
THE DISCRETE SPHERICAL AVERAGES
OVER A FAMILY OF SPARSE SEQUENCES

By

KEVIN HUGHES

Abstract. We initiate the study of the �p(Zd )-boundedness of the arithmetic
spherical maximal function over sparse sequences. We state a folklore conjecture
for lacunary sequences, a key example of Zienkiewicz and prove new bounds for
a family of sparse sequences that achieves the endpoint of the Magyar–Stein–
Wainger theorem for the full discrete spherical maximal function in [MSW02].
Perhaps our most interesting result is the boundedness of a discrete spherical
maximal function in Z

4 over an infinite, albeit sparse, set of radii. Our methods
include the Kloosterman refinement for the Fourier transform of the spherical
measure (introduced in [Mag07]) and Weil bounds for Kloosterman sums which
are utilized by a new further decomposition of spherical measure.

1 Introduction

1.1 Stein’s spherical maximal function and its arithmetic analogue.
In [Ste76], Stein introduced the spherical maximal function and proved that it is
bounded on Lp(Rd ) for p > d

d−1 and d ≥ 3. This was later extended to p > 2
when d = 2 by Bourgain in [Bou86]. Recently, discrete analogues of Stein’s
spherical maximal function have been considered. The discrete sphere of radius
r ≥ 0 in Zd is Sd−1(r) := {x ∈ Zd : |x|2 = r2} which contains Nd (r) = #Sd−1(r)
lattice points. For dimensions d ≥ 4, the set Sd−1(r) is non-empty precisely when
r2 ∈ N. Let Rfull denote the set of radii r such that Sd−1(r) �= ∅; then Rfull is
precisely {r ∈ R≥0 : r2 ∈ N} when d ≥ 4. For r ∈ Rfull, we introduce the discrete
spherical averages:

(1) Ar f (x) =
1

Nd (r)

∑
y∈Sd−1(r)

f (x − y) = f ∗ σr(x)

where σr := 1
Nd (r)1{x∈Zd :|x|2 =r2} is the uniform probability measure on Sd−1(r). The

associated (full) maximal function is

(2) A∗ f = sup
r∈Rfull

|Ar f |.
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2 K. HUGHES

Motivated by Stein’s theorem, it is natural to ask: when is A∗ bounded on �p(Zd )?
Testing the maximal operator on the delta function and using the asymptotics for
the number of lattice points on spheres, Nd (r) � rd−2 when d ≥ 5, we expect that
the maximal operator is bounded on �p for p > d

d−2 when d ≥ 5. In fact, building
on the work of [Mag97], this was proven in [MSW02] with a subsequent restricted
weak-type bound at the endpoint p = d

d−2 proven in [Ion04]. In particular, A∗ is a
bounded operator from �p,1(Zd ) to restricted �p,∞(Zd ) for p = d

d−2 ; that is, A∗ is
restricted weak-type ( d

d−2,
d

d−2 ). This result is sharp. For generalizations to higher
degree varieties where the sharp ranges of �p(Zd ) are unknown, we refer the reader
to [Mag02] and [Hug17].

1.2 The lacunary spherical maximal function and its arithmetic
analogue. Shortly after Stein’s work on the spherical maximal function [Ste76],
it was observed by Calderón and Coifman–Weiss that lacunary versions of Stein’s
sphericalmaximal function are bounded on a larger range of Lp(Rd )-spaces than for
the full Stein spherical maximal function—see [Cal79] and [CW78] respectively.
In particular, they proved:

Calderón, Coifman–Weiss. The lacunary (continuous) spherical maximal
function is bounded on Lp(Rd ) for d ≥ 2 and 1 < p ≤ ∞.

Similarly, define the lacunary discrete spherical maximal function when d ≥ 5
by restricting the set of radii to lie in a lacunary sequence R := {r j } j∈N ⊂ Rfull.
Recall that a sequence is lacunary if r j+1 > c r j for some c > 1. More generally,
for any R ⊆ Rfull, the discrete spherical maximal function over R is defined
in the natural way as

(3) A∗
R f := sup

r j∈R
|Arj f |.

By the Magyar–Stein–Wainger discrete spherical maximal theorem in [MSW02],
we know that any discrete spherical maximal function in 5 or more dimensions
over a subsequence of radii inRfull is bounded on �p(Zd ) for d ≥ 5 and p > d

d−2 . In
particular, this holds true for any lacunary subsequence in 5 or more dimensions.

It is conjectured that the continuous lacunary spherical maximal function is
bounded from L1(Rd ) to L1,∞(Rd ) for d ≥ 2. See [SWT03b] and [STW03a] for
recent work in this direction. Analogously, it is a folklore conjecture that the
arithmetic lacunary spherical maximal function is bounded on �p(Zd ) for p > 1.

Conjecture 1. For d ≥ 5, if R is a lacunary subsequence of Rfull, then
A∗
R : �1(Zd ) → �1,∞(Zd ).
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1.3 It’s a trap! Surprisingly, J. Zienkiewicz has shown that Conjecture 1
is false in general.1 More precisely, Zienkiewicz proved that there exist infinite,
yet arbitrarily thin subsets R ⊂ Rfull such that A∗

R f is unbounded on �p(Zd ) for
1 ≤ p < d

d−1 and d ≥ 5. Zienkiewicz’s counterexamples proceed by a probabilis-
tic argument that incorporates information about the discrete spherical averages
when one reduces mod Q for Q ∈ N. By a probabilistic argument, Zienkiewicz
constructs counterexamples that violate (5) of G below for infinitely many primes.
In Section 6 we revise Conjecture 1 to account for these counterexamples.

