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Abstract. The classical Gauss–Lucas theorem describes the location of the
critical points of a polynomial. There is also a hyperbolic version, due to Walsh, in
which the role of polynomials is played by finite Blaschke products on the unit disk.
We consider similar phenomena for generic inner functions, as well as for certain
“locally inner” self-maps of the disk. More precisely, we look at a unit-norm
function f ∈ H∞ that has an angular derivative on a set of positive measure (on
the boundary) and we assume that its inner factor, I , is nontrivial. Under certain
conditions to be discussed, it follows that f ′ must also have a nontrivial inner
factor, say J, and we study the relationship between the boundary singularities of
I and J. Examples are furnished to show that our sufficient conditions cannot be
substantially relaxed.

1 Introduction and results

The functions considered in this paper are holomorphic self-maps of the unit disk.
Our purpose is to find out when the presence of a nontrivial inner factor in the
function’s canonical factorization (i.e., the property of being non-outer) survives
differentiation. This clearly happens if the original function, f , has multiple zeros,
since these will also be zeros for f ′. Somewhat less obvious is the fact that,
under certain natural assumptions, the passage from f to f ′ preserves singular
inner factors. (In a sense, these are responsible for the boundary zeros of infinite
multiplicity.) Much subtler is the case of simple zeros inside, and this is what
chiefly interests us here. The results that arise can be viewed as descendants of
the classical Gauss–Lucas theorem, or rather of its disk version, and we begin by
recalling those prototypical results.

If f is a holomorphic—or perhaps meromorphic—function living (at least) on
a domain � ⊂ C, we write Z�( f ) for its zero set there. Thus,

Z�( f ) := {z ∈ � : f (z) = 0}.
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The Gauss–Lucas theorem tells us that, given a nonconstant polynomial P, the set
of its critical points, ZC(P′), is contained in the convex hull of ZC(P); see, e.g.,
[16, Chapter 2].

This fact admits a certain “hyperbolic” analogue, which was found by Walsh
[19]. The plane C is now replaced by the disk

D := {z ∈ C : |z| < 1},
while the role of polynomials is played by finite Blaschke products. A (finite)
Blaschke product B of degree n is, by definition, given by

B(z) = c
n∏

j =1

z − a j

1 − ā j z

(with some a1, . . . , an ∈ D and a unimodular constant c), a formula known to
provide the general form of an n-to-1 mapping from D onto itself. Now, Walsh’s
theorem says that, for such a B , the setZD(B ′) is contained in the hyperbolic convex
hull of ZD(B), defined appropriately; see [19] for a precise statement.

It should be mentioned that the set ZC(P′) in the Gauss–Lucas theorem is
automatically—and trivially—nonempty, provided that degP ≥ 2. Similarly, in
Walsh’s theorem, we have ZD(B ′) �= ∅ whenever n, the degree of B , satisfies
2 ≤ n < ∞. To see why, assume that B ′ does not vanish on the set {0, a1, . . . , an}
(otherwise the statement is trivial) and note that ZC(B ′) = ZC(B ′/B). The formula

B ′(z)
B(z)

=
n∑

j =1

1 − |a j |2
(z − a j )(1 − ā j z)

shows then that the (nonempty) set ZC(B ′) is symmetric with respect to the circle
T := ∂D, so precisely one half of its points must be in D.

Thus, the Gauss–Lucas and Walsh theorems actually assert the existence of
critical points in the appropriate region and also describe their location; this last
part roughly amounts to saying that the zeros of P′ or B ′ are to be found not too
far from those of P or B , respectively.

Our purpose is to elaborate on Walsh’s theorem by moving from finite Blaschke
products to infinite ones, as well as to generic inner functions, and still further—
namely, to fairly general analytic self-maps of the disk—and to study similar
(Gauss–Lucas type) phenomena in these cases.

At this point, we pause to recall some basic terminology and notation. A
function θ in H∞ (i.e., a bounded holomorphic function on D) is said to be inner
if limr→1− |θ(rζ )| = 1 for m-almost all ζ ∈ T. Here and throughout, m is the
normalized Lebesgue measure on the unit circle T, so that dm(ζ ) = (2π)−1|dζ |. It
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is well known that every inner function θ can be factored canonically as θ = λBS,
where λ ∈ T is a constant, B is a Blaschke product and S is a singular inner
function; see [9, Chapter II]. More explicitly, the factors involved are of the form

(1.1) B(z) = B{a j }(z) :=
∏

j

|a j |
a j

a j − z
1 − ā j z

, z ∈ D,

where {a j } ⊂ D is a sequence, possibly finite or empty, with
∑

j (1 − |a j |) < ∞
(if a j = 0, one puts |a j |/a j = −1), and

(1.2) S(z) = Sμ(z) := exp
{

−
∫
T

ζ + z
ζ − z

dμ(ζ )
}

, z ∈ D,

with μ a (nonnegative) singular measure on T. The set T ∩ clos({aj } ∪ suppμ)
coincides with the boundary spectrum σ(θ) of θ, defined as the set of its
boundary singularities (i.e., the smallest closed set E ⊂ T such that θ is analytic
across T \ E).

Further, a zero-free holomorphic function F on D is said to be outer if log |F |
coincides with the harmonic extension (Poisson integral) of an integrable function
on T. When normalized by the condition F (0) > 0, an outer function F takes the
form

(1.3) F (z) = Oh(z) := exp
{∫

T

ζ + z
ζ − z

log h(ζ ) dm(ζ )
}
, z ∈ D,

where h is a nonnegative function on T with log h ∈ L1(T,m). This h actually
agrees with the nontangential boundary values of |F | almost everywhere on T.

