BERGMAN PROJECTION INDUCED BY KERNEL WITH
INTEGRAL REPRESENTATION*

By

JOsE ANGEL PELAEZ, JOUNI RATTYA AND BRETT D. WICK

Abstract. Bounded Bergman projections P, : L5,(v) — L£,(v), induced by
reproducing kernels admitting the representation

1 L avr)
(1—25)7/0 1—rg> 0570

and the corresponding (1,1)-inequality are characterized in terms of Bekollé—
Bonami-type conditions. The two-weight inequality for the maximal Bergman
projection P} : IL(u) — L5(v) in terms of Sawyer-testing conditions is also
discussed.

1 Introduction and main results

Let D denote the set of positive Borel measures w on [0, 1) such that
1 1+r
a(r) :/ do(r) < Co
, (2")

for some C = C(w) > 0. For0 <p <ocoand w € D, the weighted Bergman
space AL, consists of analytic functions f in the unit disc D = {z € C : |z] < 1}
such that

171 = [ 1r@r d@ome <.

where d(w®@m)(re’’) = rdw(r)df. As usual, we write A%, for the standard weighted
Bergman space induced by the measure o for which

d(@@m)(z) = (a+ 1)(1 — |21*)*dA(2) = dA.(2),
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where —1 < a < oo and dA(z) = d’fy denotes the normalized Lebesgue area
measure on D. For simplicity, we also write

/E F@ d(@@m)E) = (fw)E)

for each non-negative f and measurable £ C D.

By the proof of [11, Theorem 3.3], for w € D, the norm convergence in the
Hilbert space A2 implies the uniform convergence on compact subsets, and hence
each point evaluation L,(f) = f(z) is a bounded linear functional in A2. Therefore
there exist unique reproducing kernels BY € Ag) with || L.|| = [|B|l4z such that

F@) = (f,BO) e = /D FOBXO d@w®m)(). feAd, zeD.

The Bergman projection
PANG = [ FOBAOd@RmC)

is an orthogonal projection from L2 to A2, and it is closely related to the maximal
Bergman projection

PE(@) = /D FOIBYO d(@ @ m)(©).

For a positive Borel measure won [0, 1), a positive (w®m)-integrable function v
is called an w-weight. If @ ® m is the normalized Lebesgue area measure, then
an w-weight is simply called a weight. For 0 < p < oo and an w-weight v, the
Lebesgue space LL,(v) consists of f such that

1z = [ F@P0@ d@@m)) < oo.

The boundedness of projections on LP-spaces is an intriguing topic which
presents obvious mathematical difficulties and has plenty of applications in operator
theory [2, 3, 5, 6, 7, 13, 15, 23, 24]. It is known that for 1| < p < oo and
dlw@®@m) =dA,,

(1.1) 1Po( ey < Clflinwy f € L),
if and only if v satisfies the Bekollé—Bonami condition

VALS) (WP PALS)PV

(1.2) B, .(v) = stslp (A (S)P < 00,
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where the supremum is taken over all the Carleson squares S in D, see [3, 5]. In the
above result P, can be replaced by the maximal Bergman projection P, see [3, 5],
and ||Pt|| < By, (0)™ 55 by [15]. It is also known [3, 4, 7] that the weak (1,1)
inequality

vA({zeD: |P(H@) > A} < C”f”,fm

is equivalent to
M,()(z) < Cv(z), a.e.zeD,

for the weighted maximal function

vA,(D(a, r)ND)

su , e D.
cebler) Au(D(a, 1) D)

M, (v)(2) =

Here D(a, r) denotes the Euclidean disc of center a and radius r.
An immediate difficulty in controlling (1.1) for a given measure w € D is the
lack of an explicit expression for the Bergman kernel B”. Writing

1
Wy =/ rro(r)dr, x>0,
0

the normalized monomials z"/\/2@;,,+ form the standard orthonormal basis of Aczo,

and hence

— (2"
1.3 B? = s s D.
(1.3) 2 ;2@“ zl €

This formula and a decomposition norm theorem was recently used to obtain
a precise estimate for the Lj-integral of B® when v, w are weights in D [13,
Theorem 1]. With the aid of these estimates, (1.1) was characterized in the case
when w and v are weights in the class R, see [13, 14]. A positive Borel measure w on
[0, 1) belongs to R, if there exist C = C(w) > 0, y = y(w) > 0 and f = f(w) > y
such that

as (T Yam <o <)

In view of the above results two immediate questions arise. First, is it possible

—r\B __
t) a@), O0<r<t<l.

to extend the classical Bekollé—Bonami’s results to projections P, induced by
measures in D? Second, is it possible to consider other weights than just those
in R in the same spirit as in [13, Theorem 3]?

A natural approach to these questions is to employ tools from harmonic analysis.
However, it seems that to do so one needs the Bergman kernel BY to have some
structure. The first result of this study shows that certain doubling measures induce
kernels with suitable properties for our purposes.
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Theorem 1. Let v be a finite positive measure supported on [0, 1] such that
1 dv(r)

o 1o, diverges. Then there exists w € D such that

1 L av(r)

BAO= ey 1=z

z,¢ € D.

Since each kernel B induced by w € D has the representation (1.3), and

1L tavr) & Ll — ! 0
I—Z/o l—rz:§</0 1—r dv(r))z,
the proof of Theorem 1 basically boils down to solving a Hausdorff moment
problem. In Section 2 we will prove a more general result from which Theorem 1
immediately follows.
Next we focus on extending the classical Bekolle-Bonami’s results for those
measures @ € R that induce kernels admitting the representation

o 1 U dv(r)
BO= (o [ I wcen,

forsome y > 1. For1l <p <ooandw € D, an w-weight v belongs B), ,, if

(Ww)(S) (@—’:! a))(S)) P

Bro@y=sup” 5y U axs)

Theorem2. Letl < p < coandw € R suchthat B admits the representation

1 U adv(r)
1. B? = D
(1.5) MO= oy h T wceD.

for some y > 1 and a positive measure v supported on [0, 1]. For an w-weight v,
the following statements are equivalent:
(i) P} : LL(v) — Lb(v) is bounded;
(ii) P, : Lb(v) — Lb(v) is bounded;
(iii) P, : Lb(v) — L5, (v) is bounded;
(iv) v € By q.
Moreover;

1, 1
IPEN 2 0y 12 0) S Bpro(@)™ =1,

To prove (iii)=(iv) in Theorem 2, we estimate |Bg ({) — B({)| upwards for
suitable chosen z, zg, ¢, and we also establish the useful relation

/1 dv(ry _ (1 —xy!
0

= 0,1
1 —rx alx) xelo b,
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for the measures v and w. The proof of (iv)=(i) is based on known ideas of
controlling P}, by two discrete dyadic operators [8, 9, 15], and it is done in the case
of a more general operator. Theorem 2 is proved in Section 3.

Now we turn to study of the weak (1, 1)-inequality. For a positive Borel
measure o on [0, 1), the weighted maximal function of f € Lclu is

Jp@rnp 1Ol d(0 @m)()

, e D.
zeD(a,r) a)(D(a, r) N ]D))

Mo(f)(2) =

1

A non-negative function v € L,

C = C(v, w) > 0 such that

belongs to B, if there exists a constant

d
M) = sup P@onp?@d@®mE@)

< Cou(2)
a:zeD(a,r) C()(D((l, r) N D)

for almost every z € D. The infimum of such constants is denoted by Bj ,(v). In
order to obtain the weak (1, 1)-inequality we use the classical Calderén—Zygmund
decomposition for functions in L. . This causes the extra hypothesis on o appearing
in the statement of the following result, the proof of which is given in Section 4.

