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Abstract. We study the dynamical behaviour of points in the boundaries of
simply connected invariant Baker domains U of meromorphic maps f with a finite
degree on U . We prove that if f |U is of hyperbolic or simply parabolic type, then
almost every point in the boundary of U , with respect to harmonic measure, escapes
to infinity under iteration of f . On the contrary, if f |U is of doubly parabolic type,
then almost every point in the boundary of U , with respect to harmonic measure,
has dense forward trajectory in the boundary of U , in particular the set of escaping
points in the boundary of U has harmonic measure zero. We also present some
extensions of the results to the case when f has infinite degree on U , including the
classical Fatou example.

1 Introduction and statement of the results

Let f : C → Ĉ be a meromorphic map of degree larger than 1 and consider
the dynamical system generated by the iterates f n = f ◦ · · · ◦ f . The complex
sphere is then divided into two invariant sets: the Fatou set F( f ), which is the
set of points z ∈ Ĉ, where the family of iterates { f n}n≥0 is defined and normal in
some neighbourhood of z, and its complement, the Julia set J( f ) = Ĉ \ F( f ),
where chaotic dynamics occurs. We refer to [Ber93, CG93, Mil06] for the basic
properties of Fatou and Julia sets.

It is well-known that for any polynomial of degree larger than 1, the point at
infinity is a super-attracting fixed point and the set of points whose orbits tend
to infinity coincides with its immediate basin of attraction. Note that no point
in the boundary of this basin tends to infinity under iteration. In the case of a
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680 K. BARAŃSKI, N. FAGELLA, X. JARQUE AND B. KARPIŃSKA

transcendental map f , where infinity is no longer an attracting fixed point but an
essential singularity, the escaping set of f , defined as

I( f ) = {z ∈ C : f n(z) is defined for every n ≥ 0 and f n(z) → ∞ as n → ∞},

often exhibits much richer topology. In many cases, for instance, it contains
a Cantor bouquet consisting of a Cantor set of unbounded curves (see, for
example, [AO93, BJR12, DT86]). For transcendental entire maps f it is known that
∂I( f ) = J( f ) [Ere89].

Similarly, as for polynomials, transcendental maps may also have components
of the Fatou set (known as Fatou components) which are contained in I( f ).
These include escaping wandering domains, i.e., non-preperiodic components
where the sequence { f n}n≥0 tends locally uniformly to infinity; or invariant
Baker domains, that is invariant Fatou components with the same property, and
also their preimages. Baker domains are sometimes called “parabolic domains
at infinity”, although their properties do not always resemble those of parabolic
basins (see Remark 1.8). We refer to e.g. [BF01, BFJK14, BDL07, BZ12, FH06,
Hen01, Rip06, RS06] for general background and results on Baker domains.

Considering examples of escaping wandering and Baker domains of different
nature (see, e.g., [Rip06, BF01, FH06, FH09]), it is natural to ask whether there
are points in their boundaries which escape to infinity under iteration and if so,
how large is the set of such points. This question was addressed by Rippon and
Stallard in [RS11], where they showed that almost all points of the boundary of
an escaping wandering component, in the sense of harmonic measure, are in the
escaping set. Their proof is also valid for some class of Baker domains (see
Remark 1.1). Recently, in an inspiring paper [RS18], they extended the result
to the case of arbitrary univalent Baker domains (i.e., invariant simply connected
Baker domains where f is univalent) of entire maps. Note that Baker domains for
entire maps are always simply connected (see [Bak75]), while in the meromorphic
case they can be multiply connected.

Our goal in this paper is to extend the analysis to the case of finite degree
invariant simply connected Baker domains U for meromorphic maps f (with some
extensions to infinite degree), showing that there is a dichotomy in the dynamical
behaviour of the boundary points of U , depending on the type of the domain
in the sense of the Baker–Pommerenke–Cowen classification. We say that f |U
is of hyperbolic (resp. simply parabolic or doubly parabolic) type if the
dynamics in U is eventually conjugate to ω �→ aω with a > 1 on the right half-
plane H (resp. to ω �→ ω ± i on H, or to ω �→ ω + 1 on C). See Theorem 2.8
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for details. Equivalently, doubly parabolic Baker domains are those for which the
hyperbolic distance �U in U between f n(z) and f n+1(z) tends to 0 as n → ∞ for
z ∈ U (see Theorem 2.11).

In this paper we show that the Rippon and Stallard result from [RS18] for
univalent Baker domains remains valid in the case of finite degree invariant simply
connected Baker domains U as long as f |U is of hyperbolic or simply parabolic
type, while in the remaining doubly parabolic case the iterations of the boundary
points behave totally differently—a typical point in the sense of harmonic measure
has dense trajectory in the boundary of U , in particular it is not escaping to
infinity. The precise statements are presented below as Theorems A and B. In
the proofs, apart from the methods used in [RS18], we rely on the results by
Aaronson [Aar78, Aar81] and Doering–Mañé [DM91] on the ergodic theory of
inner functions.

If U is an invariant simply connected Fatou component of a meromorphic
map f , then the map

g : D → D, g = ϕ−1 ◦ f ◦ ϕ,
where ϕ : D → U is a Riemann map, is an inner function (see Definition 2.4)
with degree equal to the degree of f |U . We call g an inner function associated
to f |U . If the degree of g is finite, then it is a finite Blaschke product and extends
to a rational map of the Riemann sphere. If the degree is infinite, g has at least one
singular point in the unit circle ∂D, i.e., a point ζ with no holomorphic extension
of g to any neighbourhood of ζ .

If U is an invariant simply connected Baker domain of f , the associated inner
function g has no fixed points in D, and the Denjoy–Wolff Theorem (see Theo-
rem 2.7) implies the existence of the Denjoy–Wolff point p in the unit circle,
such that every orbit of a point in D under iteration of g converges to p. See
Section 2 for details.

By the Fatou Theorem, the Riemann map ϕ extends almost everywhere to the
unit circle in the sense of radial limits. We consider the harmonic measure on ∂U
defined to be the image under ϕ of the normalized Lebesgue measure on the unit
circle.

In this paper we prove the following.

Theorem A. Let f : C → Ĉ be a meromorphic map and let U be a simply

connected invariant Baker domain of f , such that the degree of f on U is finite
and f |U is of hyperbolic or simply parabolic type (i.e., �U ( f n+1(z), f n(z)) �→ 0 as

n → ∞ for z ∈ U). Then I( f ) ∩ ∂U (the set of escaping points in the boundary
of U) has full harmonic measure.
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More generally, the statement remains true if instead of a finite degree of f on U

we assume that the associated inner function g = ϕ−1 ◦ f ◦ ϕ, where ϕ : D → U is
a Riemann map, has non-singular Denjoy–Wolff point in ∂D.

Remark 1.1. If U is a simply connected invariant Baker domain of f , such
that the degree of f on U is finite and

(1) lim sup
n→∞

| f n+1(z) − f n(z)|
dist( f n(z), ∂U)

> 0

for some z ∈ U (in particular, if

lim sup
n→∞

∣∣∣ f n+1(z)
f n(z)

− 1
∣∣∣ > 0

for some z ∈ U), then U is of hyperbolic or simply parabolic type (see Theo-
rem 2.11). Therefore, Theorem A implies that in this case the set of escaping
points in the boundary of U has full harmonic measure. In [RS11], Rippon and
Stallard proved that the statement remains true without the finite degree assump-
tion, if (1) is replaced by a stronger condition, saying that there exist z ∈ U and
K > 1 such that

(2) | f n+1(z)| > K | f n(z)|

for every n > 0. In fact, their proof gives that the condition (2) can be replaced by

∞∑
n=0

1√| f n(z)| < ∞.