The functions f that admit a factorization of the form f = θF , with θ inner
and F outer, are precisely those lying in the Smirnov class N+; see [9, Chapter
II]. Alternatively, we can define (or characterize)N+ as the set of ratios u/v , where
u, v ∈ H∞ and v is outer. When v is merely assumed to be zero-free on D, such
ratios range over the Nevanlinna class N.

We write the canonical factorization of a function f ∈ N+, f �≡ 0, in the form

(1.4) f = BSF,

the three factors on the right being (1.1), (1.2) and (1.3), respectively (and we take
the liberty to ignore the unimodular constant factor involved). In particular, this
canonical representation applies whenever f is in the Hardy space Hp with some
p ∈ (0,∞] (see [9, Chapter II]); in fact, we have Hp = N+ ∩ Lp(T,m).
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Now, going back to Walsh’s theoremand trying to adapt it to an infinite Blaschke
product B (to begin with), we already have to face the new phenomenon that the
set ZD(B ′) may be empty. Moreover, this may well happen for a Blaschke product
B with B ′ ∈ N+. An example can be furnished as follows: fix a number α ∈ D\{0}
and put

Bα(z) :=
S(z) − α

1 − αS(z)
,

where S is the “atomic” singular inner function given by

S(z) := exp
( z + 1
z − 1

)
.

It is well known (and easy to verify) that Bα is a Blaschke product. At the same
time, differentiation yields

B ′
α(z) =

1 − |α|2
(1 − ᾱS(z))2

· −2S(z)
(z − 1)2

,

and it is clear that the right-hand side is zero-free in D. Furthermore, B ′
α ∈ Hp for

every p ∈ (0, 1
2 ), and the inner factor of B ′

α is S.
On the other hand, given a nonconstant inner function θ with θ ′ ∈ N+, it turns

out that θ ′ must have a nontrivial inner factor, unless θ is a Möbius transformation
(see [6, Corollary 2.2] or [7]). These observations seem to suggest that we modify
our viewpoint appropriately. Namely, as long as our variations on Walsh’s theme
involving an inner function θ are supposed to deal with something a priori existent,
rather than pertain to the “theory of the empty set,” we feel that we should look at
inn(θ ′), the inner factor of θ ′, rather than at the zero set ZD(θ ′). (Here and below,
we use the notation inn( f ) for the inner factor of a function f ∈ N+.) We should
then try to understand the relationship between the (suitably defined) smallness
set of inn(θ ′) and that of θ. More precisely, we shall be actually concerned with
the boundary spectra σ(inn(θ ′)) and σ(θ), i.e., with those parts of the unit circle T

where the two smallness sets hit it. One consequence of our results is that

σ(inn(θ ′)) = σ(θ),

and we regard this as a boundary version of the Gauss–Lucas–Walsh theorem for
inner functions.

In fact, we are not going to restrict ourselves to inner functions, even though
moving beyond this class makes things more complicated. This time, turning to
a general function f ∈ H∞ with f ′ ∈ N+, we can no longer expect that f ′ will
necessarily have an inner factor whenever f does. For instance, suppose that h is a
holomorphic function on D, with Re h bounded above, whose range h(D) contains
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infinitely many points of the form c + 2πik, where c ∈ C is fixed and k ranges
over (a subset of) Z. The function f := eh − ec(∈ H∞) then vanishes on the
set

⋃
k h−1(c + 2πik); thus, f is divisible by an infinite Blaschke product, while

f ′ = h′eh may well be outer. More sophisticated examples in this vein are given in
Section 4 below.

At the same time, we single out a class of H∞-functions that does obey the
“Gauss–Lucas principle,” or perhaps the “Walsh principle,” meaning that the prop-
erty of being non-outer is inherited by f ′ from f and that the boundary spectra of
the two inner factors, inn( f ′) and inn( f ), are related appropriately. The class in
question appears to be (almost) optimal.

Before stating the results, let us recall that a unit-norm function f ∈ H∞ is said
to possess an angular derivative (in the sense of Carathéodory) at a point ζ ∈ T

if both f and f ′ have nontangential limits at ζ and, once we agree to denote the
two limits by f (ζ ) and f ′(ζ ), the former of these satisfies | f (ζ )| = 1. The classical
Julia–Carathéodory theorem (see [2, Chapter VI], [3, Chapter I] or [15, Chapter
VI]) asserts that this happens if and only if

lim inf
z→ζ

1 − | f (z)|
1 − |z| < ∞.

Further, given a point z ∈ D, we shall denote by ωz the harmonic measure
associated with it. Thus dωz = Pzdm on T, where Pz stands for the corresponding
Poisson kernel:

Pz(ζ ) :=
1 − |z|2
|ζ − z|2 , ζ ∈ T.

The quantity ωz(E) =
∫
E dωz, where E is a (Lebesgue) measurable subset of T,

can be roughly interpreted as the normalized angle at which E is seen from z.
Also, we need to recall that a Blaschke product b with zeros {z j } is said to be

thin if

lim
k→∞

∏
j : j �=k

∣∣∣ z j − zk

1 − z̄ j zk

∣∣∣ = 1,

a condition that can be rewritten in the form

lim
k→∞ |b′(zk)|(1 − |zk|2) = 1.

