ 0.7γ

∑
p|q

log p = 0.7γ log q�,

hence q = qμγ� with some μ ∈ [0.7, 1]. To estimate W , we use (5.12) to derive the
bound

min{qrs
� , q

rs
� b

−1/2
r + b1/2

r } ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qrs
� if r ≤ γ/(3s);

2q(μγ−rs+L )/2
� if γ/(3s) < r ≤ μγ/(2s);

2q(3rs−μγ)/2
� if μγ/(2s) < r ≤ γ/s;

qrs
� if γ/s < r ≤ d .

To simplify the notation, let λ = γ/s for the moment. Using the preceding bound,
we have

W ≤ ∏
r≤λ/3

qrs
�

∏
λ/3<r≤μλ/2

(2q(μγ−rs+L )/2
� )

∏
μλ/2<r≤λ

(2q(3rs−μγ)/2
� )

∏
λ<r≤d

qrs
� ≤ 2dq�� ,

where

� =
∑

r≤λ/3
rs +

∑
λ/3<r≤μλ/2

μγ− rs + L

2
+

∑
μλ/2<r≤λ

3rs − μγ

2
+

∑
λ<r≤d

rs.

We write

� = s� +
μγ

2

(μλ
2

− λ

3
+ O(1)

)
− μγ

2

(
λ− μλ

2
+ O(1)

)
+ O(L λ)

= s� + μγ
(μλ

2
− 2λ

3

)
+ O(γ + L λ)

(5.14)

(recall our convention that all implied constants are absolute), with

� =
∑

r≤λ/3
r − 1

2

∑
λ/3<r≤μλ/2

r +
3
2

∑
μλ/2<r≤λ

r +
∑
λ<r≤d

r

≤ 1
2

(λ
3

)2 − 1
4

((μλ
2

)2 −
(λ

3

)2)
+

3
4

(
λ2 −

(μλ
2

)2)
+

1
2
(d2 − λ2) + O(d ).

Since d = λ + O(1) and thus d2 − λ2 = O(λ), we derive that

� =
(5
6

− μ2

4

)
λ2 + O(λ).



CHARACTER SUMS AND L-FUNCTIONS TO A POWERFUL MODULUS 253

Inserting this result into (5.14), recalling that λ = γ/s and μ ∈ [0.7, 1], and
using (5.8), it follows that

� =
(5

6
+
μ2

4
− 2μ

3

)γ2

s
+ O

(
γ +

γL

s

)
≤ 0.49sd2 + O(sd log d ).

Therefore, if ε is small enough initially (depending on the absolute implied constant
in the preceding bound), then we have

� ≤ 0.495sd2,

and thus

(5.15) W ≤ 2dq0.495sd2

� .

Now, combining the bounds (5.11), (5.13) and (5.15), and using Lemma 4.3 to
bound Nk,d (qs

�), we deduce that

∣∣∣∣
qs
�∑

y,z=1

e(hn(yz))
∣∣∣∣
2k2

≤ AqB
�

holds with
A = (128k2γ log q�)

d/22dd3d3

and
B = 4sk2 − 0.004sd2

for some integer k ∈ [2d2, 4d2].
Since k ∈ [2d2, 4d2] we clearly have A ≤ dcd3

(γ log q�)d/2 with some absolute
(effective) constant c > 0. As γ log q� ≥ γ0, using (5.4) and taking into account
the definition (5.8), which implies that γ ≤ 2sd , it follows that

(γ log q�)
d/2 ≤ q0.0004γd

� ≤ q0.0008sd2

� .

Putting everything together, we find that

∣∣∣∣
qs
�∑

y,z=1

e(hn(yz))
∣∣∣∣
2k2

≤ dcd3
q4sk2−0.0032sd2

� .

Raise both sides to the power 1/(2k2). Since k ∈ [2d2, 4d2] we have

dcd3/(2k2) ≤ dc/(8d) � 1 and sd2/(2k2) ≥ s/(32d2);

consequently,
qs
�∑

y,z=1

e(hn(yz)) � q2s−0.0001s/d2

� .
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Finally, using (5.2) and (5.3) we see that

s
d2 � s

(γ/s)2
=

s3

γ2 � (γ/�)3

γ2 =
γ

�3 � μγ

�3 ,

and therefore
qs
�∑

y,z=1

e(gn(yz)) � q2s−ξ0μγ/�3

� = q2s
� N−ξ0/�2

with some absolute constant ξ0 > 0.