Our next result shows that an opposite situation arises when the Baker domain
is of doubly parabolic type.

Theorem B. Let f : C → Ĉ be a meromorphic map and let U be a simply
connected invariant Baker domain of f , such that the degree of f on U is finite

and f |U is of doubly parabolic type (i.e., �U ( f n+1(z), f n(z)) → 0 as n → ∞ for
z ∈ U). Then the set of points z in the boundary of U, whose forward trajectories

{ f n(z)}n≥0 are dense in the boundary of U (in particular, the set of non-escaping

points in the boundary of U), has full harmonic measure.

More generally, the statement remains true if instead of a finite degree of f on U

we assume that the associated inner function g = ϕ−1 ◦ f ◦ ϕ, where ϕ : D → U is
a Riemann map, has non-singular Denjoy–Wolff point in ∂D.
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The following example illustrates Theorem B.

Example 1.2 (see [BD99, FH06]). Consider the map f (z) = z + e−z, which
is Newton’s method applied to the entire function F (z) = e−ez

. The map f has
infinitely many simply connected invariant Baker domains Uk, k ∈ Z, such that
Uk = U0 + 2kπi, and degN |Uk = 2. Since f |Uk is of doubly parabolic type (which
can be easily checked using Theorem 2.11), it satisfies the condition of Theorem B
and hence the set of escaping points in the boundary of Uk has zero harmonic
measure. It seems plausible that all escaping points in ∂Uk are non-accessible
from Uk, while accessible repelling periodic points are dense in ∂Uk.

Note that the assertion of Theorem B does not hold for all maps f of doubly
parabolic type with infinite degree on U , as shown in the following example.

Example 1.3 (see [Aar81], [DM91, page 18]). Let f : C → Ĉ,

f (z) = z −
∞∑

n=0

2z
z2 − nδ

, 1 < δ < 2.

It is obvious that the upper half-plane U = {z ∈ C : �(z) > 0} is invariant
under f and in fact, it is an invariant Baker domain. In [Aar81] it was shown
that �U ( f n+1(z), f n(z)) → 0 as n → ∞ for z ∈ U and f n(x) → ∞ as n → ∞
for almost every x ∈ R with respect to the Lebesgue measure. Hence, U is a
simply connected invariant Baker domain of doubly parabolic type and, since the
harmonic and Lebesgue measure on ∂U = R are mutually absolutely continuous
(as the Riemann map ϕ : D → U is Möbius), the set of non-escaping points in ∂U
has zero harmonic measure.

On the other hand, there is a wide class of infinite degree Baker domains of
doubly parabolic type, for which the assertion of Theorem B still holds. Roughly
speaking, the statement remains true when the hyperbolic distance between suc-
cessive iterates of points in U under f tends to zero “fast enough”. More precisely,
we prove the following.

Theorem C. Let f : C → Ĉ be a meromorphic map and let U be a simply

connected invariant Baker domain of f , such that

�U ( f n+1(z), f n(z)) ≤ 1
n

+ O
( 1
nr

)
as n → ∞ for some z ∈ U and r > 1. Then the set of points in the boundary of U

whose forward trajectories are dense in the boundary of U (in particular, the set
of non-escaping points in the boundary of U) has full harmonic measure.



684 K. BARAŃSKI, N. FAGELLA, X. JARQUE AND B. KARPIŃSKA

Remark 1.4. By the Schwarz–Pick Lemma, the sequence �U ( f n+1(z), f n(z))
is non-increasing for all points z ∈ U . The condition in Theorem C implies

�U ( f n+1(z), f n(z)) → 0,

so f |U is of doubly parabolic type. For the Baker domain U of the map f described
in Example 1.3 we have c1/n ≤ �U ( f n+1(z), f n(z)) ≤ c2/n for some c1, c2 > 0 (see
[DM91]), which shows that the estimate by 1/n + O(1/nr) in Theorem C cannot
be changed to c/n for arbitrary c > 0.

Note also that for an arbitrary invariant Baker domain U of a map f we have

∞∑
n=0

�U ( f n+1(z), f n(z)) = ∞

for z ∈ U , since f n(z) converges to infinity, which is a boundary point of U .
Therefore, the sequence �U ( f n+1(z), f n(z)) cannot decrease to 0 arbitrarily fast.

It is natural to askwhether there are actual examples ofBaker domains satisfying
the assumptions of Theorem C. The following proposition answers this question
in affirmative for a whole family of maps.

Proposition D. Let f : C → Ĉ be a meromorphic map of the form

f (z) = z + a + h(z),

where a ∈ C \ {0} and h : C → Ĉ is a meromorphic map satisfying

|h(z)| < c0

(�(z/a))r
for �

( z
a

)
> c1,

for some constants c0, c1 > 0, r > 1. Then f has an invariant Baker domain U

containing a half-plane {z ∈ C : �(z/a) > c} for some c ∈ R. Moreover, if U
is simply connected (e.g. if f is entire), then f on U satisfies the assumptions of

TheoremC and, consequently, the set of points in the boundary of U whose forward
trajectories are dense in the boundary of U (in particular, the set of non-escaping

points in the boundary of U) has full harmonic measure.

Using Proposition D, one can find a number of examples of Baker domains of
doubly parabolic type and infinite degree, for which the set of points with dense
forward trajectories in the boundary of U has full harmonic measure. The first one
is the classical example of a completely invariant Baker domain, studied by Fatou
in [Fat26].
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Example 1.5. Let f : C → Ĉ,

f (z) = z + 1 + e−z.

Then f obviously satisfies the conditions of Proposition D with a = 1.

The next example was described in [DM91] (see also [BFJK]).

Example 1.6. Let f : C → Ĉ,

f (z) = z + tan z.

Then U+ = {z : �(z) > 0}, U− = {z : �(z) < 0} are simply connected invariant
Baker domains, such that deg f |U± = ∞. Moreover, for large ±�(z),

| f (z) − z ∓ i| = | tan z ∓ i| ≤ 2e∓2�(z)

1 − e∓2�(z) < 3e∓2�(z),

so f on U± satisfies the conditions of Proposition D with a = ±i.

The third example was described in [BFJK, Example 7.3].

Example 1.7. Let f : C → Ĉ,

f (z) = z + i + tan z,

which is Newton’s method for the entire transcendental map

F (z) = exp
(

−
∫ z

0

du
i + tan u

)
.

Then f has a simply connected invariant Baker domain U containing an upper
half-plane, such that deg f |U = ∞. Since

| f (z) − z − 2i| = | tan z − i|,

the calculation in Example 1.6 shows that f on U satisfies the conditions
of Proposition D with a = 2i. Note that f has also infinitely many simply
connected invariant Baker domains Uk , k ∈ Z, of doubly parabolic type, such that
deg f |Uk = 2, which satisfy the assumptions of Theorem B.