Theorem 3. Let w € R be such that o([a, b]) < o([a, “3"]) < o[, b]) for
all 0 < a,b < 1 and BY admits the representation (1.5) for some y > 1 and a
positive measure v supported on [0, 1]. For a w-weight v, the following statements
are equivalent:
() P;:LL(v) = LL>®() is bounded;
(i) P, : LL(v) = LL>®() is bounded;
(iii) v € Bj .

In Theorems 2 and 3 one of the essential hypotheses is @ € R while Theorem 1
concerns measures in D. However, if y appearing in (1.5) is strictly larger than
one, then @ € R by Lemma 10 below. It is also worth noticing that kernels ad-
mitting the representation (1.5) with y = 1 and their connection to logarithmically
subharmonic weights have been discussed earlier in [20], and the starting point for
our consideration towards Theorem 1 has similarities with arguments used there.

The two-weight inequality [|P*(f)|lz < C||fll;» was recently characterized in
terms of testing conditions on the indicators of Carleson squares [1]. The last of
our main results offers a generalization of this result to the class of radial weights
with kernels of the form (1.5). We write 1g for the characteristic function of the

set E, and write M, for the multiplication operator M;,(f) = fh.
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Theorem 4. Let 1 < p < 0o, and let w be a finite positive measure on [0, 1]
such that BY admits the representation (1.5) for some y > 1 and a positive
measure v supported on [0, 1]. Let v, u be w-weights and denote ¢ = o', Then
P} Lh(v) = Lio(w) is bounded if and only if there exist constants

Co =Co(p,v,u,w) >0 and C; =Cip,vu,w) >0

such that

(1.6) 1M PEM 1w (156 P12, < Coll1sa Pl
and

(1.7) 1NV Pe Mo (st )|y < CollLsu |

Sfor all Carleson squares S CID. Moreover, there exists a constant C, =C(p, w) >0
such that
1PNl 20— 12wy < C1(Co + Cp).

Theorem 4 is deduced from a more general result in Section 5.

2 Integral formula for the Bergman kernel

The solution of the Hausdorff moment problem says that for a given sequence
{m,}:2, of positive numbers there exists a positive Borel measure supported on
[0, 1] such that

1
2.1 mn:/ s"du(s), neNU{0},
0

if and only if the sequence is completely monotonic, i.e., (—1)*(A*m), > 0, where
(Am), = m,.1 — m, is the discrete difference operator and

(Am), = (AN "'m), = (A ') — (A Am),, ke N\ {1}
A function f is completely monotonic on [0, 00), if
=D O >0, x>0, keNU{0},
and f : [0, co) — [0, co) is Bernstein, if
(DO <0, x>0, keN.

The first two of the following basic properties are easy to verify; for the third and
fourth ones, see [18, Theorem 3.7] and [22, Theorem 1], respectively:
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(1) If f1 and f, are completely monotonic functions, so are f; + f> and fi f5.
(2) If f1 and f, are Bernstein functions, so is f] + f>.
(3) If f1 is completely monotonic and f; is a Bernstein function, then f] o f> is
a completely monotonic function;
(4) If f is completely monotonic, then { f(a + n)};2, is a completely monotonic
sequence for each a > 0.
Theorem 1 follows from the following result.

Theorem 5. Let F : [0, 00) — (0, 00) be a C*™®°-function and

o

p(2) => Pz

n=0

a non-trivial analytic function such that 1/F is completely monotonic and

Fla+2n+1) =Y 5(j)
j=0

for some a € (0,00) and all n € N U {0}. Then there exists a positive Borel
measure w on [0, 1] such that

() = 2
(2.2) = , zeD.
11—z ,(Z:; 2wo141

Moreover, if lim, o F(a+2n+ 1) = 0o, F(a+2n) < F(a + n) and there exists a
positive constant M > 1 such that lim,,_, o, F?g-:n) =00, then w € D and

o(z0) Lo
| — 2 =B(), ¢ zeD.

Proof. Since 1/F is completely monotonic, there exists a positive Borel mea-

1

sure w on [0, 1] such that F(a +m) = 200, for all m € NU {0}. In particular,

1
F(a+2n—1)=2w2 1 for all n € N.
e

Therefore
(o @]

1 oo oo ' n—1
f"(_Z) = <Zz"><2@(j)zf> =IZ<Za(j>)z”
¢ AN j=0 . j=0

=1

2 Fla+2n—n2" =3 P 2,

n=1 n=1
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and thus (2.2) is proved. Moreover,

191:|)5w2n—1= ! — 0, n— oo,

23) eih<o([1- 2F(a+2n—1)

2n —

andif m = + 1, then there exists a constant C = C(w) > 0 such that

Ml—l
(2.4) &(0) < ca)(l - ,711)

For otherwise we would have @(1 — ,11) =0, and then

2F(;+n) = o, =/01_'1" P de(r) < (1—”11)"/01_ dos(r) = M~ /1_ dox(r),

which yields a contradiction with the hypothesis lim,_, F{Z:n) = o0. Since

On = splim S arram = @2n- this together with (2.3) and (2.4) implies @ € D by
[11, Lemma 2.1]. ]

Proof of Theorem 1. Consider the function

and observe that
n 1 1 — rn+1
Zv,:/ L, @) =FQn+1+1/2)
. 0 r

for 1
2

1
1_
F(x):/ l”du(r), 0<x < oo.
0 —r

X+

Since f(x) = 1/xis completely monotonic and F' is a Bernstein function as is seen
by direct calculations, 1/F is completely monotonic. Therefore, by Theorem 5,
there exists a positive Borel measure @ on [0, 1] such that

1 Lavir) &
z e D.
l—z/o l—rz ;2602“1
Moreover, w is supported on [0, 1) because Z?O:o v; = oo, and it satisfies (2.4)

because I I

li > 1 =
ni)ngolo 1 1— rn+ld ( ) - nl>nOlO I’IV([Oa 1])

Since

2m+1

1—r" <2(1=+""), forallmeNU/{O0},
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we also have w,, < w,,,. Hence w € D by [11, Lemma 2.1], and

| U av(r)
BZ(C)_I—ZC/O | =z 7, € D. -

Theorems 1 and 5 can be used to provide examples of concrete Bergman
reproducing kernels:
(1) If v is the Lebesgue measure, Theorem 1 gives the kernel

oo 11 1
BZ(C)—I_ZCZQVlogl_ZC-

(2) Theorem 5 allows us to recover the well-known formula of the Bergman
kernels induced by the standard weights w(z) = (a + 1)(1 — |z]?)*, a > —1.

