
POINTWISE ESTIMATES OF SOLUTIONS TO SEMILINEAR
ELLIPTIC EQUATIONS AND INEQUALITIES

By

ALEXANDER GRIGOR’YAN∗AND IGOR VERBITSKY†

Abstract. We obtain sharp pointwise estimates for positive solutions to the
equation −Lu + Vuq = f , where L is an elliptic operator in divergence form,
q ∈ R \ {0}, f ≥ 0 and V is a function that may change sign, in a domain � in R

n,
or in a weighted Riemannian manifold.
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1 Introduction

Consider the following elliptic differential equation

(1.1) − Lu + V (x)uq = f

in an open connected set � ⊆ R
n, where q is a non-zero real number,

(1.2) L =
n∑

i, j =1

∂xi (ai j (x)∂xj )

is a divergence form elliptic operator with smooth coefficients ai j = a ji , V and f

are continuous functions in �, and f ≥ 0, f �≡ 0. Note that V (x) can be signed
and we do not impose any explicit boundary condition on V .

Assuming that u is a non-negative (or positive in the case q < 0) solution, our
purpose is to obtain pointwise estimates of u in terms of the function h that is the
minimal positive solution in � of the equation −Lh = f . It is not obvious at all
that u should satisfy any bound via h, but nevertheless the following is true.

Assume that the Dirichlet Green function of L in � exists and denote it by
G�(x, y). Set

h(x) =
∫

�
G�(x, y) f (y)dy,

and assume that h(x) < ∞ for all x ∈ � (note also that h(x) > 0 in �), and that
the integral

(1.3)
∫

�
G�(x, y)hq(y)V (y)dy

is well-defined. Our main Theorem 3.1 states that the following estimates hold for
all x ∈ �.

(i) If q = 1 then

(1.4) u(x) ≥ h(x) exp
(

− 1
h(x)

∫
�

G�(x, y)h(y)V (y)dy
)
.

(ii) If q > 1 then

(1.5) u(x) ≥ h(x)

[1 + (q − 1) 1
h(x)

∫
� G�(x, y)hq(y)V (y)dy]

1
q−1

,

where the expression in square brackets is necessarily positive, that is,

(1.6) − (q − 1)G�(hqV )(x) < h(x).
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(iii) If 0 < q < 1 then

(1.7) u(x) ≥ h(x)
[
1 − (1 − q)

1
h(x)

∫
�+

G�(x, y)hq(y)V (y)dy
] 1

1−q

+
,

where

�+ = {x ∈ � : u(x) > 0}.

In this casewe assume that the integral in (1.7) is well-defined instead of (1.3).
(iv) If q < 0, u > 0 in �, and in addition u(y) → 0 as y → ∂� or |y| → ∞, then

(1.6) holds and

(1.8) u(x) ≤ h(x)
[
1 − (1 − q)

1
h(x)

∫
�

G�(x, y)hq(y)V (y)dy
] 1

1−q

.

Let us emphasize that in the case (iv) we obtain an upper bound for u in contrast
to the lower bound in the cases (i)–(iii).

In fact, Theorem 3.1 holds in much higher generality, when � is any open
subset of any weighted Riemannian manifold, L is the associated weighted Laplace
operator, and equation (1.1)) can be replaced by an inequality.

Equation (1.1) and its generalizations have attracted the attention of many
authors investigating various aspects from the existence of positive solutions to
pointwise estimates (see, for example, [1], [2], [7], [10], [26], [22], [24], [29],
[28], [30], [31], etc.). There is no possibility to give a detailed overview of the
literature on this subject, which would have required a full size survey. We restrict
our attention here to those earlier results that are most closely related to ours.

In the case q = 1 estimate (1.4) was known before and is included here for
the sake of completeness. For V ≥ 0, (1.4) was proved by Hansen and Ma
[23, Prop. 1.9] using the tools of potential theory (see also [20]). For V ≤ 0 in
domains � with boundary, Harnack principle estimate (1.4) as well as a matching
upper estimate for u were obtained in [14] and [15] using a completely different
method (but without sharp constants).

For a general signed V in a relatively compact � estimate (1.4) can be obtained
using the Feynman–Kac formula for Brownian motion and Jensen’s inequality.
This type of argument was implicit in [2], [10], [25, Prop. 2.5]. In the form (1.4)
it was stated in [21]. However, neither the Feynman–Kac formula nor any of the
above cited previous methods allows to treat the nonlinear case q �= 1.
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In the case q > 1 and V ≤ 0 Kalton and the second author obtained in [27]
the necessary condition (1.6), although without a sharp constant, and gave also a
sufficient condition

(1.9) − G�(hqV )(x) ≤
(
1 − 1

q

)q 1
q − 1

h(x)

for the existence of a positive solution. Moreover, under (1.9) they obtained a two-
sided estimate u 
 h for the minimal positive solution u of (1.1) in any domain �

with the boundary Harnack principle (the sign 
 means that the ratio of both sides
is bounded from above and below by positive constants).

In the case q > 1, V ≤ 0, and L = �, Brezis and Cabré [5] obtained the sharp
necessary condition (1.6) for the existence of a positive solution in an arbitrary
bounded domain � ⊂ R

n, as well as the estimate u 
 h under (1.9). The proof of
the necessary condition (1.6) in [5, Lemma 5.3] is based on a direct computation
using the explicit form � =

∑n
i =1 ∂2

xi
of the Laplace operator. A much more

expanded version of this computation will appear in our proof in Section 4 below.
The case q > 1, V ≡ 1, f ≡ 0 has been extensively studied, and we do not

touch it here; we refer the reader to [12] and [28] as well as to the references
therein.

In the case 0 < q < 1, V ≤ 0, and L = �, Brezis and Kamin [6] obtained
necessary and sufficient conditions for the existence of a bounded, positive solution
of (1.1) inR

n and obtained certain pointwise bounds. Their lower bound is covered
by our Theorem 3.3 below (see also [8] and [9]).

In the case q < 0 [13] and [17] obtained a sharp sufficient condition for the
existence of a positive solution of (1.1) in the specific case where V (x) depends
only on the distance from x to ∂� and has a constant sign.

In the present paper we give a unified approach for treating all the values of
q ∈ R\{0}, a general signed potential V , and a general divergence form operator L,
not only in arbitrary domains of Rn, but also on an arbitrary Riemannian manifold.
Our estimates (i)–(iv) are new in this generality. In many cases these estimates
happen to be sharp as one can see in examples in Section 9.

Let us briefly describe the idea of our proof. Assume for simplicity L = �.
Let {�k}∞k =1 be an exhaustion of � by relatively compact open sets �k ⊂ � with
smooth boundaries. We obtain first appropriate estimates for u in each �k and then
pass to the limit as k → ∞. Define in �k a new function h as the solution of the
following boundary value problem⎧⎨

⎩−�h = f, in �k,

h = u, on ∂�k.
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The following argument is used in the proof of Theorem 3.2 that treats (1.1) in
relatively compact domains with the Dirichlet boundary condition. Assume first
that h ≡ 1 (and then f = 0 in �k). Fix a C2 function φ on R (or on an interval
in R) with φ′ > 0 and consider the substitution

v = φ−1(u).

By the chain rule we have

�u = �φ(v) = φ′(v)�v + φ′′(v)|∇v |2,

which implies

(1.10)

−�v + V
φ(v)q

φ′(v)
= −�u − φ′′|∇v |2

φ′ + V
φ(v)q

φ′(v)

= −Vφ(v)q − φ′′|∇v |2
φ′ + V

φ(v)q

φ′(v)

=
φ′′

φ′ |∇v |2.

Now we choose φ to solve the initial value problem

φ′(s) = φq(s), φ(0) = 1,

and obtain

φ(s) =

⎧⎨
⎩es, q = 1,

[(1 − q)s + 1]
1

1−q , q �= 1,

in the appropriate domains. In the case q > 0 the function φ is convex, and we
obtain from (1.10)

(1.11) − �v + V ≥ 0.

Since on ∂�k we have v = φ−1(u) = φ−1(1) = 0, we obtain from (1.11) by the
maximum principle that

v(x) ≥ −
∫

�k

G�k (x, y)V (y)dy.

Applying φ to both sides of this inequality gives an appropriate inequality for
u = φ(v) in �k .

In the case q < 0 the function φ is concave, which leads to the opposite
inequality for v and, hence, for u.
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In the case of a general function h, consider a so-called h-transform (or Doob’s
transform [11]) of �:

�h =
1
h

◦ � ◦ h =
1
h2 div(h2∇) +

�h
h

,

and the function ũ = u/h. Then ũ solves the equation

−�hũ + hq−1Vũq = −�h
h

with the boundary value ũ = 1 on ∂�k. Effectively the h-transform provides a
reduction to the previous case, but for the operator �h in place of �. The part
1
h2 div(h2∇) of this operator is a weighted Laplace operator, for which the same
computation (1.10) using the chain rule works as for �. The part �h

h gives in the
end an additional term

�h
h

(φ(v) − 1
φ′(v)

− v
)

on the right-hand side of (1.11) (cf. Lemma 4.2). In the case q > 1 we obtain
by the convexity of φ that the expression in parentheses is non-positive. Since
�h = − f ≤ 0, the above term is non-negative which allows us to use the same
argument as above. In the case q < 1 this term is non-positive, which gives again
a correct sign in the corresponding inequality.

The actual proof goes a bit differently as we have to overcome one more
difficulty—a possibility of h vanishing on the boundary, which we have ignored in
the above sketch (see Sections 5, 6).

The above argument allows a version that treats the case f = 0 in (1.1)—see
Theorem 3.3.

In Theorem 3.4 we provide complementary results: sufficient conditions for the
existenceof a positive solution u and two-sided estimates ofu. Finally, Theorem3.5
is an abstract version of Theorem 3.4 for solutions of integral equations.

The structure of the paper is as follows. In Section 2 we briefly describe the
notion of the weighted manifold and the associated Laplace operator. In Section 3
we state ourmain results: Theorems3.1, 3.2, 3.3, 3.4 and 3.5. In Section 4we prove
some Lemmas, in particular containing the aforementioned computation (1.10) in
the general case. In Sections 5–8 we prove the above-mentioned theorems. In
Section 9 we give some examples.

Acknowledgement The authors are grateful to Alexander Bendikov, Haim
Brezis, and Wolfhard Hansen for stimulating conversations on the subject of this
paper.