Remark 1.8 ( The case of parabolic basins). Results analogous to the ones
in Theorems B and C hold when instead of Baker domains we consider invariant
parabolic basins, i.e., invariant Fatou components U such that f n → ζ on U as
n → ∞, with ζ ∈ C being a boundary point of U such that f ′(ζ ) = 1. In this case
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instead of the escaping set I( f ) one considers the set of points which converge to ζ
under the iteration of f . Using extended Fatou coordinates, one can see that the
dynamics in U is semiconjugate to z �→ z+1 in C, and hence every parabolic basin
is of doubly parabolic type in the sense of Baker–Pommerenke–Cowen. In fact, in
the case of parabolic basins of rational maps f , the result described in Theorem B
was proved in [DM91] and [ADU93].

The paper is organized as follows. In Section 2 we provide some background
and present results we shall use in the proofs. Section 3 contains the proof of
Theorem A. In Section 4, before proving Theorem C, we first formulate and prove
a supplementary result on the ergodic properties of inner functions (Theorem E).
Finally, the proofs of Theorem B and Proposition D can be found in Section 5.

Acknowledgment. We wish to thank Phil Rippon and Gwyneth Stallard for
inspiring discussions about their results on the boundary behaviour of maps on
Baker domains. We thank Mariusz Urbański for suggesting a strengthening of
Theorem B. We are grateful to the Institute of Mathematics of the Polish Academy
of Sciences (IMPAN), Warsaw University, Warsaw University of Technology and
Institut de Matemàtiques de la Universitat de Barcelona (IMUB) for their hospi-
tality while this paper was being prepared.

2 Preliminaries

Notation. We denote, respectively, the closure and boundary of a set A in C

by A and ∂A. The Euclidean disc of radius r centered at z ∈ C is denoted by D(z, r)
and the unit disc D(0, 1) is written as D. For a point z ∈ C and a set A ⊂ C we
write

dist(z,A) = inf
w∈A

|z −w|.
We denote by λ the Lebesgue measure on the unit circle ∂D.

We consider hyperbolic metric �U on hyperbolic domains U ⊂ C. In particular,
we have

(3) d�D(z) = �D(z)|dz| =
2|dz|

1 − |z|2 and �D(z1, z2) = 2 arctanh
∣∣∣ z1 − z2

1 − z1z2

∣∣∣
for z, z1, z2 ∈ D. We use the standard estimate

(4) �U (z) ≤ 2
dist(z, ∂U)

, z ∈ U

for hyperbolic domains U ⊂ C (see, e.g., [CG93]).
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Boundary behaviour of holomorphic maps. For a simply connected
domain U ⊂ C we consider a Riemann map

ϕ : D → U.

By Fatou’s Theorem (see, e.g., [Pom92, Theorem 1.3]), radial (or angular) limits
of ϕ exist at Lebesgue-almost all points of ∂D. This does not prevent the existence
of other curves approaching those points such that their images under ϕ have more
complicated limiting behaviour and accumulate in a non-degenerate continuum.

Definition 2.1 (Ambiguous points). Let h : D → C. A point ζ ∈ ∂D is called
ambiguous for h, if there exist two curves γ1, γ2 : [0, 1) → D landing at ζ , such
that the sets of limit points of the curves h(γ1), h(γ2) (when t → 1−) are disjoint.

Note that for a normal holomorphic function h, one of the two sets of limit points
of the curves h(γ1), h(γ2) must be a non-degenerate continuum or otherwise the two
curves have a common landing point. This is a consequence of the Lehto–Virtanen
Theorem (see, e.g., [LV57] or [Pom92, Section 4.1]).

The set of ambiguous points is small for any function h, as shown in the
following theorem (see, e.g., [Pom92, Corollary 2.20]).

Theorem 2.2 (Bagemihl ambiguous points theorem). An arbitrary function

h : D → C has at most countably many ambiguous points.

As in [RS18], we use the following Pflüger-type estimate on the boundary
behaviour of conformal maps.

Theorem 2.3 ([Pom92, Theorem 9.24]). Let � : D → C be a conformal

map, let V ⊂ �(D) be a non-empty open set and let E be a Borel subset of ∂D.
Suppose that there exist α ∈ (0, 1] and β > 0 such that:

(a) dist(�(0),V ) ≥ α|�′(0)|,
(b) �(�(γ) ∩ V ) ≥ β for every curve γ ⊂ D connecting 0 to E,

where � denotes the linear (i.e., 1-dimensional Hausdorff) measure in C. Then

�(E) ≤ 2π cap(E) <
15√
α

e− πβ2

area V ,

where cap(E) denotes the logarithmic capacity of E.
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Inner functions and Baker–Pommerenke–Cowen classification. Our
goal is to study the dynamics of a meromorphic map f restricted to the boundary
∂U of a simply connected invariant Baker domain U . We consider the pull-back
g : D → D of f under a Riemann map ϕ : D → U , i.e., the map

g = ϕ−1 ◦ f ◦ ϕ.
It is known that the map g is an inner function.

Definition 2.4 (Inner function). A holomorphic map h : D → D is called an
inner function, if radial limits of h have modulus 1 at Lebesgue-almost all points
of ∂D.

In this paper we deal with the harmonic measure on the boundary of U .

Definition 2.5 (Harmonic measure). Let U ⊂ C be a simply connected
domain and let ϕ : D → U be a Riemann map. A harmonic measure
ω = ω(U, ϕ) on ∂U is the image under ϕ of the normalized Lebesgue measure
on the unit circle ∂D.

In a more general setup, harmonic measure on the boundary of a domain U ⊂ C

with cap(C \ U) > 0 can be defined by the use of the solutions to the Dirichlet
problem on U . For more information on harmonic measure refer e.g. to [GM05]
or [Con95, Chapter 21].

If h is an inner function then all its iterates hn, n = 1, 2, . . ., are also inner
functions (see, e.g., [BD99]), which implies that the boundary map on ∂D
(which we will denote by the same symbol h), defined by radial (or angular) limits
of h, generates a dynamical system of iterations of h, defined Lebesgue-almost
everywhere on ∂D.

Definition 2.6 (Singular points). A point ζ ∈ ∂D is singular for an inner
function h, if h cannot be extended holomorphically to any neighbourhood of ζ .

Note that if an inner function h has finite degree, then it is a finite Blaschke
product, which extends to the Riemann sphere as a rational map. In this case, all
points in ∂D are non-singular for h. On the contrary, infinite degree inner functions
must have at least one singular boundary point.

The asymptotic behaviour of the iterates of a holomorphic map h in D is
described by the classicalDenjoy–Wolff Theorem (see,e.g., [CG93, Theorem3.1]).

Theorem 2.7 (Denjoy–Wolff Theorem). Let h : D → D be a holomorphic
map, which is not the identity nor an elliptic Möbius transformation. Then there

exists a point p ∈ D, called theDenjoy–Wolff point of h, such that the iterations hn

tend to p as n → ∞ uniformly on compact subsets of D.



ESCAPING POINTS IN THE BOUNDARIES OF BAKER DOMAINS 689

In this paper we deal with the case p ∈ ∂D. Then the dynamics of the map
can be divided into three types, according to the Baker–Pommerenke–Cowen
classification of such maps. The following result describes this classification,
showing the existence of a semiconjugacy between the dynamics of h and some
Möbius transformation (see [Cow81, Theorem 3.2] and [Kön99, Lemma 1]).

