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Abstract. Let G be a countable discrete sofic group. We define a concept
of uniform mixing for measure-preserving G-actions and show that it implies
completely positive sofic entropy. When G contains an element of infinite order,
we use this to produce an uncountable family of pairwise nonisomorphic G-actions
with completely positive sofic entropy. None of our examples is a factor of a
Bernoulli shift.

1 Introduction

Let G be a countable discrete sofic group, (X, μ) a standard probability space and
T : G � X a measurable G-action preserving μ. In [2], Lewis Bowen defined the
sofic entropy of (X, μ,T ) relative to a sofic approximation under the hypothesis
that the action admits a finite generating partition. The definition was extended to
general (X, μ,T ) by Kerr and Li in [10] and Kerr gave a more elementary approach
in [8]. In [3] Bowen showed that when G is amenable, sofic entropy relative to any
sofic approximation agrees with the standard Kolmogorov–Sinai entropy. Despite
some notable successes such as the proof in [2] that Bernoulli shifts with distinct
base-entropies are nonisomorphic, many aspects of the theory of sofic entropy are
still relatively undeveloped.

Rather than work with abstract measure-preserving G-actions, we will use the
formalism of G-processes. If G is a countable group and A is a standard Borel
space, we will endow AG with the right-shift action given by (g · a)(h) = a(hg) for
g, h ∈ G and a ∈ AG . A G-process over A is a Borel probability measure μ on
AG which is invariant under this action. Any measure-preserving action of G on
a standard probability space is measure-theoretically isomorphic to a G-process
over some standard Borel space A. We will assume the state space A is finite,
which corresponds to the case of measure-preserving actions which admit a finite
generating partition. Note that by results of Seward from [12] and [13], the last
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condition is equivalent to an action admitting a countable generating partition with
finite Shannon entropy.

In [1], the first author introduced a modified invariant called model-measure
sofic entropy which is a lower bound for Bowen’s sofic entropy. Let

� = (σn : G → Sym(Vn))

be a sofic approximation to G. Model-measure sofic entropy is constructed in terms
of sequences (μn)∞n=1 where μn is a probability measure on AVn . If these measures
replicate the process (AG, μ) in an appropriate sense, then we say that (μn)∞n=1

locally and empirically converges to μ. We refer the reader to [1] for the precise
definitions. We have substituted the phrase ‘local and empirical convergence’ for
the phrase ‘quenched convergence’ which appeared in [1]. This has been done
to avoid confusion with an alternative use of the word ‘quenched’ in the physics
literature. A process is said to have completely positive model-measure sofic
entropy if every nontrivial factor has positive model-measure sofic entropy. The
goal of this paper is to prove the following theorem, which generalizes the main
theorem of [5].

Theorem 1.1. Let G be a countable sofic group containing an element of
infinite order. Then there exists an uncountable family of pairwise nonisomorphic

G-processes each of which has completely positive model-measure sofic entropy

(and hence completely positive sofic entropy) with respect to any sofic approxima-
tion to G. None of these processes is a factor of a Bernoulli shift.

In order to prove Theorem 1.1 we introduce a concept of uniform mixing
for sequences of model-measures. This uniform model-mixing will be defined
formally in Section 3. It implies completely positive model-measure sofic entropy.

Theorem1.2. Let G be a countable sofic group and let (AG, μ) be a G-process

with finite state space A. Suppose that for some sofic approximation � to G,
there is a uniformly model-mixing sequence (μn)∞n=1 which locally and empirically

converges toμ over�. Then (AG, μ) has completely positive lower model-measure
sofic entropy with respect to �.

As in [5], the examples we exhibit to establish Theorem 1.1 are produced via
a coinduction method for lifting H -processes to G-processes when H ≤ G. If
(AH , ν) is an H -process, then we can construct a corresponding G-process (AG, μ)
as follows. Let T be a transversal for the right cosets of H in G. Identify G as a set
with H × T and thereby identify AG with (AH )T . Set μ = νT . We call (AG, μ) the
coinduced process and denote it by CIndG

H (ν). (See page 72 of [7] for more details
on this construction.) When H ∼= Z this procedure preserves uniform mixing.
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Theorem 1.3. Let G be a countable sofic group and let (AZ, ν) be a uniformly

mixing Z-process with finite state space A. Let H ≤ G be a subgroup isomorphic
to Z and identify AZ with AH . Then for any sofic approximation � to G, there

is a uniformly model-mixing sequence of measures which locally and empirically
converges to CIndG

H (ν) over �.

