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Abstract. We establish that every K -quasiconformal mapping w of the unit
disk D onto a C2-Jordan domain � is Lipschitz provided that �w ∈ Lp(D) for
some p > 2. We also prove that if in this situation K → 1 with ‖�w‖Lp(D) → 0,
and� → D in C1,α-sense with α > 1/2, then the bound for the Lipschitz constant
tends to 1. In addition, we provide a quasiconformal analogue of the Smirnov
theorem on absolute continuity over the boundary.

1 Introduction

Recall that the map w : D → C of the unit disk to the complex plane is quasicon-
formal if it is a sense-preserving homeomorphism that has locally L2-integrable
weak partial derivatives and it satisfies, for almost every z ∈ D, the distortion
inequality |wz| ≤ k|wz|, where k < 1. In this situation, we say that w is K -
quasiconformal, with K := (1 + k)/(1 − k). We refer to [2] and [4] for basic
notions and results of the quasiconformal theory. Quasiconformal self-maps of the
disc, even when locally C2-smooth inside D, need not to be Lipschitz. However,
Pavlović [18] proved that in the situation where w : D → D is a quasiconformal
homeomorphism that is also harmonic, f is bi-Lipschitz. Many generalisations of
this result for harmonic maps heve been proved since; we refer, e.g., to [12] and
[5] and the references therein.

Our paper addresses the following problem: how much one can relax the condi-
tion of harmonicity of the quasiconformal map w, while still being able to deduce
the Lipschitz property of w? In this situation, it is less natural to require w to be
bi-Lipschitz. Better insight into this kind of question ought to be useful also in
applications to non-linear elasticity.

1A part of this project was finished during the visit of the first author to Helsinki University in April
2014.
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A natural measure for the deviation from harmonic functions to consider is
‖�w‖Lp(D) for some p ≥ 1 and one can ask whether finiteness of this quantity en-
ables one to make the desired conclusion. Our first result is the following theorem.

Theorem 1. Assume that g ∈ Lp(D) and p > 2. If w is a K-quasiconformal
solution of�w = g that maps the unit disk onto a bounded Jordan domain � ⊂ C

with C2-boundary, then w is Lipchitz continuous. The result is sharp since it fails
in general if p = 2.

The proof is given in Section 2.

Our second result shows that, in the setting of Theorem 1 (actually under
weaker regularity condition on the boundary), the Lipschitz constant of a nor-
malised map f becomes arbitrarily close to 1 as the image domain � approaches
the unit disk in a suitably defined C1,α-sense and if the deviations both from con-
formality and harmonicity tend to 0. Below, we identify [0, 2π) and the boundary
of the unit disk T in the usual way.

Theorem 2. Let p > 2, and assume that wn : D → �n is a Kn-quasi-
conformal normalised map, normalised by w(0) = 0, and with

lim
n→∞ Kn = 1 and lim

n→∞ ‖�wn‖Lp(D) = 0.

Moreover, assume that for each n ≥ 1 the bounded Jordan domain�n approaches
the unit disk in the C1,α-bounded sense1 Then for large enough n, the function wn

is Lipschitz and its Lipschitz constant tends to 1 as n → ∞, i.e.,

(1) lim
n→∞ ‖∇w‖L∞(D) = 1.

This result is a corollary of slightly more general results that we provide in
Section 3 below. Together, Theorems 1 and 2 considerably improve the main
result of the first author and Pavlović from [15], where it was instead assumed
that �w ∈ C(D). Other related results are contained in [13]; we refer to [6]
and references therein for other types of connections between quasiconformal and
Lipschitz maps.

Before stating our last theorem, we recall the result of V. I. Smirnov [9, The-
orem 1, p. 409], stating that a conformal mapping of the unit disk onto a Jordan
domain � with rectifiable boundary has a absolutely continuous extension to the
boundary. This implies, in particular, that if E ⊂ T is a set of zero 1-dimensional

1More precisely, this means that there is a parametrisation ∂�n = { fn(θ) : θ ∈ T}, where fn satisfies
‖ fn(θ) − eiθ‖L∞(T) → 0 as n → ∞ and supn≥1 ‖ fn(θ)‖C1,α(T) < ∞ for some α > 1/2.
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Hausdorff measure, its image f (E) is a set of zero 1-dimensional Hausdorff mea-
sure in ∂�. This result has been generalized for the class of q.c. harmonic map-
ping by several authors; see, e.g., [17, 14]. On the other hand, if f is merely
quasiconformal, its boundary function need not, in general, be an absolutely con-
tinuous function. In Section 4, we prove the following generalization of Smirnov’s
theorem for quasiconformal mappings, subject again to a size condition on their
Laplacian.

Theorem 3. Let f be a quasiconformal mapping of the unit disk onto a Jor-

dan domain with rectifiable boundary. Assume that � f is locally integrable and

satisfies |� f (z)| ≤ C(1 − |z|)−a for some constants a < 1 and C < ∞. Then f|T
is an absolutely continuous function.

The result is optimal: there is a quasiconformal self-map f : D → D, with
non-absolutely continuous boundary values and such that f ∈ C∞(D) and with

|� f (z)| ≤ C(1 − |z|)−1 in D.

The following corollary is another variant of the previous theorem.

Corollary 1. If f is a quasiconformal mapping of the unit disk onto a Jordan

domain with rectifiable boundary such that � f ∈ Lp(D) for some p > 1, then f|T
is an absolutely continuous function.

The conclusion of the corollary fails in general if p < 1. Further comments,
generalizations, and open questions related to the above results are included in
Sections 2–4.