Inserting the previous bound into (5.9) we derive that

V � q2s
� N 1−ξ0/�2

and combining this result with (5.5) we obtain that

(5.16) Sχ(M,N ;G) � N 1−ξ0/�2
+ q3s

� .

The second term on the right side of (5.16) is negligible (indeed, using (5.2) we
have qs

� ≤ N ε/μ, hence q3s
� ≤ N 5ε, which is insignificant compared to N 1−ξ0/�2

if
one makes suitable initial choices of the absolute constants γ0, ξ0 and ε). This
completes the proof.

5.2 Dirichlet polynomials: Proof of Theorem 2.2. We continue to
use the notation of �5.1. We denote ν = 
γ/(3s)�. For any real number x, we have
the estimate

(1 + x)it = e(tG(x))(1 + O(|t||x|ν)),
where G(x) = (2π)−1Fν−1(x) in the notation of (4.1) (note that G(x) is a polynomial
of degree ν − 1 with real coefficients). Hence, for all n ∈ [M + 1,M + N ] and
y, z ∈ [1, qs

�] we have

(n + qs
�yz)

it = nit(1 + qs
�yz/n)it = nite(tG(qs

�yz/n)) + O(M−ν|t|q3sν
� ).

Using this estimate and following the proof of Theorem 2.1, in place of (5.5) we
derive that

Tχ(M,N ; t) = q−2s
� Ṽ + O(q3s

� + M 1−ν|t|q3sν
� ),

where

Ṽ =
∑
n∈N

χ(n)nit

qs
�∑

y,z=1

χ(1 + qs
�nyz)e(tG(qs

�yz/n)).
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Since degG < γ/(3s), at this point the proof parallels that of Theorem 2.1, leading
to the bound

(5.17) Tχ(M,N ; t) � M 1−ξ0/�2
+ q3s

� + M 1−ν|t|q3sν
�

in place of (5.16). As before, the term q3s
� in (5.17) does not exceed N 5ε and can

thus be disregarded if one makes suitable initial choices of γ0, ξ0 and ε.

To finish the proof, it remains to bound the last term in (5.17). Let τ be such
that N τ = |t| + 3. Since ν = 
γ/(3s)�, it follows that 3sν ≤ γ + 3s, and by (5.2) we
have ν ≥ γ/(3s) ≥ �/(3ε); therefore,

M 1−ν|t|q3sν
� � M 1−�/(3ε)+τqγ+3s

� .

We have q3s
� ≤ N 5ε ≤ M 5ε, and by (2.1) it follows that qγ� ≤ N 2� ≤ M 2�. We get

that

M 1−ν|t|q3sν
� � M 1−�/(3ε)+τ+2�+5ε.

Inserting this bound into (5.17), the theorem is a consequence of the inequality

τ ≤ �((3ε)−1 − 2) − ξ0/�
2 − 5ε,

which follows from the last inequality in (2.10) (which implies, τ ≤ C� + o(1))
assuming that ε and ξ0 are sufficiently small in terms of C.

6 Proofs of results for L-functions and distribution of
primes in progressions

6.1 Bounds on L-functions and zero-free regions: Proof of Theo-
rem 3.1. We begin with a general statement involving two parameters η and Y .

Lemma 6.1. For any real number C > 0 there are effectively computable

constants γ0, ξ0, c0 > 0 that depend only on C and have the following property.
Let q be a modulus satisfying (2.1) and χ a primitive character modulo q. If Y

and η satisfy

(6.1) Y ≥ q
γ0

� , η ∈ (0,
1
3
) and η ≤ ξ0(logY )2/�2 − c0(log �)/ logY,

where � = log q(|t| + 3), and the inequalities σ > 1 − η and |t| ≤ qC hold, then for

s = σ + it we have

|L(s, χ)| ≤ η−1Y η.
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Proof. Fix C > 0, and let γ0, ξ0 > 0 have the property described in Theo-
rem 2.2. Let q be a modulus satisfying (2.1) and χ a primitive character modulo q.
By Theorem 2.2 and partial summation, the bound