Indeed, by choosing @ =1 and F(x) = ﬁ(x/21a+1)’ we have

1

F(a+2j+1)=F(2j+2)=ﬁ(j+1 a+1)

It is clear that 1/F is completely monotonic on [0, co) and the function ¢
associated to F' is

1 e 1 4
(1 — 7)o+l ,B(la+1)+z(ﬁ(J+la+l) ,B(j,a+1))zj'

J=

(3) Let

loglez > 1N
= <=1 1 J
@(z) - +;< +Zk>z
so that

n 11_
Za(j)=1+(n+1)/ s,
j=0 0

and choose a = ! and

2

1 l1—s
Fo=1+"" / 57 ds
0

2 1—s
so that
F(1/2+2n+1) _Zq)(J)
j=0
Since x — xgl and
1 1 _ Sx+212
X — s
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are Bernstein functions on [0, 0c0), F' is completely monotonic on [0, 00).
Moreover, it is clear that F' satisfies the rest of the hypotheses of Theorem 5,
and hence there exists @ € D such that

1

o _ 1
B =log | p -z

3 Generalization of the result of Bekollé and Bonami

For a positive Borel measure ¢ on DD and an analytic function ¥ in D(1, 1) such
that its restriction to the interval (0, 2) is a real positive function, define

Y(1 —¢2)
6y @ = [P0, reL cen,
To obtain a dyadic model for the operator Py, , we define the dyadic grids
(3.2) DF = {Ifm : jeNU{0}, me NU{0},0<m <2/ —1}, pBe{0,1/2},

where da(m+ ) Azim+1+p)
(0. x(m + a(m+1+
Liim ‘{e 0€ { 2 2i )}
For each interval I c T, with the convention I = (a, ) = (a + €'*™/, B + €!*"/) for
all j € NU{0}, there exists K = K(I) € DUD? suchthat] C K and |K| < 4]I|.

Define the positive dyadic kernels

Lsay (@) Lsay (O (1)

33) Ky =) 7 :

1eDF

2,0 eD, pe{0,1/2},

where S(I) = {re” : 1 —|I| <r < 1, €Y e I} is the Carleson square associated
to I, and |I| stands for the normalized arc-length of the interval /. For this kernel
and a positive Borel measure x on D, define the dyadic operator

1onP(|1
(3.4) Phn@ =% (£ 50 1o, zeD.
IeDF "
and write
3.5) Ko o) = TAb=cad e,
|1 =z
for short.

The first lemma relates the operator Py, , to the sum of the dyadic operators
P@,’ > p € {0,1/2}, by means of a simple pointwise estimate for the inducing
kernels.
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Lemma 6. Let ¥ be a positive essentially decreasing function on (0, 2) such
that Y(t) < CY(2¢) for all t € (0, 1) and for some C = C(¥) > 0. Then there
exists a constant C; = C{(WY) > 1 such that

(3.6) CTM (K3(z, O)+Ky/*(z, O) < Kw(z, O) < C1(KW(z, O+Ky/ (2, 0))s 2, €D,

Proof. Let f € {0,1/2}and z, ¢ € D. If both z and ¢ are distinct from zero,
choose Iy = Iy(z, ¢) € D? of minimal length such that |Io] > max{1 — |z|, 1 — ||}
and z/|z|, ¢/|¢| € 1o, for otherwise, take Iy = 150. Then z, € S(lp). Let N e N
such that 2V|Iy| = 4. Since ¥ is essentially decreasing by the hypothesis, we

deduce
5 so@Lo@¥UD g~ D :i W2t 1))
[ 1] 24|
(3‘7) IeD?F IEDﬁ,I[)CI k=0
N
< (| lol) Z 1 < (| lol)
ol <=2~ Iy

A direct calculation shows that |1 —¢z| < C|ly| forsome C > 1. As ¥ is essentially
decreasing and admits the doubling property, we obtain

Z Lsay (@ 1sa (O \P(“—CCZI) §

Y(|1 - 1—¢z].
0 S Gy S =gl =l

I1eDF
Since S was either O or 1/2, the left-hand inequality in (3.6) is proved.
To prove the right hand inequality, let z, ¢ € D. Let J = J(z,¢) C T such that
7, € S(J)and |J| =< |1 — ¢z|, see [1] for details. There exist § € {0, 1/2} and
K € D# such that J ¢ K and |K| < 4|J|. By using the hypotheses on ¥, we get

AL =gz PAID o PAKD Z Lsay(2) Ly (O (1)
e L I Y 7]
KcJ

S Kz O+ K (@ 0,
and the lemma is proved. O

For a positive Borel measure v and a dyadic grid D on T, the dyadic weighted
Hardy-Littlewood (or Hérmander type) maximal function is defined as

Lsy(z)
3.8 M, _
(3:8) D@ =8P iy Jsa

The maximal operator M, 1,4 appears naturally in the study of the dyadic opera-

: LF(O1dv(0).

tor P@’ ,- Its standard boundedness properties are given in the next lemma.
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Lemma A. Letv be a positive Borel measure and D a dyadic grid on T. Then
M, : LY — L™ is bounded and consequently, M, : L) — L} is bounded for
each 1 < p < oo. In particular, there exists a constant C = C(p) > 0 such that

(3.9) 1My, 0 (Pl < Cllf Il

Proof. By the Marcinkiewicz interpolation theorem it is enough to prove the
weak (1,1) inequality. Let f > 0, > Oand O, = {z € D : M, pf(z) > a}.
Further, let @ be the family of Carleson squares S € D such that

/S O] dv(©) > av(S),

and let ®™** be the subfamily of ® consisting of the maximal Carleson squares.
Then ®™* is a covering of O, and each z € O, is contained in at most two different
squares in ®™¥*. Therefore

1 2 2
LCOESDDRIOESEDY /S lFOldv) < /0 MOl < 1f 1,

S e@max S e@max

and the lemma is proved. (]

Leto,u e LL be non-negative, and let 1 < p < oo and p’ be its dual exponent.
The dual weight of v is ¢ = a(p, v) = ' ™. If T is a linear operator, the following
are equivalent:

(A) T : LF(v) = L (u) is bounded;

(B) T(o-): L (o) > L (u) is bounded;

(C) u'/PT(c"¥".) : I, — Lk, bounded.
Moreover,

1 1p
(3.10) IT 220y 12w) = 1T @) 21200 = Il PT(c'P MNer s

We now show how to obtain a linear bound for our dyadic operator in terms of
the B, ,-characteristic. This requires some hypotheses on the measure x and the
function W. The following theorem is an extension of the main result of [15].

Theorem 7. Let 1 < p < oo, u be a positive Borel measure on D and
veB,, Let¥:D(,1) — C be an analytic function such that its restriction to
the interval (0, 2) is positive and |Y(1 — z)| = |Y(1 — 2)| for all z € D. Further,
assume that u(S(1)) < w(T 1)) and Y(I)u(SU)) < || for all dyadic intervals I.
Then

1 1
1PE (Dl S Bru@)™ I gy Be {0, ).
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Proof. We focus first on the case p = 2 since it is easiest. We then explain
how to either obtain the result for all p from this or how to modify the proof given
to provide a direct proof for all p.

We will proceed by duality to study the norm of P@’ L7 L0 = L ().
Then the assertion for p = 2 follows by (3.10). Suppose that f € Li (»~!) and
g€ Li (v) are non-negative functions. The role of f now plays no role and so we
drop its dependence. Then

/ Po, (0~ N80 @) du(2)

1)

= (7' Lsay) e (vgs Lsay)ez ¥

IeD
_ Z W Du(SI))? (IS(I) So~ldu ) (fsa) 8o d/‘) fsu) v du fsu) vdp
7] Jsoy v~ Jsayv du u(SU)  w(SU)

fs(l) fo! dﬂ) (fsg) 8v dﬂ)
fsu) v=tdu fsu) vdu

—Bzﬂ(U)Z/ fsa)fu_ldd:)(fs(l)gua'ﬂ)dlu(z)

() fS(I) fS(I) vdp
< By, ,(v) /D (M1, ()02 ()M p() (202 (2)) dpa (2)

S B f 201 181122 0y

I1eD

< By, (v) Z u()(

where the first inequality follows from the hypotheses on w, W and v; the second
by the domination of the averages by the maximal functions; and the last by the
Cauchy-Schwarz inequality and the boundedness of the maximal functions due
to Lemma A.