The sequence {z j } itself is then also called thin, whereas non-thin sequences (and
the corresponding Blaschke products) will be termed thick. In the literature, one
encounters thin (or thick) sequences in many places. In particular, they turn up in
connection with maximal ideals in uniform algebras and with various interpolation
problems. One of the first occurrences can be found in [20]; see also [8, 10, 18].
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Now suppose that E is a (Lebesgue) measurable subset of T, and

Ẽ := T \ E

(this notation will be used throughout), while f is an H∞-function with f ′ ∈ N+.
Further, let inn( f ) = BS, where B is a Blaschke product and S a singular inner
function. We then write

σi
E(B) := σ(B) ∩ ess intE,

where ess intE is the essential interior of E. (By definition, a point ζ ∈ T is
in ess intE if there exists a set � ⊂ T with m(�) = 0 such that ζ is an interior
point of E ∪ � with respect to T.) Also, we shall denote by σb

E, f (B) the set of
points ζ ∈ T \ ess intE with the following property: there exists a thick sequence
{zn} ⊂ ZD(B) with zn → ζ satisfying

(1.5) ωzn(Ẽ) log
1

1 − |zn| → 0

and

(1.6)
∫
˜E

log | f ′| dωzn → 0.

The superscripts “i” and “b” in σi
E(B) and σb

E, f (B) stand for “interior” and “bound-
ary,” respectively. (It should be noted that the latter set is contained in closE, so
its elements are “essentially boundary” points for E.) Finally, we put

σE( f ) := σ(S) ∪ σi
E(B) ∪ σb

E, f (B).

Theorem 1.1. Let f ∈ H∞ be a nonconstant function with ‖ f ‖∞ = 1,

and let E be a measurable subset of T such that f has an angular derivative
almost everywhere on E. Suppose that each of the three factors in the canonical

factorization (1.4) has its derivative in N+ (whence also f ′ ∈ N+). Assume, finally,

that σE( f ) �= ∅. Then f ′ has a nontrivial inner factor, say J, with σ(J) ⊃ σE( f ).

The last inclusion should be comparedwith the fact thatσ(J) is always contained
in σ( f ), the set of boundary singularities for f . Indeed, if f is analytic in a
neighborhood of a point ζ0 ∈ T, then so is f ′, and hence also its inner factor, J
(see [9, Chapter II] in connection with the latter implication).

Also, in the theorem above, we may replace the hypothesis that f has an angular
derivative a.e. on E by the seemingly weaker condition that | f | = 1 a.e. on E. (The
reason is that the other assumptions imply the existence of nontangential limits



BOUNDARY GAUSS–LUCAS TYPE THEOREMS ON THE DISK 723

for f ′ a.e. on T.) The functions f that arise can thus be viewed as “locally inner.”
Because of the role that angular derivatives play in Theorem 1.4 below, we have
chosen to state Theorem 1.1 in similar terms; the relation between the two results
might in this way become clearer.

We now make a remark concerning the meaning of conditions (1.5) and (1.6)
that were used to define the set σb

E, f (B). Given an (essentially) boundary point ζ

of E and a sequence {zn} ⊂ ZD(B) with zn → ζ , the two conditions basically
mean that the zn’s tend to ζ tangentially enough “on the E side” (i.e., they lie much
closer to E than to Ẽ). The examples constructed at the end of the paper will show
that nontangential convergence would not do, and moreover, that the qualitative
tangency conditions (1.5) and (1.6) cannot be substantially relaxed.

One may find it unfortunate that condition (1.6) involves f ′, instead of being
stated in terms of f alone. We note, however, that it only depends on the boundary
values of | f ′| (or, equivalently, on the outer factor of f ′), whereas the conclusion
of Theorem 1.1 concerns the inner factor of f ′. Besides, under further hypotheses,
we shall come up with simpler sufficient conditions replacing (1.5) and (1.6) that
will lead to more transparent formulations.

The following corollary deals with the situation where σ(B) is contained in
ess intE, in which case we have σi

E(B) = σ(B), σb
E, f (B) = ∅ and

σE( f ) := σ(B) ∪ σ(S) = σ(BS).

Corollary 1.2. Let f ∈ H∞ be a nonconstant function with ‖ f ‖∞ = 1,

and let E be a measurable subset of T such that f has an angular derivative
almost everywhere on E. Suppose that each of the three factors in the canonical

factorization (1.4) has its derivative in N+. Assume, finally, that σ(BS) �= ∅,
while σ(B) ⊂ ess intE. Then J := inn( f ′) is a nontrivial inner function and

σ(BS) ⊂ σ(J).

In the special case where E = T, this reduces to the following result.

Corollary 1.3. Let θ be a nonconstant inner function, other than a Möbius
transformation, with θ ′ ∈ N+. Then J := inn(θ ′) is a nontrivial inner function and

σ(θ) = σ(J).

In view of the discussion following Theorem 1.1, we have the (trivial) inclusion
σ(J) ⊂ σ(θ). Now, if σ(θ) �= ∅, Corollary 1.3 is a special case of the preceding
result (just take E = T and f = θ = BS). Otherwise, we are only concerned with
the nontriviality of inn(θ ′), and this is guaranteed by the above-mentioned result
from [6, 7].
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Regarding the hypothesis θ ′ ∈ N+ (for θ inner), we recall that this is actually
equivalent to θ ′ ∈ N. Furthermore, each of these holds if and only if log+ |θ ′| ∈
L1(T,m), where θ ′ is understood as the angular derivative. Also, for θ = BS to
satisfy θ ′ ∈ N (or θ ′ ∈ N+), it is necessary and sufficient that both B ′ and S ′ be in
N (or N+). These results are due to Ahern and Clark; see [1, Corollary 4].

The next result, also a consequence of Theorem 1.1, contains a simple sufficient
condition for inn( f ′) to be nontrivial when E is taken to be an arc. In what follows,
we write A for the disk algebra H∞ ∩ C(T).

Theorem 1.4. Let E = {eit : 0 ≤ t ≤ t0}, where 0 < t0 ≤ π, and let F ∈ H∞

be an outer function such that ‖F‖∞ = 1, F ′ ∈ A, and |F | = 1 on E. Further,
suppose {zn} ⊂ D is a thick sequence with the properties that Im zn > 0 (n ∈ N),

limn→∞ zn = 1 and

(1.7)
∑

n

1 − |zn|2
|1 − zn|2 < ∞.