We remark that it is easy to see that if (AG, μ) is a Bernoulli shift (that is to
say, μ is a product measure), then there is a uniformly model-mixing sequence
which locally and empirically converges to μ. Indeed, if μ = ηG for a measure η
on A, then the measures ηVn on AVn are uniformly model-mixing and locally and
empirically converge to μ. Thus Theorem 1.2 shows that Bernoulli shifts with
finite state space have completely positive sofic entropy, giving another proof of
this case of the main theorem from [9]. We believe that completely positive sofic
entropy for general Bernoulli shifts can be deduced along the same lines, requiring
only a few additional estimates, but do not pursue the details here.

Acknowledgements. The first author’s research was partially supported by
the Simons Collaboration on Algorithms and Geometry. The second author’s
researchwas partially supported by NSF grantsDMS-0968710 andDMS-1464475.

2 Preliminaries

2.1 Notation. The notation we use closely follows that in [1]; we refer the
reader to that reference for further discussion. Let A be a finite set. For any pair
of sets W ⊆ S we let πW : AS → AW be projection onto the W -coordinates (thus
our notation leaves the larger set S implicit). Let G be a countable group and let
(AG, μ) be a G-process. For F ⊆ G we will write μF = πF∗μ ∈ Prob(AF ) for the
F -marginal of μ.

Let B be another finite set and let φ : AG → B be a measurable function. If
F ⊆ G, we will say that φ is F -local if it factors through πF . We will say φ is local
if it is F -local for some finite F . Let φG : AG → BG be given by φG(a)(g) = φ(g·a)
and note that φG is equivariant between the right-shift on AG and the right-shift
on BG.

Let V be a finite set and let σ be a map from G to Sym(V ). For g ∈ G and
v ∈ V we write σg · v instead of σ(g)(v). For F ⊆ G and S ⊆ V we define

σF (S) = {σg · s : g ∈ F, s ∈ S}.
For v ∈ V we write σF (v) for σF ({v}). We write �σ

v,F for the map from AV to AF

given by �σ
v,F (a)(g) = a(σg · v) for a ∈ AV and g ∈ F . We write �σ

v for �σ
v,G .
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With φ : AG → B as before, we write φσ for the map from AV to BV given by
φσ(a)(v) = φ(�σ

v (a)).
If D is a finite set and η is a probability measure on D , then H(η) denotes the

Shannon entropy of η, and for ε > 0 we define

covε(η) = min{|F | : F ⊆ D is such that η(F ) > 1 − ε}.

If φ : D → E is a map to another finite set, then we may write Hμ(φ) in place of
H(φ∗μ). For p ∈ [0, 1] we let H(p) = −p log p − (1 − p) log(1 − p).

We use the o(·) and � asymptotic notations with respect to the limit n → ∞.
Given two functions f and g on N, the notation f � g means that there is a positive
constant C such that f (n) ≤ Cg(n) for all n.

2.2 An information theoretic estimate

Lemma 2.1. Let A be a finite set and let (Vn)∞n=1 be a sequence of finite sets

such that |Vn| increases to infinity. Let μn be a probability measure on AVn. We
have

lim inf
n→∞

H(μn)
|Vn| ≤ sup

ε>0
lim inf
n→∞

1
|Vn| log covε(μn).

Proof. Let μ be a probability measure on a finite set F and let E ⊆ F . By
conditioning on the partition {E,F\E} and then recalling that entropy is maximized
by uniform distributions we obtain

(2.1)
H(μ) = μ(E) · H(μ(· |E)) + μ(F \ E) · H(μ(· |F \ E)) + H(μ(E))

≤ μ(E) · log(|E |) + (1 − μ(E)) · log(|F \ E |) + H(μ(E)).

Now let μn and Vn be as in the statement of the lemma. Let ε > 0 and let
Sn ⊆ AVn be a sequence of sets with μn(Sn) > 1 − ε and |Sn| = covε(μn). By
applying (2.1) with F = AVn and E = Sn we have

lim inf
n→∞

H(μn)
|Vn|
≤ lim inf

n→∞
1

|Vn| (μ(Sn) · log(|Sn|) + (1 − μ(Sn)) · log(|AVn \ Sn|) + H(μ(Sn)))

≤ lim inf
n→∞

1
|Vn| (log(|Sn|) + ε · log(|AVn |) + H(ε))

≤
(

lim inf
n→∞

1
|Vn| log covε(μn)

)
+ ε · log(|A|).