It is possible to use the standard extrapolation proof to show that this estimate
can be lifted to 1 < p < oo with an appropriate change in the characteristic for the
weight v; see [15] for these details. It is instead possible to provide a direct proof
by using a verbatim repetition of the proof above. We sketch the modifications
now and leave the details to the reader.

Consider first the case 1 < p < 2. Let ¢ = v!™”". The goal is to now prove that

1
1P @) S Bou @) 1 -

It is more convenient to prove the equivalent inequality

1P @Y ) S Bra @I 15
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This last inequality can be studied via duality as above. Since 1 < p < 2, and the
function h(x) = x" is sub-additive for 0 < r < 1, we obtain

FAID

p—1

Puu(af Y™ vghy = (o sy (

IeD
-1
S By (0)[IMoy ()] i!;l(,,) My, (g)lly;,(v).

The inequality above is obtained exactly as above in the case p =2 by using the
definition of B, ,(v), and the relationship between x4 and ‘Y. Estimates of the
maximal function then provide the desired estimates to control the duality. The case
2 < p < oo can be deduced via the self-adjointness of Py , with respectto (-, -) 2
the result for 1 <p <2 and the relationship between B, ,(v) and B,y ,(v). [

Because of the equivalence we have between the dyadic operators P@,’ , and Py u
given in Lemma 6, we obtain the following result.

Corollary 8. Let 1 < p < oo, u be a positive Borel measure on DD and
v €B,,. Let¥:D(l,1) = C be an analytic function such that its restriction
to the interval (0, 2) is positive and essentially decreasing, ¥(t) < W(2¢) for all
t € (0,1), and |Y(1 — 2)| = |Y(A — 2)| for all z € D. Further, assume that
w(SI)) S w(T) and PAINu(SWI)) < || for all intervals I. Then

1, 1
||P$,,, ||Lﬁ(o)—>Lﬁ(u) 5 Bp,u(U)maX{ ”"}-

The upper bound for the operator norm given in Corollary 8 is essentially
independent of ¥, and therefore it is not necessarily sharp for all admissible V.
But when we apply it in the proof of Theorem 2 to deduce that v € B, ,, is a
sufficient condition for P}, : LL,(v) — LL,(v) to be bounded, the hypotheses on ¥
and o in question are satisfied precisely, meaning that < are in fact =<, and hence
the resulting sufficient condition will also be necessary. This will be discussed in
more detail at the end of the section when the proof of Theorem 2 is finally pulled
together.

We next proceed with auxiliary results needed to show that v € B, is a
necessary condition for P,, : L5, (v) — L5;°°(v) to be bounded.

Lemma 9. Let w be a positive Borel measure such that B admits the repre-

o) 1 U av(r)
BZ(C)_(I—ZC))’/O I—VZC’ Z:CEDa

for some y > 1 and a positive measure v supported on [0, 1], and let ¢ > 1. Then

sentation

[z — zol

B2(¢) — BY <C
Bo©-Br@l=C [T

IBZ(OI
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forall z,zo0, ¢ € Dwith |1 — (z| = clz — zol|, where

B+ 1)

o1y 7 3V2Q2+7y), ¢— oo

C =C(c,y) =V2Q2+7y)

Proof. A direct calculation shows that

[BZ(¢) — BY(OI =B (z0) — B2 (2)| = (B?) (x)dx| < / [(BZ) (x)|lax],
where
fon ¢ b dv(r) ¢ b rdv(r)
B () = (1 = ¢x)r+ /o 1 —rex * (1=¢x)7 Jo (1 —rex)?’ GreD,
and hence
, yIC] bodv(r) ] L av(r)
BNy /o H—rexl T —va/o —reapr ©FED

Since |1 — w| < 2|1 —rw| forall w e Dand 0 < r < 1, we deduce

+ I dv(r)
/ 11

LR AR

& x e D.
It follows that

1 Ly
IBS() —BL(O| < 2+ ¢z — zol sup ( / v(r) )

x€(z,20] |1_Cx|y+l 0 |1_er|

If x € [z, z0), then |1 — ¢z| > c|z — 20| = ¢|z — x|, and hence

N—cx|l =l —¢z+cz—cx| > 1=zl = 1Cllz—x] > 11— ¢z] — 7Y — ¢z

= (1- i)u — .

Thus

_ 1
2+ PIClz — 2ol su < dv(r) >
€[z,20] 0

B? BY
I Zr)(C) (C)l (- 1)y+]|1 CZ|y+ [1— er|

Leto € (0, 1). Then

L dv(r) dv(r)
o 11— = 1-0"00 1])+/ 11— rex|

2 L dv(r) . L dv(r)
1—=0Jo IL—r¢zl Js |1 —rexl
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A direct calculation or a geometric reasoning shows that |1 — w| < 13 5|1 —ruw| for
allweDandd < r < 1. Hence

2
[1—rex| > [1—rezl—c 1=z > |1—r§z|—c(1+5)|1—ré’z|, o <r<l.

By choosing 6 = 1/c¢, we deduce
—rext = €7 L= rel
—rix —rlzl,
el = c+1 ¢z

and it follows that

/1 dv(r) <3c+1 L av(r)
0 |1—}"C)C|_ c—1Jy |1—VCZ|

Since
1 dv(r)
/0 1—rz
~ ( ( /1 (1 —rlz| cos(b’))dv(r)>2+ ( /1 rlzl sin(9)dv(r))2>1/2
3.11) B 0 |1 — rz)? 0 [1 — rz)?
' 1 /1 [(1 — r|z| cos(8)) + r|z|| sin(@)|1dv(r)
~ V2 Jo 1 — rz|?
1 /Y dvr)
> D
- \/2 ‘/0 |1 _ er 9 Z S b
we deduce
o © QC+PIcllz—z0l 3c+1 1 adv(r)
B - B
B2l = BAOTS (i — gt e =1 o 1= re
_ V22 +)I¢llz — 20l 3¢+ 1 /1 dv(r)
- 1- i)y+1|1 ozt e—11Jo 1—riz
|z — zol
<C B2,
=C —Cle 2Ol
where C = C(c, 7) = V22 + ), Gob. O

Lemma 10. Let w € D such that B admits the representation

1 U av(r)
A=z Jo 1 =rz°

for some y > 1 and a positive measure v supported on [0, 1]. Then

Vv A —x!
(3.13) /0 L™ o x € [0, 1).

(3.12) B2(C) = 2 ¢ e,
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Proof. By [l1, Lemmas 3.1 and 3.2], see also [12, Lemma 6.2],

1 1 L dv(r)
= ||B?||%3, = B®(z) = / D
(1= Pragzp) = 1Bl =B =y ) 1 €
which is equivalent to (3.13). ]

For a Carleson square S = S(I), let £(S) = |I| denote its side length.

Lemma 11. Let @ € D such that BY? admits the representation (3.12) for
some y > 1 and a positive measure v supported on [0, 1]. Then there are constants
D) =Di(y) > 0and D, = Dy(y) > O such that for all (sufficiently small) Carleson
squares S1 and S, with £(S1) = €(S2) and D£(Sy) < dist(S1, S2) < D,0(S)), we
have
Js, F(Oo(() dA)

(S1)

for some constant C = C(Dy, Dy, w) > 0 and for all non-negative functions f

(3.14) |1Po(f))] = C , Z€S,

supported on S;.