Finally, assume that the Blaschke product B = B{zn} satisfies B ′ ∈ N+ and put

f := BF. Then f ′ lies in N+ and has a nontrivial inner factor, J, with 1 ∈ σ(J).

A few remarks are in order. First, it is easy to construct an outer function F
satisfying the hypotheses of Theorem 1.4 by defining its modulus |F |∣∣

T
=: h

appropriately. Namely, it suffices to assume that h ∈ C2+ε(T) for some ε > 0 (i.e.,
that h′′ is Lipschitz continuous of order ε), in addition to the obvious conditions
that log h ∈ L1(T,m), 0 ≤ h ≤ 1 on T, and h

∣∣
E

= 1. Now, for F = Oh, the fact that
F ′ ∈ A—and actually the stronger conclusion that F ∈ C1+ε/2(T)—is guaranteed
by the Havin–Shamoyan–Carleson–Jacobs theorem, or rather by its higher order
version, as given in [17, Chapter 2]. (See also [11, 12] for the original statement,
as well as [4, 5] for alternative proofs and approaches.) In the case where h is
strictly positive, the regularity assumption can be relaxed to h ∈ C1+ε(T), since
F = Oh will then be in the same class. This follows from standard properties of
the Hilbert transform; see [9, Chapter III].

Secondly, condition (1.7) means precisely that B has an angular derivative at
the point 1. Roughly speaking, it says that the zero sequence {zn} approaches its
limit point 1 in a suitably tangential manner. The (sufficient) tangency condition
expressed by (1.7) should be compared with the weaker condition (1.5), which,
alone, does not suffice to conclude that inn( f ′) is nontrivial; see Example 2 in
Section 4 below.
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Thirdly, we could have stated Theorem 1.4 in a more general form, where a
nontrivial singular factor S (with S ′ ∈ N+) is present in the canonical factorization
(1.4). The conclusion would have been that σ(S)∪{1} ⊂ σ(J). However, the main
issue being the location of zeros, we have chosen to restrict ourselves to the current
version.

The proofs of Theorems 1.1 and 1.4 are given in Sections 2 and 3, respectively,
while the last section contains a couple of examples to the effect that the hypotheses
of Theorem 1.1 are close to being sharp.

Acknowledgment. I thank Pascal Thomas for a helpful remark concerning
the formulation of Theorem 1.1.

2 Proof of Theorem 1.1

First of all, since

(2.1) f ′ = B ′SF + BS ′F + BSF ′,

our hypotheses on the three factors guarantee that f ′ ∈ N+.
Furthermore, because σE( f ) �= ∅, we know that either σ(S) �= ∅ or

σi
E(B) ∪ σb

E, f (B) =: σE, f (B) �= ∅.

Assuming that σ(S) �= ∅ (so that the singular factor S is nontrivial), we now rewrite
(2.1) as

f ′

S
= B ′F + BF ′ + BF

S ′

S

and claim that each of the three terms on the right is in N+. Indeed, for the last
term, this is ensured by Ahern and Clark’s result (see [1, Corollary 4]) which says
that S ′/S ∈ N+ whenever S ′ ∈ N+; the preceding terms present no difficulty. It
follows that f ′/S ∈ N+, and so J := inn( f ′) is divisible by S. In particular, we
have then J �≡ const and σ(S) ⊂ σ(J).

To deal with the case where σE, f (B) �= ∅, more work is needed. Let G stand
for the outer factor of f ′, so that

G(z) = exp
{∫

T

ζ + z
ζ − z

log | f ′(ζ )| dm(ζ )
}

, z ∈ D,

and let GE (resp., G
˜E
) be defined by a similar formula, where the integral is taken

over E (resp., over Ẽ := T \ E). Thus, in particular, GE is the outer function with
modulus | f ′|χE + χ

˜E
and G

˜E
= G/GE.
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Our plan is to deduce the nontriviality of the inner function J := f ′/G, plus the
fact that σ(J) contains σE, f (B), from the inequality

(2.2) |J(z)||G
˜E
(z)| ≤ | f ′(z)| (1 − |z|2)

1 − | f (z)|2 · γE(z), z ∈ D,

where

γE(z) :=
{ 2

(1 − |z|) ωz(Ẽ)

}ωz(˜E)
.

This crucial estimate will be established later on. Right now, we take it for granted
and complete the proof.

Suppose ζ ∈ σi
E(B). By adding a suitable null-set to E if necessary, we may

assume that ζ is an interior point of E. To show that ζ ∈ σ(J), we argue by
contradiction. Let � be an open subarc of T with ζ ∈ � ⊂ E such that J is analytic
across �, and fix a point ξ ∈ �. Then

(2.3) |J(z)| → 1 as z → ξ

(it is always understood that z is restricted to D). Furthermore, since ξ lies at a
positive distance from Ẽ, the Poisson kernels Pz satisfy

sup{Pz(η) : η ∈ Ẽ} ≤ C · (1 − |z|)
whenever z is close enough to ξ ; here C = C(ξ,E) is a positive constant. This
implies that the quantities

log γE(z) = ωz(Ẽ) · log
{ 2

(1 − |z|) ωz(Ẽ)

}
and

log |G
˜E
(z)| =

∫
˜E

log | f ′(η)| dωz(η)

both tend to 0 as z → ξ , whence

(2.4) γE(z) → 1 and |G
˜E
(z)| → 1, as z → ξ.