The second author would like to thank the Mathematics Department at Bielefeld
University for its hospitality and support.
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2 Weighted manifolds

Let M be a smooth Riemannian manifold with the Riemannian metric tensor
g = (gi j ). The associated Laplace–Beltrami operator L0 acts on C2 functions u on
M and is given in any chart x1, . . . , xn by the formula

L0u =
1√
detg

n∑
i, j =1

∂xi

(√
detg gi j∂x j u

)
where detg is the determinant of the matrix g = (gi j ), and (gi j ) is the inverse matrix
of (gi j ). The Riemannian measure m0 is given in the same chart by

dm0 =
√

detg dx1 · · ·dxn,

so that L0 is symmetric with respect to m0. Using the gradient operator ∇ defined
by

(∇u)i =
n∑

j =1

gi j∂x j u

and the divergence div on vector fields Fi

div F =
1√
det g

n∑
i =1

∂xi

(√
det gFi),

one represents L0 in the form

L0 = div ◦∇.

Let ω be a smooth positive function on M and consider the measure m on M

given by
dm = ωdm0.

The couple (M,m) is called a weighted manifold or a manifold with density, and ω

in this context is called a weight. The following operator L

(2.1) Lu :=
1
ω

div(ω∇u) =
1

ω
√

detg

n∑
i, j =1

∂xi

(
ω
√

detg gi j∂x j u
)
,

acting on C2 functions u on M , is called the (weighted) Laplace operator of (M,m).
It is easy to see that L is symmetric with respect to measure m.

Of course, for ω = 1 we have L = L0. For a general weight ω, define the
weighted divergence by

divω =
1
ω

◦ div ◦ω

and obtain
L = divω ◦∇.

Note that∇ remains the Riemannian gradient and does not depend on the weight ω.
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It is easy to show that the weighted Laplace operator L satisfies the same
product and chain rules as the classical Laplace operator (cf. [19, Section 3.6]).
Namely, for two C2 functions u, v on M we have

(2.2) L(uv) = uLv + 2〈∇u,∇v〉 + vLu

where 〈∇u,∇v〉 is the inner product of the Riemannian gradients, which is
independent of the weight ω. Also, for any C2 function φ defined on u(M )
we have

(2.3) Lφ(u) = φ′(u)Lu + φ′′(u)|∇u|2.
As an example, consider in an open set � ⊆ R

n the following operator

(2.4) Lu = b(x)
n∑

i, j =1

∂xi (ai j (x)∂x j u),

where b, ai j are smooth functions, b > 0 and ai j = a ji . Assume that L is elliptic,
that is, the matrix (ai j (x)) is positive definite for any x (the uniform ellipticity is
not assumed). Then L coincides with the weighted Laplace operator L of Rn with
the Riemannian metric g and weight ω given by

(gi j ) = b(ai j ), ω = b
n
2 −1

√
det a,

where a = (aij ). Indeed, it follows that

det g = det(gi j ) =
1

bn det a
,

and substitution into (2.1) yields

Lu =

√
bn deta

bn/2−1
√

deta

n∑
i, j =1

∂xi

(
bn/2−1

√
det a

1√
bn deta

bai j∂x j u
)

= b
n∑

i, j =1

∂xi (ai j (x)∂x j u) = Lu.

The measure m associated with L is given by

(2.5) dm = ω
√

detg = bn/2−1
√

det a
1√

bn deta
=

1
b
dx,

where dx is Lebesgue measure.
Therefore, all the results that we obtain for a general weighted manifold (M,m)

apply to the operator (2.4) in a domain of Rn with the measure m from (2.5). In
particular, if b ≡ 1 as was assumed in the Introduction, then L is given by (1.2)
and m is Lebesgue measure.
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3 Statements of the main results

For any open connected set � ⊆ M denote by G�(x, y) the infimum of all pos-
itive fundamental solutions of L in �. The following dichotomy is true: either
G�(x, y) ≡ ∞ or G�(x, y) < ∞ for all x �= y. In the latter case we say that G�

is finite. If G� is finite, then G� is the symmetric positive Green function of L
in � (see [18] and [19, Ch. 13]). If � is relatively compact, then G� is finite and
satisfies the Dirichlet boundary condition on the regular part of ∂�.

If G� is finite then, for any function f ∈ L1
loc(�,m), set

G� f (x) =
∫

�
G�(x, y) f (y)dm(y),

where in the case f ≥ 0 the integral is understood in the sense of Lebesgue; for a
signed f the integral is understood as follows:

G� f (x) = G� f+(x) − G� f−(x)

(where f+ = max( f, 0) and f− = max(− f, 0)), assuming that at least one of the
values G� f+(x), G� f−(x) is finite. In this case we say that G� f (x) is well-defined.

Note that if f ≥ 0 in � and f > 0 on a set of positive measure, then G� f > 0
in �.

If � is relatively compact then G�(x, ·) ∈ L1(�), which implies that G� f is
finite for any f ∈ L∞(�). For arbitrary � it is still true that G�(x, ·) ∈ L1

loc(�) for
every x ∈ �.

Denote by ∂∞M the infinity point of the one-point compactification of M (see
for example [19, Sec. 5.4.3]). For any open subset � ⊆ M denote by ∂∞� the
union of ∂� and ∂∞M , if � is not relatively compact, and set ∂∞� = ∂� if � is
relatively compact.

Definition. For a function u defined in � ⊆ M let us write

(3.1) lim
y→∂∞�

u(y) = 0,

if limk→∞ u(yk) = 0 for any sequence {yk} in � that converges to a point of ∂∞�;
the latter means that either {yk} converges to a point on ∂� or diverges to ∂∞M . In
the same way we understand similar equalities and inequalities involving lim sup
and lim inf .

For example, if � is relatively compact, then (3.1) means that lim u(yk) = 0
for any sequence {yk} converging to a point on ∂�. If � = M , then ∂� = ∅
and (3.1) means that lim u(yk) = 0 for any sequence yk → ∂∞M , that is, for any
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sequence {yk} that leaves any compact subset of M . In particular, for M = R
n,

(3.1) is equivalent to u(y) → 0 as |y| → 0.
We will use the notation

χu(x) =

⎧⎨
⎩1, u(x) > 0,

0, u(x) ≤ 0.

Theorem 3.1. Let M be an arbitrary weighted manifold, and let � ⊆ M be a

connected open subset of M with a finite Green function G�. Suppose V, f ∈ C(�)
and assume f ≥ 0, f �≡ 0 in �. Let u ∈ C2(�) satisfy

(3.2) in the case q > 0 : −Lu + Vuq ≥ f in �, u ≥ 0,

or,

(3.3) in the case q < 0 :

⎧⎨
⎩−Lu + Vuq ≤ f in �,

limy→∂∞� u(y) = 0,
u > 0.

Set h = G� f and assume that h < ∞ in �. Assume also that G�(hqV )(x)
(respectively, G�(χuhqV )(x) in the case 0 < q < 1) is well-defined for all x ∈ �.

Then the following statements hold for all x ∈ �.

(i) If q = 1, then

(3.4) u(x) ≥ h(x)e− 1
h(x) G

�(hV )(x).

(ii) If q > 1, then necessarily

(3.5) − (q − 1)G�(hqV )(x) < h(x),

and the following estimate holds:

(3.6) u(x) ≥ h(x)

[1 + (q − 1)G�(hqV )(x)
h(x) ]

1
q−1

.

(iii) If 0 < q < 1, then

(3.7) u(x) ≥ h(x)
[
1 − (1 − q)

G�(χuhqV )(x)
h(x)

] 1
1−q

+
.

(iv) If q < 0 then necessarily (3.5) holds, and

(3.8) u(x) ≤ h(x)
[
1 − (1 − q)

G�(hqV )(x)
h(x)

] 1
1−q

.
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Note that the condition f �≡ 0 implies h > 0 in �. Note also that without loss
of generality the open set � in Theorem 3.1 can be taken to be M . However, we
have preferred the present formulation for the sake of convenience in applications.

Remark. In the case q ≥ 1, it follows from (3.4) and (3.6) that the condition

G�(hqV )(x) < +∞
implies u(x) > 0. Moreover, if for some C > 0 and all x ∈ �

G�(hqV )(x) ≤ Ch(x),

then u ≥ ch in � with some constant c = c(C) > 0.
In the case 0 < q < 1 the function u can vanish in �, but the estimate of u

cannot depend on the values of V on the set {u = 0}. This explains the appearance
of the factor χu and the subscript + on the right-hand side of (3.7).

In the case q < 0, the boundary condition limy→∂∞� u(y) = 0 is needed as
without this condition, for positive V , the function u + C would also be a solution
to (3.3) for any C > 0, so that u could not admit any upper bound.

Remark. The lower estimates of Theorem 3.1 (i) ,(ii), and (iii) remain valid
even if the expression G�(hqV ) is not well-defined in the above sense, provided it
is understood as follows:

(3.9) G�(hqV )(x) := lim inf
n→∞

∫
�n

G�n(x, y)hq(y)V (y)dy,

where {�n} is any exhaustion of � by relatively compact subsets with smooth
boundaries. The same is true for the upper estimate of (iv) where one can use
lim sup in place of lim inf.

In the case q = 1 and h = G� f , this means

(3.10) G�(hV )(x) = G�
2 f (x) = lim inf

n→∞

∫
�n

G�n
2 (x, y) f (y)dy, x ∈ �,

whereG�
2 stands for the second iteration of the Green kernelwith respect to V (y)dy:

(3.11) G�
2 (x, y) =

∫
�

G�(x, z)G�(z, y)V (z)dz, x, y ∈ �.

In some cases G�
2 (x, y) in (3.11) can be understood as an improper integral. (See

Example 1 in Section 9 below.)

Remark. Suppose q > 1 in Theorem 3.1. The necessary condition (3.5) for
the existence of a positive solution of 3.2 in the case V ≤ 0 was proved in [27],



570 A. GRIGOR’YAN AND I. VERBITSKY

without the sharp constant 1
q−1 , but for general quasi-metric kernels, including a

wide variety of differential and integral operators. It was also shown in [27] that
the stronger condition

(3.12) − G�(hqV )(x) ≤
(
1 − 1

q

)q 1
q − 1

h(x), x ∈ �,

is sufficient for the existence of a solution u such that

h ≤ u ≤ C(q)h.