Proof. LetS; and S, be (small) Carleson squares such that £(S;) = £€(S,) and
D €(Sy) < dist(Sy, S2) < D,€(S;), where Dy, D, > 0 are absolute constants to be

fixed later. Let /) be the center of S;. Then
1P ()]
(3.15)
> B2 | SO A = | FOIBLE) = BN dAQ)

forallz e D. If z € S, and ¢ € S}, then

(S .
=zl = o= ol = 5+ distis, )
(3.16) |
> (3 +D1)€(51) > c1l¢ — ol,
where
o = (3 +D1)
1 \/2 .

Choose D; = D(y) > 1 sufficiently large such thatc¢; > 1 and
cl(Ber+ 1) _ 1

(cp — 12 — 27

Then, by using Lemma 9 and (3.16), we deduce

V22 + )

y+1

] Ber+ 1) oo — |
(cr — 1*2 |1 = ¢ozl

y
1B+ 1), ., | .
(c; — Dr+2 |B(o(z)| = 2|B(0(Z)|-

IBY() — BL()| < V22 +7) IBS(2)|

(3.17)
<V2Q2+7y)
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By combining (3.15) and (3.17) we get

1
(3.18) 1Po(F)(2)] = ZIBE‘(’J(Z)I/S FO()dAD),  z€ S,

Now, we observe that

11— ozl < (1 —1501H) + 160 — zI) < 3€(S1) + dist(S1, S2)
< (3+D2)f(51), ZESz‘

This together with (3.11), the inequality (a +xb) < x(a+b) fora, b > Oand x > 1,
and Lemma 10 yield

B> / | )
<
< T V21— Cozl? Jo 1 —r(1 = |1 = ¢pzl)

- 1 /1 dv(r)
T V2B +Dy)e(Sy) Jo 1 —r+r3+D2)ES))

- 1 /l dv(r) - C
T V2@ + D)8 Jo 1 —=r+rt(S1) T V23 + Do) a(S))

for some constant C = C(w) > 0. The assertion follows by combining this with
(3.18). g

Proposition 12. et 1l <p < 00, w € D such that B? admits the represen-
tation (3.12) for some y > 1 and a positive measure v supported on [0, 1], and
v e L}(,)loC non-negative. If P,, : Liy(v) — L (v) is bounded, then v € B, .

Proof. It suffices to show that the quantity
(Wo)(S) (@—’; w><S>)5
(S) (S)
is uniformly bounded for all small Carleson squares S. By the hypothesis, there
exists C; > 0 such that

(3.19) Pwo){zeD:|Pu(@I 22D < Cillflfp,, 4>0.

Let S| be a sufficiently small Carleson square, and choose

Jy, (min{n, 0™ (O} d(@@mM)()

A=C ,
@(S1)

e N,
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where C is the constant appearing in (3.14). Further, choose f = 15, min{n, 0 1.
Then we get

(Js, min{n, o™ ()} d(@ @ m)(OY~!
(S

Js, min{n, v_i’/ O} d(w@m)(() }) - G

x wo)({ze D: IP.(H@I = € oS < o

By Lemma 11, for all suitable S, with £(S;) = £(S;) we have

Jy, min{n, 0™ ()} d(w om0y

S, C {zEDZ |Po(f)2)] = C w(S1)

and it follows that

(J, min{n, 0™ ()} d(@ @MY fg, v(0) d(@@m)() _a
(S)P - cr’

By changing the roles of S| and S, we deduce

s -1
([, mingr, 0™F @} d@@m©) [ 0@ d@em©)
w(S2)P = cr’

and it follows that v € L.. By letting n — oo and using Fatou’s lemma we deduce

(s, 0™ d@@m)y=! [y vd(e@m)

(S1)P
y (s, o= d@@m)y~" [ vd(w®@m) - c?
@(S2)P - Cw’
Since /
for any Carleson square S by Holder’s inequality, it follows that v € B, ,,. (]

With these preparations we are ready to prove the first of our main results.

Proof of Theorem 2. Clearly, (i)=(ii)=(iii), and (iii))=(iv) follows by
Proposition 12. To see the remaining implication, note that

1 /1 dv(ry Y1 —z0)
0

BZ(C):(I—ZCV l—rzg 1—z¢
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for the analytic function

_, (Y dv(r)
— 1=y
Y(z) =z /0 1= r(l—2)’ ze D, 1).

The restriction of W to (0, 2) is decreasing because y > 1, and obviously
Y1 —2)| =|¥Y(1 —z)| forallze D.

Moreover, u = w ® m satisfies u(S(I)) < u(T (1)) because w € R, and Lemma 10
yields
1 dv(r) 1
i = [ = ,
7=t Jo 1—=r(1—=|I]) " @(1 —|I])

so W(I)u(SI)) =< |I] for all intervals I. Now that W(r) < W(2¢) for all ¢ € (0, 1),
the hypotheses of Corollary 8 are satisfied, and hence (iv)=(i) as well as the
estimate for the operator norm of P} follow. g
4 Weak type (1, 1) inequality
Lemma 13. Let v be a positive Borel measure supported on [0, 1]. Then
/ U dv(r)
o 1—rz

Proof. We first show that

~

L av(r) /1 dv(r)
= = z € D.
o |1 —rz| 0

1—r(1—=1]1—2])’

4.1) l—r(1—1—z)=<|1—rz], zeD.

Ononehand, |1 —rz| = |1 —r+r(1—2)| <1 —=r)+r|]l —z|/forall0 < r < 1.
On the other hand, if z = |z|€! and r > 1/2, then

o
2 _ 1 _ _ 2 )
1 —rz]” =((A —r)+r(1 —|z])° +4r|z|sin (2)

411((1 — )2+ (1 — |z])?) + 4r|z| sin? (i)

A%

> i(ﬂ — )+ (1 = |z])* + 4]z sin® (i))

1 2 12
4 (=7 + L =2]%),

and hence !
2V

[1—rz] > 2((l—r)+|l—z|).



BERGMAN PROJECTION INDUCED BY KERNEL 345

Moreover, for 0 < r < 1/2 we have

. (A =r)+]1=2]

1 — >
[1 —rz] > 6 ,

and hence (4.1) follows. Therefore

/1 dv(r) U adv(r) /1 dv(r)
< = , z€D.
o 1—rz [1—rz] o 1—r(1—|1—2]
By combining this with (3.11) we deduce the assertion. g

Lemma 14. Let w € D such that B admits the representation

0f oy 1 U dv(r)
B0 = (oo [ I wcen,

for some y > 1 and a positive measure v supported on [0, 1]. Then for v € L},
non-negative, zo € D\ D(0, 1/2) and z € D satisfying |z — zo| < c(1 — |z0]) for a
constant ¢ > 0, there exists C = C(c, y, w) > 0 such that

/ [Bo() — B (Do) d(w@m) () < C inf M,(v)(a).
D\D(z0,2|z—z0|)

aeD(z0,V2(1—|zo[)ND

Proof. If ¢ € D\ D(zo, 2|z — z0l), then 2|z — zo] < |20 — ¢| < |1 — {Zol, and
hence

1B (&) — B2(ONo() d(w®@m)(()

D\D(z0,2|z—z0l)
<z ol/l (O' PO d@EmE)

by Lemma 9. Let ky € N such that
20V/2(1 — |z0]) < 1 < 29"1V/2(1 — |z)).