Combining (2.2) with (2.3) and (2.4), in conjunction with the Schwarz–Pick esti-
mate

| f ′(z)| (1 − |z|2)
1 − | f (z)|2 ≤ 1,

we see that

(2.5)
| f ′(z)| (1 − |z|2)

1 − | f (z)|2 → 1 as z → ξ.
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This being true for every ξ ∈ �, we invoke a result of Kraus, Roth and Ruscheweyh
(see [13, Theorem1.1]) to conclude from (2.5) that f is analytic across�. However,
this conclusion is incompatible with the fact that the zeros of f cluster at ζ (∈ �).
The contradiction proves that ζ ∈ σ(J).

We have thus established the inclusion σi
E(B) ⊂ σ(J). In particular, it follows

that J is nonconstant whenever σi
E(B) �= ∅.

Now suppose that ζ ∈ σb
E, f (B). By definition, this means that we can find a

thick sequence {zn} ⊂ ZD(B) with zn → ζ satisfying (1.5) and (1.6). Let b be the
Blaschke product with zeros {zn}, so that b is a subproduct of B and

(2.6) lim inf
n→∞ |b′(zn)|(1 − |zn|2) < 1.

Also, we have f = gb for some g ∈ H∞ with ‖g‖∞ = 1; this in turn implies that

| f ′(zn)| = |g(zn)| · |b′(zn)| ≤ |b′(zn)|
for each n. Consequently, applying (2.2) with z = zn yields

(2.7) |J(zn)||G˜E
(zn)| ≤ γE(zn) · |b′(zn)| · (1 − |zn|2).

Now, (1.5) shows that the quantity

log γE(zn) = ωzn(Ẽ) · log
{ 2

(1 − |zn|) ωzn(Ẽ)

}
tends to 0 as n → ∞, while (1.6) leads us to a similar conclusion about the quantity

log |G
˜E
(zn)| =

∫
˜E

log | f ′(η)| dωzn(η).

Therefore,

(2.8) lim
n→∞ γE(zn) = 1 and lim

n→∞ |G
˜E
(zn)| = 1.

Finally, taking (2.6) and (2.8) into account, we deduce from (2.7) that

lim inf
n→∞ |J(zn)| < 1.

Recalling that zn → ζ (∈ T), we readily conclude that ζ ∈ σ(J).
Now we know that σb

E, f (B) ⊂ σ(J); and this clearly implies that J �≡ const
whenever σb

E, f (B) �= ∅.
It remains to verify (2.2). Let z ∈ D be fixed. Then, for almost all ζ ∈ E, Julia’s

lemma (see [9, p. 41]) gives

(2.9)
| f (ζ ) − f (z)|2

1 − | f (z)|2 ≤ | f ′(ζ )| · |ζ − z|2
1 − |z|2 ,



728 K. M. DYAKONOV

or equivalently,

(2.10)
1 − |z|2

1 − | f (z)|2 ·
∣∣∣1 − f (z) f (ζ )

1 − zζ

∣∣∣2 ≤ | f ′(ζ )|

(recall that | f (ζ )| = 1 whenever f has an angular derivative at ζ ). Next, we
consider the H∞-function

(2.11) �z(w) :=
1 − |z|2

1 − | f (z)|2 ·
(1 − f (z) f (w)

1 − zw

)2

and rewrite (2.10) in the form

(2.12) |�z(ζ )| ≤ | f ′(ζ )|, ζ ∈ E.

Further, we define �z to be the outer function with modulus

|�z(ζ )| = | f ′(ζ )| · χE(ζ ) + |�z(ζ )| · χ
˜E
(ζ ), ζ ∈ T,

and observe that

(2.13) |�z(ζ )| ≤ |�z(ζ )|, ζ ∈ T.

In fact, for ζ ∈ E, this inequality coincides with (2.12), while for ζ ∈ Ẽ the two
sides are obviously equal.

Since �z is outer, the estimate (2.13) extends into D, so that

|�z(w)| ≤ |�z(w)|, w ∈ D.

In particular, this holds for w = z, whence

(2.14) |�z(z)| ≤ |�z(z)|.
A glance at (2.11) reveals that

(2.15) |�z(z)| = �z(z) =
1 − | f (z)|2
1 − |z|2 ,

and we take further steps to estimate |�z(z)|.
We have

(2.16) log |�z(z)| =
∫
T

log |�z(ζ )| dωz(ζ ) = I1(z) + I2(z),

where

(2.17) I1(z) :=
∫
E

log | f ′(ζ )| dωz(ζ ) = log |GE(z)|
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and

(2.18) I2(z) :=
∫
˜E

log |�z(ζ )| dωz(ζ ).

The arithmetic/geometric mean inequality yields

(2.19)

I2(z) = ωz(Ẽ) ·
∫
˜E

log |�z(ζ )| dωz(ζ )

ωz(Ẽ)

≤ ωz(Ẽ) · log
{ 1

ωz(Ẽ)

∫
˜E

|�z(ζ )| dωz(ζ )
}

≤ ωz(Ẽ) · log
{ 1

ωz(Ẽ)

∫
T

|�z(ζ )| dωz(ζ )
}
.

We proceed by noticing that, for almost all ζ ∈ T,

(2.20)
|�z(ζ )| ≤ 2

1 − |z| · |1 − f (z) f (ζ )|2
1 − | f (z)|2

= c f,z{1 − 2 Re( f (z) f (ζ )) + | f (z)|2| f (ζ )|2},
where

c f,z :=
2

(1 − |z|)(1 − | f (z)|2) .

Also, we introduce the (harmonic) function

uz(ζ ) := 1 − 2 Re( f (z) f (ζ )) + | f (z)|2

and go on to observe that

|�z(ζ )| ≤ c f,z · uz(ζ ), ζ ∈ T.

(This follows from (2.20) and the fact that | f (ζ )| ≤ 1 on T.) Consequently,

(2.21)
∫
T

|�z(ζ )| dωz(ζ ) ≤ c f,z

∫
T

uz(ζ ) dωz(ζ ) = c f,z · uz(z) =
2

1 − |z| .