Now let ε tend to zero to obtain the lemma. �
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3 Metrics on sofic approximations and uniform model-
mixing

Let us fix a proper right-invariant metric ρ on G: for instance, if G is finitely gener-
ated, then ρ can be a word metric, and, more generally, we may let
w : G → [0,∞) be any proper weight function and define ρ to be the result-
ing weighted word metric. Again let V be a finite set and let σ be a map from G
to Sym(V ). Let Hσ be the graph on V with an edge from v to w if and only if
σg · v = w or σg ·w = v for some g ∈ G. Define a weight function W on the edges
of Hσ by setting

W (v,w) = min{ρ(g, 1G) : σg · v = w or σg ·w = v}.

If v and w are in the same connected component of Hσ let ρσ be the W -weighted
graph distance between v and w, that is

ρσ(v,w) = min
{ k−1∑

i =0

W (pi , pi+1) :

(v = p0, p1, . . . , pk−1, pk = w) is an Hσ-path from v to w
}
.

Having defined ρσ on the connected components of Hσ, choose some number M
much larger than the ρσ-distance between any two points in the same connected
component. Set ρσ(v,w) = M for any pair v,w of vertices in distinct connected
components of Hσ. Note that if (σn : G → Sym(Vn)) is a sofic approximation to G,
then for any fixed r < ∞, once n is large enough the map g �→ σg

n · v restricts to
an isometry from Bρ(1G, r) to Bρσn (v, r) for most v ∈ Vn.

In the sequel the sofic approximation will be fixed, and we will abbreviate ρσn

to ρn. We can now state the main definition of this paper.

Definition 3.1. Let (Vn)∞n=1 be a sequence of finite sets with |Vn| → ∞ and
for each n let σn be a map from G to Sym(Vn). Let A be a finite set. For each n ∈ N

letμn be a probability measure on AVn . We say the sequence (μn)∞n=1 is uniformly
model-mixing if the following holds. For every finite F ⊆ G and every ε > 0
there is some r < ∞ and a sequence of subsets Wn ⊆ Vn such that

|Wn| = (1 − o(1))|Vn|,

and if S ⊆ Wn is r-separated according the metric ρn then

H(πσF
n (S)∗μn) ≥ |S| · (H(μF ) − ε).



602 T. AUSTIN AND P. BURTON

This definition is motivated by Weiss’ notion of uniformmixing from the special
case when G is amenable: see [14] and also Section 4 of [5]. Let us quickly recall
that notion in the setting of a G-process (AG, μ). First, if K ⊆ G is finite and S ⊆ G

is another subset, then S is K -spread if any distinct elements s1, s2 ∈ S satisfy
s1s−1

2 
∈ K . The process (AG, μ) is uniformly mixing if, for any finite-valued
measurable function φ : AG → B and any ε > 0, there exists a finite subset K ⊆ G
with the following property: if S ⊆ G is another finite subset which is K -spread,
then

H((φG
∗ μ)S) ≥ |S| · (Hμ(φ) − ε).

Beware that we have reversed the order of multiplying s1 and s−1
2 in the definition

of ‘K -spread’ compared with [5]. This is because we work in terms of observables
such as φ rather than finite partitions of AG, and shifting an observable by the
action of g ∈ G corresponds to shifting the partition that it generates by g−1.

The principal result of [11] is that completely positive entropy implies uniform
mixing. The reverse implication also holds: see [6] or Theorem 4.2 in [5]. Thus,
uniform mixing is an equivalent characterization of completely positive entropy.

The definition of uniform mixing may be rephrased in terms of our proper
metric ρ on G as follows. The process (AG, μ) is uniformly mixing if and only if,
for any finite-valued measurable function φ : AG → B and any ε > 0, there exists
an r < ∞ with the following property: if S ⊆ G is r-separated according to ρ,
then

H((φG
∗ μ)S) ≥ |S| · (Hμ(φ) − ε).

This is equivalent to the previous definition because a subset S ⊆ G is r-separated
according to ρ if and only if it is Bρ(1G, r)-spread. The balls Bρ(1G, r) are finite,
because ρ is proper, and any other finite subset K ⊆ G is contained in Bρ(1G, r)
for all sufficiently large r.

This is the point of view on uniform mixing which motivates Definition 3.1.
We use the right-invariant metric ρ rather than the general definition of ‘K -spread’
sets because it is more convenient later.