LetE_, =0, Ex ={zeD: |l —zz <2521 — |zo])} for k =0, ..., ko, and
Ei+1 =D\ Ey,. Then, by Lemma 13,

1—|o|>/I (O' PO d@OME)

ko+1

<a- |zO|>Z/

EnE; |1 —CZOP'+1

‘ dv(r)
) (/0 1—r(1_|1_CZO|)>U(C)d(w®m)(g),
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Further, Lemma 10 and the hypothesis w € D give

! dv(r)
(1—|Z0|)Z/k\Ek O —qzw“ (/0 L= -1 —gzOD)”(C)d(“’@mm

ko

1
~(1- |zO|>Z/Ek\Ek e — 1 — ey @B

1
S Ex\ Ex—
N;22k(1—|z0|)a}(l—2k 1\/2(1—|Zo|))( w0 )(Ex \ Ex—1)
ko 1
D(z0, 25V2(1 — |z0)) N D
= 2221~ il — 2121 — gy @ P TV DO D)
ko 1

N

D(z0, 25V2(1 — AD
2 2k D(z0, 2021 — 2oy 1y P E 2 V2L DI TR

< inf M,(0)@) Zlk = inf M,(v)(@).
k=0

aeD(20,v2(1=|zo|)ND aeD(z0,V2(1—|zo|)ND

Furthermore, clearly

1 ! dav(r)
(I —=1zoD ( )v( )d(w®@m)(()
D Jp 11 =20l o 1= r( =11 =20 )" ¢
< inf M, () (a),
aeD(z0,V2(1—|zo]))ND
which together with the previous estimate finishes the proof. (|

Write D = D(0, ;) U R; UR,, where R; and R, are dyadic Carleson squares.

Lemma 15. Let o € R such that o([a, b]) < w([a, “}*]) < w([“3?, b)) for all
0<ab<l, feL,and > |fl. Let R € {Ry, R:}. Then there exist F and Q
suchthatR =FUQ, FNQ =0 and

@) |f@| < A almost everywhere on F ;

(ii)) Q =J; Ok, where Qx C R are dyadic polar rectangles;
(i) (@) <
(iv) there is a constant C = C(w) > 0 such that

A< (O )/ lf @ d(w®m)(z) < CA.

The Calderon—Zygmund decomposition of flg : R — Cis flg = g+ b, where

f(z)a ZE F"
g(2) = )
w0 Jo QO dl@m)((), ze€ O
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Proof. Write R = Q) o and pick Q) ¢ if

1
d A.
Oy VO @OmE) 2

If not, divide Qo into O, j =1, ..., 4, and pick those for which

1
d A
(0 Jo, A (O d(w@m)(() =

Divide the non-selected ones and proceed. By re-naming the selected sets as Oy
and defining Q = | J, Ox we have (ii).

(i) Let F = R\ Q. For almost every z € F and each k € N U {0} there exists a
unique dyadic polar rectangle Q; of generation j such that z € Q; and

w(le) /Q AOld@smE) <7
Then ﬂj Q; = {z}, and hence
r@i=gim o[ roldeeme)
% w(0) Jo,

for almost every z € F by Lebesgue’s differentiation theorem. It follows that
|f] < A almost everywhere on F'.
(iii) Since w(Qy) < ;l ka | f (O] d(w ®m)(¢) for each k, we have

1
PCED Y SERDY / FOld(©@m)(O)
k kU

B 1l
= /Q FOld@emE < M.

(iv) Since w(R) = cw(D) for some constant ¢ > 0, we have

I1f 1|l A

/le(g“)ld(w®m)(g) = coD) " cod)’

1
o(R)
For each Q; # R, there exists a non-selected dyadic polar rectangle Q' from the
preceding generation such that Q; C Q’. Since @ € R such that

a)([a,b])xa)([a, a;b}) xa)([a;b,b})

for all 0 < a, b < 1 by the hypothesis, we deduce

1 1
A > (0 /Q/ lf O] d(w@m)() > Co(00) o, £ (O] d(w®@m)()

for some constant C = C(w) > 0, and thus (iv) holds. ]
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Proof of Theorem 3. Assume first that v satisfies the B ,-condition. Write
D = D(O0, é) U R; UR; as before. Then f = f1 + f1g, + f1g,. Since BY is
uniformly bounded on D(0, }) and

D, })

>

inf - 1 fD(o’é)U(C)d(CU(X)m)(C)
ko0 2 g 0y e, b))

we have
Wo)({z: 1PL(f Ly 1 )] > AD)

IP4(f Ly 1))@
L

1 w

I Bi "
S / FOldemO) S O llzyer
4 Jpw.}) A

v(2) d(wm)(z)

Moreover,

(wo)({z: IPL(NH@I > 1})
< (vo)({z: IPZ)(le(O’é))(Z)I + 1P, (f1r)@| + [PL(f1r,)(@)] > 4})

< 0oy ({21 P11 )1 > S0 {2 PL0 RGN > )
oz P> 4 ))

< o) ({21 IPS( 1, QI > i})
sin( (e g~ 3
+(vw)({z: 1P, (f1r,)()] > i})

so it suffices to show that

I/ 1R N 23 0
l b

wo){z: IPL(f1R)(@)] > A} R € {Ri, Rz},

for large values of 4. To see this, fix R € {R|, R}, and decompose |f1g| =g+ b
according to Lemma 15 and the weight @ € R. Then the definition of g and
Lemma 15(iv) give

Qk (Z)

4.2) |g<z>|sZ o(00)

| roldeemo) s cea=Uo
k
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which together with Lemma 15(i) and the definition of g yields

Igl?, = / 18O Po(©) d@@m)(C) + / 18OPo(©) d (@@ m)(C)
F Q

< /F O d(@ @m)E) + /Q 18O 0(0) d(@ @ m)E).

Now, since v € B, and w € R such that w([a, b]) < w([a, “4"]) < w([“}", b]) for
all 0 < a, b < 1 by the hypotheses,

¢ 7Ok

(00
< / F(OIMo)() d(@® m)(©)
PERAY

d(w @m)({)

4.3)
< B Y. [ IFOREOd@em©
r 7Ok

= By(0) /Q I ON0(©) dew @ m)(©).

Therefore

1811720y < ABro@)If 1kl w)»
andthus g € L2 (v). Since By, C Ba,, with B, ,(v) < B1,o,(v), PE : L2 (v) — L2 ()
is bounded by Theorem 2. Consequently,

wo)({z: IPL(@@)] > A} = ww)({z: IPL(@I* > A%})
1
< 2 [IP@©OP0) dw@m©)

”g”ifu(v)
22
ILf LRIl o)
P .