Brezis and Cabré [5] subsequently proved the necessity of (3.5) with the sharp
constant 1

q−1 in the case ofL = � in bounded domains ofRn (see also Theorem 3.5
below).

In the proof of Theorem3.1, we useTheorem3.2 below that dealswith relatively
compact sets � ⊂ M . Fix a function h ∈ C2(�) ∩ C(�) such that

(3.13) h > 0 in � and − Lh ≥ 0 in �.

Consider in � the following boundary value inequalities:

(3.14)

⎧⎪⎪⎨
⎪⎪⎩

−Lu + Vuq ≥ −Lh in �

u ≥ h on ∂�

u ≥ 0 in �

in the case q > 0,

and

(3.15)

⎧⎪⎪⎨
⎪⎪⎩

−Lu + Vuq ≤ −Lh in �

u ≤ h on ∂�

u > 0 in �

in the case q < 0,

where V ∈ C(�) and u ∈ C2(�) ∩ C(�). In the next theorem we compare u and
h as follows.

Theorem 3.2. Let (M,m) be an arbitrary weighted manifold, and let

� ⊂ M be a relatively compact connected open subset of M. Let a function
h ∈ C2(�) ∩ C(�) satisfy (3.13).

Let V ∈ C(�) and suppose that u ∈ C2(�)∩C(�) is a solution to either (3.14)
or (3.15). Assume also that G�(hqV )(x) (respectively G�(χuhqV )(x) in the case

0 < q < 1) is well-defined for all x ∈ �. Then statements (i)–(iv) of Theorem 3.1
hold.
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Remark. In the linear case q = 1, we obtain a simple proof of the well-known
lower estimate of solutions to the Schrödinger equation:

(3.16) u(x) ≥ h(x)e− 1
h(x) G

�(hV )(x), for all x ∈ �.

This estimate in the special case h = 1 is usually deduced via the Feynman–
Kac formalism (see [2] and [10]) using Jensen’s inequality. In the case V ≥ 0,
alternative proofs based on potential theory methods in a very general setting are
given in [18] and [20]. In the case V ≤ 0, a similar lower estimate and a matching
upper estimate (but without sharp constants) are obtained in [14] and [15] for
general quasi-metric kernels.

An interesting special case is when h is the solution of the Dirichlet problem

(3.17)

⎧⎨
⎩−Lh = 1 in �,

h = 0 on ∂�.

In other words, h(x) = Ex[τ�], where τ� = inf{t : Xt �∈ �} is the first exit time
from � of the (rescaled) Brownian motion Xt, and x ∈ � is a starting point. For
bounded C1,1 domains, h(x) 
 d�(x), where

(3.18) d�(x) = dist(x, ∂�).

This gives sharp estimates:

(3.19) u(x) ≥ c d�(x) e− c
d�(x) G

�(d�V )(x)
, for all x ∈ �,

if q = 1, as well as the corresponding estimates for other values of q.

For bounded Lipschitz domains with sufficiently small Lipschitz constant (less
than (n − 1)1/2, which is sharp), it is known that (see [4])

h(x) 
 ρ(x) = min(1,G�(x, x0)),

where x0 is a fixed pole in �, and so (3.19) holds with ρ in place of d�. The
corresponding estimates hold for other values of q ∈ R as well.

Going back to the case of an arbitrary (not necessarily relatively compact) �, in
the next theorem we give estimates of solutions u of (3.2)–(3.3) with f = 0. They
are applicable to the so-called gauge (q = 1), “large” solutions (q > 1), or “ground
state” solutions (−∞ < q < 1) to the corresponding equations in unbounded
domains in R

n or non-compact manifolds.
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Theorem 3.3. Let M be an arbitrary weighted manifold, and let � ⊆ M be

an open connected set with a finite Green function G�. Suppose V ∈ C(�). Let
u ∈ C2(�) satisfy either the inequality

(3.20) − Lu + V uq ≥ 0, u ≥ 0 in �, if q > 0,

or

(3.21) − Lu + V uq ≤ 0, u > 0 in �, if q < 0.

Assume also that G�V (x) (respectively G�(χuV )(x) in the case 0 < q < 1) is

well-defined for all x ∈ �. Then the following statements hold for all x ∈ �.
(i) If q = 1 and

(3.22) lim inf
y→∂∞�

u(y) ≥ 1,

then

(3.23) u(x) ≥ e− G�V (x).

(ii) If q > 1 and

(3.24) lim
y→∂∞�

u(y) = +∞ ,

then necessarily G�V (x) > 0, and

(3.25) u(x) ≥ [(q − 1) G�V (x)]−
1

q−1 .

(iii) If 0 < q < 1, then

(3.26) u(x) ≥ [−(1 − q) G�(χuV )(x)]
1

1−q
+ .

(iv) If q < 0 and

(3.27) lim
y→∂∞�

u(y) = 0,

then necessarily G�V (x) < 0, and

(3.28) u(x) ≤ [−(1 − q) G�V (x)]
1

1−q .

In the next theorem we provide criteria for the existence of positive solutions
for the equation

(3.29) − Lu + uqV = f in �

under some additional assumptions and give two-sided pointwise estimates for
these solutions.
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Theorem 3.4. Let M be a weighted manifold and � ⊂ M be a connected

relatively compact open set with smooth boundary. Let f ≥ 0 and V be locally
Hölder continuous functions in � and in addition f ∈ C(�). Set h = G� f . Then

the following statements hold.

(i) For q > 1 and V ≤ 0, suppose that for all x ∈ �

(3.30) − G�(hqV )(x) ≤
(
1 − 1

q

)q 1
q − 1

h(x).

Then (3.29) has a non-negative solution u ∈ C2(�) ∩ C(�), and it satisfies
for all x ∈ �

(3.31)
h(x)

[1 + (q − 1)G�(hqV )(x)
h(x) ]

1
q−1

≤ u(x) ≤ q
q − 1

h(x).

(ii) For q < 0 and V ≥ 0, suppose that for all x ∈ �

(3.32) G�(hqV )(x) ≤
(
1 − 1

q

)q 1
1 − q

h(x).

Then (3.29) has a non-negative solution u ∈ C2(�) ∩ C(�), and it satisfies

for all x ∈ �

(3.33)
1

1 − 1
q

h(x) ≤ u(x) ≤
[
1 − (1 − q)

G�(hqV )(x)
h(x)

] 1
1−q

h(x).

Note that the terms in the square brackets in both (3.31) and (3.33) are positive
and < 1; it follows that in both cases (i) and (ii) u 
 h in �. Since

h(x) 
 d�(x) := dist(x, ∂�),

we obtain

u(x) 
 d�(x).

In the next theorem we give an abstract version of Theorem 3.4 that provides an
existence result together with pointwise estimates of solutions u for the following
integral equation with q ∈ R \ {0}:

(3.34) u(x) +
∫

�
K (x, y) u(y)q V (y) dm(y) = h(x) dm-a.e in �.

Here (�,m) is a measure space with σ-finite non-negative measure m, 0 < u < ∞
dm-a.e., and K : � × � → R̄+ ∪ {+∞} is a non-negative measurable kernel.
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The coefficient V is assumed to be a measurable function in � with a definite
sign (either V ≥ 0, or V ≤ 0). In fact, we can use dω in place of V dm, with
an arbitrary σ-finite measure ω (either non-negative, or non-positive) in �, where
0 < u < +∞ dω-a.e., and the integral equation holds dω-a.e.

For a non-negative Borel measure μ in �, we will write

Kμ(x) =
∫

�
K (x, y) dμ(y),

and Kf (x) = K ( fdm)(x) for a non-negative measurable function f .

Theorem 3.5. Let (�,m) be a measure space with σ-finite measure m, and

let K be a non-negative kernel on �×�. Let h be a measurable function such that

(3.35) 0 < h < +∞ dm-a.e. in �.

Let V be a measurable function in �. Then the following statements hold.

(i) For q > 1, and V ≤ 0, suppose that the following condition holds,

(3.36) − K (hqV )(x) ≤
(
1 − 1

q

)q 1
q − 1

h(x) dm-a.e. in �.

Then (3.34) has a minimal positive solution u, and it satisfies

(3.37) h(x) ≤ u(x) ≤ q
q − 1

h(x) in �.

(ii) For q < 0 and V ≥ 0, suppose that the following condition holds,

(3.38) K (hqV )(x) ≤
(
1 − 1

q

)q 1
1 − q

h(x) dm-a.e. in ,�.

Then (3.34) has a maximal positive solution u, and it satisfies

(3.39)
1

1 − 1
q

h(x) ≤ u(x) ≤ h(x) dm-a.e. in �.

Remark. Statement (i) of Theorem 3.5 is essentially known, and we include it
here only for the sake of completeness. It holds under a less restrictive assumption

(3.40) − K (HqV )(x) ≤
(
1 − 1

q

)q2 1
(q − 1)q

H (x) dm-a.e. in �,

where H = −K (hqV ); in this case, u 
 h + H (see [27]).
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4 Some auxiliary material

In this section we prove some lemmas needed for the proofs of Theorems 3.1
and 3.2. Everywhere M stands for an arbitrary weighted manifold.

Lemma 4.1. Let v, h be C2-functions in � ⊆ M, and φ be a C2-function on

an interval I ⊂ R such that v(�) ⊂ I . Then the following identity is true:

(4.1) L(hφ(v)) = φ′(v)L(hv) + φ′′(v)|∇v |2h + (φ(v) − vφ′(v))Lh.

Consequently, if φ′ �= 0 then

(4.2) − L(hv) = −L(hφ(v))
φ′(v)

+
φ′′(v)
φ′(v)

|∇v |2h +
( φ(v)
φ′(v)

− v
)
Lh.

Proof. For functions u ∈ C2(�), consider the following operator:

L̃u =
1
h2 divω(h2∇u) =

1
ωh2 div(ωh2∇u),

i.e., the weighted Laplace operator of the weighted manifold

(�, h2dm) = (�,ωh2dm0).

Using the product rule for divω, we obtain

L̃u = Lu + 2
〈∇h

h
,∇u

〉
.

On the other hand, by the product rule (2.2) for L we have

L(hu) = hLu + 2〈∇h,∇u〉 + uLh,

which implies the identity

(4.3) L(hu) = hL̃u + uLh.