(6.2)
∑

N<n≤2N

χ(n)n−s � N 1−σ−ξ0/�2
(N ≥ qγ0

� )

holds, where � = (log q)/ logN and the implied constant depends only on C.
Put Z = e2�. Arguing as in the proof of [11, Lemma 8], the bound

(6.3)

∣∣∣∣∑
n>Z

χ(n)n−s

∣∣∣∣ ≤ 1

holds since σ > 1
2 . On the other hand, let Y and η be real numbers that satisfy (6.1)

with some constant c0 > 0 that depends only on C. Assuming that σ > 1 − η, the
bounds (6.1) and (6.2) imply∑

N<n≤2N

χ(n)n−s � N η−ξ0/�2 ≤ Y η−ξ0/�
2 ≤ �−c0 (N ≥ Y ).

Hence, if c0 is sufficiently large in terms of C, then for σ > 1 − η we have∣∣∣∣ ∑
N<n≤2N

χ(n)n−s

∣∣∣∣ ≤ (3�)−1 (N ≥ Y ),

which by a standard splitting argument yields the bound∣∣∣∣∑
n≤Z

χ(n)n−s

∣∣∣∣ ≤ 1 +

∣∣∣∣∑
n≤Y

χ(n)n−s

∣∣∣∣ ≤ 1 +
∑
n≤Y

nη−1 ≤ 2 + η−1(Y η − 1).

Combining this with (6.3), and taking into account that η ≤ 1
3 , it follows that

|L(s, χ)| ≤ η−1Y η

holds when σ > 1 − η. �
We now turn to the proof of Theorem 3.1. Let the notation be the same as in

Lemma 6.1. The first inequality in (6.1) is

(6.4) log Y ≥ γ0 log q�.

If Y also satisfies the inequality

(6.5) log Y ≥ (2c0/ξ0)
1/3�2/3(log �)1/3,

then it follows that

ξ0(logY )2/�2 − c0(log �)/ logY ≥ 0.5ξ0(logY )2/�2;
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hence the second inequality in (6.1) is satisfied provided that the lower bound

(6.6) logY ≥ 21/2ξ−1/2
0 η1/2�

also holds. Consequently, defining Y by the equation

logY = A max{log q�, η
1/2�, �2/3(log �)1/3}

with a suitably large absolute constant A > 0 (depending only on γ0, ξ0, c0), we
see that the inequalities (6.4), (6.5) and (6.6) all hold, hence the condition (6.1) is
met. Applying Lemma 6.1 we obtain the stated bound.

6.2 The zero-free region: Proof of Theorem 3.2. We start with a
technical result contained in Iwaniec [11], which we present in a generic form
suitable for further applications.

Lemma 6.2. Let q be a fixed modulus. Let η ∈ (0, 1
3 ), T ≥ 1 and M ≥ e be

numbers that can depend on q. Put

(6.7) ϑ =
η

400 logM
,

and suppose that

(6.8) 8 log(5 log 3q) +
24
η

log(2M/5ϑ) ≤ 1
15ϑ

.

Suppose that |L(s, χ)| ≤ M for all primitive characters χ modulo q and all s in the

region {s ∈ C : σ > 1 − η, |t| ≤ 3T }. There is at most one primitive character χ
modulo q such that L(s, χ) has a zero in the region {s ∈ C : σ > 1 − ϑ, |t| ≤ T }.
If such a character exists, then it is a real character, and the zero is unique, real

and simple.

Proof. The first part of the proof of [11, Lemma 11] shows that L(s, χ) �= 0
throughout the region

� =

⎧⎨
⎩{s ∈ C : σ > 1 − ϑ, |t| ≤ T } if χ2 �= χ0,

{s ∈ C : σ > 1 − ϑ, η/4 < |t| ≤ T } if χ2 = χ0,

provided that

6 log(5 log 3q) +
16
η

log(M/5ϑ) +
8
η

log(2M/5ϑ) ≤ 1
15ϑ

,
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which follows from (6.8). The second part of the proof of [11, Lemma 11] then
shows that if L(s, χ) = 0 for some s in the region {s ∈ C : σ > 1 − ϑ, |t| ≤ η/4},
then the zero is unique, real and simple provided that