Theorem 2.8 (Cowen’s Theorem). Let h : D → D be a holomorphic map
with the Denjoy–Wolff point in ∂D. Then there exists a simply connected domain

V ⊂ D, a domain � equal to H = {z ∈ C : �(z) > 0} or C, a holomorphic map
ψ : D → �, and a Möbius transformation T mapping � onto itself, such that:

(a) V is absorbing in D for h, i.e., h(V ) ⊂ V and for every compact set K ⊂ D

there exists n ≥ 0 with hn(K ) ⊂ V,

(b) ψ(V ) is absorbing in � for T ,
(c) ψ ◦ h = T ◦ψ in D,

(d) ψ is univalent in V .

Moreover, up to a conjugation of T by a Möbius transformation preserving�, one
of the following three cases holds:

� = H, T (ω) = aω for some a > 1 (hyperbolic type),

� = H, T (ω) = ω± i (simply parabolic type),

� = C, T (ω) = ω + 1 (doubly parabolic type).

In view of this theorem, we say that f |U is of hyperbolic, simply parabolic
or doubly parabolic type if the same holds for the associated inner function g =
ϕ−1 ◦ f ◦ϕ. Generally, it is not obvious how to determine the type of Baker domain
just by looking at the dynamical plane, since it can depend on the dynamical
properties of f and geometry of the domain U .

If an inner function extends to a neighbourhood of the Denjoy–Wolff point
p ∈ ∂D, its type can be determined by the local behaviour of its trajectories near p

(see [Ber01, FH06]). More precisely, we have the following.

Theorem 2.9 ([Ber01, Theorem 2]). Let h : D → D be an inner function with

non-singular Denjoy–Wolff point p ∈ ∂D. Then the following hold.

(a) If h is of hyperbolic type, then p is an attracting fixed point of h with
h′(p) ∈ (0, 1).
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(b) If h is of simply parabolic type, then p is a parabolic fixed point of h of

multiplicity 2, i.e., h(z) = p + (z − p) + α(z − p)2 + O((z − p)3) as z → p for
some α �= 0. Moreover,

�D(hn+1(z), hn(z)) = b +
c
n3

+ O
( 1

n4

)
as n → ∞ for z ∈ D, where b = limn→∞ �D(hn+1(z), hn(z)) > 0 and c ≥ 0.

(c) If h is of doubly parabolic type, then p is a parabolic fixed point of h of
multiplicity 3, i.e., h(z) = p + (z − p) + β(z − p)3 + O((z − p)4) as z → p for

some β �= 0. Moreover,

�D(hn+1(z), hn(z)) =
1
2n

+
d ln n
n2 + O

( 1
n2

)
as n → ∞ for z ∈ D, where d ∈ R.

An easy consequence of this theorem is the following corollary.

Corollary 2.10. Let h : D → D be an inner function of finite degree larger

than 1 with the Denjoy–Wolff point p ∈ ∂D. Denote by the same symbol the
holomorphic extension of h to Ĉ. Then:

(a) If h|D is of hyperbolic type, then the attracting basin of p is connected,
non-simply connected and contains D ∪ (Ĉ \ D), so J(h) � ∂D.

(b) If h|D is of simply parabolic type, then the parabolic basin of p consists of
one non-simply connected attracting petal, which contains D ∪ (Ĉ \ D), so

J(h) � ∂D.

(c) If h|D is of doubly parabolic type, then the parabolic basin of p consists of
two simply connected attracting petals D and Ĉ \ D, so J(h) = ∂D.

Note that in Theorem 2.9 the doubly parabolic type can be characterized by the
condition �D(hn+1(z), hn(z)) → 0 as n → ∞ for z ∈ D. This characterization can
be extended to a more general case in the following way.

Theorem 2.11 ([BFJK15, Theorem A], [Kön99]). Let U be a hyperbolic

domain in C and let f : U → U be a holomorphic map without fixed points

and without isolated boundary fixed points (i.e., isolated points ζ of ∂U, where
f extends holomorphically with f (ζ ) = ζ ). Then the following conditions are

equivalent.
(a) f |U is of doubly parabolic type.

(b) �U ( f n+1(z), f n(z)) → 0 as n → ∞ for some (every) z ∈ U.
(c) | f n+1(z) − f n(z)|/ dist( f n(z), ∂U) → 0 as n → ∞ for some (every) z ∈ U.

In particular, this holds for all inner functions h : D → D with the Denjoy–Wolff
point in ∂D.
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Ergodic theory of inner functions. First, we recall some basic notions
used in abstract ergodic theory (for more details, refer e.g. to [Aar97, Pet83]).

Definition 2.12. Let μ be a measure on a space X and let T : X → X be a
μ-measurable transformation. Then we say that T (or μ) is:

• exact, if for every measurable E ⊂ X , such that for every n we have
E = T −n(Xn) for some measurable Xn ⊂ X , there holds μ(E) = 0 or
μ(X \ E) = 0,

• ergodic, if for every measurable E ⊂ X with E = T −1(E) there holds
μ(E) = 0 or μ(X \ E) = 0,

• recurrent, if for every measurable E ⊂ X and μ-almost every x ∈ E there
exists an infinite sequence of positive integers nk → ∞, k = 1, 2, . . ., such
that T nk (x) ∈ E ,

• conservative, if for every measurable E ⊂ X of positive μ-measure there
exist n,m ≥ 0, n �= m, such that T −n(E) ∩ T −m(E) �= ∅ (i.e., T has no
wandering sets of positive measure),

• preservingμ (in this case we say that μ is invariant), if for every measur-
able E ⊂ X we have μ(T −1(E)) = μ(E),

• non-singular, if for every measurable E ⊂ X we have μ(T −1(E)) = 0 if
and only if μ(E) = 0.

Obviously, exactness implies ergodicity and invariance implies non-singularity.
Moreover, the following holds.

Theorem 2.13 ([Hal47]). A measure μ is conservative if and only if it is

recurrent.

If μ is finite and invariant, then the Poincaré Recurrence Theorem (see,
e.g., [Pet83]) asserts that T is recurrent. Note that this does not extend to the
case of infinite invariant measures. On the other hand, the following holds (see,
e.g., [Aar97]).

Theorem 2.14. If μ is non-singular, then the following are equivalent:

(a) T is conservative and ergodic.
(b) For everymeasurableE ⊂ X of positiveμ-measure, forμ-almost every x ∈ X

there exists an infinite sequence of positive integers nk → ∞, k = 1, 2, . . .,
such that T nk (x) ∈ E.

Recall that an inner function h : D → D generates a dynamical system of
iterations of h on ∂D, defined Lebesgue-almost everywhere on ∂D. We will use the
following fundamental dichotomy, proved by Aaronson [Aar78] (see also [DM91,
Theorems 4.1 and 4.2]) on the boundary behaviour of inner functions.
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Theorem 2.15 ([Aar78]). Let h : D → D be an inner function. Then the

following hold.
(a) If

∑∞
n=1(1−|hn(z)|) <∞ for some z ∈ D, then hn converges to a point p ∈ ∂D

almost everywhere on ∂D.
(b) If

∑∞
n=1(1 − |hn(z)|) = ∞ for some z ∈ D, then h on ∂D is conservative with

respect to the Lebesgue measure.