Using (4.3) with u = φ(v) and applying the chain rule (2.3) for L̃, we obtain

L(hφ(v)) = hL̃φ(v) + φ(v)Lh

= h
(
φ′(v)L̃v + φ′′(v)|∇v |2) + φ(v)Lh

= φ′(v)(hL̃v + vLh) + φ′′(v)|∇v |2h + (φ(v) − vφ′(v))Lh

= φ′(v)L(hv) + φ′′(v)|∇v |2h + (φ(v) − vφ′(v))Lh,

which proves (4.1). Then (4.2) follows immediately from (4.1). �
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Lemma 4.2. Let φ be a C2 function on an interval I ⊂ R such that φ > 0
and φ′ > 0 in I . For two functions v, h ∈ C2(�), h > 0, set

u = hφ(v)

assuming that φ(v) is well-defined, that is, v(�) ⊂ I.

If the function u satisfies the inequality

(4.4) − Lu + Vuq ≥ −Lh

in �, where V ∈ C(�), q ∈ R\{0}, then the function v satisfies in � the inequality

(4.5) − L(hv) + hqV
φ(v)q

φ′(v)
≥

(φ(v) − 1
φ′(v)

− v
)
Lh +

φ′′(v)
φ′(v)

|∇v |2h.

If instead u satisfies

(4.6) − Lu + Vuq ≤ −Lh,

then (4.5) holds with ≤ instead of ≥.

Proof. It follows from u = hφ(v) and (4.4) that

(4.7) L(hφ(v)) ≤ hqVφ(u)q + Lh.

Substituting this into (4.2) we obtain

−L(hv) ≥ −hqVφ(u)q + Lh
φ′(v)

+
φ′′(v)
φ′(v)

|∇v |2h +
( φ(v)
φ′(v)

− v
)
Lh,

whence (4.5) follows. The second claim is proved in the same way. �

Lemma 4.3. Under the hypotheses of Lemma 4.2, assume in addition that

Lh ≤ 0 in � and 0 ∈ I . If in I

(4.8) φ(0) = 1, φ′ > 0, φ′′ ≥ 0,

then the function v satisfies the following differential inequality in �:

(4.9) − L(hv) + hqV
φ(v)q

φ′(v)
≥ 0.

If instead of (4.8) we have

(4.10) φ(0) = 1, φ′ > 0, φ′′ ≤ 0,

then v satisfies in �

(4.11) − L(hv) + hqV
φ(v)q

φ′(v)
≤ 0.
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Proof. Consider the case (4.8). By the mean value theorem, for any v ∈ I

there exists ξ ∈ [0, v] such that

φ(v) − 1
v

=
φ(v) − φ(0)

v
= φ′(ξ ).

By the convexity of φ we obtain φ′(ξ ) ≤ φ′(v) provided v > 0, that is

φ(v) − 1
v

≤ φ′(v) for v > 0,

and the opposite inequality in the case v < 0. It follows that, for all v ∈ I ,

φ(v) − 1
φ′(v)

− v ≤ 0.

Substituting into (4.5) and using also Lh ≤ 0 and (4.8), we obtain (4.9). The proof
in the case (4.10) is similar. �

Remark. Note that in the case Lh ≡ 0 the condition φ(0) = 1 in (4.8) and
(4.10) is not required as in this case the term(φ(v) − 1

φ′(v)
− v

)
Lh

vanishes identically.

Lemma 4.4. Suppose � is an open subset of M and F is a l.s.c. L-super-

harmonic function in �. Suppose F = F1 + F2, where

(4.12) lim inf
x→∂∞�

F1(x) ≥ 0 and F2 ≥ −P,

where P = G�μ is a Green potential of a positive measure μ in � so that P �≡ +∞
on every component of �. Then F ≥ 0 in �.

Proof. Indeed, the function F +P is obviously superharmonic, and F+P ≥ F1.
Hence lim infx→∂∞�(F + P)(x) ≥ 0, and by the standard form of the maximum
principle F + P ≥ 0 on � (cf. [3], [19, Sec. 5.4.3]). Hence F is a superharmonic
majorant of −P, whose least superharmonic majorant must be zero (with the same
proof as in the classical case [3, Theorem 4.2.6]), which yields F ≥ 0. �

The following version of the maximum principle will be frequently used.

Lemma 4.5. Let � be an open subset of M and let v ∈ C2(�) satisfy⎧⎨
⎩−Lv ≥ f in �,

lim infx→∂∞� v(x) ≥ 0,

where f ∈ C(�) such that G� f is well defined in �. Then for all x ∈ �

(4.13) v(x) ≥ G� f (x).
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Proof. If G� f− = +∞ then (4.13) is trivially satisfied. Hence, assume in the
sequel that G� f− < ∞. Let us approximate f frombelow by a sequence { fn} of C1

functions in � such that fn ↑ f as n → ∞ and G� f −
n < ∞ (where f ±

n := ( fn)±).
Moreover, we can also assume that f +

n is compactly supported in �.
Fix n and consider in � two functions

F1 = v + G� f −
n and F2 = −G� f +

n .

The hypotheses (4.12) of Lemma 4.4 are obviously satisfied. The function

F = v + G� f −
n − G� f +

n

is superharmonic in � since

−LF = −Lv + f −
n − f +

n = f − fn ≥ 0.

By Lemma 4.4 we conclude that F ≥ 0 in � and, hence,

v ≥ G� f +
n − G� f −

n .

Letting n → ∞ and using the convergence theorems we obtain (4.13). �

5 Proof of Theorem 3.2

We start the proof with a particular case of Theorem 3.2 where the idea of the proof
is most transparent and not buried in technical complications.

Proof of Theorem 3.2 for a specific case. We prove Theorem 3.2 in
the special case h > 0, u > 0 in �, and V ∈ C(�). In this case the function
G�(hqV )(x) is finite for all x ∈ �.

Choose a function φ (to be used in Lemma 4.3) to solve the initial value problem

(5.1) φ′(s) = φ(s)q, φ(0) = 1.

For q = 1 this gives

(5.2) φ(s) = es, s ∈ R,

while for q �= 1 we obtain

(5.3) φ(s) = [(1 − q)s + 1]
1

1−q , s ∈ Iq,

where the domain Iq of φ is given by

(5.4) Iq =

⎧⎪⎪⎨
⎪⎪⎩

(−∞, 1
q−1 ) if q > 1,

(−∞,+∞) if q = 1,

(− 1
1−q ,+∞) if q < 1

(see Figure 1).
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s0-1

q<0

0<q<1

q>1

1/(q-1)

Figure 1. Examples of the function φ in three cases q > 1, 0 < q < 1, q < 0. The
boxed points have the abscissa 1

q−1 .

Note that in all cases φ(Iq) = (0,∞). Also we have

(5.5) φ′(s) = [(1 − q)s + 1]
q

1−q , φ′′(s) = q[(1 − q)s + 1]
2q−1
1−q .

In particular, φ′ > 0 in Iq, whereas φ′′ > 0 for q > 0 and φ′′ < 0 for q < 0.
Consequently, the inverse function φ−1 is well-defined on (0,∞).

In the case 0 < q < 1 it will be convenient for us to extend the domain of φ to
all s ≤ − 1

1−q by setting φ(s) = 0 so that in this case we have for all s ∈ (−∞,∞)

(5.6) φ(s) = [(1 − q)s + 1]
1

1−q
+ .

Observe that all the estimates (3.4), (3.6), and (3.7) that we need to prove in the
case q > 0 can be written in the unified form

(5.7)
u(x)
h(x)

≥ φ
(

− 1
h(x)

G�(hqV )(x)
)
,

for all x ∈ �. Similarly, estimate (3.8) in the case q < 0 is equivalent to the
opposite inequality

(5.8)
u(x)
h(x)

≤ φ
(

− 1
h(x)

G�(hqV )(x)
)
.
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Since by hypothesis the functions h and u are positive in �, the function

(5.9) v = φ−1
(u

h

)

is well-defined in � and belongs to the class C2(�) ∩ C(�).
Consider first the case q > 0. In this case we will deduce (5.7) from the

following inequality for v :

(5.10) v(x) ≥ − 1
h(x)

G�(hqV )(x),

for all x ∈ �. Indeed, if (5.10) holds then, applying φ to both sides of (5.10) and
observing that φ(v) = u

h , we obtain (5.7). However, we should first verify that
both sides of (5.10) are in the domain of φ. In the cases q = 1 and 0 < q < 1
the (extended) domain of φ is (−∞,+∞), so that there is no problem. In the case
q > 1 we have v(x) ∈ Iq = (−∞, 1

q−1 ) by (5.9), which implies that the right-hand
side of (5.10), being bounded by v(x), is also in Iq. This argument also shows that
in �

1
q − 1

> − 1
h(x)

G�(hqV )(x),

which proves (3.5).
To prove (5.10) observe that the function u = hφ(v) satisfies

−Lu + Vuq ≥ −Lh ≥ 0

in � as required by Lemma 4.3. In the case q > 0 the function φ satisfies (4.8),
and we obtain by inequality (4.9) of Lemma 4.3 and by (5.1) that in �

(5.11) − L(hv) + hqV ≥ 0.

Since u ≥ h on ∂�, it follows that on ∂�

hv = hφ−1
(u
h

)
≥ hφ−1(1) = 0.

Since hv satisfies (5.11) and the boundary condition hv ≥ 0 on ∂�, we obtain by
the maximum principle that in �

(5.12) hv ≥ −G�(hqV ),

which is equivalent to (5.10).
Consider now the case q < 0. Then we have

−Lu + Vuq ≤ −Lh
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and, hence, obtain by inequality (4.11) of Lemma 4.3 and (5.1) that in �,

(5.13) − L(hv) + hqV ≤ 0.

In this case we have u ≤ h on ∂�, which implies hv ≤ 0 on ∂�. Using (5.13) with
this boundary condition, we obtain that in �

hv ≤ −G�(hqV )

and, hence,

(5.14) v ≤ −1
h
G�(hqV ).

Since v(x) ∈ Iq = (− 1
1−q ,+∞), it follows that both sides of (5.14) belong to Iq.