Plugging the resulting inequality from (2.21) into (2.19), we now get

(2.22) I2(z) ≤ ωz(Ẽ) log
2

(1 − |z|) · ωz(Ẽ)
.

This done, we combine (2.16) with (2.17) and (2.22) to infer that

log |�z(z)| ≤ log |GE(z)| + ωz(Ẽ) log
2

(1 − |z|) · ωz(Ẽ)
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and hence

(2.23) |�z(z)| ≤ |GE(z)|
{ 2

(1 − |z|) · ωz(Ẽ)

}ωz(˜E)
= |GE(z)| · γE(z).

Since

GE(z) =
G(z)
G

˜E
(z)

=
f ′(z)

G
˜E
(z)J(z)

,

we may further rewrite (2.23) as

(2.24) |�z(z)| ≤
∣∣∣ f ′(z)
G

˜E
(z)J(z)

∣∣∣ · γE(z).

On the other hand, recalling (2.14) and (2.15), we see that

(2.25) |�z(z)| ≥ 1 − | f (z)|2
1 − |z|2 .

Finally, a juxtaposition of (2.24) and (2.25) yields

1 − | f (z)|2
1 − |z|2 ≤

∣∣∣ f ′(z)
G

˜E
(z)J(z)

∣∣∣ · γE(z),

which is precisely (2.2). The proof is therefore complete.

3 Proof of Theorem 1.4

It suffices to check that the hypotheses of the current theorem imply those of
Theorem 1.1, with S ≡ 1, and that σE( f ) = σb

E, f (B) = {1}. An application of
Theorem 1.1 will then do the job.

First of all, the assumptions on B and F guarantee that f = BF possesses an
angular derivative everywhere on E = {eit : 0 ≤ t ≤ t0}. Indeed, each of the two
factors enjoys a similar property there; in particular, (1.7) tells us that B has an
angular derivative at the endpoint 1. This said, it remains to verify conditions (1.5)
and (1.6), where Ẽ is the arc complementary to E.

The verification of (1.5) is straightforward. In fact, from (1.7) it clearly follows
that

(1 − |zn|)1/2

|1 − zn| → 0.

It is also obvious that

(1 − |zn|)1/2 log
1

1 − |zn| → 0.
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Consequently, the product of the two quantities, which is

1 − |zn|
|1 − zn| log

1
1 − |zn| ,

also tends to 0 as n → ∞. Together with the elementary estimate

ωzn(Ẽ) � 1 − |zn|
|1 − zn| ,

this yields (1.5).

Here and below, the sign � is used to mean that the quantities involved are
comparable (i.e., their ratio lies between two positive constants).

To check (1.6), we are going to prove the following claim: There exist numbers

C > 1 and δ ∈ (0, π
2 ) such that

(3.1) C−1 ≤ | f ′(eit)| ≤ C whenever − δ < t < 0.

Once this is established, (1.6) comes out easily. Indeed, on the arc

(3.2) γδ := {eit : −δ < t < 0}

we have −M ≤ log | f ′| ≤ M with M := logC, whence

(3.3)
∣∣∣∣ ∫

γδ

log | f ′| dωzn

∣∣∣∣ ≤ Mωzn(γδ ) ≤ Mωzn(Ẽ) → 0.

Now, for ζ ∈ Ẽ \ γδ , we have

Pzn(ζ ) ≤ const · (1 − |zn|)

(because the limit point 1 of the zn’s lies at a positive distance from Ẽ \ γδ ), and so

(3.4)
∣∣∣∣ ∫

˜E\γδ

log | f ′| dωzn

∣∣∣∣ ≤ const · (1 − |zn|)
∫
T

| log | f ′||dm → 0.

Combining (3.3) and (3.4), we arrive at (1.6).

We now turn to proving the claim above; see (3.1) and the italicized text
preceding it. Since f ′ = B ′F + BF ′, the right-hand inequality in (3.1) will be
established as soon as we show that |B ′(eit)| is bounded for −π

2 ≤ t < 0. To this
end, we write zn = rneiϕn (with rn > 0 and 0 < ϕn < π) and estimate the quantity

|B ′(ζ )| =
∑

n

1 − r2
n

|ζ − zn|2
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at a point ζ = eit with −π
2 ≤ t < 0. There is no loss of generality in assuming that

rn ≥ 1
2 and 0 < ϕn ≤ π

2 , since this is true for all but finitely many zn’s. We now
combine the elementary inequalities

(3.5)
2
π2

[(1 − rn)
2 + (ϕn − t)2] ≤ |ζ − zn|2 ≤ (1 − rn)

2 + (ϕn − t)2,

valid in this case, with the fact that

(3.6) |ϕn − t| = ϕn + |t| ≥ ϕn

to infer that

(3.7)

|B ′(ζ )| ≤ π2

2

∑
n

1 − r2
n

(1 − rn)2 + (ϕn − t)2
≤ π2

2

∑
n

1 − r2
n

(1 − rn)2 + ϕ2
n

≤ π2

2

∑
n

1 − r2
n

|1 − zn|2 .

The last quantity being finite by (1.7), it follows that |B ′(eit)| is bounded for
−π

2 ≤ t < 0. Consequently,

(3.8) sup
{
| f ′(eit)| : −π

2
≤ t < 0

}
< ∞,

which proves “half” of (3.1).
Moving on to the left-hand inequality in (3.1), we first note that the modulus

of the (angular) derivative F ′(ζ ) at a point ζ ∈ E coincides with the nontangential
limit of

QF (z) :=
1 − |F (z)|2

1 − |z|2
as z → ζ ; this forms part of the Julia–Carathéodory theorem. Secondly, we recall
that

QF (z) ≥ 1 − |F (0)|
1 + |F (0)| =: η(= ηF ) > 0, z ∈ D,

a well-known consequence of Schwarz’s lemma (see, e.g., [14]). Therefore,

(3.9) |F ′(ζ )| ≥ η, ζ ∈ E.