Definition 3.1 is directly compatible with uniform mixing in the following
sense. If G is amenable and (Fn)∞n=1 is a Følner sequence for G, then the sets Fn

may be regarded as a sofic approximation to G: an element g ∈ G acts on Fn by
translation wherever this stays inside Fn and arbitrarily at points which are too close
to the boundary of Fn. If (AG, μ) is an ergodic G-process, then it follows easily
that the sequence of marginals μFn locally and empirically converge to μ over this
Følner-set sofic approximation. If (AG, μ) is uniformly mixing, then this sequence
of marginals is clearly uniformly model-mixing in the sense of Definition 3.1.
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On the other hand, suppose that (AG, μ) admits a sofic approximation and a
locally and empirically convergent sequence of measures over that sofic approx-
imation which is uniformly model-mixing. Then our Theorem 1.2 shows that
(AG, μ) has completely positive sofic entropy. If G is amenable, then sofic en-
tropy always agrees with Kolmogorov–Sinai entropy [3], and this implies that
(AG, μ) has completely positive entropy and hence is uniformly mixing, by the
result of [11].

Thus if G is amenable, then completely positive entropy and uniform mixing
are both equivalent to the existence of a sofic approximation and a locally and
empirically convergent sequence of measures over it which is uniformly model-
mixing. If these conditions hold, then we expect that one can actually find a locally
and empirically convergent and uniformly model-mixing sequence of measures
over any sofic approximation to G. This should follow using a similar kind of
decomposition of the sofic approximants into Følner sets as in Bowen’s proof
in [3]. However, we have not explored this argument in detail.

Definition 3.1 applies to a shift-system with a finite state space. It can be
transferred to an abstract measure-preservingG-action on (X, μ) by fixing a choice
of finite measurable partition of X . However, in order to study actions which do
not admit a finite generating partition, it might be worth looking for an extension of
Definition 3.1 to G-processes with arbitrary compact metric state spaces, similarly
to the setting in [1]. We also do not pursue this generalization here.

4 Proof of Theorem 1.2

We will use basic facts about the Shannon entropy of observables (i.e., random
variables with finite range), for which we refer the reader to Chapter 2 of [4]. Let
� = (σn : G → Sym(Vn)), (AG, μ) and (μn)∞n=1 be as in the statement of Theorem
1.2. The following is the ‘finitary’ model-measure analog of Lemma 5.1 in [5].

Lemma 4.1. Let F ⊆ G be finite. Let B be a finite set and let φ : AG → B
be an F-local observable. Let Sn ⊆ Vn be a sequence of sets such that |Sn| � |Vn|.
Then we have

H(μF ) − 1
|Sn|H(πσF

n (Sn)∗μn) ≥ Hμ(φ) − 1
|Sn|H(πSn∗φ

σn∗ μn) − o(1).

Proof of Lemma 4.1. Let θ : AF → B be a map with θ ◦ πF = φ. Fix
n ∈ N and S ⊆ Vn. Let α = πσF

n (S) : AVn → Aσ
F
n (S) and let β = πS ◦φσn : AVn → BS .

For s ∈ S let αs = �σn
s,F : AVn → AF and let βs = θ ◦�σn

s,F : AVn → B . Then we
have α = (αs)s∈S and β = (βs)s∈S . Enumerate S = (sk)mk =1 and write αsk = αk. All
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entropies in the following display are computed with respect to μn. We have

H(α) = H(α1, . . . , αm) = H(α1) +
m−1∑
k =1

H(αk+1|α1, . . . , αk)

= H(α1, β1) +
m−1∑
k =1

H(αk+1, βk+1|α1, . . . , αk)

= H(β1) + H(α1|β1) +
m−1∑
k =1

H(βk+1|α1, . . . , αk) +
m−1∑
k =1

H(αk+1|βk+1, α1, . . . , αk)

≤ H(β1) +
m−1∑
k =1

H(βk+1|β1, . . . , βk) +
m∑

k =1

H(αk|βk)

= H(β) +
m∑

k =1

H(αk|βk).

Let ι be the identity map on AF . Then

(4.1)

|S| · H(μF ) − H(πσF
n (S)∗μn)

= |S| · HμF (ι) − Hμn(α)

≥ |S| · HμF (θ) + |S| · HμF (ι|θ) − Hμn(β) − ∑
s∈S

Hμn(αs|βs)

= |S| · Hμ(φ) − H
(
πS∗φσn∗ μn

)
+ |S| · HμF (ι|θ) − ∑

s∈S

Hμn(αs|βs).