1.4 Results of this paper. Our main theorem is the following improve-
ment to the range of boundedess for maximal functions over lacunary sequences
of radii possessing the following dichotomy.

Theorem 1. Let R := {r j } ⊂ Rfull be a lacunary subsequence of R+. Assume
that R decomposes the primes P ⊂ N into two (not necessarily disjoint) sets: the

good primes Pgood and the bad primes Pbad such that

G: for each p ∈ Pgood,

(4) {r2
j mod p} ⊂ (Z/pZ)×,

and for all ε > 0,

(5) #{r2
j mod p} �ε p

ε

where the implicit constants may depend on ε, but not on p ∈ Pgood,

B: and the bad primes satisfy

(6)
∑

p∈Pbad

p−s < ∞ for some s ∈ (0, 1].

If p ≥ d
d−(1+s) and p > d−1

d−2 , then A∗
R is a bounded operator on �p(Zd ) for d ≥ 5.

If additionally 2 ∈ Pgood, then A∗
R is bounded on �p(Zd ) for the same range of

p and d ≥ 4.

Theorem 1 reduces our problem to finding sequences of natural numbers sat-
isfying certain arithmetic properties, and it would be superfluous if we could not
find a sequence of radii satisfying the G and B dichotomy. Our next theorem
gives a family of sequences satisfying these conditions. This family is well-known

1This counterexample was communicated to the author by Zienkiewicz after an initial draft of this
paper was completed.
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in number theory as it includes primorials, also known as Euclidean primes,
whose definition is motivated by Euclid’s proof of the infinitude of primes. For
these sequences, (5) is simple to verify. However, (6) is difficult to verify, and
we only have a very poor bound for it in this article. In turn, for our family of
sparse sequences, presently we are only able to show that the associated discrete
spherical maximal function is strong-type at the Magyar–Stein–Wainger endpoint
for the full discrete spherical maximal function as opposed to restricted weak-type
bound in [Ion04].

Theorem 2. For any fixed m ∈ N, the sequence of radii

R =
{

r j ∈ R+ : r2
j = m +

∏
j0≤i≤2 jw

pi

}

satisfy (4) and (5) of G for all primes and (6) of B for s = 1.

Theorem1 andTheorem2 immediately combine to yield the following endpoint
Magyar–Stein–Wainger theorem applied to such sequences.

Corollary 1.1. Let d ≥ 4, w > 1 and R = {r j ∈ R+ : r2
j = 1 +

∏
i≤2 jw pi}

where pi is the ith prime. Let A∗
R denote the spherical maximal function associated

to R. Then A∗
R is a bounded operator on �p(Zd ) for p ≥ d

d−2 and d ≥ 4.

Remark 1.1. By the Prime Number Theorem,
∏

i≤T pi � eT as T → ∞.
We see that our sequence grows much faster than lacunary since

∏
i≤2 jw pi � e2 jw

for any w > 0 as j → ∞. The existence of thicker sequences with property (5)
would be interesting. On the other hand, our main difficulty in this paper is to
establish (6). We only succeed in doing so for s = 1; hence the limitation to
p ≥ d

d−2 in Corollary 1.1.

An intriguing aspect of Corollary 1.1 is that A∗
R is bounded on �2(Z4). This is

surprising since the full discrete spherical maximal function, A∗ fails to be bounded
on �2(Z4). Worse yet, for dimensions d ≤ 4, the full maximal function is only
bounded on �∞(Zd ). Theorem 1 and Corollary 1.1 mark the first results in 4
dimensions for boundedness of the arithmetic spherical maximal function over
infinite sequences.

Let us examine the four-dimensional situation further. In Z4, there are
precisely 24 lattice points on a sphere of radius 2 j for all j ∈ N, e.g., N4(2 j ) = 24.
Applying the discrete sphericalmaximal function to the delta function demonstrates
that the naive definition of our maximal function in 4 dimensions is wrong. How-
ever, further considerations suggest that there could be a version of the Magyar–
Stein–Wainger theorem in 4 dimensions. To make this precise, we must account
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for some arithmetic phenomena. From the work of Hardy–Littlewood on the circle
method, we have the asymptotic formula

(7) Nd (r) = S(r2)
πd/2

�(d/2)
rd−2 + Oε(r

d/2+ε)

whereS(r2) is the singular series,which satisfiesS(r2)�1when d ≥5. Lagrange’s
theorem and Jacobi’s four square theorem demonstrate that the 4 dimensional case
(i.e., S3(r) ∈ Z4) is different. In four dimensions, the bound for the error term
in (7) dominates the main term, and therefore, (7) is not useful as an asymptotic.
However, Kloosterman was able to refine their method by exploiting oscillation
between Gauss sums to improve (7) to

(8) Nd (r) = S(r2)
πd/2

�(d/2)
rd−2 + Oε(r

d/2−1/9+ε)

for all ε > 0 and d ≥ 4. The cost here is that the singular series in the asymptotic
formula is not uniform, and in fact can be very small. One can predict this
from Jacobi’s theorem since there are precisely 24 lattice points when r = 2 j

for all j ∈ N; in this case, one sees that S(4 j ) � 4− j . To avoid this 2-adic
obstruction in the singular series when d = 4, we make the additional assumption
that r2

j �≡ 0 (mod 4) for each j ∈ N or (4) holds for the prime 2. In either case
N4(r2) � r2 so that there are many lattice points on S3(r). Modifying the discrete
spherical maximal function in 4 dimensions in this way, it is natural to conjecture
that it is bounded on �p(Z4) for 2 < p ≤ ∞—see [Hug12] for a precise statement
of this conjecture and a related result.