To deal with b, write b = ), by, where by = bly,. Then |PL(b)| < >, |PL(bi)].
For each k, let Dy, be the circumscribed disc of Oy with center z; and let D; be the
concentric disc of double radius. Further, let Q" = |J, D; N D. Now that b has
mean value zero on O,

/ () d(@®m)(C) = / (F(©) — 8 d(@@m)©O)
Ok Ok

,S B2,az(v)

< Bt

- / FO d(@@m)©)
(4.4) o

1
- [ (oo [, FOA@Em@) d@om@

=0,
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we deduce
PL ()] = ‘ / BB d(w ® m)(E) — / (OB d(@ ® m)(E)
Ok Ok
< / IBOBEE) — B2(z0)] d( @ m)(©).
Ok
Consequently,
/ P B)@Io() d(0® m)()
D\Q

<Y | P0@Id@@me
< zk:/D\Q (/Qk Ib(OIIB () —B?(Zk)ld(a)®m)(6)>v(z)d(w®m)(z)
= b B®(¢) — BY d d

> Lomon( [0 - Beondeemno) doeme

’ B — B? d d .
= zk:~/Qk | (C)|<~/D\D(Zk,2|(—z1cl)| ¢ (C) N @o)lo(2) (Cl)®m)(z)> (60®m)(C)

There is an absolute constant C > 0 such that |¢ — zx| < C(1 — |zx|) for any k and
any ¢ € O. Hence the inner integral in each summand is bounded by a constant
times infaeD(zk,\/2(l—|zk|) M, (v)(a) by Lemma 14. Therefore (4.3) yields

/ P (0)(2)[0(2) d(® m)()
D\Q

<SS inf M@ /Q Bl d (@ @ m)(C)

% aeD (zx, V2(1—|z])

=Y [ BOMEXO d@om©)
r 7Ok

< B,y /Q IO d(@ @ m)(Q)

k k
4.5)
< B /Q 6O () d(@ @ m)(O)

< Byo(0) / O d@@m)E)
Q
+B1o(0) /Q 18ONo(©) d(@®m)(©)

< B2,(0) /Q Ol d@@m)E)

< B oI 1R L0)-
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Further,

4.6) (vw)({z : |PL(b)(2)| > A}) <(ww){z: |PL(D)2)| > 2} N D\ Q)
. + o)z : |PL(b)(2)] > 1} NQ),

where

1
(vo)({z: [PL(D)2)]| > A} N(D\ Q) < 5 / [P, (b)(2)|v(2) d(w® m)(z)
D\

< I/ 1R N 1 0
~ A

by (4.5). Since w € R such that w([a, b]) < o([a, “}*]) = a)([“;’b, b)) for all
0 < a, b < 1 by the hypothesis, we have w(Qy) =< w(D; N D), and hence (iv) gives
(vo)({z: [PL(D)()| > 1} N Q) < (vw)(Q)
<Y (vw)(D; ND)
k

1 (ve)(D; N1D))
<02 e

1 (ve)(D; N D))
S A zk: w(D; N D)

/Q F@ld(@®m))
/Q @] d(@@m)E)
< }kj /Q @M, ) d@@m

1
<Bio() zkj /Q 1@ d@omE

/1Rl
< Bl,a)(l)) /1 m(l)-

Hence

(wo)({z: IPL(f1R)(@)] > 4})
(4.7) <(o){z: IPL)@)] > 1/2}) + (vw)({z: [PLB)2)| > 4/2})

1
< Ri”%(“), R € (R, Ra),

and thus we get (i). To be precise, this proof works only for f € L. because
Lemma 15 is applied, but the general case follows by applying (4.7) to the function
min{ f, n} with f non-negative and then letting n — oo.

Since (i) trivially implies (ii), it remains to show that (ii) implies (iii). Let S,
and S, be Carleson squares satisfying the hypothesis in Lemma 11, and let f be a
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non-negative function supported on S;. Further, choose

Js, F(O) d(@@m)(©)

A=C ,
@(S1)

where C is the constant appearing in (3.14). Since

Avo)({z: [Po(H@] > 4D S 1f lsw)
by the hypothesis, it follows by Lemma 11 that there exists C; > 0 such that

(fo)(S1)

o(S)) (w)(S2) < Ci(fow)(S1).

By choosing f = lgw™! for E C S; and applying the Lebesgue differentiation

theorem, we get
(vw)(S2)
w(S1)

for almost every z € S;. Since the same is true when the roles of S| and S, are

< Cio(2)

interchanged, we deduce

Vo)(S2) _ a(S2)(w)(S) _ 1 (0w)(S1)

Civ(z) > > =
' w(S1) Cio(S)w(S) €1 w(S))
for almost every z € ;. It follows that

y OS)
sizes @(S)

for almost every z € D. This implies

So(2)

(4.8) sup (0w)(Dla, r) N D) So)

zeD@r @(D(a,r)nN D)
for almost every z € D, where the supremum runs over the discs touching the
boundary. Moreover, the squares S; and S, in the statement of Lemma 11 can be
replaced by Euclidean discs D(a;, R(1 — |a;|) and D(ay, R(1 — |a;|), where R is
fixed and small enough. By using this fact with the above reasoning in hand and
(4.8), we deduce v € By . ]

5 Two-weight inequality for the positive operator Py, ,

The purpose of this section is to prove Theorem 16. A reasoning similar to that in
the proof of Theorem 2 then shows that Theorem 4 is an immediate consequence
of this result.
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Theorem 16. Let 1 < p < oo and u be a positive Borel measure on D, and
letv,u € L,lt non-negative. Let ¥ : D(1, 1) — C be an analytic function such that
its restriction to the interval (0, 2) is positive and the following conditions hold:

) [P —2)| <Y1 —z|) for all z € Dy
(i1) Y is essentially decreasing on (0, 2);
(iii) there exists a constant C > 0 such that ¥Y(t) < CY(2¢) forall t € (0, 1);
v) (1 — 2)| =Y = 2)| for all z € D.
Then PQJ u - L (v) — L (u) is bounded if and only if there exist constants
Co = Co(p, 1, v,u) > 0and C§ = Ci(p, 1, v, u) > 0 such that

(5.1) M0 Py M (L6 Pz < CollLsa Pl
and
(5.2) IV P, Mo (st Py < Gl Lsu 71

for all Carleson squares S C D, whereo = v 1=P' " Moreover, there exists a constant
C, =Ci(p, 1) > O such that

1P Il 2wy 120 < C1(Co + CF).

As in the one-weight case PE, 0t L‘Z (v) > L‘Z (v) given in Corollary 8 it is more
convenient to consider first a dyadic model. To do this, let E f and EZ” f denote
the expectations of a function f over a square S with respect to the measures u
and o du, respectively. Given a dyadic grid D on T and a sequence 7 = { 75y }1eD
of non-negative numbers, consider the dyadic positive operator defined by

(5.3) T(f) =Tuen(f) = > tsayE5, sy

1eD
Given I C D we can identify it with its associated Carleson square S(I). So, via
this identification, for a dyadic grid D on T we shall simply write

(5.4) T(f) = Tuen(f) = > ts(B5 )15
1eD
for the corresponding dyadic positive operator.
The following theorem characterizes the boundedness of the operator 7 in the
two-weight setting. See [15, 17, 21].

Theorem 17. Let 1 < p < oo, u be a positive Borel measure onD, o, u € Llll
non-negative and let T =T, . p be the dyadic positive operator defined in (5.4).
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Then T(o-) : Lfl(a) - L‘Z (u) is bounded if and only if there exist constants
Co = Co(p, 1, 0,u) > 0and C§ = Ci(p, 1, o, u) > 0 such that

(5.5 IIT(Gls)Ilii(u) < Co(ou)(S)
and
(5.6) IT* @), | < Clun)s)

forall S € D. Moreover, there exists a constant C; = Cy(p, u) > 0 such that
IT (@) o)— 12,y < C1(Co + C).