In [Aar81] (see also [DM91, Theorem 3.1]), the following characterization of
the exactness of h was established.

Theorem 2.16 ([Aar81]). Let h : D → D be an inner function with the
Denjoy–Wolff point in ∂D. Then h on ∂D is exact with respect to the Lebesgue

measure if and only if h is of doubly parabolic type.

If the Denjoy–Wolff point of an inner function h is in D, then h on ∂D

preserves an absolutely continuous finite (harmonic) measure, which is exact (see,
e.g., [GM05, DM91]). Suppose now h has the Denjoy–Wolff point p ∈ ∂D. Then
h no longer has an absolutely continuous finite invariant measure. However, in
the parabolic case it preserves a σ-finite absolutely continuous measure. More
precisely, define a measure μp on ∂D by

(5) μp(E) =
∫

E

dλ(w)
|w− p|2

for Lebesgue-measurable sets E ⊂ ∂D. A short calculation shows that μp is equal
(up to a multiplication by a constant) to the image of the Lebesgue measure on
R under a Möbius transformation M mapping conformally the upper half-plane
onto D with M (∞) = p. It is obvious that the Lebesgue measure λ on ∂D and the
measure μp are mutually absolutely continuous, i.e.,

(6) λ(E) = 0 ⇐⇒ μp(E) = 0

for Lebesgue-measurable sets E ⊂ ∂D.
It is known (see, e.g., [Pom79]) that an inner function h with the Denjoy–Wolff

point p ∈ ∂D has angular derivative at p equal to some q ∈ (0, 1], where the case
q < 1 corresponds to hyperbolic type of h, while q = 1 corresponds to (simply or
doubly) parabolic type. We have

q = lim
z→p

1 − |h(z)|
1 − |z|

in the sense of angular limit and

q = lim
n→∞(1 − |hn(z)|) 1

n for every z ∈ D.
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The following result asserts in particular that in the parabolic case the measure μp

is invariant.

Theorem 2.17 ([DM91, Theorem 4.4]). Let h : D → D be an inner function

with the Denjoy–Wolff point p ∈ ∂D. Then

μp(h
−1(E)) = qμp(E)

for every Lebesgue-measurable set E ⊂ ∂D.

3 Proof of Theorem A

Throughout this section we assume that f : C → Ĉ is a meromorphic map with
a simply connected invariant Baker domain U , such that f |U is of hyperbolic or
simply parabolic type, and the associated inner function

g = ϕ−1 ◦ f ◦ ϕ,

where ϕ : D → U is a Riemann map, has non-singularDenjoy–Wolff point p ∈ ∂D.
As mentioned in Section 2, this includes the case when f has finite degree on U .

The proof of Theorem A extends the arguments used by Rippon and Stallard for
univalent Baker domains. As in [RS18], we use the Pflüger-type estimate on the
boundary behaviour of conformal maps included in Theorem 2.3. The following
lemma makes a crucial step in the proof of Theorem A.

Lemma 3.1. The following statements hold.

(a) There exist an arbitrarily small neighbourhood W of the Denjoy–Wolff point
p of g and a point w0 ∈ ∂D∩W \ {p}, such that gn(w0) ∈ W for every n ≥ 0.

(b) Let Jn ⊂ ∂D be the closed arc connecting gn(w0) with gn+1(w0) in W and let

Bn = Bn(w0,M ) = {z ∈ Jn : |ϕ(z)| < M}

(in the sense of radial limits of ϕ) for M > 0. Then

∞∑
n=0

λ(Bn)
an

< ∞,

where a = g′(p).
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Remark 3.2. Recall that by Beurling’s Theorem (see [Beu40]), the map ϕ
extends continuously to ∂D (in the sense of radial limits) up to a set of logarithmic
capacity 0. Using this and repeating the arguments from the proof of [RS18,
Theorem 3.1], one can show that in fact

∞∑
n=0

1
ln(an/ cap(Bn))

<∞,

where cap denotes logarithmic capacity (with the convention 1
ln(an/ cap(Bn))

= 0 if
cap(Bn) = 0).

Proof of Lemma 3.1. By assumption, g extends holomorphically to a
neighbourhood of p. As gn → p on D, by continuity we have g(p) = p, and since g
is an inner function, p is an attracting or parabolic point of g with a = g′(p) ∈ (0, 1)
or a = 1. In fact, these two possibilities correspond to the cases when f |U is,
respectively, hyperbolic or simply parabolic (see Theorem 2.9). The proof of the
lemma splits into two parts dealing with these cases.

Case 1. f |U is hyperbolic

In this case the Denjoy–Wolff point p of g is an attracting fixed point of g in ∂D
with a = g′(p) ∈ (0, 1). Let � be a conformal map from a neighbourhood of p to
a neighbourhood of 0 conjugating g to z �→ az, i.e., �(p) = 0 and

(7) �(g(z)) = a�(z)

for z near p. Taking W = �−1 (D(0, ε)) for ε > 0 small enough, we have
g(W ) ⊂ W . In particular, gn is defined in W for all n ≥ 0 and for every
w0 ∈ ∂D ∩ W \ {p}, we have gn(w0) ∈ W for n ≥ 0. For use later, we choose the
point w0 such that a−1|�(w0)| ⊂ D(0, ε). This ends the proof of the statement (a).

Now we prove the statement (b). By definition, Jn ⊂ ∂D is the closed arc
connecting gn(w0) and gn+1(w0) in W . Thus, by construction,

⋃
n≥0 Jn ⊂ W and

gn → p on
⋃

n≥0 Jn.

Using the map �, we define domains Sn ⊂ D, n ≥ 0, as

Sn = �−1({z ∈ C : an+2|�(w0)| < |z| < an−1|�(w0)|}) ∩ D.

Since a−1|�(w0)| ⊂ D(0, ε) and � is conformal, for sufficiently small ε the
domains Sn are non-empty, open and simply connected inD, with a Jordan boundary
consisting of four analytic curves, one of them strictly containing Jn. Note that for
n ≥ 1, the domain Sn intersects only with Sn−1 and Sn+1.
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ψn

ψn(0) = zn

�n = 1
ϕ◦ψn

ϕ

z �→ 1
z

0 �n(0)

1
M

1
2M �n(γ)

A(M )

ϕ(Sn)
U

En

p

∂D

W ∩ D

Jn

Sn

zn

�

�(p) = 0

�(Sn)

00

w

γ

D(0, ε)

Figure 1. Sketch of the proof of Lemma 3.1.

Choose a point z0 ∈ S0 and let zn = gn(z0) ∈ Sn. Define

ψ0 : D → S0

to be a Riemann map with ψ0(0) = z0 and let

ψn(z) = �−1(an(�(ψ0(z)))), z ∈ D.

By the definition of Sn, the map ψn is a Riemann map from D onto Sn with
ψn(0) = zn. Note that since Jn is strictly contained in an open circular arc in ∂Sn,
the map ψn extends analytically (by Schwarz reflection) to a neighbourhood of
each point of ψ−1

n (Jn).
Fix M > 0 and for large n ≥ 0 define the following three sets:

A(M ) = {z ∈ C : M < |z| < 2M}, Vn = {1/z : z ∈ ϕ(Sn) ∩ A(M )},
En = ψ−1

n (Bn \ A(ϕ)),

where A(ϕ) is the set of ambiguous points of ϕ in ∂D (see Definition 2.1). Note
that Vn is contained in the annulus {z ∈ C : 1/(2M ) < |z| < 1/M}.