1.5 Notation. Our notation is a mix of notations from analytic number
theory and harmonic analysis. Most of our notation is standard, but there are a few
choices based on aesthetics.

• The torus Td may be identified with any box in Rd of sidelengths 1, for
instance [0, 1]d or [−1/2, 1/2]d .

• We identify Z/qZ with the set {1, . . . , q} and (Z/qZ)× is the group of units
in Z/qZ, also considered as a subset of {1, . . . , q}.

• e(t) will denote the character e2πit for t ∈ R,Z/qZ or T.

• We abuse notation by writing b2 to mean
∑d

i =1 b2
i for b ∈ (Z/qZ)d and the

dot product notation b · m to mean
∑d

i =1 bimi for b,m ∈ (Z/qZ)d or Zd .

• For any q ∈ N, ϕ(q) will denote Euler’s totient function, the size of (Z/qZ)×.
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• For two functions f, g, f � g if | f (x)| ≤ C|g(x)| for some constant C > 0; f

and g are comparable f � g if f � g and g � f . All constants throughout
the paper may depend on dimension d .

• If f : Rd → C, then we define its Fourier transform by

f̃ (ξ ) :=
∫
Rd

f (x)e(x · ξ )dx for ξ ∈ Rd .

If f : Td → C, then we define its Fourier transform by

f̂ (m) :=
∫
Td

f (x)e(−m · x)dx for m ∈ Zd .

If f : Zd → C, then we define its inverse Fourier transform by

f̂ (ξ ) :=
∑

m∈Zd

f (m)e(n · ξ ) for ξ ∈ Td .

• ‖T ‖p→p will denote the �p(Zd ) to �p(Zd ) operator norm of the operator T .

1.6 Layout of the paper. By interpolation with the usual �∞(Zd ) bound,
we restrict our attention to the range 1 ≤ p ≤ 2. From [MSW02], we understand
that each average decomposes into a main term (resembling the singular series
and singular integral of the circle method) and an error term. We recall this
machinery in Section 2. The main term and error term will be bounded on ranges
of �p(Zd )-spaces by distinct arguments. In Section 3, our bounds for the main
term exploit the Weil bounds for Kloosterman sums via the transference principle
of Magyar–Stein–Wainger. The main result here is Lemma 3.1 and we introduce
a more precise decomposition of the multipliers in order to use the Kloosterman
method. In Section 4, the error term is handled by a square function argument
using the lacunary condition. The main lemma here is Lemma 4.2. Our novelty
here is that we exploit (well-known) cancellation for averages of Ramanujan sums
to improve the straight-forward �1(Zd ) bound. Theorem 1 follows immediately
by combining Lemma 3.1 with Lemma 4.2. In Section 5, we prove Theorem 2.
The properties of our sequences are well-known to analytic number theorists, but
we could not find them in the literature. Section 6 concludes our paper with some
questions and remarks.

2 MSW machinery and the Kloosterman refinement

Before turning to the proof of Theorem 1, we review the Kloosterman refinement
as in (1.9) of Lemma 1 from [Mag07], some machinery from [MSW02] and bounds
for exponential sums.
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Let
σr :=

1
Nd (r)

1{m∈Zd :|m|=r}

denote the normalized surface measure on the sphere of radius r centered at the
origin for some r ∈ R. The circle method of Hardy–Littlewood and of Kloosterman
yields Nd (r) � rd−2 for r ∈ Rfull when d ≥ 5 and for r2 �≡ 0 mod 4 when d = 4,
so we renormalize our spherical measure to

(9) σr := r2−d · 1{m∈Zd :|m|=r}.

Note that our subsequences of radii R exclude the case r2 ≡ 0 mod 4 when
d = 4, so that we may renormalize in this case when 2 is a good prime; that
is, 2 satisfies (4) of G . Furthermore, we renormalize our averages and maximal
function accordingly. Using Heath-Brown’sversion of the Kloosterman refinement
to the Hardy–Littlewood–Ramanujan circle method from [HB83], Magyar gave an
approximation formula generalizing (8) for σr in [Mag07]. We recall this now:

The Approximation Formula. If d ≥ 4, then for each r ∈ Rfull,

(10) σ̂r(ξ ) =
r∑

q=1

∑
m∈Zd

K (q, r2;m)	(qξ − m)d̃σr(ξ − m/q) + Êr(ξ )

with error term, Er that is the convolution operator given by the multiplier Êr ,

satisfying

(11) ‖Er f ‖�2(Zd ) �ε r2− d+1
2 +ε ‖ f ‖�2(Zd )

for any ε > 0.

Here and throughout, for q,N ∈ N and m ∈ Zd ,

(12) K (q,N ;m) := q−d
∑

a∈(Z/qZ)×
e
(

− aN
q

) ∑
b∈(Z/qZ)d

e
(ab2 + b · m

q

)

are Kloosterman sums, 	 is a smooth function supported in [−1/4, 1/4]d and
equal to 1 on [−1/8, 1/8]d . Our Kloosterman sums arise naturally in Waring’s
problem as a weighted sum of the Gauss sums

(13) G(a, q,m) := q−d
∑

b∈(Z/qZ)d

e
(ab2 + b · m

q

)

(q ∈ N, a ∈ (Z/qZ)× and m ∈ Zd ) so that

K (q,N ;m) =
∑

a∈(Z/qZ)×
e
(

− aN
q

)
G(a, q,m).

dσr denotes the induced Lebesgue measure on the sphere of radius r in Rd normal-
ized so that the total surface measure is πd/2/�(d/2) for each r > 0. Note that this
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spherical measure is also the restriction of the Gelfand–Leray form to the sphere
of radius r, or the Dirac delta measure; both with the appropriate normalization.
One may take ξ = 0 to check that (10) is compatible with (7) (keep in mind our
renormalization).