(6.9) 8 log(5 log3q) +
16
η

log(M/5ϑ) ≤ 1
15ϑ

,

which also follows from (6.8). Finally, [11, Lemma 12] shows that there is at most
one nonprincipal character χmodulo q for which L(s, χ) has a real zero β > 1−ϑ,
provided that

2 log(5 log3q) +
12
η

log(M/5ϑ) ≤ 2
15ϑ

,

which is also a consequence of (6.9). The result now follows. �
Turning now to the proof of Theorem 3.2, we note that with the choice

η =
(log log q)2/3

(log q)2/3

Theorem 3.1 shows that |L(s, χ)| ≤ M for all primitive characters χ modulo q and
all s in the region

{
s ∈ C : σ > 1 − η, |t| ≤ 3qC

}
, where

M = (log q)B

for some constant B that depends only on C and q�. Using (6.7) to define ϑ, we
obtain (3.2) with A = 1/(400B). Taking B larger (and A smaller) if necessary, we
can guarantee that M ≥ e and that the condition (6.8) is met. Applying Lemma 6.2,
we obtain the statement of Theorem 3.2.

6.3 The zero-free region: Proof of Corollary 3.4. Corollary 3.4 con-
cerns only those moduli q of the form q = pγ, where p is a fixed prime and γ ∈ N;
note that q� = p in this situation. Let γ0, A and ϑ be the numbers supplied by
Theorem 3.2 with the constant C = 1, and let

R = {s ∈ C : σ > 1 − ϑ, |t| ≤ q}.
Clearly,

ϑ0 � ϑ

(log log q)5/12
,

hence adjusting the constant A0 (if necessary) we have R0 ⊆ R.
For a fixed prime p there are only finitely many primitive characters χ of

conductor pγ with γ < γ0. Consequently, after replacing A with a smaller number
(depending only on p), we can ensure that L(s, χ) does not vanish in R for any such
primitive character. Thus, from now on, we assume γ ≥ γ0.
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Given an arbitrary character χ modulo q = pγ, let q∗ = pγ
∗

be its conductor.
Since gcd(n, q) = 1 if and only if gcd(n, q∗) = 1, the character χ is primitive when
regarded as a character modulo q∗.

If γ∗ < γ0, L(s, χ) does not vanish in R by our choice of A. In particular, this
holds true if χ is a real character. Indeed, for an odd p, if χ is real, then χ is either
the principal charactermodulo p or the Legendre symbolmodulo p, since (Z/pγZ)×

is cyclic for odd p and therefore admits only two real characters. If p = 2, then
(Z/2γZ)× is of rank at most two and a similar argument implies that there are at
most four real characters. In each case, the conductors of these characters depend
only on p.

Now suppose that γ∗ ≥ γ0 and that χ is not real. We consider two cases.

If q∗ ≥ T0, then using Theorem 3.2 (with C = 1) L(s, χ) does not vanish in R,
hence it is nonzero in R0 (⊆ R).

If q∗ < T0, we use a result of Gallagher [5, Equation (15)] which asserts that
the corresponding L-function does not vanish in the region

Q =
{
s ∈ C : σ > 1 − B

(log(q∗|t|) log log(q∗|t|))3/4
}

for some constant B that depends only on p. For t ≤ T0 we obtain that

1
(log(q∗|t|) log log(q∗|t|))3/4 ≥ 1

(log(T 2
0 ) log log(T 2

0 ))3/4

� 1
(logT0 log log T0)3/4

� 1
(log q)2/3(log log q)3/4

.

Hence, for an appropriate choice of the constant A0 we have R0 ⊆ Q.

6.4 Primes in arithmetic progressions: Proof of Theorem 3.5. We
again put

T0 = exp((log q)8/9)

to allow an application of Corollary 3.4. More precisely, since log q � log x holds
with implied constants that depend only on b and ε, an application of Corollary 3.4
shows that there is a constant a > 0 depending only on b, ε and p such that
Nq(α,T0) = 0 for all α ≥ ϑ, where

(6.10) ϑ =
a

(log x)2/3(log log x)3/4
.