Now let N ∈ N be a number such that

(3.10)
∞∑

n=N+1

1 − |zn|2
|1 − zn|2 <

η

2π2
,

and let B0 and B1 be the Blaschke products with zero sets {zn : 1 ≤ n ≤ N } and
{zn : n > N }, respectively. Then put G := FB0, so that f = GB1.
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Since F and B0 both have an angular derivative on E, the same is true for G.
Moreover, it follows (see [1, Corollary 1]) that

|G′(ζ )| = |F ′(ζ )| + |B ′
0(ζ )|, ζ ∈ E.

Recalling (3.9), we see that |G′| ≥ |F ′| ≥ η on E; and since G′(= F ′B0 + FB ′
0) is

continuous on T, we can find a number δ ∈ (0, π
2 ) such that

(3.11) |G′(ζ )| ≥ η

2
, ζ ∈ γδ

(here γδ is the arc defined by (3.2)). Furthermore, because |G| ≤ 1 = |B1| on T,
we have

(3.12) | f ′| ≥ |G′B1| − |GB ′
1| ≥ |G′| − |B ′

1|

there; in particular, this holds on γδ .
Finally, we estimate the quantity

(3.13) |B ′
1(ζ )| =

∞∑
n=N+1

1 − |zn|2
|ζ − zn|2

at a point ζ = eit with −π
2 ≤ t < 0. As before, we write zn = rneiϕn , assuming that

rn ≥ 1
2 and 0 < ϕn ≤ π

2 (this is certainly true for n > N , with N large enough),
and we employ the elementary inequalities (3.5) and (3.6) to estimate the sum in
(3.13). The estimate, which mimics (3.7), reads

(3.14)

|B ′
1(ζ )| ≤ π2

2

∞∑
n=N+1

1 − r2
n

(1 − rn)2 + (ϕn − t)2
≤ π2

2

∞∑
n=N+1

1 − r2
n

(1 − rn)2 + ϕ2
n

≤ π2

2

∞∑
n=N+1

1 − r2
n

|1 − zn|2 <
η

4
,

where the last step relies on (3.10). Eventually, we obtain

(3.15) |B ′
1(ζ )| <

η

4
, ζ ∈ γδ

(we have actually checked this for the bigger arc {ζ ∈ T : −π
2 < arg ζ < 0}, not

just for γδ ). Finally, we combine (3.12) with (3.11) and (3.15) to conclude that

| f ′(ζ )| ≥ η

4
, ζ ∈ γδ .

This yields the left-hand side inequality in (3.1), with the appropriate C, and
completes the proof.
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4 Two examples

The purpose of this section is to show that conditions (1.5) and (1.6) appearing
in Theorem 1.1, via the definition of σE( f ), are indispensable and close to being
sharp.

The two examples below follow the same pattern (and many more relevant
examples can be furnished along these lines). Let h : D → � be a conformal
mapping of the disk onto a domain � that is contained in the left half-plane

H := {w ∈ C : Rew < 0}

and contains, for some fixed number c, infinitely many points of the form c + 2πik
with k ∈ Z. More precisely, we are assuming that there is a c ∈ H and an infinite
subset � of Z such that

{c + 2πik : k ∈ �} ⊂ �.

(This is certainly the case if � contains a vertical line or half-line.) Further, put
a := ec and note that |a| < 1; then define

(4.1) g := eh and f :=
g − a
1 − āg

.

Since h(D) = � ⊂ H, it follows that g (and hence also f ) is an H∞-function of
norm at most 1. Now, suppose that h maps a certain arc � ⊂ T continuously onto an
interval—possibly infinite—of the imaginary axis iR. We have then |g| = | f | = 1
on � (whence ‖g‖∞ = ‖ f ‖∞ = 1), and moreover, g and f will each have an
angular derivative on �. In addition, f vanishes at the points zk := h−1(c + 2πik)
with k ∈ �, because g(zk) = a. Consequently, letting B denote the Blaschke
product with zeros zk, k ∈ �, we see that the inner part of f is divisible by B .

On the other hand,

(4.2) f ′ =
1 − |a|2
(1 − āg)2

gh′.

The function (1− āg)−2 is outer (and even invertible in H∞); therefore, if g and h′

also happen to be outer, the same will be true for f ′. The situation then stands
in sharp contrast to the conclusion of Theorem 1.1: indeed, f has a nonconstant
inner factor, while f ′ has none. This means that the current function f violates the
hypotheses of the theorem. Specifically, if E is taken to be � (so that Ẽ = T \ �)
and if the zero sequence {zk} is thick, then either (1.5) or (1.6) must break down.
Thus, a glance at a concrete example of the above type might reveal whether the
two sufficient conditions are reasonably close to being necessary.
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Example 1. Let

� = {w ∈ C : −π < Rew < 0}.
The function

h(z) = i log
( 1 + z
1 − z

)
− π

2
(where the principal branch of the logarithm is used) maps D conformally onto �.
We now fix a number c with −π < c < 0, then put a = ec and define the
functions g and f by (4.1), with the current h plugged in. Letting E stand for the
arc {eit : −π < t < 0}, we have h(E) = iR, and so f has an angular derivative
on E. Since e−π ≤ |g| ≤ 1 on D, it follows that g is outer. The function
h′(z) = 2i(1 − z2)−1 being outer as well, we may invoke (4.2) to deduce that f ′ is
outer.