Remark 2.1. The bound for the error term in (11) was obtained with a
weaker exponent of 2 − d/2 − 1/9 + ε in place of 2 − d/2 − 1/2 + ε for the dyadic
maximal function version in [Hug12] by extending Kloosterman’s original method
in [Klo27] while Magyar achieved the (presumably optimal) savings of (11) using
Heath-Brown’s method in [HB83]. Alternately, Heath-Brown’s method in [HB96]
achieves (11).

With The Approximation Formula in mind, it is necessary to understand the
relationship between multipliers defined on Td and Rd . Suppose that μ is a
multiplier supported in [−1/2, 1/2]d . Then we can think of μ as a multiplier onRd

or Td ; denote these as μRd and μTd respectively where μTd (ξ ) :=
∑

m∈Zd μ(ξ −m)
is the periodization of μRd . These have convolution operators TRd and TTd on their
respective spaces. Explicitly, for F : Rd → C,

TRd F (x) :=
∫
Rd

μRd (ξ )F̃(ξ )e(−x · ξ ) dξ,

and for f : Zd → C,

TZd f (m) :=
∫
Td

μTd (ξ ) f̂ (ξ )e(−m · ξ ) dξ.

We will need to apply these to maximal functions, so we extend these notions to
Banach spaces. Let B1,B2 be two finite-dimensional Banach spaces with norms
‖·‖1 , ‖·‖2, and L(B1,B2) is the space of bounded linear tranformations from B1

to B2. Let �p
Bi

be the space of functions f : Zd → Bi such that
∑

m∈Zd ‖ f ‖p
i < ∞

and Lp
Bi

be the space of functions F : Rd → Bi such that
∫
Rd ‖F‖p

i < ∞. For a
fixed modulus q ∈ N, suppose that μ : [−1/2q, 1/2q]d → L(B1,B2) is a multiplier
with convolution operators TRd on Rd and TZd on Zd . Extend μ periodically to
the torus to define μ

q
Td (ξ ) :=

∑
m∈Zd μTd (ξ − m/q) with convolution operator T q

Zd

on Zd defined by T̂ q
Zd f (ξ ) = μq

Td (ξ ) · f̂ (ξ ). Magyar–Stein–Wainger proved a
transference principle which relates the boundedness of TRd to that of T q

Zd for
any finite-dimensional Banach space. The following transference principle is
Proposition 2.1 in [MSW02]:

Magyar–Stein–Wainger transference lemma. For 1 ≤ p ≤ ∞,

(14)
��T q

Zd

��
�

p
B1

→�
p
B2

� ‖TRd ‖Lp
B1

→Lp
B2

.

The implicit constant is independent of B1,B2, p and q.
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We will apply this lemma with B1 = B2 = �∞(N) in order to compare averages
over the discrete spherical maximal function with known bounds for averages over
the continuous lacunary spherical maximal function. Technically, we should trun-
cate the maximal function and apply the lemma with B1 = B2 = �∞({1, . . . ,N })
for arbitrarily large N ∈ N with bounds independent of N . However, this is a
standard technique that we will not emphasize.

The Magyar–Stein–Wainger transference lemma allows us to utilize our under-
standing of the continuous theory for spherical averages and
reduces our problem to understanding the arithmetic aspects of the multipliers∑

m∈Zd

K (q, r2;m)	(qξ − m)d̃σ(r(ξ − m/q))

for each q. To handle these we recall Proposition 2.2 in [MSW02]:

Lemma 2.1 (Magyar–Stein–Wainger). Suppose that

μ(ξ ) =
∑

m∈Zd

g(m)ϕ(ξ − m/q)

is a multiplier on Td where ϕ is smooth and supported in [−1/2q, 1/2q]d with

convolution operator T on Zd . Furthermore, assume that g(m) is q-periodic
(g(m1) = g(m2) if m1 ≡ m2 mod q). For a q-periodic sequence, define the

(Z/qZ)d-Fourier transform

ĝ(m) :=
∑

b∈(Z/qZ)d

g(b)e(
m · b

q
).

Then for 1 ≤ p ≤ 2,

(15) ‖T ‖�p(Zd )→�p(Zd ) �
(

sup
m∈(Z/qZ)d

|g(m)|
)2−2/p(

sup
n∈(Z/qZ)d

|ĝ(n)|
)2/p−1

with implicit constants depending on ϕ and p, but independent of g.

We will apply Lemma 2.1 with the sequence g(m) taken to be the Kloosterman
sums K (q, r2;m). We have the following estimates for the Kloosterman and Gauss
sums.

The Gauss bound ([Gro85, (12.5) on p. 151]). For all m ∈ Zd ,

(16) |G(a, q,m)| ≤ 2d/2q−d/2.

Applying the triangle inequality, we immediately obtain the Gauss bound for
Kloosterman sums:

(17) |K (q,m;N )| ≤ 2d/2q1−d/2.
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Kloosterman beat the Gauss bound for Kloosterman sums by making use of oscilla-
tion between Gauss sums in the Kloosterman sums, and consequently, he extended
the Hardy–Littlewood circle method for representations of diagonal quadratic
forms in 5 or more variables down to 4 variables. Similarly here, the Gauss
bound is insufficient for our purposes and we need to make use of cancellation
between the Gauss sums. The first type of bound to appear for this is due to Kloost-
erman in [Klo27]. The best possible estimate of this sort is Weil’s bound which
essentially obtains square-root cancellation in the average over a ∈ (Z/qZ)×.