Let now o be a weight and f a locally integrable function in D. Let Sy € D and
denote Dy = {S € D : § C Sy}. Further, let

{S € Dy : S is a maximal Carleson square in Dy

L£(So) = ” ”
such that ES"| f| > 4EZ"| f]}.
Define Lo = {So} and £; = J; ., , L(L) for all i € N, and denote the union of all
the stopping squares by £ = J;.( £L;. For § € Dy, let A(S) be the minimal square
L e LsuchthatS © Landlet D(L) ={S € Dy : A(S) =L}.
The stopping squares £ can be used to linearise the maximal function M,.. More
precisely, we have the pointwise estimate

(5.7) D EFIDILG) S Mo f(2), zeD.

Lel

To see this, assume z € Sy for some Sy € Ly, for otherwise the inequality is trivial
because the left-hand side is zero. Then there exists a stopping square L' € £ with
minimal side length containing z. The expectations increase geometrically, that is,

Ef“\f] > 4E2|fl, L,LekL, LCL,

therefore

STEIfF < EFIFD 4T S Mo f (),

Lel j=0
zeL

concluding the proof of (5.7).
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An application of (5.7) and (3.9) provides the useful inequality

(5.8) D _E Y oud) S UF -

Lel

Proof of Theorem 17. We will assume there is a finite collection of dyadic
squares 8 in the definition of the operator 7', and we will prove the operator norm
is independent of the chosen collection. So from now on

Tf =Y t5(ES Pls.

Se8

It is enough to prove boundedness of the bilinear form (T (cf), gu) 125 where
f eLli(o)andg € L (u) are positive. Following the argument in [21], we seek an
estimate of the form

(5.9) (T, gu)iz < Alf g llgl g+ BIF I, -

We first divide the squares in & into two collections 8; and §, according to the
following criterion. A square S will belong to 8y, if

(5.10) (B4 FY uo(S) > (BEL"eY uu(s),

and it will belong to 8, otherwise. This reorganization of the Carleson squares
allows us to write T = T + T,, where

Tif =) ws@Hls, =12

Se8;

The idea of writing T as the sum of 7} and T, was already present in the work of
Treil [21] and previously in the work of Nazarov, Treil and Volberg [10]. We will
prove boundedness of T using the testing condition (5.5). The boundedness of 7>
can be proven analogously to 7, only using (5.6) this time. First note that

(Ti(of), gu)rz = Y wsE§(fo)(gu, Is)z =D > wsE§(fo)(gu, Ls)p;

Se8, LeL SeD(L)

= (Tu(of), gu)rz,

Lel

where £ is a collection of stopping Carleson squares in the family 8, to be specified
below, and T1.f =D gcp(y tsES (f)1s. To find the collection of stopping Carleson
squares £, we define Ly as the collection of maximal Carleson squares in the
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family 8, and follow the definition after Theorem 17 for given f and o to define £,
with 8, as our family of dyadic Carleson squares. Clearly,

GAD Y (Tuen g =Y [ TueH@s@u@ du) =1 +11

e =
where
=22 / o Tu(e)@g@u) du ()
and
I _Z Z /U TL(ef)(@)g(u(z) du(2).
i LeL LLeéZl

To deal with I, we estimate the norm of 7,. By using the testing condition (5.5)
and the fact that S € D(L) are not stopping Carleson squares, we deduce

p
> wsE(fo)ls

SeD(L)

uo(S) o
Se%j@ () 5B (f)ls

< #B"(HY

1T, =

A

A

no(S)
‘L'SIS

56293:@) u(S)
< AEFOPIT (O'IL)HZZIL(M) < 4 Co(EF" (f)Y ou(L).

(5.12)
P

A

Since U; Ureg, L\ UL/ L HL’ forms a collection of disjoint sets in £y, Holder’s

inequality, (5.12) and (5 8) yield

1<) > ITolgwlglnug e, vl

i Lel; L'cL
1/p
(5.13) (Z ) ||TL<fa>||Lp(u)) (Z > ety I, ))
i Lel; i Lel;
1 " 1/p
< 4G p(zmz f)”aﬂ(L)> 1811y S Coll iz lgl -
Lel

We now turn to II. If L € £ be fixed, then the operator 7, (fo) is constant on L/,
where L' € £, L' C L. That is, L’ is contained in some Carleson square S of the
family D(L). We will denote this constant by T, (fo)(L’). For a fixed L € £;, this,
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Holder’s inequality, (5.12) and the hypothesis (5.10) yield

/ Tu(of)@Dg@u) du()
UL/GLH—I r
L'cL
/ / /g(Z)u(Z)d (Z) /
= Y Tu(fo)lL) / g@u@)du@) = Y TL(faxL)fL (L,)“ pu(L)
LIE»CI'.H r L/GLH-I IL‘M
L'cL L'cL
- Y [ nUo@E ue due)
L'eliy '
L'cL
-/ TL(fa)(z)< 3 Eﬁ”glu<z>>u<z>dﬂ<z>
L L'elin
L'cL
< || Tflmwl > Eifgly|
Lt A%
L'cL
L / v
= ||TL(fU)||Lf,(u)( Z (Ef/ g)"ﬂ“@’))
L'eliy
L'cL
. . . 1/p’
< 4Co(EL uo(l) /P( S f)"/w(L’)> .
L'eliy
L'cL
By summing this estimate in L and using (5.8), we obtain
. . . 1/p’
Sy Y B fHusl) /P( > &L f)"/w(L’)>
i LGL,‘ L/GLH,[
L'cL
(5.14) o lp o\
S| D _EL Y ual) DD D B usl)
Lel i LEL,’ LIEL,'.H
L'cL
SN IF I S 11
By combining (5.13) and (5.14), we get (5.9). ]

We now turn to the two-weight inequality for the case of the operator Py, . and
its associated dyadic model P@ pe

Taking D?, p € {0, 1/2}, one of the dyadic grids on T defined in (3.2) and

WA u(Sr)

choosing 7y = 7

, we obtain the following result as a byproduct of Theo-
rem 17.
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Corollary 18. Let f € {0, 1/2}, ¥ be a positive function on (0,2), u be a

positive Borel measure on D and o, u € L}l non-negative. Then
P, (09) : b (o) = Lb(u)

is bounded if and only if there exist constants Cy = Co(p, 1,0, u) > 0 and
Cy = Ci(p, u, o, u) > 0 such that

w(I1 g
(5.15) > (otsus ) s < Cona(SUo)
1eDf 7] Ly L (w
1cly
and
P(|I])1 7 "
(5.16) > (utsan ) s S Chun(SUo,
IIE,DI,g n L (o)
Clo

for all Iy € DP. Moreover, there exists a constant C; > 0 independent of the
weights, such that

1P, (e 2oy 20 < C1(Co+ CP).
Proof of Theorem 16. By the equivalence of (A) and (C),
v L) = L (u)
is bounded if and only if
Mul/]7P$j/lMo.l/p/ . L{; = L{;

is bounded. By the hypothesis (iv), the adjoint of M1, Py , M1,y with respect to
the Li—pairing is M,y Py, M. Consequently, the necessity of the conditions
(5.1) and (5.2) is obvious. Conversely, by the first inequality in (3.6), the testing
conditions (5.1) and (5.2) imply the corresponding testing conditions for each P@, 4
p € {0, 1/2}, that is, conditions (5.15) and (5.16), and therefore the boundedness
of each operator PQ’#(O'-) 1 (o) = L (w), p € {0, 1/2}, by Corollary 18. The
second inequality in (3.6) now implies the boundedness of Py, u (o) = L (u)
with the required norm bounds. Finally, by using the equivalence of (A) and (B)
and (3.10), we deduce that

Q’# : L‘Z(v) - L‘Z(u)

is bounded with the claimed norm bound. O
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