Now allowing n to vary, let Sn ⊆ Vn be a sequence of sets such that |Sn| � |Vn|.
Write νn = πσF

n (Sn)∗μn. Let s ∈ Sn be such that the obvious map from F to σF
n (s) is

injective. Then the function a �→ �σn
s,F (a) provides an identification of Aσ

F
n (s) with

AF . This identification sendsαs to ι and βs to θ. When n is large, the σF
n (s) marginal

of μn will resemble μF for most s ∈ Sn. Since αs and βs are πσF
n (s) measurable,

this implies that HμF (ι|θ) ≈ Hνn(αs|βs) for most s. More precisely, we can find a
sequence of sets Cn ⊆ Sn with

|Cn| = (1 − o(1))|Sn|
such that

max
s∈Cn

|HμF (ι|θ) − Hνn(αs|βs)| = o(1).

Thus∣∣∣∣|Sn| · HμF (ι|θ) − ∑
s∈Sn

Hνn(αs|βs)
∣∣∣∣

≤ ∑
s∈Cn

|HμF (ι|θ) − Hνn(αs|βs)| +
∑

s∈Sn\Cn

|HμF (ι|θ) − Hνn(αs|βs)| = o(|Sn|).

The lemma then follows from (4.1) and the above. �
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Recall that for a measure space (X, μ) and two observables α and β on X , the
Rokhlin distance between α and β is defined by

dRok
μ (α, β) = Hμ(α|β) + Hμ(β|α).

This is a pseudometric on the space of observables on X . An easy computation
shows that if α1, . . . , αn and β1, . . . , βn are two families of observables on X , then

dRok
μ ((α1, . . . , αn), (β1, . . . , βn)) ≤

n∑
k =1

dRok
μ (αk, βk).

Lemma 4.2. Let φ,ψ : AG → B be two local observables. Let Sn ⊆ Vn be a
sequence of sets with |Sn| � |Vn|. Then we have

1
|Sn| |H(πSn∗φ

σn∗ μn) − H(πSn∗ψ
σn∗ μn)| ≤ dRok

μ (φ,ψ) + o(1).

Proof. Let αn = πSn ◦ φσn : AVn → BSn and let βn = πSn ◦ ψσn : AVn → BSn .
Let F be a finite subset of G such that both φ and ψ are F -local. Let θ : AF → B
be a map such that θ ◦ πF = φ and let κ : AF → B be a map such that κ ◦ πF = ψ.
For s ∈ Sn let αn,s = θ ◦ �σn

s,F : AVn → B so that αn = (αn,s)s∈Sn . Also let
βn,s = κ ◦�σn

s,F : AVn → B . Then we have

(4.2)

1
|Sn| |H(πSn∗φ

σn∗ μn) − H(πSn∗ψ
σn∗ μn)|

=
1

|Sn| |Hμn(αn) − Hμn(βn)| ≤ 1
|Sn| · dRok

μn
(αn, βn)

=
1

|Sn| · dRok
μn

((αn,s)s∈Sn, (βn,s)s∈Sn) ≤ 1
|Sn|

∑
s∈Sn

dRok
μn

(αn,s, βn,s).

If the map g �→ σg
n · s is injective on F , we can identify Aσ

F
n (s) with AF and

thereby identify αn,s with θ and βn,s with κ. Note that

dRok
μF

(θ, κ) = dRok
μ (φ,ψ).

It follows that for any ε > 0 we can find a weak star neighborhood O of μ such
that if s ∈ Sn is such that (�σn

s )∗μn ∈ O, then

|dRok
μn

(αn,s, βn,s) − dRok
μ (φ,ψ)| < ε.

Thus, since μn locally and empirically converges to μ, there are sets Cn ⊆ Sn

with |Cn| = (1 − o(1))|Sn| such that

(4.3) max
s∈Cn

|dRok
μn

(αn,s, βn,s) − dRok
μ (φ,ψ)| = o(1).

The lemma now follows from (4.2) and (4.3). �
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Corollary 4.1. Let (φm : AG → B
)∞
m =1 be a sequence of local observables

and let φ : AG → B be a local observable. Let Sn ⊆ Vn be a sequence of sets with
|Sn| � |Vn|. Then if (mn)∞n=1 increases to infinity at a slow enough rate we have

1
|Sn| |H(πSn∗φ

σn∗ μn) − H(πSn∗φ
σn
mn∗μn)| ≤ dRok

μ (φ, φmn) + o(1).

Proof of Theorem 1.2. Let B be a finite set and let ψ : AG → B be an
observable with Hμ(ψ) > 0. Let (φm)∞m =1 be an AL approximating sequence for ψ
rel μ (see Definition 4.4 in [1]). Then the sequence φm converges to ψ in dRok

μ .
In particular, φm is a Cauchy sequence and so we can find M ∈ N so that for all
m ≥ M we have

(4.4) dRok
μ (φm, φM ) ≤ Hμ(ψ)

8
.