The Weil bound for Kloosterman sums ([Mag07, (1.13)]). For each

modulus q ∈ N write q = qodd · qeven where qodd is odd while qeven is the precise
power of 2 that divides q. For all ε > 0, we have

(18) |K (q,N,m)| �ε q− d−1
2 +ε(qodd,N )1/2q1/2

even

where the implicit constants are independent of q and uniform in m ∈ Zd .

Remark 2.2. Note that in our definition of the Kloosterman sums K (q,N,m),
we have the following important multiplicativity property: if (q1, q2) = 1, then for
any N ∈ N and m ∈ Zd ,

(19) K (q1q2,N ;m) = K (q1,N ;m)K (q2,N ;m).

For a proof see Lemma 5.1 in [Dav05].

3 The main term

Our starting point is The Approximation Formula; we have

σ̂r(ξ ) =
r∑

q=1

Ĉq
r (ξ ) + Êr(ξ )

where Ĉq
r (ξ ) is the multiplier∑

m∈Zd

K (q, r2;m)	(qξ − m)d̃σr(ξ − m/q).

Let Cq
r be the convolution operator with multiplier Ĉq

r . Then if Cr :=
∑

1≤q≤r Cq
r ,

we have Ar = Cr + Er for each r ∈ Rfull. The main goal of this section is to
prove the following lemma regarding the main terms Cr . We will discuss the error
terms Er in Section 4.
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Lemma 3.1. If R ⊂ Rfull is a lacunary subsequence of radii satisfying (4), (5)
of G and (6) of B for some s ∈ [0, 1], then for d ≥ 5,

(20)
∥∥∥ sup

r∈R
|Cr f |

∥∥∥
�p(Zd )

� ‖ f ‖�p(Zd )

if d
d−(1+s) ≤ p ≤ 2 and simultaneously d−1

d−2 < p ≤ 2. Furthermore, if d = 4 and 2
is a good prime (2 ∈ Pgood), then (20) is true for the same range of p.

Before proving Lemma 3.1 we orient ourselves with a few propositions. All
implicit constants are allowed to depend on the dimension d and p. To start, we
have the triangle inequality for any subsequence R ⊆ Rfull,

(21)
��� sup

r∈R
|Cr |

���
p→p

≤
∞∑

q=1

��� sup
r∈R

|Cq
r |
���

p→p
.

We restrict our attention to an individual summand for the time being. We have
the following bound from [MSW02].

Proposition 3.1 ([MSW02, Proposition 3.1(a)]). If d
d−1 < p ≤ 2, then��� sup

r∈Rfull

|Cq
r |
���

p→p
� q1−d/p′

.

This bound applies to the full sequence of radii and hence any subsequence,
which we will choose to be R in a moment. We briefly record that the range of
�p(Zd )-spaces improves if one replaces Stein’s theorem (for the spherical maximal
function) with the Calderón, Coifman–Weiss theorem for any lacunary subse-
quence of Rfull in the proof of Proposition 3.1. See Proposition 3.1(a) in [MSW02]
for more details.

Proposition 3.2. If R is a lacunary subsequence of Rfull and 1 < p ≤ 2, then

(22)
��� sup

r∈R
|Cq

r |
���

p→p
� q1−d/p′

.

In [MSW02] we learned that we can factor Cq
r = Sq

r ◦ T q
r = T q

r ◦ Sq
r into two

commuting multipliers Sq
r and T q

r , effectively separating the arithmetic and analytic
aspects of Cq

r , by using a smooth function 	′ such that

1{[−1/4,1/4]d } ≤ 	′ ≤ 1{[−1/2,1/2]d }

on Td so that 	 · 	′ = 	. For r ∈ Rfull and q ∈ N, we have the Kloosterman
multipliers

(23) Ŝq
r (ξ ) :=

∑
m∈Zd

K (q, r2;m)	(qξ − m)
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and the localized spherical averaging multipliers

(24) T̂ q
r (ξ ) :=

∑
m∈Zd

	′(qξ − m)d̃σr(ξ − m/q).

In order to improve on the Magyar–Stein–Wainger range of �p(Zd )-spaces for
supr∈R|Cr |,2 we need to beat the exponent 1 − d/p′ of the modulus q in (22).
Using the Weil bound, we do so for an individual convolution operator Cq

r .

Proposition 3.3 (Weil bound for Kloosterman multipliers). If 1 ≤ p ≤ 2
and q is an odd number, then for each r ∈ Rfull and for all ε > 0,

(25) ‖Cq
r ‖p→p �ε ϕ(q)2/p−1 · q− d−1

p′ +ε(q, r2)1/p′
.

Proof. On �2(Zd ), we apply the Weil bound (18) to the Kloosterman sums
in Ŝq

r . Meanwhile on �1(Zd ), if Kq
r denotes the kernel of the multiplier Ŝq

r , then

Kq
r (b) =

∑
a∈(Z/qZ)×

e
(a[r2 − b2]

q

)

for b ∈ (Z/qZ)d where we have the trivial bound of ϕ(q). (15) of Lemma 2.1 yields
the bound.