Consequently, we have

− 1
1 − q

< −1
h
G�(hqV ),

which proves (3.5). Applying φ to both sides of (5.14), we obtain (5.8) and, hence,
(3.8). �

Proof of Theorem 3.2 in the general case. We will use the same function
φ as defined above by (5.2)–(5.3), but it will be convenient to extend the domain
Iq of φ to the endpoints of the interval Iq by taking the limits of φ at the endpoints.
The extended domain of φ is therefore the interval

Iq :=

⎧⎪⎪⎨
⎪⎪⎩

[−∞, 1
q−1 ] if q > 1,

[−∞,+∞] if q = 1,

[− 1
1−q ,+∞] if q < 1.

Moreover, in the case 0 < q < 1 we extend φ(s) further to all s ∈ [−∞,+∞] by
using (5.6).

With these extensions the required estimates (3.4), (3.6) and (3.7) in the case
q > 0 can be written in the unified form (5.7) and the estimate (3.8) in the
form (5.8).

Consider first the case q > 0. For any ε > 0, set

uε = u + ε

and define the function vε in � via

vε = φ−1
(uε

h

)
,
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where φ is the same as above. Since uε and h are positive in �, the function vε is
well-defined in � and belongs to C2(�). Note also that vε(�) ⊂ Iq.

Applying identity (4.2) to functions h, vε ∈ C2(�), we obtain

−L(hvε) = −L(hφ(vε))
φ′(v)

+
φ′′(vε)
φ′(vε)

|∇vε|2h +
( φ(vε)
φ′(vε)

− vε

)
Lh.

Since
−L(hφ(vε)) = −Luε = −Lu,

it follows that

(5.15) − L(hvε) =
−Lu
φ′(vε)

+
φ′′(vε)
φ′(vε)

|∇vε|2h +
( φ(vε)
φ′(vε)

− vε

)
Lh.

Observe also that by (5.1)

(5.16) φ′(vε) = φ(vε)
q =

(uε

h

)q
.

Since q > 0, we have by (3.14)

−Lu ≥ −Vuq − Lh.

Substituting this and (5.16) into (5.15), we obtain

−L(hvε) ≥ −hq
( u
uε

)q
V +

φ′′(vε)
φ′(vε)

|∇vε|2h +
(φ(vε) − 1

φ′(vε)
− vε

)
Lh.

Since φ satisfies (4.8) and, hence, the last two terms on the right-hand side of the
preceding inequality are non-negative (cf. the proof of Lemma 4.3), we arrive at

(5.17) − L(hvε) ≥ −hq
( u

uε

)q
V in �.

In the case q �= 1, q > 0 we have by (5.3)

φ−1(s) =
s1−q − 1
1 − q

, s > 0,

and, hence, in �

hvε = hφ−1
(uε

h

)
=

1
1 − q

(hqu1−q
ε − h).

It follows that, for all y ∈ ∂�,

lim
x→y, x∈�

h(x)vε(x) =
1

1 − q
(hq(y)uε(y)

1−q − h(y)) ≥ 0,

since uε(y) ≥ h(y) + ε > h(y).
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For q = 1 we have φ−1(s) = ln s and, hence, in �

(5.18) hvε = h ln
(uε

h

)
.

For any y ∈ ∂� such that h(y) > 0, we obtain

lim
x→y, x∈�

h(x)vε(x) = h(y) ln
(uε(y)

h(y)

)
> 0,

and if h(y) = 0, then, using uε ≥ ε, we obtain from (5.18)

(5.19) lim
x→y, x∈�

h(x)vε(x) = 0.

Therefore, in the case q > 0, we can extend hvε by continuity to � so that
hvε ∈ C(�) ∩ C2(�) and

hvε ≥ 0 on ∂�.

Note that hq( u
uε

)qV ∈ C(�) and G�(hq( u
uε

)qV ) is well-defined in �, since

G�
(
hq
( u
uε

)q
V±

)
≤ G�(hqV±),

and G�(hqV ) is well-defined by hypothesis. Hence, by the maximum principle of
Lemma 4.5, we conclude from (5.17) and (5.19) that

hvε ≥ −G�
(
hq
( u
uε

)q
V
)

and, hence,

(5.20) vε ≥ −1
h
G�

(
hq
( u
uε

)q
V
)

in �.

Assume now q ≥ 1. Assume also that G�(hqV+) �≡ +∞ in �, because
otherwise, (3.4), (3.5) and (3.6) are trivially satisfied, and so there is nothing to
prove. Let us first show that under these assumptions u > 0 in �. Observe that
if G�(hqV+) �≡ +∞ in �, then G�(hqV+)(x) < +∞ for every x ∈ �. Indeed, for
an open set �′ � � with smooth boundary, fix a function η ∈ C∞

0 (�) such that
η = 1 in �′. Then the function G�(hqV+) − G�(ηhqV+) is harmonic in �′, and
G�(ηhqV+) is bounded in � since ηhqV+ ∈ C(�). Consequently, G�(hqV+) is
finite in �′, and hence in �.

It follows from (5.20) and u ≤ uε, that

(5.21) vε ≥ −1
h
G�(hqV+).
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Since the value vε = φ−1( uε

h ) belongs to Iq and the value of the right hand side of
(5.21) lies in [−∞, 0], which, in the present case q ≥ 1, is contained in Iq, we can
apply φ to both sides of this inequality and obtain

(5.22) uε ≥ hφ
(

− G�(hqV+)
h

)
.

Letting ε → 0 we obtain

u ≥ hφ
(

− G�(hqV+)
h

)
in �.

Since G�(hqV+) < ∞, it follows that u > 0 in � as was claimed.
Let us return to (5.20). Since vε ∈ Iq and, hence, the right-hand side of (5.20)

lies in Iq, we can apply φ to both sides of this inequality and obtain

(5.23) uε ≥ hφ
(

− G�(hq( u
uε

)qV )

h

)
in �.

The positivity of u in � implies u
uε

↑ 1 in � as ε → 0, whence by the monotone
convergence theorem,

(5.24) G�
(
hq
( u

uε

)q
V
)

→ G�(hqV ) as ε → 0

pointwise in �. In particular, we have, for any x ∈ �,

(5.25) − G�(hqV )(x)
h(x)

∈ I q.

Letting ε → 0 in (5.23), we deduce, for q ≥ 1,

u ≥ hφ
(

− G�(hqV )
h

)
in �,

which proves (3.4) and (3.6). In the case q > 1, it follows that

φ
(

− G�(hqV )
h

)
≤ u

h
< ∞

and, hence,

−G�(hqV )
h

<
1

q − 1
,

which proves (3.5).
Assume now 0 < q < 1. We employ the same argument up to (5.20). The

extended function φ is defined in this case on [−∞,+∞] by (5.6). Applying φ to
both sides of (5.20) we obtain

(5.26) uε ≥ hφ
(

− 1
h
G�

(
hq
( u
uε

)q
V
))

.
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In this case u can actually vanish inside �. Letting ε → 0, we see that
u
uε

(x) ↑ 1 if u(x) > 0 and u
uε

= 0 if u(x) = 0, that is

u
uε

↑ χu pointwise in �.

Passing to the limit in (5.26) as ε → 0 and using the monotone convergence
theorem gives

(5.27) u ≥ hφ
(

− 1
h
G�(χuh

qV )
)

in �,

which is equivalent to (3.7).
Consider the last case q < 0. We define for any ε > 0 the function vε in a

slightly different way as follows:

vε = φ−1
( u
hε

)
,

where hε = h + ε. Since u
hε

> 0 in �, we obtain vε ∈ C2(�). The function

(5.28) φ−1(s) =
s1−q − 1
1 − q

,

initially defined for s > 0, extends continuously to s = 0 by setting φ−1(0) = − 1
1−q .

Since u
hε

is continuous and non-negative in �, we obtain vε ∈ C(�). Moreover,
since on the boundary ∂� we have u ≤ h < hε, it follows that vε ≤ φ−1(1) = 0
and, hence,

(5.29) hεvε ≤ 0 on ∂�.

Since Lhε ≤ 0 and u = hεφ(vε) satisfies by (3.15)

−Lu + Vuq ≤ −Lhε,

we obtain by inequality (4.11) of Lemma 4.3 and (5.1) that

(5.30) − L(hεvε) + hq
ε V ≤ 0 in �.

Since q < 0 and
G�(hq

εV±) ≤ G�(hqV±),

it follows that G�(hq
εV ) is well-defined. Hence, we obtain from (5.30) and (5.29)

by the maximum principle of Lemma 4.5 that

hεvε ≤ −G�(hq
εV ) in �,
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that is,

(5.31) vε ≤ −G�(hq
εV )

hε
in �.

Since vε(�) ⊂ Iq = (− 1
1−q ,∞), it follows that

(5.32) − G�(hq
εV )

hε
∈
(

− 1
1 − q

,+∞
]

⊂ I q.

Applying φ to both sides of (5.31), we obtain

φ(vε) ≤ φ
(

− G�(hq
εV )

hε

)
in �,

which is equivalent to

u ≤ hε

[
1 − (1 − q)

G�(hq
εV )

hε

] 1
1−q

in �

and, hence, to

(5.33) u ≤ hε

[
1 − (1 − q)

G�(hq
εV+)

hε
+ (1 − q)

G�(hq
εV−)

hε

] 1
1−q

.

Note that the expression in the square brackets here belongs to (0,+∞] by (5.32).
In particular, we have G�(hq

εV+) < ∞. Since 0 < h < hε in � and q < 0, we see
that in �

(5.34)
G�(hq

εV−)
hε

≤ G�(hqV−)
h

.

Since hq
ε ↑ hq as ε → 0, we obtain by the monotone convergence theorem that

(5.35) G�(hq
εV+) → G�(hqV+) pointwise in �.

Since by hypothesis G�(hqV ) is well-defined, we obtain from (5.33), (5.34) and
(5.35) as ε → 0 that

u ≤ h
[
1 − (1 − q)

G�(hqV )
h

] 1
1−q

in �.

By construction the expression in the square brackets here belongs to [0,+∞].
Since by hypothesis u > 0 in �, we obtain that this expression cannot vanish,
which proves (3.5) in this case. �
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6 Proof of Theorem 3.1

Consider first the case q > 0. By hypothesis, the function f is continuous and
non-negative in �. In the proof we need f to be locally Hölder continuous because
in this case the function GU f is of the class C2 for any relatively compact domain
U ⊂ �.