We now follow the proof of [5, Theorem 2], with the parameters h and x there
being replaced by x and 2, respectively.
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Using (3.3) together with the “trivial” bound (see [12, Theorem 5.24])

Nq(α,T0) � qT0�,

the first double sum in [5, Equation (16)] is bounded by the following precise
version of [5, Equation (17)]:∫ 1−ϑ

0
xα−1Nq(α,T0)(log x) dα + x−1Nq(0,T0)

� (log x)O(1)
∫ 1−ϑ

0
((qT0)

bx−1)1−α dα + qT0x
−1(log x)O(1)

= (log x)O(1)
∫ 1−ϑ

0
x−ε(1−α) dα + x(1−ε)/b−1+o(1)

�ε x−εϑ(log x)O(1) + x(1−ε)/b−1+o(1),

where the symbol �ε indicates that the implied constant may depend on ε.
Since b > 1 implies that (1 − ε)/b − 1 < 0, using (6.10) we see that the first

term of the preceding bound dominates, and so we obtain that∫ 1−ϑ

0
xα−1Nq(α,T0) log x dα + x−1Nq(0,T0) �ε exp(−c0(log x)1/3(log log x)−3/4)

holds with any fixed c0 < εa. We also use [5, Equation (18)] to bound the second
double sum in [5, Equation (16)]. Putting everything together, we have

ψ(x; q, a) − x
ϕ(q)

�ε
x
ϕ(q)

exp(−c0(log x)1/3(log log x)−3/4) +
x

T0ϕ(q)
(log x)O(1).

Recalling the choice of T0, we conclude the proof.

6.5 Primes in arithmetic progressions: Proof of Theorem 3.6. We
recall the following result of Harman [8, Theorem 1.2], which we present in an
equivalent form in terms of the functions ψ(x; q, a).

Lemma 6.3. There is a value δ > 0 such that the following statement is true.

Given ε > 0, there are constants K (ε) ≥ 2 and c > 0, such that if q > K is such
that each prime divisor p | q satisfies p < qδ and for every d | q and a primitive

character χ modulo d we have L(s, χ) = 0 for s = σ + it with

σ > 1 − 1
(log q)3/4

and |t| ≤ exp(ε(log q)3/4),

then

ψ(x; q, a) � x
ϕ(q)

,

whenever x0.4736 > q.
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Recalling Corollary 3.4 and assuming that γ is large enough, by Lemma 6.3 we
conclude the proof.

7 Comments

Our results can be extended to more general classes of moduli. For example,
suppose that q = rs with coprime positive integers r and s, and instead of (2.1) we
have

min
p|s {vp(s)} ≥ 0.7γ with γ = max

p|s {vp(s)} ≥ γ0.

For any primitive character χ modulo q, we write

Sχ(M,N ) =
r−1∑
k =0

∑
(M−k)/r<m≤(M+N−k)/r

χ(k + rm) + O(r).

Defining χ∗(m) = χ(k + rm), we see that χ∗ is a primitive character modulo s,
hence Theorem 2.1 applies to the inner sum over m. Consequently, if r is not
too large (say, r = No(1)), then we obtain a result of roughly the same strength as
Theorem 2.1. This applies to the other results of this paper as well.

We also remark that splitting the sums in the argument of �6.1 into intervals
which are shorter than dyadic, one can extend the range of t in Theorem 3.1 and
then in turn in Theorem 3.2 (with slightly weaker bounds). This leads to a version
of Theorem 3.5 for longer progressions (with a weaker error term).

Harman and Kátai [9, Lemma 6] give an asymptotic formula for primes in
an arithmetic progression modulo a very smooth number. Their result applies to
progressions that are much longer than those covered by Theorem 3.5, but are
much shorter than those that can be treated nowadays for generic moduli.

Finally, we note that Green [7, Theorem 4.1] has established the bound

N∑
n=1

μ(n)χ(n) � N exp(−c0(logN )1/2),

where μ(n) is the Möbius function and χ(n) is a multiplicative character modulo
q = 2γ (with integer γ > 0) for which q ≤ exp(c0(logN )1/2), where c0 > 0 is an
absolute constant. Using our bounds, in particular Theorem 3.5 and the potential
modifications mentioned above, one can obtain nontrivial bounds for sums of this
form with much larger and more general moduli.
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