However, for a fixed modulus q in N with q = q1q2 such that q1 and q2 are
coprime, we can factor Sq

r into two pieces. If (q1, q2) = 1, then by the Chinese
Remainder Theorem and multiplicativity of Kloosterman sums (19) we have

(26) Cq
r = T q

r ◦ U1,q
r ◦ U2,q

r

where the operators U1,q
r and U2,q

r are defined by the multipliers

Û1,q
r (ξ ) :=

∑
m∈Zd

K (q1, r2;m)	′
q1q2

(
ξ − m

q1q2

)
,

Û2,q
r (ξ ) :=

∑
m∈Zd

K (q2, r2;m)	q1q2

(
ξ − m

q1q2

)
,

2The sharp range of �p(Zd )-spaces is p > d
d−2 when R is Rfull, which results from summing (22)

over q ∈ N in (21).
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since

Ŝq
r (ξ ) =

∑
m∈Zd

K (q1q2, r2;m)	q1q2 (ξ − m
q1q2

)

=
∑
m∈Zd

K (q1, r2;m)K (q2, r2;m)	q1q2

(
ξ − m

q1q2

)
	′

q1q2

(
ξ − m

q1q2

)

=
( ∑

m∈Zd

K (q1, r2;m)	′
q1q2

(
ξ − m

q1q2

))

×
( ∑

m∈Zd

K (q2, r2;m)	q1q2

(
ξ − m

q1q2

))
.

Note that U1,q
r is q1-periodic in r2 and U2,q

r is q2-periodic in r2 while both of
K (q1, r2;m) and K (q2, r2;m) are q1q2-periodic in m ∈ Zd .

Using our refined decomposition (26), we now come to the main proposition
that enables us to prove Lemma 3.1.

Proposition 3.4. Fix q ∈ N such that q = q1q2 with (q1, q2) = 1 and R a

lacunary subsequence of Rfull. Let Ri(q1) denote the set of radii

{r ∈ R : r2 ≡ i mod q1}.

If 1 < p ≤ 2, then

(27)
��� sup

r∈R
|Cq

r |
���

p→p
� q1−d/p′

2 · #{i ∈ Z/q1Z : Ri(q1) �= ∅} · sup
i∈Z/q1Z

{‖U1,q
ri

‖p→p}

where ri is a chosen representative of Ri(q1) for each i ∈ Z/q1Z.

It will be important in our proof of Lemma 3.1 that #{i ∈ Z/qZ : Ri(q) �= ∅} is
small for most moduli q and that we can apply Proposition 3.3, the Weil bound for
Kloosterman multipliers to the operators U1,q

ri
.

Proof of Proposition 3.4. Let q = q1q2 and subset R ⊂ Rfull be a lacunary
subsequence. The union bound applied to R =

⋃
i∈Z/q1Z

Ri(q1) implies

(28)
��� sup

r∈R
|Cq

r |
���

p→p
≤

q1∑
i =1

��� sup
r∈Ri(q1)

|Cq
r |
���

p→p
,

with the understanding that if Ri(q1) is empty, then ‖ supr∈Ri(q1)
|Cq

r |‖p→p is 0.
Therefore, (27) will follow from proving

(29)
��� sup

r∈Ri(q1)

|Cq
r |
���

p→p
� q1−d/p′

2 ‖U1,q
ri

‖p→p.
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Our decomposition (26) implies that

sup
r∈Ri(q1)

|Cq
r f | = sup

r∈Ri(q1)

|T q
r Sq

r f | = sup
r∈Ri(q1)

|T q
r U2,q

r U1,q
r f |.

If r1, r2 ∈ Ri(q1), then U1,q
r1

= U1,q
r2

. Therefore, if ri is a chosen representative radius
in Ri(q1), then

sup
r∈Ri(q1)

|Cq
r f | = sup

r∈Ri(q1)

|T q
r U2,q

r (U1,q
ri

f )|.

The operator T q
r U2,q

r is very similar to Cq2
r , and in fact (22) holds with Cq2

r

replaced by T q
r U2,q

r since U2,q
r is q2-periodic in r2 and K (q2, r2;m) are

q1q2-periodic in m ∈ Zd . (Likewise, U1,q
ri

is very similar to Cq1
r and the Weil

bound (25) applies with Cq1
r replaced by U1,q

ri
.) The Magyar–Stein–Wainger

transference principle combined with the Calderon, Coifman–Weiss theorem and
(22) imply (27) since Ri(q1) is also a (possibly finite) lacunary sequence.

3.1 Proof of Lemma 3.1. Recall that P denotes the set of primes in N.
In this section we fix our collection of radii to be a lacunary sequence R ⊂ Rfull so
that the set of primes P = Pbad ∪ Pgood is a union of the sets bad primes Pbad and
good primes Pgood satisfying (6) and (4), (5) respectively.

If p is a good prime, then lifting (5) to Z/pkZ for k ∈ N implies

#{i ∈ Z/pkZ : Ri(pk) �= ∅} �ε p
k−1+ε

for any ε > 0. Using the Chinese Remainder Theorem, we extend this to moduli q

composed only of good primes; that is, if p|q, then p ∈ Pgood. Let vp(q) denote the
precise power of the prime p dividing q. If q is composed only of good primes,
then

(30)

#{i ∈ Z/qZ : Ri(q) �= ∅} ≤∏
p|q

#{r2 mod pvp(q) : r ∈ R}

�ε

∏
p|q

pvp(q)−1+ε �ε qε · ϕ(q)

for any ε > 0.