Now we prove

(8)
∞∑

n=n0

λ(En) <∞
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for some n0. First, we show that if the set Vn is empty, then λ(En) = 0. To see this,
note that if Vn = ∅, then ϕ(Sn) ⊂ D(0,M )∪(C\D(0, 2M )). Since ϕ(zn) ∈ ϕ(Sn) and
ϕ(zn) → ∞ as n → ∞, we can assume |ϕ(zn)| > 2M . As ϕ(Sn) is connected, this
implies ϕ(Sn) ⊂ C \ D(0, 2M ), which gives Bn = En = ∅, in particular λ(En) = 0.
Hence, we can assume that Vn is not empty for large n.

Since U �= C, by a conformal change of coordinates, we may assume 0 /∈ U ,
in particular 0 /∈ ϕ(ψn(D)) for n ≥ 0. Consider the mapping

�n(z) =
1

ϕ(ψn(z))
, z ∈ D.

Then �n is a conformal map from D into C and Vn is an open set in �n(D). We
will apply Theorem 2.3 to � = �n, V = Vn, E = En. To check the assumption (a)
of this theorem, note that by the Koebe one-quarter theorem,

�n(D) ⊃ D(�n(0), |�′
n(0)|/4).

Note also that for n large enough we may assume |�n(0)| = 1/|ϕ(zn)| < 1/2M
since, in fact, we have 1/|ϕ(zn)| → 0 as n → ∞.

As z0 /∈ Sn for n > 2, we have 1/ϕ(z0) /∈ �n(D) for large n, which implies that

(9) |�′
n(0)| < 4

∣∣∣ 1
ϕ(z0)

−�n(0)
∣∣∣ < 5

|ϕ(z0)| .

On the other hand, ∅ �= Vn ⊂ {z ∈ C : |z| ≥ 1/(2M )}, so

dist(�n(0),Vn) ≥ 1
2M

− |�n(0)| > 1
3M

≥ |ϕ(z0)|
15M

|�′
n(0)|,

where the last inequality follows from (9). Thus the assumption (a) of Theorem 2.3
is satisfied with α = |ϕ(z0)|/(15M ).

To check the assumption (b) of Theorem 2.3, take a curve γ ⊂ D connecting 0
to a point w ∈ En. Note that by the definitions of Bn and En, the radial limit of �n

at w exists and has modulus larger than 1/M . Moreover, w is not an ambiguous
point of �n, so the limit set of �n(γ) contains the radial limit of �n at w. Hence,
there is a sequence of points wk ∈ γ converging to w, such that |�n(wk)| > 1/M .
Since we know that |�n(0)| < 1/(2M ), it follows that the curve �n(γ) must joint
two components of the complement of the annulus {z ∈ C : 1/(2M ) < |z| < 2M},
which implies �(�n(γ)∩Vn) ≥ 1/(2M ). Hence, the assumption (b) of Theorem 2.3
is satisfied with β = 1/(2M ).

Now Theorem 2.3 applied to �n,Vn and En for n large enough gives

(10) λ(En) = �(En) < c1e
− c2

area Vn
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for some c1, c2 > 0 independent of n. Since by definition, Vn ⊂ D(0, 1/M ) and Vn

can intersect only with Vn−1 and Vn+1, we have

∞∑
n=0

areaVn ≤ 3π
M 2

,

in particular areaVn → 0 as n → ∞. Hence, e− c2
area Vn < c3 areaVn for some c3 > 0

independent of n, so (10) gives

∞∑
n=n0

λ(En) < c1c3

∞∑
n=n0

areaVn < ∞

for some n0, which ends the proof of (8).
Since ψ0 is holomorphic in a neighbourhood of ψ−1

n (J0), it is bi-Lipschitz on
ψ−1

0 (J0). Similarly, � is bi-Lipschitz on W . Hence, by the definition of ψn, for n

large enough we have

(11) λ(Bn \ A(ϕ)) = λ(ψn(En)) ≤ c4a
nλ(En)

for some c4 > 0 independent of n. Moreover, the set A(ϕ) of ambiguous points of
ϕ is at most countable (see Theorem 2.2), so

λ(Bn) = λ(Bn \ A(ϕ)).

This together with (11) gives

λ(Bn)
an

≤ c4λ(En)

so by (8),
∞∑

n=0

λ(Bn)
an

< ∞,

which ends the proof in case 1.

Case 2. f |U is simply parabolic

In this case the Denjoy–Wolff point p of g is a parabolic fixed point of g in ∂D
with a = g′(p) = 1, of multiplicity 2 (see Theorem 2.9). By the local analysis of g
near such point (see, e.g., [CG93]) and the fact that g preserves ∂D near p, there is
an open arc J ⊂ ∂D containing p, such that J \ {p} = J+ ∪ J−, g(J−) ⊂ J− and
gn → p on J−, while g(J+) ⊃ J+ and points of J+ escape from J+ under iteration
of g. Moreover, there is a conformal map � (Fatou coordinates) defined on an
open region containing J−, which conjugates g to z �→ z + 1, i.e.,

(12) �(g(z)) = �(z) + 1
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for z in the domain of definition of�. For a precise definition and properties of the
map� see ,e.g., [CG93, Mil06]. In particular, any neighbourhood W of p contains
the set

�−1({�(z) > R})
for R ∈ R+ large enough and J− ∩�−1({�(z) > R}) �= ∅. Hence, we can choose
w0 ∈ J− ∩�−1({�(z) > R}) ⊂ W , such that �(�(w0)) > R + 1. By (12), we have

g(�−1({�(z) > R})) ⊂ �−1({�(z) > R}),
so gn(w0) ∈ W for n ≥ 0. Moreover, if Jn ⊂ ∂D is the closed arc connecting
gn(w0) and gn+1(w0) in W , then

⋃
n≥0 Jn ⊂ J−,� is defined on

⋃
n≥0 Jn and gn → p

on
⋃

n≥0 Jn. Moreover,� is bi-Lipschitz on
⋃

n≥0 Jn (see, e.g., [CG93, Mil06]).
For n ≥ 0 let

Sn = �−1(Qn) ∩ D,

where

Qn = {z ∈ C :�(z) ∈ (�(�(w0)) + n − 1,�(�(w0)) + n + 2),

�(z) ∈ (�(�(w0)) − 1,�(�(w0)) + 1)}.
Then Sn is a simply connected region in D, with a Jordan boundary consisting

of four analytic curves, one of them strictly containing Jn. As earlier, choose a
point z0 ∈ S0, let zn = gn(z0) ∈ Sn and define

ψ0 : D → S0

to be a Riemann map such that ψ0(0) = z0. Set

ψn(z) = �−1(�(ψ0(z)) + n), z ∈ D.

Then ψn is a Riemann map from D onto Sn such that ψn(0) = zn. Now we can
proceed with the rest of the proof in the same way as in the hyperbolic case. �

Lemma 3.3. The following statements hold.
(a) There exists an open arc I ⊂ ∂D, with p ∈ I , such that

∞⋃
n=0

g−n(I ) ∪ {p} = {z ∈ ∂D : gn(z) → p as n → ∞}.