Let us approximate a given continuous function f in � from below by a
sequence { fk}∞k =1 of C1 functions fk so that

(6.1) fk ↑ f as k → ∞

pointwise. Replacing each fk by ( fk)+, we obtain a sequence { fk} of non-negative
locally Lipschitz functions satisfying (6.1).

Set hk = G� fk and observe that hk ≤ h < ∞ and hk ↑ h pointwise in � as
k → ∞. Since

G�(hq
kV±) ≤ G�(hqV±),

we see that one of the values G�(hq
kV±) is finite and, hence, G�(hq

kV ) is well-
defined. Since

G�(hq
kV±) → G�(hqV±),

we obtain that

(6.2) G�(hq
kV ) → G�(hqV )

pointwise in �. The same is true for G�(χuh
q
kV ) in the case (iii) .

Since fk ≤ f , we obtain that u satisfies −Lu + Vuq ≥ fk in �. Therefore, if
statements (i), (ii), and (iii) are already proved for locally Lipschitz functions f ,
then we obtain the corresponding lower bounds (3.4), (3.6), and (3.7) of u with hk

in place of h. Letting k → ∞ and using (6.2), we obtain the same estimates of u

via h as claimed.

In the case (ii) we still need to prove (3.5) for h assuming that it is true with hk

in place of h. Passing to the limit as k → ∞, we obtain a non-strict inequality

(6.3) − (q − 1)G�(hqV )(x) ≤ h(x).

However, estimate (3.6) implies that the expression in the square brackets in (3.6)
cannot vanish, which yields a strict inequality in (6.3), that is, (3.5).
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Continuing the proof in the case q > 0, we can assume now that f is
locally Hölder (even Lipschitz) continuous. Let {�n}∞n=1 be an exhaustion of �

by relatively compact, connected, open sets �n � � with smooth boundaries. Set
hn = G�n f . Since f is locally Hölder continuous and ∂�n is regular, we have
hn ∈ C2(�n) ∩ C(�n) and ⎧⎨

⎩−Lhn = f in �n,

hn = 0 on ∂�n.

We can always take n large enough so that f �≡ 0 in �n and, hence, 0 < hn < ∞
in �n.

Observe that by the monotone convergence theorem

hn ↑ h := G� f as n → ∞.

Fix a point x ∈ � and let n be so large that x ∈ �n. Since u satisfies (3.2) in �, it
follows that ⎧⎨

⎩−Lu + Vuq ≥ f = −Lhn in �n,

u ≥ 0 = hn on ∂�n.

Applying Theorem 3.2 in �n we obtain

(6.4) u(x) ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hn(x)e
− G�n (hnV )(x)

hn(x) , if q = 1,

hn(x)
[
1 + (q − 1)G�n (hq

nV )(x)
hn(x)

]− 1
q−1

, if q > 1,

hn(x)
[
1 + (q − 1)G�n (χnh

q
nV )(x)

hn(x)

]− 1
q−1

+
, if 0 < q < 1,

where χn := χu|�n
. Since hq

n ↑ hq as n → ∞, we obtain by the monotone
convergence theorem

(6.5) lim
n→∞ G�n(hq

nV±)(x) = G�(hqV±)(x)

(and a similar identity for the term with χnhq
nV ). Passing to the limit in (6.4) as

n → ∞, we arrive at

(6.6) u(x) ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h(x)e− G�(hV )(x)
h(x) , if q = 1,

h(x)
[
1 + (q − 1)G�(hqV )(x)

h(x)

]− 1
q−1

, if q > 1,

h(x)
[
1 + (q − 1)G�(χuhqV )(x)

h(x)

]− 1
q−1

+
, if 0 < q < 1,

which proves estimates (3.6), (3.7), and (3.8).
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In the case q > 1 the expression in square brackets in (6.6) is non-negative as
the limit of that of (6.4). However, since the exponent − 1

q−1 is in this case negative

and u(x)
h(x) < ∞, it actually has to be positive, which proves (3.5).

Consider now the case q < 0. In this case we approximate f from above by a
sequence of C1 functions fk such that fk ↓ f and set hk = G� fk . The function f1
should be chosen so close to f that h1 < ∞. Then hk ↓ h pointwise in �, and,
since q < 0, we have hq

k ↑ hq as k → ∞. The same argument as in the case
q > 0 shows that G�(hq

kV ) is well-defined and (6.2) holds. Since fk ≥ f , the
function u satisfies in � the inequality −Lu + Vuq ≤ fk . If (iv) is already proved
for locally Hölder continuous f , then we conclude that (3.8) holds with hk instead
of h. Letting k → ∞, we complete the proof (condition (3.5) is proved in the same
way as in the case q > 0).

Hence, we assume in what follows that f is locally Hölder continuous. In
this case the proof goes the same way as in Theorem 3.2. Observe first that
G� f ∈ C2(�). Indeed, for any relatively compact open set �′ ⊂ � with smooth
boundary it is known that G�′

f ∈ C2(�′). Since the difference G� f − G�′
f is

harmonic in �′, it follows that it is smooth in �′, which implies that G� f ∈ C2(�′).
By exhausting � with relatively compact open subsets, we obtain G� f ∈ C2(�)
as claimed.

For any ε > 0 set hε = ε + G� f, so that −Lhε = f . Since u, hε > 0 in �, the
function vε = φ−1

(
u
hε

)
belongs to C2(�) and, similarly to the proof of Theorem

3.2 (cf. (5.30)), we obtain the following inequality in �:

−L(hεvε) + hq
εV ≤ 0.

Note that in this case we have by (5.28)

hεvε = hεφ
−1

( u
hε

)
= hq

ε

u1−q − h1−q
ε

1 − q
.

Using the boundary condition in (3.3) and hε ≥ ε, we obtain

lim sup
y→∂∞�

(hεvε)(y) ≤ 0.

Applying Lemma 4.5 to −hεvε we obtain

−hεvε ≥ G�(hq
εV ).

Letting ε → 0 and arguing as in the proof of Theorem 3.2, we finish the proof.

Remark. Note that (6.4) implies immediately the lower bounds of Theorem
3.1 (i), (ii), and (iii) by passing to the limit as n → ∞, provided we use a relaxed
definition of the expression G�(hqV ) given by (3.9). A similar observation holds
also for the upper estimate of (iv).
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7 Proof of Theorem 3.3

The proof is similar to that of Theorem 3.2, but simpler. Let {�n} be an exhaustion
of � as above.

Assume first q ≥ 1 and define for any n a function hn ∈ C2(�n) ∩ C(�) as the
solution of ⎧⎨

⎩Lhn = 0 in �n,

hn = u on ∂�n.

In cases (i) and (ii), we have hn > 0 in �n for large enough n by (3.22) and (3.24)
respectively. By Theorem3.2 it follows that u(x) > 0 for all x ∈ �n. Consequently,
u(x) > 0 for all x ∈ �.

In the case q = 1, set h ≡ 1, v = ln u. As in the proof of Theorem 3.2
(cf. (5.11)), we obtain

−Lv + V ≥ 0.

Since by (3.22) we have lim infy→∂∞� v(y) ≥ 0, we conclude by Lemma 4.5 that

(7.1) ln u(x) = v(x) ≥ −G�V (x),

which proves (3.23).
In the case q > 1, we set νn = inf∂�n u, where by (3.24) we can assume

limn→∞ νn = +∞. Then by Theorem 3.2 with h ≡ νn, we obtain in �n

(7.2) u ≥ νn[1 + (q − 1)νq−1
n G�nV ]−

1
q−1 = [ν−(q−1)

n + (q − 1)G�nV ]−
1

q−1

where

(7.3) − (q − 1)G�nV < ν−(q−1)
n in �n.

It follows from (7.3) that G�V−(x) �= +∞, since otherwise both G�V±(x) = +∞.
Hence, by letting n → +∞ in (7.3), we see that G�V (x) ≥ 0, and consequently
by the monotone convergence theorem (7.2) yields

u(x) ≥ [(q − 1)G�V (x)]−
1

q−1 .

Since u(x) < ∞, we actually have a strict inequality G�V (x) > 0.
Consider now the case 0 < q < 1. We set

φ(v) = [(1 − q)v]
1

1−q , v ∈ Iq = (0,+∞).

Then clearly

φ′(v) = [(1 − q)v]
q

1−q > 0, φ′′(v) = q[(1 − q)v]
2q−1
1−q > 0,
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and (5.1) holds. For a sequence εn ↓ 0, we set un = u + εn, and define vn by

vn = φ−1(un), n = 1, 2, . . .

Using Lemma 4.3 in the case h ≡ 1 so that Lh = 0 (in this case the condition
φ(0) = 1 in (4.8) is not required, see Remark after the proof of Lemma 4.3), we
obtain as in the proof of Theorem 3.2

−Lvn +
( u

un

)q
V ≥ 0.

Since vn > 0 on ∂�n, it follows from the maximum principle that

(7.4) vn ≥ −G�n

(( u
un

)q
V
)

in �n.

As n → ∞ we obtain vn → φ−1(u), and

lim
n→∞ G�n

(( u
un

)q
V±

)
= G�(χ�+V±)

by the monotone convergence theorem. Passing to the limit in (7.4) as n → ∞
gives

φ−1(u) ≥ −G�(χ�+V ),

which is equivalent to (3.25).
Finally, let q < 0. We argue as in the case q > 1, setting νn = inf∂�n u where in

view of (3.27) we can assume limn→∞ νn = 0. Then by Theorem 3.2 with h ≡ νn,

(7.5) u(x) ≤ [ν1−q
n − (1 − q)G�nV (x)]

1
1−q in �n,

where
(1 − q) G�nV (x) < ν1−q

n in �n.

It follows as in the case q > 1 that GV+(x) �= +∞, and GV+(x) ≤ GV−(x).
Letting n → +∞ in (7.5), we deduce (3.28), which yields the strict inequality
GV+(x) < GV−(x), since u(x) > 0.

8 Proof of Theorems 3.4 and 3.5

Proof of Theorem 3.4. We prove only statement (ii) (for q < 0) since
statement (i) (for q > 1) is proved in a similar but simpler way. We use the
method of sub- and super-solutions, understood in the classical sense: if there exist
u, u ∈ C(�) ∩ C2(�) such that 0 < u ≤ u in �, u = u = 0 on ∂�, and

−Lu + Vuq ≤ f, −Lu + Vuq ≥ f in �,
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then there exists a solution u ∈ C(�) ∩ C2(�) to (3.29) such that u ≤ u ≤ u. (See
[13], Theorem 1.2.3, in the case M = R

n and L = �; the same proof which relies
on standard interior regularity estimates works in the general case.)