For a modulus q, write q = qgood · qbad where qgood is composed only of good
primes while qbad is composed only of bad primes (qbad is composed of bad primes
if p|qbad implies p ∈ Pbad). In the case that a prime is both good and bad, we regard
it as a bad prime in the following estimate. Now (27) of Proposition 3.4, the Weil
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bound for Kloosterman multipliers (25) and (30) imply that��� sup
r∈R

|Cr f |
���

p→p
�

∑
q∈N

q1−d/p′
bad · #{i ∈ Z/qZ : Ri(q) �= ∅} · sup

i∈Z/qZ
{‖U1,q

ri
‖p→p}

�
∑
q∈N

(ϕ(qgood)
2/p · qgood

ε− d−1
p′ · q

1− d
p′

bad )

=
∏

p∈Pgood

(
1 + p1− 2

p +ε
∑
k∈N

pk( 2
p −1− d−1

p′ )
)

· ∏
p∈Pbad

(
1 +

∑
k∈N

pk(1− d
p′ )
)

�p

[ ∏
p∈Pgood

(
1 + pε− d−1

p′
)]

·
[ ∏
p∈Pbad

(
1 + p1− d

p′
)]

< ζ
(d − 1

p′ − ε
)

· ∏
p∈Pbad

(
1 + p1− d

p′
)

for all sufficiently small ε > 0. The third inequality is true provided that
2
p − 1 − d−1

p′ < 0 and 1 − d−1
p′ < 0; this is equivalent to p > d−1

d−2 . The zeta-
function converges for small enough ε > 0 if and only if d−1

p′ > 1. Unravelling
this condition yields that we again require p > d−1

d−2 . The second factor in the final

inequality is bounded precisely when
∑

p∈Pbad
p1− d

p′ < ∞. By assumption (6), we
assume that

∑
p∈Pbad

p−s < ∞ for some s ∈ (0, 1]. Taking 1 − d/p′ ≤ −s, we
require p ≥ d

d−(1+s) .

4 The error term

In this section we handle the error term. In particular we show that over an arbitrary
lacunary subsequence, we can bound the error term on �p for d−1

d−2 < p ≤ 2. Before
doing so, we prove a weaker bound that does not make use of cancellation in
averages of Ramanujan sums, but is simpler, and suffices for Corollary 1.1.

4.1 Preliminary bound for the error term. In this section we will
bound the error term using the improved bound (11) in the Kloosterman refinement
of our operators and a simple bound on �1(Zd ) for the operators Cq

r .

Lemma 4.1. Let d ≥ 4. Suppose that R is a lacunary sequence. Then for
d+1
d−1 < p ≤ 2,

(31)
∥∥∥ sup

r∈R
|Er f |

∥∥∥
�p(Zd )

�p ‖ f ‖�p(Zd ).

The proof for �2 is standard: bound the sup by a square function and apply the
Kloosterman refinement of (11). To obtain our range of p, we will need a suitable
bound on �1(Zd ). For this we have the following proposition.
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Proposition 4.1. For any modulus q ∈ N,

(32) ‖Cq
r f ‖�1,∞(Zd ) �

r · ϕ(q)
q

‖ f ‖�1(Zd ).

Here and throughout, ϕ denotes Euler’s totient function. With this bound, we
can prove Lemma 4.1.

Proof of Lemma 4.1. For �2(Zd ) we have ‖Êr(ξ )‖�∞(Zd ) � r−δ by (11) for
all δ < d−3

2 . On �1(Zd ) Proposition 4.1 implies that ‖Cq
r f ‖�1,∞(Zd ) � r‖ f ‖�1(Zd ) so

that

(33)

∥∥∥∥
r∑

q=1

Cq
r f

∥∥∥∥
�1,∞(Zd )

� r2‖ f ‖�1(Zd )

while ‖Ar‖�1(Zd ) � 1 for each r so that ‖Er f ‖�1,∞(Zd ) � r2‖ f ‖�1(Zd ). By interpola-
tion, for 1 < p ≤ 2,

‖Er f ‖�p(Zd ) � r2( 2
p −1) · r−δ (2− 2

p ) = r
2
p (2+δ )−2(1+δ )‖ f ‖�p(Zd );

2
p (2 + δ ) − 2(1 + δ ) < 0 if and only if p > 2+δ

1+δ
. This holds for all δ < d−3

2 which
gives p > d+1

d−1 . Sum over a lacunary set in this range of p to obtain (31).

Remark 4.1. The best known bound for δ is all δ < d−3
2 by Magyar’s version

of Heath-Brown’s Kloosterman refinement in [Mag07]. Due to the existence of
cusp forms, this is the best one can expect.

We are left to prove Proposition 4.1. We use the structure of the kernel to prove
a weak-type bound.

Proof of Proposition 4.1. For t > 0, let Dilt be the operator

Dilt f (x) = f (tx).

Since
Ĉq

r (ξ ) =
∑

m∈Zd

K (q, r2,m)Dilq	(ξ − x/q)d̃σr(qξ − x),

one can calculate the kernel Kq
r for the multiplier Ĉq

r and x ∈ Rd ,

(34) Kq
r (x) =

∑
a∈(Z/qZ)×

e
(a(r2 − |x|2)

q

)
· r−d D̃ilq/r	 ∗ dσ(x/r).

A standard argument—see [Ion04]—shows that

D̃ilq/r	 ∗ dσ(x) � (q/r)−1(1 + |x|)−2d .
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Then
|Kq

r (x)| � r1−d (1 + |x/r|)−2d .

r−d (1 + |x/r|)−2d is an approximation to the identity which implies (32) by the
Magyar–Stein–Wainger transference principle.

4.2 The Ramanujan bound for the error term. In this section we
improve the bound (32) for the error term Er . The following lemma concludes the
proof of Theorem 1.

Lemma 4.2. Let d ≥ 4. If R forms a lacunary sequence, then for
d−1
d−2 < p ≤ 2,

(35)
∥∥∥ sup

r∈R
|Er f |

∥∥∥
�p(Zd )

�p ‖ f ‖�p(Zd ).