(b) f n(ϕ(z)) → ∞ as n → ∞ for Lebesgue-almost all points z ∈ I .

Remark 3.4. Using Beurling’s Theorem and repeating the arguments from
[RS18] one can show that in fact f n(ϕ(z)) → ∞ for all points z ∈ I except of a set
of logarithmic capacity zero (cf. Remark 3.2).
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Proof of Lemma 3.3. We use the notation from Lemma 3.1 and its proof.
In the simply parabolic case, when the Denjoy–Wolff point p is a parabolic fixed
point with one attracting petal, let

I =
∞⋃

n=0

Jn.

In the hyperbolic case, when p is an attracting fixed point, we define

I =
∞⋃

n=0

Jn ∪ J ′
n ∪ {p},

where Jn and J ′
n are the arcs defined in Lemma 3.1 for, respectively, two points w0

and w′
0 situated in ∂D on either side of p.

The first assertion of the lemma, in both cases, follows directly from the
definition of I . Indeed, in the hyperbolic case I contains on open arc in ∂D
containing p, while in the simply parabolic case it forms a one-sidedneighbourhood
of p in ∂D, contained in the unique attracting petal of p.

Now we prove the second assertion. Recall that by Fatou’s Theorem, the radial
limit of ϕ exists at Lebesgue-almost all points of ∂D. Moreover, g is bi-Lipschitz
in a neighbourhood of p (and hence preserves zero measure sets). This implies
that the radial limits of ϕ ◦ gn, n ≥ 0 exist at almost all points of ∂D. Hence, to
prove the second assertion of the lemma, it is sufficient to show that the Lebesgue
measure of the set Y of points in I , for which the radial limits of ϕ ◦ gn exist and
do not tend to ∞ for n → ∞, is equal to zero. In the simply parabolic case, the
set Y can be written as

∞⋃
n=0

⋃
M∈N

⋂
m∈N

⋃
k≥m

{z ∈ Jn : |ϕ(gk(z))| < M} =
∞⋃

n=0

⋃
M∈N

⋂
m∈N

⋃
k≥m

g−k(Bn+k(w0,M )).

Similarly, in the hyperbolic case the set Y is equal to
∞⋃

n=0

⋃
M∈N

⋂
m∈N

⋃
k≥m

g−k(Bn+k(w0,M )) ∪ g−k(Bn+k(w
′
0,M )) ∪ {p},

where w0 and w′
0 are situated in ∂D on either side of p. Hence, to prove that Y has

Lebesgue measure zero, it is enough to show that

lim
m→∞λ

( ⋃
k≥m

g−k(Bn+k(w0,M ))
)

= 0

for every M, n (the case of w′
0 is analogous). But

lim
m→∞λ

( ⋃
k≥m

g−k(Bn+k(w0,M ))
)

≤ lim
m→∞

∞∑
k =m

λ(g−k(Bn+k(w0,M ))),
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so it is sufficient to show

(13)
∞∑

k =0

λ(g−k(Bn+k(w0,M ))) < ∞.

To do it, observe that because of (7), (12) and the fact that � is bi-Lipschitz on⋃
n≥0 Jn in both (hyperbolic and simply parabolic) cases, we have

c1 <
|(gk)′(z)|

ak
< c2

for every z ∈ Jn and some c1, c2 > 0 independent of n, k, where g′(p) = a ∈ (0, 1]
(see the proof of Lemma 3.1). This implies

λ(g−k(Bn+k(w0,M ))) ≤ c3

ak
λ(Bn+k(w0,M )) ≤ c3

λ(Bn+k(w0,M ))
an+k

for some c3 > 0. The latter inequality together with Lemma 3.1 shows (13), which
implies that Y has Lebesgue measure 0 and ends the proof of the lemma. �

Proof of Theorem A. By Lemma 3.3, gn → p on I , where I ⊂ ∂D has
positive Lebesgue measure, so the map g on ∂D is not recurrent with respect
to the Lebesgue measure. Therefore, by Theorem 2.15, gn → p Lebesgue-
almost everywhere on ∂D. Thus, using again Lemma 3.3, we obtain that for
Lebesgue-almost every point z ∈ ∂D there exists k ≥ 0 such that gk(z) ∈ I , and
f n(ϕ(gk(z))) → ∞ as n → ∞. Since f ◦ϕ = ϕ◦g, we conclude that f n(ϕ(z)) → ∞
as n → ∞ for Lebesgue-almost every point z ∈ ∂D, which is equivalent to saying
that almost every point in ∂U with respect to harmonic measure escapes to infinity
under iteration of f . �

4 Proof of Theorem C

To prove Theorem C, we first show the following result on the ergodic properties
of inner functions.

Theorem E. Let h : D → D be an inner function such that

�D(hn+1(z), hn(z)) ≤ 1
n

+ O
( 1

nr

)
as n → ∞ for some z ∈ D and r > 1. Then h on ∂D is non-singular, conservative
and exact with respect to the Lebesgue measure on D. In particular, the forward

trajectory under h of Lebesgue-almost every point z ∈ ∂D visits every subset of ∂D
of positive Lebesgue measure infinitely many times.
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Remark 4.1. The estimate 1/n + O(1/nr) in Theorem E cannot be changed
to c/n for arbitrary c > 0 (see Remark 1.4).

Proof of Theorem E. Suppose the assumption of the theorem is satisfied
for an inner function h. Then there exist z ∈ D, r > 1 and c > 0 such that

�D(hn+1(z), hn(z)) ≤ 1
n

+
c
nr

for every n ≥ 1. It is obvious that we can assume r < 2. The estimate implies in
particular

�D(hn+1(z), hn(z)) → 0

as n → ∞, so by Theorem 2.11, the map h is of doubly parabolic type.
We will show that the series

∑∞
n=1(1−|hn(w)|) is divergent for w ∈ D and then

apply Theorem 2.15. To that end, we shall use Gauss’ Series Convergence Test
which ensures that if an is a sequence of positive numbers such that

an

an+1
≤ 1 +

1
n

+
Bn

nr
,

for some r > 1 and a bounded sequence Bn, then the series
∑∞

n=0 an is divergent.
The formula (3) implies

(14)
1
n

+
c
nr

≥ �D(hn+1(z), hn(z)) ≥ 2|hn+1(z) − hn(z)|
|1 − hn(z)hn+1(z)|

for z ∈ D. Since for any u, v ∈ D, we have

|1 − uv̄ | ≤ 1 − |v |2 + ||v |2 − uv̄ | = 1 − |v |2 + |v ||v − u| < 2(1 − |v |) + |v − u|,
it follows that if we assume |hn+1(z)| > |hn(z)|, then

2|hn+1(z) − hn(z)|
|1 − hn(z)hn+1(z)| ≥ 2|hn+1(z) − hn(z)|

2(1 − |hn+1(z)|) + |hn+1(z) − hn(z)|
=

1
(1 − |hn+1(z)|)/|hn+1(z) − hn(z)| + 1/2

≥ 1
(1 − |hn+1(z))|/(|hn+1(z)| − |hn(z)|) + 1/2

=
1

an+1/(an − an+1) + 1/2
=

1
1/(an/an+1 − 1) + 1/2

,

(15)

where
an = 1 − |hn(z)|.