Now, the zeros zk of f , given by

(4.3) zk = h−1(c + 2πik), k ∈ Z,

have the property that ωzk (Ẽ) takes the constant value |c|/π. (This is best seen by
looking at the images ζk of the zk’s under the transformation

(4.4) z �→ 1 + z
1 − z

,

whichmapsD onto the right half-plane andE onto the half-line iR− := {iη : η < 0}.
The points ζk = (1 + zk)/(1 − zk) are then determined by the formula

(4.5) ζk = exp
(
2πk − ic − iπ

2

)
, k ∈ Z,

whence

(4.6) arg ζk = −π

2
− c = −π

2
+ |c|.

Recalling the well known interpretation of the harmonicmeasure in terms of angles,
one readily arrives at the required fact.)

Finally, we observe that the sequence {zk} clusters at the points ±1 and is thick.
The latter claim can be verified with the help of a lemma by Sundberg and Wolff
from [18]. (Precisely speaking, the version we need is obtained by combining
Lemma 7.1 on p. 578 of [18] with the concluding paragraph on p. 580 after the
lemma’s proof. In fact, [18] treats a more general situation involving a Douglas
algebra B , which we take to be H∞ + C. See also [8, p. 4455] for the special case
in question.) To state the thinness criterion given there, let {a j } be a sequence of
distinct points in D. Also, consider the arcs

IN, j := {ζ ∈ T : |ζ − a j | ≤ N (1 − |a j |)}
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with N > 1, and write K(N, j ) for the set of those indices k, k �= j , which satisfy
ak/|ak| ∈ IN, j and 1 − |ak| ≤ m(IN, j ). This done, the Sundberg–Wolff result tells
us that {a j } is thin if and only if, for every N > 1,

(4.7) lim
j→∞(1 − |a j |)−1

∑
k∈K(N, j )

(1 − |ak|) = 0.

Now, a computation shows that setting a j = z j , where the z j ’s are given by (4.3),
makes (4.7) false (provided that N is large enough). Again, the easiest way to
check this is to rephrase (4.7) for the right half-plane and then look at the images
(4.5) of the zk’s under the conformal mapping (4.4). Thus, {zk} is indeed a thick
sequence.

In summary, while a suitably tangential convergence (in the sense of (1.5) and
(1.6)) of the zero sequence {zk} to the endpoints ±1 of E would imply that f ′

has an inner factor, no kind of nontangential convergence would suffice. In fact,
(4.6) shows that, letting c be appropriately small in modulus, we can arrange it for
the ζk’s to lie on a half-line that forms an arbitrarily small angle with the lower
imaginary semiaxis (or, equivalently, for zk to lie on a circular arc that forms an
arbitrarily small angle with E at ±1).

Example 2. Now let

� = {w ∈ C : Rew < 0, Imw < 0}.
This time, we take the conformal map h : D → � to be

h(z) = −eiπ/4

√
1 + z
1 − z

,

where the square root is supposed to satisfy
√

x > 0 for x > 0. We then fix a
number c ∈ (−∞, 0) and define the functions g and f by (4.1), with a = ec.

This done, we claim that g is an outer function. Indeed, since g is zero-free and
has radial limit 0 only at the point 1, it follows that g has no inner factor, except
possibly for the “atomic” singular function

Sγ(z) := exp
(
γ

z + 1
z − 1

)
with some γ > 0. However, if g were divisible by Sγ, then we would have

|g(x)| ≤ exp
(
γ

x + 1
x − 1

)
, 0 < x < 1,

whereas g actually has a milder decay rate as x → 1−; in fact,

|g(x)| = exp
(

− 1√
2

·
√

1 + x
1 − x

)
, 0 < x < 1.
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Thus, g is outer. So is the function

h′(z) = −eiπ/4(1 + z)−1/2(1 − z)−3/2,

and we eventually conclude, by virtue of (4.2), that f ′ is outer also.

The semicircle {eit : 0 < t < π} =: E is mapped by h onto the half-line iR−,
so f has an angular derivative on E. (Note that the current E is different from its
namesake in Example 1.) Finally, the zeros zk of f are now given by

zk = h−1(c − 2πik), k ∈ N.

Equivalently, the points ζk = (1 + zk)/(1 − zk) (i.e., the images of the zk’s in the
right half-plane under the transformation (4.4)) are determined by

(4.8) ζk = −i(c − 2πik)2, k ∈ N.

We have zk → 1 and

(4.9) ωzk (Ẽ) � 1
k
, k ∈ N.

To verify (4.9), one may first rewrite (4.8) in the form

ζk = ξk + iηk,

where

ξk = 4π|c|k and ηk = 4π2k2 − c2.

Now, the image of Ẽ under the map (4.4) is iR−, and the angle at which this
half-line is seen from ζk is comparable to its tangent, ξk/ηk (or equivalently, to
1/k). Moving back to the disk, one arrives at (4.9). Furthermore, a calculation
shows that

1 − |zk| � 1
k3 , k ∈ N.

Together with (4.9), this ensures that

ωzk (Ẽ) · log
1

1 − |zk| → 0,

making (1.5) true. By contrast, (1.6) breaks down, the reason being that | f ′|
becomes too small near the endpoint 1 of Ẽ.

The conclusion is that condition (1.5) alone, or even its stronger version

ωzk (Ẽ) = O((1 − |zk|)1/3),
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is not enough to guarantee the validity of our Gauss–Lucas type phenomenon (i.e.,
to ensure that f ′ has a nontrivial inner factor whenever f does). A different type of
tangency condition, stated in terms of | f ′|, should be added to make things work.

Finally, we remark that the sequence {zk} in this last example was thick. This,
again, can be verified by means of the Sundberg–Wolff criterion (4.7), possibly
transplanting everything to the right half-plane (for the sake of convenience) and
working with the ζk’s instead.
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