The strategy is the same as in Lemma 4.1 but we improve the bound on �1(Zd )
to the following.

Proposition 4.2. For r ∈ Rfull and all ε > 0, we have

(36)

∥∥∥∥
r∑

q=1

Cq
r f

∥∥∥∥
�1,∞(Zd )

�ε r1+ε‖ f ‖�1(Zd ).

The sums

(37) cq(N ) :=
∑

a∈(Z/qZ)×
e
(aN

q

)

are known as Ramanujan sums and clearly satisfy the bound |cq(N )| ≤ φ(q) for
all N . However, there is an improved bound on average—see (3.44) on page 126
of [Bou93]:

(38)
∑

Q≤q<2Q

|cq(N )| =
∑

Q≤q<2Q

∣∣∣∣ ∑
a∈(Z/qZ)×

e
(aN

q

)∣∣∣∣ � Q · d (N,Q)

where d (N,Q) is the number of divisors of N up to Q. Therefore we can bound the
above average of Ramanujan sums, (38) by �ε Q · N ε for all ε > 0, that is, with a
“log-loss”. Using the improved average bound for Ramanujan sums, we improve
(32) to (36).

Proof of Proposition 4.2. Again, for t > 0, let Dilt be the operator
Dilt f (x) = f (tx). We rewrite (34) as

(39) Kq
r (x) = cq(r

2 − |x|2) · r−d D̃ilq/r	 ∗ dσ(x/r).
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By the Magyar–Stein–Wainger transference principle, (36) will follow from prov-
ing the pointwise bound for all x ∈ Rd and any ε > 0,

(40)

∣∣∣∣
r∑

q=1

Kq
r (x)

∣∣∣∣ �ε r1+ε−d (1 + |x/r|)−2d .

From

(41) Kq
r (x) = cq(r

2 − |x|2) · D̃ilq	 ∗ dσr(x),

we easily see that

(42)
r∑

q=1

Kq
r (x) =

[ r∑
q=1

cq(r
2 − |x|2) · D̃ilq	

]
∗ dσr(x).

Note that Dilq	 is supported in [−1/4q, 1/4q]d for each 1 ≤ q ≤ r. Using an
appropriate partition of unity for each Dilq	, we are able to sum over q ≤ r and
use (38) to obtain (40).

5 Proof of Theorem 2

Fix w > 1 a real number. In this section we prove Theorem 2 for the collection of
radii

R :=
{

r j ∈ R+ : r2
j = 1 +

∏
i≤h( j )

pi

}

where h( j ) := 2 jw
. The proof for the remaining sequences in Theorem 2 is similar,

but notationally cumbersome.
Let P denote the set of primes in N. We split the primes into bad primes

and good primes as follows. Let the bad primes Pbad be the set of primes
dividing r2

j for some radius r j ∈ R together with the prime 2. Let the good
primes Pgood := P \ Pbad be the remaining primes. We enumerate the primes so
that pn denotes the nth prime. The Prime Number Theorem says that pn ∼ n log n
as n → ∞.

If p is a prime, then choose J such that ph(J) ≤ p < ph(J+1). If j > J , then
r2

j ≡ 1 mod p, and

#{i ∈ Z/pZ : Ri(p) �= ∅} ≤ J + 1 � Jw � log p

where the last inequality follows from the Prime Number Theorem, with an implicit
constant that is independent of the prime p. The last inequality is explained as
follows. By the prime number theorem, p2Jw � 2Jw · log 2Jw

� 2Jw · Jw. This
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implies that log p2Jw � Jw +w log J � Jw so that J < Jw � log p. These estimates
hold for every prime; in particular, they hold for the good primes.

An essential point is that there are few bad primes for our sequence; this is
quantified by the following bound:

(43)
∑

p∈Pbad

p−1 ≤
∞∑
j =1

h( j ) · p−1
h( j ) �

∞∑
j =1

h( j )[h( j ) logh( j )]−1 =
∞∑
j =1

[log h( j )]−1.

The first inequality is true since each prime dividing r j is at least of size ph( j ) and
there are at most h( j ) prime divisors, and the last inequality follows from the Prime
Number Theorem which says pn � n logn. Since h( j ) = 2 jw

for some w > 1, (43)
converges.

6 Concluding remarks and open questions

Question 6.1. Estimate (43) of the Dirichlet series
∑

p∈Pbad
p−s is rather crude.

Improving this estimate would improve our range of �p(Zd )-spaces, potentially to
p > d−1

d−2 . The author is unaware of any investigations of our Dirichlet series in the
literature. Does

∑
p∈Pbad

p−s converge for some s ∈ (0, 1) for sequences related to
Theorem 2?

Question 6.2. Can we prove (43) where h( j ) grows more slowly such as
h( j ) := j?

Remark 6.1. In Section 1.3, we mentioned that J. Zienkiewicz showed that
Conjecture 1 fails in general. More generally, one can show that if (5) is violated
for infinitely many primes, then A∗

R f is unbounded on �p(Zd ) for p close to 1 and
d ≥ 5. We revise Conjecture 1 to take into account this obstruction.

Conjecture 2. For d ≥ 5, if R is a lacunary subsequence of Rfull such that

(5) holds for all but finitely primes p, then A∗
R : �1(Zd ) → �1,∞(Zd ). The same is

true if d = 4 and 2 is a good prime.

Question 6.3. There is an elegant characterization of the Lp(Rd )-boundedness
of the continuous sphericalmaximal function over subsequences ofR+ in [SWW95].
Is there such a characterization for the discrete spherical averages? Zienkiewicz’s
result shows that any such characterization must also account for arithmetic phe-
nomena.
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