We will also assume M is large enough that

(4.5) Hμ(φM ) ≥ Hμ(ψ)
2

.

Let F be a finite subset of G such that φM is F -local. Then Definition 3.1 provides
an r < ∞ and a sequence of subsets Wn ⊆ Vn such that |Wn| = (1 − o(1))|Vn| and
if S ⊆ Wn is r-separated then

(4.6) H(μF ) − 1
|S|H(πσF

n (S)∗μn) ≤ Hμ(φM )
2

.

Let K = |Bρ(1G, r)|. Since σn is a sofic approximation there are sets W ′
n ⊆ Vn

with |W ′
n| = (1 − o(1))|Vn| such that if w ∈ W ′

n, then the ρn ball of radius r

around w has cardinality at most K . Write Yn = Wn ∩ W ′
n and note that we have

|Yn| = (1−o(1))|Vn|. For each n let Sn be an r-separated subset of Yn with maximal
cardinality. Then Yn ⊆ ⋃

s∈Sn
Bρn(s, r) so that

(4.7) |Sn| ≥ |Yn|
K

= (1 − o(1))
|Vn|
K
.

By Lemma 4.1 and (4.6) we have

Hμ(φM ) − 1
|Sn|H(πSn∗φ

σn
M∗μn) − o(1) ≤ Hμ(φM )

2

so that from (4.5) we have

(4.8)
Hμ(ψ)

4
− o(1) ≤ 1

|Sn|H(πSn∗φ
σn
M∗μn).
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By Proposition 5.15 in [1], if (mn)∞n=1 increases to infinity at a slow enough rate
then (φσn

mn
)∗μn will locally and empirically converge to ψG∗ μ. Since A is finite, by

the same argument as for Proposition 8.1 in [1] we have

(4.9)
hq
�(ψG

∗ μ) ≥ sup
ε>0

lim inf
n→∞

1
|Vn| log covε((φ

σn
mn

)∗μn)

≥ lim inf
n→∞

1
|Vn| H((φσn

mn
)∗μn)

where the second inequality follows from Lemma 2.1. We also assume that (mn)∞n=1

increases slowly enough for Corollary 4.1 to hold. By (4.4) we have

∣∣∣ 1
|Sn|H(πSn∗φ

σn
M∗μn) − 1

|Sn|H(πSn∗(φ
σn
mn

)∗μn)
∣∣∣ ≤ Hμ(ψ)

8
+ o(1).

Combining this with (4.8) we see that

1
|Sn|H(πSn∗(φ

σn
mn

)∗μn) ≥ Hμ(ψ)
8

− o(1).

By the above and (4.7) we have that for all sufficiently large n,

(4.10) H((φσn
mn

)∗μn) ≥ Hμ(ψ)
8K + 1

|Vn|.
Theorem 1.2 now follows from (4.9) and (4.10). �

5 Proof of Theorem 1.3

Let (AZ, ν) be a uniformly mixing Z-process, and for each positive integer l let νl

be the marginal of ν on Al . Let � = (σn : G → Sym(Vn)) be an arbitrary sofic
approximation to G. Let h ∈ G have infinite order and write H = 〈h〉 ∼= Z.
We construct a measure μn on AVn for each n ∈ N. We will later show that the
sequence (μn)∞n=1 is uniformly model-mixing and locally and empirically converges
to μ over�.

We first construct a measure μl
n on AVn for each pair (n, l) with l much smaller

than n. For a given n, the single permutation σh
n partitions Vn into a disjoint

union of cycles. Since h has infinite order and � is a sofic approximation, once n
is large most points will be in very long cycles. In particular, we assume that
most points are in cycles with length much larger than l. Partition the cycles
into disjoint paths so that as many of the paths have length l as possible, and let
Pl

n = (Pl
n,1, . . . ,P

l
n,kn

) be the collection of all length-l paths that result (so Pl
n is not

a partition of the whole of Vn, but covers most of it). Fix any element a0 ∈ AVn and
define a random element a ∈ AVn by choosing each restriction a �Pl

n,i
independently
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with the distribution of νl and extending to the rest of Vn according to a0. Let μl
n

be the law of this a.
Now let (ln)∞n=1 increase to infinity at a slow enough rate that the following two

conditions are satisfied:
(a) The number of points of Vn that lie in some member of the family Pln

n is
(1 − o(1))|Vn|.