Clearly, setting u = h = G� f ∈ C(�) ∩ C2(�) gives a supersolution since
V ≥ 0, and consequently

−Lu + Vuq ≥ −Lu = f, u = 0 on ∂�.

The main problem is to find a subsolution which we define by

u = h − λq G�(hqV ),

where λ > 0 is a constant to be determined later. Using (3.32) we see that u > 0
provided

(8.1)
(
1 − 1

q

)q 1
1 − q

< λ−q.

Under the assumptions imposed on f it follows that h ∈ C(�) ∩ C2(�). We
need to show that u ∈ C(�) ∩ C2(�). As in the proof of Theorem 3.1 (iv),
let �′ be an arbitrary relatively compact subset of � with smooth boundary. Then
G�(hqV ) − G�′

(hqV ) is a harmonic function in �′. Since h > 0 in �′, it follows
that hqV ∈ C(�) and is locally Hölder-continuous. Hence, G�′

(hqV ) ∈ C2(�′),
and consequently G�(hqV ) ∈ C2(�′) as well. To show that G�(hqV ) ∈ C(�),
notice that h vanishes continuously on ∂�. Using (3.32), we deduce that the same
is true for G�(hqV ).

It remains to show that −Lu + Vuq ≤ f . Since q < 0 and hence uq ≥ hq, it
follows that

−Lu + Vuq = f − λq hqV + uqV ≤ f,

provided
λ h ≤ u = h − λq G�(hqV ),

or equivalently,
G�(hqV ) ≤ λ−q(1 − λ)h.

Optimizing over all λ ∈ (0, 1), we obtain that the maximum of the right-hand side
is obtained for λ = 1

1−1/q , which coincides with condition (3.32),

G�(hqV ) ≤
(
1 − 1

q

)q 1
1 − q

h.

Notice that (8.1) obviously holds with this choice of λ as well. Thus, u is a classical
subsolution which is positive in �, and u ≤ u as desired. Consequently, there exists
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a classical solution u such that u ≤ u ≤ u. Moreover,

u ≥ u = h − λqG�(hqV ) = h −
(
1 − 1

q

)−q
G�(hqV ) ≥ 1

1 − 1/q
h,

which proves the lower bound for u in (3.33).
The upper bound was obtained above in Theorem 3.1(iv). �

Proof of Theorem 3.5. The case q > 1, V ≤ 0 is considered in [27] and
[5] (see also [31]), so we give a proof only in the case q < 0, V ≥ 0. Let us assume
that

(8.2) K (hqV )(x) ≤ a h(x) dm-a.e. in �,

for some constant a > 0, where h satisfies (3.35).
Set u0 = h, and construct a sequence of consecutive iterations uk by

uk+1 + K (uq
kV ) = h, k = 0, 1, 2, . . .

Clearly, by (8.2),

(1 − a)h(x) ≤ u1(x) = h(x) − K (hqV )(x) ≤ h(x) = u0(x).

We set b0 = 1, b1 = 1 − a, and continue the argument by induction. Suppose that
for some k = 1, 2, . . .

(8.3) bk h(x) ≤ uk(x) ≤ uk−1(x) in �.

Since q < 0 and V ≥ 0 we deduce, using estimates (8.2) and (8.3), that

(1 − a bq
k) h(x) ≤ h(x) − bq

k K (hqV )(x) ≤ h(x) − K (uq
kV )(x) = uk+1(x).

On the other hand,

uk+1(x) = h(x) − K (uq
kV )(x) ≤ h(x) − K (uq

k−1V )(x) = uk(x).

Hence,
bk+1 h(x) ≤ uk+1(x) ≤ uk(x), where bk+1 = 1 − a bq

k .

We need to pick a > 0 small enough, so that bk ↓ b, where b > 0, and b = 1−a bq.
In other words, we are solving the equation

(8.4)
1 − x

a
= xq

by consecutive iterations bk+1 = 1 − abq
k starting from the initial value b0 = 1.

Clearly, this equation has a solution 0 < x < 1 if and only if 0 < a ≤ a∗,
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where y = 1−x
a∗ is the tangent line to the convex curve y = xq. Here the optimal

value a∗ is found by equating the derivatives, and solving the system of equations

xq
∗ =

1 − x∗
a

, qxq−1
∗ = − 1

a∗
,

which gives

a∗ =
(
1 − 1

q

)q 1
1 − q

, x∗ =
1

1 − 1
q

.

Letting a = a∗, we see that by the convexity of y = xq, (8.4) has a unique
solution x∗ = 1

1− 1
q
, and by induction, x∗ < bk+1 < bk < 1, so that

bk ↓ b = x∗ =
1

1 − 1
q

> 0.

From this it follows that (8.3) holds for all k = 1, 2, . . .. Passing to the limit as
k → ∞, and using the monotone convergence theorem, shows that u = limk→∞ uk

is a solution of (3.34) such that

b h(x) ≤ u(x) ≤ u0(x) = h(x).

Moreover, it is easy to see by construction that u is a maximal solution, that is,
if ũ is another non-negative solution to (3.34), then ũ ≤ uk for every k = 0, 1, 2, . . .,
and consequently ũ ≤ u in �. �

9 Examples

In this section, we consider several examples which demonstrate various phenom-
ena that may affect behavior of solutions to the equations considered above. In
the linear case q = 1 (Schrödinger equations), many examples concerning possible
behavior of Green’s functions on domains and manifolds for V ≥ 0 are given in
[20]; the case V ≤ 0 is considered in [14] and [15] (see also [10], [21], [29], and
[30]). In the superlinear case for q > 1 and V ≥ 0 we refer to [5] and [27] for
existence results as well as pointwise estimates of solutions, and many examples.
The case q > 1 and V ≤ 0 (equations with absorption) is studied in [28]. In the
sublinear case 0 < q < 1, existence of bounded positive solutions, along with
uniqueness, and pointwise estimates of bounded solutions on R

n were obtained in
[6]. Recently, sharp existence results and matching two-sided estimates for weak
positive solutions (not necessarily bounded) in R

n were given in [8]; see also [9]
for a characterization of finite energy solutions.



ESTIMATES OF SOLUTIONS 595

Here we give an example involving a rapidly oscillating V in the case q = 1, and
also illustrate various phenomena with regards to pointwise behavior of solutions
in the less studied case q < 0, for both V ≥ 0 and V < 0. (Related results for
q < 0 were obtained in [4], [13], [16] and [17].)

Example 1. We consider first the linear case q = 1 in Theorem 3.1:

(9.1) − u′′ + V u = f in �,

for � = (0, 1), M = R
1. Let f = 1, and h = Gf = 1

2x(1 − x). The corresponding
Green function is G(x, y) = min(x(1 − y), y(1 − x)).

We start with a positive solution with zero boundary values to (9.1),

(9.2) u(x) = x(1 − x)
(
1 + x sin

( π

xα

))
, x ∈ (0, 1), α > 0.

Then

(9.3) u′(x) = x(1 − x)
(
1 + x sin

( π

xα

))
, x ∈ (0, 1), α > 0.

The corresponding V = u′′+1
u is found from (9.1),

(9.4) V = V1 + V2 + V3,

where

V1(x) = −α2π2x−2α−1 sin( π
xα )

1 + x sin( π
xα )

,

V2(x) =
α(α − 1)(1 − 2x)πx−α−1 cos( π

xα ) − απ(1 − 2x)x−α cos( π
xα )

1 + x sin( π
xα )

,

V3(x) =
(1 − 2x) sin( π

xα )

1 + x sin( π
xα )

− 2 sin( π
xα )

(1 − x)(1 + x sin( π
xα ))

.

Thus, V has a highly oscillatory behavior at the endpoint x = 0, where V1 is the
leading term. Nevertheless, due to the cancellation phenomenon, we have u 
 h.

For 0 < α < 1, G(hV ) is well-defined, and Theorem 3.1 gives the lower bound

(9.5) u ≥ h e− G(hV )
h ,

which is sharp since G(hV )
h is a bounded function on �. Indeed, it is easy to see that

the term G(hV3) is harmless since hV3 is bounded in �, and hence G(hV3) 
 h at
the endpoints. To estimate G(hV2), notice that |V2(x)| ≤ Cx−α−1, and consequently
by direct estimates

(9.6) G(h|V2|)(x) = O(x) as x → 0+.
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It remains to note that due to cancellation, for 0 < α < 1,

(9.7) G(hV1)(x) = O(x) as x → 0+

as well. This can be verified by looking at the asymptotics of the integrals in the
expression

(9.8) G(hV1)(x) = (1 − x)
∫ x

0

y2(1 − y)
2

V1(y)dy + x
∫ 1

x

y(1 − y)2

2
V1(y)dy.

Clearly, G(hV1)(x) 
 1 − x as x → 1−. For 0 < α < 1, it is not difficult to see
using integration by parts that G(hV1)(x) 
 x as x → 0+; we omit the details here.

If α = 1, then G(hV ) is notwell-defined, and the first term on the right-hand side
of (9.8) has to be understood as an improper integral which asymptotically behaves
like x as x → 0+. However, the second term actually has an extra logarithmic factor,
so that

G(hV ) 
 x log
(1

x

)
as x → 0+.

This shows that the lower bound u(x) ≥ h e− G(hV )
h is not sharp in this case.

Example 2. Let q < 0, and let � be a bounded domain with smooth boundary
in R

n. Consider inequality (3.3) with L = �, f ≡ 1, and

V (x) =
λ

d�(x)β
, x ∈ �, λ > 0, β > 0,

and the corresponding equation

(9.9) − �u +
λ

d�(x)β
uq = 1, u > 0 in �.

We set

(9.10) h(x) = G� f (x) 
 d�(x), x ∈ �.

Theorem 3.1 (iv) gives the following necessary condition:

(9.11) (1 − q)
G�(hqV )(x)

h(x)
< 1,

for the existence of a positive solution u to (3.3) with zero boundary values.
It is easy to see via direct estimates of the Green kernel that, for β ≥ 2 + q, we

have G�(hqV ) ≡ +∞. For 1 + q < β < 2 + q,

G�(hqV )(x)
h(x)


 d�(x)1+q−β, x ∈ �.
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For β = 1 + q, we have

G�(hqV )(x)
h(x)


 log
A

d�(x)
, x ∈ �,

where A = 2 diam(�). Hence, for β ≥ 1 + q, condition (9.11) fails, and (3.3)
has no positive solutions u ∈ C2(�) ∩ C(�) with zero boundary values. This
non-existence result was proved earlier in [13], Theorem 2.1.