Note that an > an+1 by assumption, so an/an+1 − 1 > 0.
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Using (14), (15) and the fact 1 < r < 2 we obtain

an

an+1
≤1 +

1
1/(1/n + c/nr) − 1/2

=1 +
1
n

+
cn + nr−1/2 + c/2

n(nr − nr−1/2 − c/2)

≤1 +
1
n

+
2c
nr

(16)

for large n whenever an > an+1. Since (16) holds trivially when an ≤ an+1, we
conclude that (16) is true for every sufficiently large n.

Now by the Gauss Series Convergence Test, (16) implies that the series

∞∑
n=1

an =
∞∑

n=1

(1 − |hn(z)|)

is divergent, so by Theorem 2.15, the map h on ∂D is conservative with respect to
the Lebesgue measure λ on ∂D (see Definition 2.12 and Theorem 2.13). Moreover,
due to Theorems 2.16 and 2.17, it is exact (in particular, ergodic) with respect
to λ and preserves the measure μp defined in (5). By (6), this implies that h is
non-singular with respect to λ (see Definition 2.12).

Since h is non-singular, conservative and ergodic with respect to the Lebesgue
measure on ∂D, by Theorem 2.14, for every set E ⊂ ∂D of positive Lebesgue
measure, the forward trajectory under h of Lebesgue-almost every point in ∂D
visits E infinitely many times. �

Now we are ready to prove Theorem C. Assume that U is a simply connected
invariant Baker domain of a meromorphic map f : C → Ĉ, such that

�U ( f n+1(z), f n(z)) ≤ 1
n

+ O
( 1
nr

)
as n → ∞ for some z ∈ U and r > 1. As previously, we consider the associated
inner function

g = ϕ−1 ◦ f ◦ ϕ,
where ϕ : D → U is a Riemann map. Since

�D(gn+1(ϕ−1(z)), gn(ϕ−1(z))) = �U ( f n+1(z), f n(z))

by the Schwarz–Pick Lemma, we can use Theorem E for h = g to conclude that for
every set E ⊂ ∂D of positive Lebesgue measure, the forward trajectory under g of
Lebesgue-almost every point in ∂D visits E infinitely many times. Hence, for every
set B ⊂ ∂U of positive harmonic measure ω, the forward trajectory under f of ω-
almost every point in ∂U visits B infinitely many times. As the harmonic measure
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is positive on open sets in ∂U (which follows easily from a general definition of
harmonic measure via solutions to the Dirichlet problem and Harnack’s inequality,
see, e.g., [GM05, p. 90]) and ∂U is separable, for ω-almost every point in ∂U its
forward trajectory under f is dense in ∂U , which ends the proof of Theorem C.

5 Proof of Theorem B and Proposition D

Theorem B follows immediately from Theorem C. Indeed, it is enough to notice
that if the associated inner function g has non-singular Denjoy–Wolff point p ∈ ∂D,
then we can use the assertion (c) of Theorem 2.9 to conclude that for z ∈ U we
have

�U ( f n+1(z), f n(z)) = �D(gn+1(w), gn(w)) =
1
2n

+ O
( 1

n3/2

)
,

so the assumption of Theorem C is satisfied, which completes the proof of Theo-
rem B.

Remark 5.1. An alternative proof of Theorem B in the case when f has finite
degree on U can be obtained by the use of the following result.

Theorem 5.2 ([DM91, Theorem 6.1]). Let V be an invariant basin of a

parabolic point p ∈ ∂V of a rational map R and let F be a lift of R by a universal
covering π : D → V, i.e., π ◦ F = R ◦ π. Then for every z ∈ D and α > 1/2,

1 − |Fn(z)| ≥ 1
nα

for sufficiently large n.

Applying Theorem 5.2 to R = g, V = D, one can check directly that the series∑∞
n=1(1 − |gn(w)|) is divergent for w ∈ D and then proceed as in the final part of

the proof of Theorem C.

We end this section by proving Proposition D.

Proof of Proposition D. By the conformal change of coordinates z �→ z/a,
we can assume a = 1. Then the assumption of the proposition has the form

(17) | f (z) − z − 1| < c0

(�(z))r
for z ∈ H,

where H = {w ∈ C : �(w) > c1}. Enlarging c1, we can assume c1 > 1/2 and∑∞
k =1 c0/(c1 + k − 3/2)r < 1/2, which implies

(18)
∞∑
k =1

c0

(�(z) + k − 3/2)r
<

1
2

for z ∈ H.



704 K. BARAŃSKI, N. FAGELLA, X. JARQUE AND B. KARPIŃSKA

Now we prove inductively that for every n ≥ 1,

(19) �( f n(z)) > �(z) + n −
n∑

k =1

c0

(�(z) + k − 3/2)r
for z ∈ H.

To do this, note that (19) for n = 1 follows immediately from (17). For n > 1 and
z ∈ H we obtain, using consecutively (17), the inductive assumption and (18),

�( f n(z)) >�( f n−1(z)) + 1 − c0

(�( f n−1(z)))r

>�(z) + n −
n−1∑
k =1

c0

(�(z) + k − 3/2)r

− c0(�(z) + n − 1 − ∑n−1
k =1 c0/(�(z) + k − 3/2)r

)r

>�(z) + n −
n−1∑
k =1

c0

(�(z) + k − 3/2)r
− c0

(�(z) + n − 3/2)r

=�(z) + n −
n∑

k =1

c0

(�(z) + k − 3/2)r
,

which gives (19). By (19) and (18), we have

(20) �( f n(z)) > c1 + n − 1
2
> n for z ∈ H ;

in particular �( f n(z)) → +∞ for z ∈ H , so H is contained in an invariant Baker
domain U of f .

Suppose now that U is simply connected. Then using (4), (17) and (20) we
obtain, for z ∈ H and large n,

�U ( f n+1(z), f n(z)) ≤�H ( f n+1(z), f n(z))

≤�H ( f n+1(z), f n(z) + 1) + �H ( f n(z) + 1, f n(z))

≤ 2| f n+1(z) − f n(z) − 1|
min(dist( f n+1(z), ∂H ), dist( f n(z) + 1, ∂H ))

+ ln
(
1 +

1
�( f n(z)) − c1

)
≤ c0

nr(n + 1 − c1)
+

1
n − c1

=
1
n

+ O
( 1

n2

)

as n → ∞, so the assumptions of Theorem C are satisfied. �
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Matemática, Rio de Janeiro, 1991.

[DT86] R. L.Devaney and F. Tangerman, Dynamics of entire functions near the essential singularity,
Ergodic Theory Dynam. Systems 6 (1986), 489–503.

[Ere89] A. Eremenko, On the iteration of entire functions, in Dynamical Systems and Ergodic
Theory, PWN, Warsaw, 1989, pp. 339–345.

[Fat26] P. Fatou, Sur l’itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337–
370.

[FH06] N. Fagella and C. Henriksen, Deformation of entire functions with Baker domains, Discrete
Contin. Dyn. Syst. 15 (2006), 379–394.
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FACULTY OF MATHEMATICS AND INFORMATION SCIENCE

WARSAW UNIVERSITY OF TECHNOLOGY
UL. KOSZYKOWA 75, 00-662 WARSZAWA, POLAND

email: bkarpin@mini.pw.edu.pl

(Received November 9, 2015 and in revised form July 25, 2016)