(b) Whenever g, g′ ∈ G lie in distinct right cosets of H , so that g−1hpg′ 
= 1G for
all p ∈ Z, we have

|{v ∈ Vn : (σg
n)

−1(σh
n)

pσg′
n · v = v for some p ∈ {−ln, . . . , ln}}| = o(|Vn|)

.
Set μn = μln

n . We separate the proof that (μn)∞n=1 has the required properties into
two lemmas.

Lemma 5.1. (μn)∞n=1 locally and empirically converges to μ over �.

Proof of Lemma 5.1. Since (AG, μ) is ergodic, by Corollary 5.6 in [1] it
suffices to show that μn locally weak star converges to μ. For a set I ⊆ Z write
hI = {hi : i ∈ I}. Fix a finite set F ⊆ G. By enlarging F if necessary we can
assume there is an interval I ⊆ Z such that F =

⋃m
k =1 hI tk for t1, . . . , tm in some

transversal for the right cosets of H in G. For each g ∈ F let jg be a fixed element
of A. Let B ⊆ AG be defined by

B = {a ∈ AG : a(g) = jg for all g ∈ F}
and let ε > 0. Then sets such as

O = {η ∈ Prob(AG) : η(B) ≈ε μ(B)}
form a subbasis of neighborhoods around μ. It therefore suffices to show that
when n is large we have (�σn

v )∗μn ∈ Owith high probability in the choice of v ∈ Vn.
For k ∈ {1, . . . ,m} let

Bk = {x ∈ AZ : x(i) = jhi tk for all i ∈ I}.
Note that μ is defined in such a way that μ(B) =

∏k
i =1 ν(Bk). Now, let Wn be the

set of all points v ∈ Vn such that the following conditions holds.
(i) The map g �→ σg

n · v is injective on F .
(ii) σhi tk

n · v = (σh
n)

iσtk
n · v for all i ∈ I and k ∈ {1, . . . ,m}.

(iii) For all pairs g, g′ ∈ F , σg
n · v is in the same path as σg′

n · v if and only if g

and g′ lie in the same right coset of H . In particular, each of the images σg
n · v

for g ∈ F is contained in some member of Pln
n .
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We claim that |Wn| = (1−o(1))|Vn|. Clearly Conditions (i) and (ii) are satisfied
with high probability in v , and so is the last part of Condition (iii), by Condition
(a) in the choice of (ln)∞n=1.

Fix g, g′ ∈ F and suppose that g and g′ are in the same coset of H , so that we
have g = hitk and g′ = hi ′ tk for some k ∈ {1, . . . ,m} and i, i ′ ∈ I . If v satisfies
Condition (ii), then we have

(σh
n)

i ′−iσg
n · v = (σh

n)
i ′−i (σh

n)
iσtk

n · v = (σh
n)

i ′σtk
n · v = σg′

n · v
so that σg

n · v and σg′
n · v will lie in the same path assuming that σtk

n · v is not one of
the first or last |I | elements of its path. Note that for any v ∈ Vn we have

|{w : σtk
n ·w = v for some k ∈ {1, . . . ,m}}| ≤ m.

It follows that the number of points v ∈ Vn such that σtk
n · v is one of the first or

last |I | elements of a path is at most 2mpn|I | + o(|Vn|) where pn is the total number
of paths in Vn. By Condition (a) in the choice of (ln)∞n=1, most of Vn is covered by
paths whose lengths increase to infinity. Since also pn = o(Vn), it follows that σg

n ·v
lies in the same path as σg′

n · v with high probability in v .
On the other hand, suppose that g and g′ are in distinct cosets of H . Assume

that σg
n · v and σg′

n · v are in the same path. Then there is p ∈ {−ln, . . . , ln} with
σg

n · v = (σh
n)

pσg′
n · v , and hence (σg

n)
−1(σh

n)
pσg′

n · v = v . By Condition (b) in the
choice of (ln)∞n=1 there are only o(|Vn|) vertices v for which this holds. Thus we
have established the claim.

Now let v ∈ Wn. We have

(�σn
v )∗μn(B) = μn({a ∈ AVn : a(σg

n · v) = jg for all g ∈ F}).
For each k ∈ {1, . . . ,m} the set {(σh

n)
iσtk

n · v : i ∈ I} is contained in a single path.
Since the marginal of μn on each path is νln , the probability that

a((σh
n)

iσtk
n · v) = jhi tk

for all i ∈ I is equal to νln(Bk) = ν(Bk). On the other hand, the marginals of μn on
distinct paths are independent, so the probability that a(σg

n · v) = jg for all g ∈ F
is actually equal to

∏k
i =1 ν(Bk). �

If (AZ, ν) is weakly mixing, then so is the co-induced G-action. In particular,
this certainly holds if (AZ, ν) is uniformly mixing. Therefore we may immedi-
ately promote Lemma 5.1 to the fact that (μn)∞n=1 locally and doubly empirically
converges to μ over �, by Lemma 5.15 of [1]. In fact, we suspect that local and
double empirical convergence holds here whenever (AZ, ν) is ergodic.