In the case 0 < β < 1 + q, direct estimates give

(9.12) (1 − q)
G�(hqV )(x)

h(x)
≤ c λ,

where c = c(�, q, β) is a positive constant.
Theorem 3.1 (iv) implies that if (3.3) has a solution u with zero boundary

values, then actually (9.12) holds with cλ < 1, and

u(x) ≤ h(x)
[
1 − (1 − q)

G�(hqV )(x)
h(x)

] 1
1−q

, x ∈ �,

by estimate (3.8).
Moreover, if (9.12) holds with c λ ≤ (

1− 1
q

)q, then by Theorem 3.4 there exists
a solution ũ to (9.9) with zero boundary values which satisfies the lower bound

ũ(x) ≥ 1

1 − 1
q

h(x), x ∈ �.

Hence, ũ(x) 
 d�(x), and our general upper bound (3.8) is sharp in this case as
well.

In Example 4, we will demonstrate that due to a non-uniqueness phenomenon,
equations of the type (9.9) may have other solutions which violate the lower bound
u(x) ≥ c d�(x).

Example 3. Let q < 0, and let � be a bounded smooth domain in R
n. We

consider (3.3) with f ≡ 1, and

V (x) = − 1
d�(x)β

, β > 0,

where d�(x) = dist(x, ∂�), together with the corresponding equation

(9.13) − �u − 1
d�(x)β

uq = 1, u > 0 in �.

As in the previous example, set

(9.14) h(x) = G� f (x) 
 d�(x), x ∈ �,

and A = 2 diam(�).
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Theorem 3.1 (iv) gives the following upper bounds for all positive solutions
u ∈ C2(�) ∩ C(�) to (3.3) with zero boundary values: for all x ∈ �,

(a) u(x) ≤ C d�(x) if 0 < β < 1 + q;
(b) u(x) ≤ C d�(x) log

1
1−q

(
A

d�(x)

)
if β = 1 + q;

(c) u(x) ≤ C d�(x)
2−β
1−q if 1 + q < β < 2 + q.

The corresponding lower bounds for positive supersolutions, not necessarily
with zero boundary values, were established in [16], Proposition 2.6 (see also [13],
Theorem 3.5): if u ∈ C2(�) ∩ C(�), and

(9.15) − �u − 1

dβ
�

uq ≥ 0, u > 0 in �,

then, for all x ∈ �,
(a′) u(x) ≥ c d�(x) if 0 < β < 1 + q;
(b′) u(x) ≥ c d�(x) log

1
1−q

(
A

d�(x)

)
if β = 1 + q;

(c′) u(x) ≥ c d�(x)
2−β
1−q if 1 + q < β < 2.

There are no positive solutions u to (9.15) in the case β ≥ 2. For 0 < β < 2,
there exists a solution u ∈ C2(�) ∩ C(�) with zero boundary values to equation
(9.13) which satisfies both the upper and lower bounds given above.

Thus, our general upper bound (3.8) in Theorem 3.1 (iv) is sharp in all cases,
except for 2 + q ≤ β < 2, where G(hqV ) ≡ −∞, so that (3.8) becomes trivial.

Example 4. In this example, we encounter the non-uniqueness phenomenon
for classical solutions with zero boundary conditions to semilinear equations with
negative exponents q < 0, where obviously our estimates are not expected to be
sharp for all solutions. For simplicity, we consider the one-dimensional case,
although similar examples are easy to construct in higher dimensions, with coeffi-
cients V depending only on d�(x).

Consider the following semilinear equation:

(9.16) − u′′ + V uq = f in �,

for q < 0, � = (−1, 1), with zero boundary conditions u(±1) = 0. Set f ≡ 1 and

h = Gf =
1
2
(1 − x2).

The corresponding Green function is

G(x, y) = min
(
(x + 1)(1 − y), (y + 1)(1 − x)

)
.

Consider a positive solution with zero boundary values to (9.16)given by

(9.17) u(x) = λ (1 − x2)γ, x ∈ (0, 1), λ > 0, γ > 0.
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Then the corresponding V = u′′+1
uq is found from (9.16),

V = V1 + V2 + V3,

where
V1(x) = 4λ1−q γ(γ − 1)(1 − x2)γ−2−γq,

V2(x) = −2λ1−q γ(2γ − 1)(1 − x2)γ−1−γq,

V3(x) = λ−q(1 − x2)−γq.

In the case γ = 1, clearly, V1 ≡ 0, and

V (x) = λ−q(1 − 2λ)(1 − x2)−q.

Then
G(hqV )(x)

h(x)
= (2λ)−q(1 − 2λ), x ∈ �.

Our estimate (3.8) is sharp in both cases, V ≤ 0 (λ ≥ 1
2 ), and V ≥ 0 (0 < λ < 1

2 ):

u(x) ≤ 1 − x2

2

[
1 − (1 − q)(2λ)−q(1 − 2λ)

] 1
1−q ,

where the constant in square brackets is positive for any choice of λ > 0, q < 0.
In the case γ �= 1 the situation is more complicated. Clearly, V1 is now the most

singular term.
For γ > 1, the behavior of the solution u given by (9.17) at the endpoints

x = ±1 is too good to be captured by the upper estimate (3.8); obviously, it is not
sharp for this particular u. On the other hand, notice that V > 0 if 2λγ < 1; for
γ > 1, it is easy to see by direct estimates that

(9.18)
G(hqV )(x)

h(x)
≤ Cλ−q, x ∈ �.

Since there exists a positive solution, Theorem 3.1 (iv) implies that actually (9.18)
holds with Cλ−q < 1

1−q .
For 1 < γ < 1

2λ
, which ensures that V > 0, every positive solution u with zero

boundary values obviously satisfies the upper bound

u ≤ h in ,�.

Moreover, if (9.18) holdswith Cλ−q ≤ (
1− 1

q

)q 1
1−q , then, byTheorem3.4, equation

(9.16) has a solution ũ such that ũ 
 h, for which the upper bound (3.8) is indeed
sharp.

If 0 < γ ≤ − q
1−q , then V is too singular at the endpoints, so that G(hqV ) ≡ +∞,

and (3.8) trivializes.
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In the remaining case − q
1−q < γ < 1, it is easy to see that

G(hqV )(x)
h(x)


 (1 − x2)−q+γ−γq−1, x ∈ �,

which blows up as x → ±1. In this case, (3.8) gives u(x) ≤ c(1 − x2)γ, which is
again sharp.
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[5] H. Brezis and X. Cabré, Some simple nonlinear PDE’s without solutions, Boll. Unione Mat. Ital.
Sez. B Artic. Ric. Mat. (8) 1 (1998), 223–262.

[6] H. Brezis and S. Kamin, Sublinear elliptic equations in Rn, Manuscripta Math. 74 (1992), 87–106.

[7] H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986),
55–64.

[8] D. T. Cao and I. E. Verbitsky, Finite energy solutions of quasilinear elliptic equations with
sub-natural growth terms, Calc. Var. Partial Differential Equations 52 (2015), 529–546.

[9] D. T. Cao and I. E. Verbitsky, Nonlinear elliptic equations and intrinsic potentials of Wolff type,
J. Funct. Anal. 272 (2017), 112–165.

[10] K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation, Springer-Verlag,
Berin, 1995.

[11] J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, Berlin,
2001.

[12] E. B. Dynkin, Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations,
American Mathematical Society, Providence, RI, 2004.

[13] L. Dupaigne, M. Ghergu, and V. Radulescu, Lane–Emden–Fowler equations with convection and
singular potential, J. Math. Pures Appl. (9) 87 (2007), 563–581.

[14] M. Frazier and I. E. Verbitsky, Global Green’s function estimates, in Around the Research of
Vladimir Maz’ya III, Analysis and Applications, Springer, Berlin, 2010, pp. 105–152.

[15] M. Frazier, F. Nazarov, and I. E. Verbitsky, Global estimates for kernels of Neumann series and
Green’s functions, J. London Math. Soc. (2) 90 (2014), 903–918.

[16] M. Ghergu, Lane–Emden systems with negative exponents, J. Funct. Anal. 258 (2010), 3295–
3318.

[17] M. Ghergu and V. Radulescu, Singular Elliptic Problems. Bifurcation and Asymptotic Analysis,
Oxford University Press, Oxford, 2008.

[18] A. Grigor’yan, Heat kernels on weighted manifolds and applications, in The Ubiquitous Heat
Kernel, Contemp. Math. 398 (2006), 93–191.

[19] A. Grigor’yan, Heat Kernel and Analysis on Manifolds, American Mathematical Society, Provi-
dence, RI, 2009.



ESTIMATES OF SOLUTIONS 601

[20] A. Grigor’yan and W. Hansen, Lower estimates for a perturbed Green function, J. Anal. Math.
104 (2008), 25–58.

[21] A. Grigor’yan and W. Hansen, Lower estimates for perturbed Dirichlet solutions, unpublished
manuscript, https://www.math.uni-bielefeld.de/˜grigor/fekac.pdf

[22] W. Hansen, Uniform boundary Harnack principle and generalized triangle property, J. Funct.
Anal. 226 (2005), 452–484.

[23] W. Hansen and Z. Ma, Perturbation by differences of unbounded potentials, Math. Ann. 287
(1990), 553–569.

[24] W. Hansen and I. Netuka, On the Picard principle for � + μ, Math. Z. 270 (2012), 783–807.

[25] I. W. Herbst and Z. Zhao, Green’s functions for the Schrödinger equation with short-range
potential, Duke Math. J. 59 (1989), 475–519.

[26] B. J. Jaye, V. G. Maz’ya and I. E. Verbitsky, Existence and regularity of positive solutions of
elliptic equations of Schrödinger type, J. Anal. Math. 118 (2012), 577–621.

[27] N. J. Kalton and I. E. Verbitsky, Nonlinear equations and weighted norm inequalities, Trans.
Amer. Math. Soc. 351 (1999), 3441–3497.
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