610 T. AUSTIN AND P. BURTON

Lemma 5.2. (μn)∞n=1 is uniformly model-mixing.

Proof of Lemma 5.2. Let F ⊆ G be finite and let ε > 0. Again decompose
F =

⋃m
k =1 hI tk for some interval I ⊆ Z and elements tk ∈ T . Note that the

restriction of the metric ρ to H is a proper right invariant metric on H ∼= Z, even
though it might be different from the usual metric on Z. Thus since ν is uniformly
mixing, we can find some r0 < ∞ such that if (I j )

q
j =1 is a family of intervals in Z

which are each of length |I | and are pairwise at distance at least r0, then writing
K =

⋃q
j =1 I j we have

(5.1) H(νK ) ≥ q ·
(
H(νI ) − ε

m

)
.

Let r < ∞ be large enough that for all g, g′ ∈ G, if ρ(g, g′) ≥ r, then

ρ( fg, f ′g′) ≥ r0 for all f, f ′ ∈ F.

Such a choice of r is possible since by right-invariance of ρ we have

ρ( fg, g) = ρ( f, 1G) and ρ( f ′g′, g′) = ρ( f ′, 1G).

Let Wn be as in the proof of Lemma 5.1 and recall that |Wn| = (1 − o(1))|Vn|. Let
S ⊆ Wn be r-separated according to ρn.

Fix a path P ∈ Pln
n and let SP be the set of points v ∈ S such that σtk(v)

n · v ∈ P for
some k(v) ∈ {1, . . . ,m}. Since S ⊆ Wn, Condition (iii) from the previous proof
implies that

σF
n (S) ∩ P =

⋃
v∈SP

{(σh
n)

iσtk(v)
n · v : i ∈ I}.

Each of the sets in the latter union is an interval of length |I | in P and by our choice
of r these are pairwise at distance r0 in ρn restricted to P. Since the marginal of μn

on P is equal to νnl , (5.1) implies that

H(π(σF
n (S)∩P)∗μn) ≥ |SP| ·

(
H(νI ) − ε

m

)
.

Since the marginals of μn on distinct paths are independent, this implies that

(5.2) H(πσF
n (S)∗μn) ≥

( ∑
P∈Pln

n

|SP|
)

·
(
H(νI ) − ε

m

)
.

By Condition (iii) in the definition of Wn, each v ∈ S appears in SP for exactly m
paths P. Therefore

(5.3)
∑

P∈Pln
n

|SP| = m · |S|.
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Now H(μF ) = m · H(νI ), so from (5.2) and (5.3) we have

H(πσF
n (S)∗μn) ≥ |S| · (H(μF ) − ε)

as required. �

Proof of Theorem 1.3. Theorem 1.3 now follows from Theorem 1.2 and
Lemmas 5.1 and 5.2. �

6 Proof of Theorem 1.1

Proof of Theorem 1.1. This part of the argument is essentially the same as the
corresponding part of [5]. Consider the family of uniformly mixing Z-processes
{(4Z, νω) : ω ∈ 2N} constructed in Section 6 of [5]. Fix an isomorphic copy H
of Z in G and let μω = CIndG

H (νω). By Theorems 1.2 and 1.3 the process (4G, μω)
has completely positive model-measure sofic entropy. Note that the restriction of
the G-action to H is a permuted power of the original Z-process in the sense of
Definition 6.5 from [5]. Thus by Proposition 6.6 in that reference, the processes
{(4G, μω) : ω ∈ 2N} are pairwise nonisomorphic.

Suppose toward a contradiction that for some ω, (4G, μω) is a factor of
a Bernoulli shift (ZG, ηG) over some standard probability space (Z, η). Let
ψ : ZG → 4G be an equivariant measurable map with ψ∗ηG = μω. Note that the
restricted right-shift action H � (ZG, ηG) is still isomorphic to a Bernoulli shift
and ψ is still a factor map from this process to the restricted action H � (4G, μω).
Thus the latter Z-process is isomorphic to a Bernoulli shift and so is its factor
(4Z, νω). This contradicts Corollary 6.4 in [5]. �
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