2 Proof of Theorem 1: Lipschitz-property of q.c.
solutions of � f = g

In what follows, we say that a bounded Jordan domain � ⊂ C has C2-boundary if
it is the image of the unit disk D under a C2-diffeomorphism of the whole complex
plane onto itself. For planar Jordan domains, this is well-known to be equivalent
to the more standard definition that requires the boundary to be locally isometric
to the graph of a C2-function on R. In what follows, � refers to the distribu-
tional Laplacian. We make use of the following well-known fact, whose proof we
provide.

Lemma 1. Assume that w ∈ C(D) is such that ‖�w‖Lp(D) <∞ with p > 1.
(i) If p > 2, then ‖∇w‖L∞(B(0,r)) < ∞ for all r < 1. Moreover, if w|∂D = 0, then

there exists Cp <∞ such that ‖∇w‖L∞(D) ≤ Cp‖�w‖Lp(D).
(ii) If 1 < p < 2 and w|∂D = 0, then ‖∇w‖2p/(2−p) < ∞.
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Proof. By the classical representation, we have, for |z| < 1,

(2) w(z) =
1
2π

∫ 2π

0
P(z, eiϕ)w(eiϕ)dϕ +

∫
G(z, ω)�w(ω) dA(ω),

where P stands for the Poisson kernel and G(z, ω) := 1
2π log

∣∣ 1−zω
z−ω

∣∣ is the Green’s
function of D. We observe first that since G is real-valued, |∇G| = 2|∂zG|, so

(3) |∇G(z, ω)| =
1
2π

∣∣ −ω
1 − zω

− 1
z − ω

∣∣ ≤ 1
π|z − ω| .

Hence, an application of Hölder’s inequality shows that the second term in (2)
has uniformly bounded gradient in D. To conclude part (i), it suffices to observe
that the first term vanishes if w|∂D = 0; and, in the general case, it has uniformly
bounded gradient in compact subsets of D. Finally, part (ii) follows immediately
from (3) by the standard mapping properties of the Riesz potential I1 with the
kernel |z − ω|−1; see [21]. �

Proof of Theorem 1. It would be natural to try to generalise the ideas in
[13], where differential inequalities were applied while treating related problems.
However, it turns out that the approach of [11], where the use of distance functions
was initiated, is flexible enough for further development.

In the sequel, we say a ≈ b if there is a constant C ≥ 1 such that a/C ≤ b ≤
Ca, and we say a � b if there is a constant C > 0 such that a ≤ Cb.

By our assumption on the domain, we may fix a diffeomorphism ψ : � → D

that is C2 up to the boundary. Let H := 1 − |ψ|2, which is C2-smooth in � and
vanishes on ∂� with |∇H | ≈ 1 in a neighborhood of ∂�. We may then define
h : D → [0, 1] by setting

h(z) := H ◦w(z) = 1 − |ψ(w(z))|2 for z ∈ D.

The quasiconformality of f and the behavior of ∇H near ∂� imply the existence
of r0 ∈ (0, 1) such that the weak gradients satisfy

(4) |∇h(x)| ≈ |∇w(x)| for r0 ≤ |x| < 1.

Moreover, by Lemma 1(i), we have |∇h(x)| � |∇w(x)| ≤ C for |x| ≤ r0. It follows
that for all q ∈ (1,∞],

(5) ∇h ∈ Lq(D) if and only if ∇w ∈ Lq(D).

A direct computation, simplified by the fact that H is real valued, yields

(6) �h = �(H ◦w)) = (�H )(w)(|wz|2+|ww|2)+2Re
(
4Hzz(w)wzwz+Hz(w)�w

)
.
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In particular, since H ∈ C2(D), we have

(7) |�h| � |∇w|2 + |g|.

The higher integrability of quasiconformal self-maps of D makes sure that
∇(ψ ◦ w) ∈ Lq(D) for some q > 2, which implies that ∇w ∈ Lq(D). By com-
bining this with the fact that g ∈ Lp(D) with p > 2, we deduce that �h ∈ Lr(D)
with r = min(p, q/2) > 1. This information is not enough in case q ≤ 4, but we
show that one may improve the situation to q > 4 via a bootstrapping argument
based on the following observation: in our situation,

(8) if ∇w ∈ Lq(D) with 2 < q < 4, then ∇w ∈ L2q/(4−q)(D).

To prove (8), assume that ∇w ∈ Lq(D) for an exponent q ∈ (2, 4). Then (7) and
our assumption on g verify that �h ∈ Lq/2(D). Since h vanishes continuously on
the boundary ∂D, we may apply Lemma 1(ii) to obtain that ∇h ∈ L2q/(4−q)(D),
which yields the claim, according to (5).

We then claim that, in our situation, ∇w ∈ Lq(D) with some exponent q > 4.
To prove the claim, fix an exponent q0 > 2 obtained from the higher integrability
of the quasiconformal mapw such that ∇w ∈ Lq0 (D). Diminishing q0 if necessary,
we may assume that q0 ∈ (2, 4) and q0 �∈ {2n/(2n−1 − 1), n = 3, 4, . . .}. Then we
may iterate (8) and deduce inductively that ∇w ∈ Lqk (D) for k = 0, 1, 2 . . . k0,
where the indexes qk satisfy the recursion qk+1 = 2qk

4−qk
and k0 is the first index

such that qk0 > 4. Such an index exists since, by induction, we have the relation
(1 − 2/qk+1) = 2k(1 − 2/q0) for k ≥ 0

Thus we may assume that ∇w ∈ Lq(D) with q > 4. At this stage, (7) shows
that�h ∈ Lp∧(q/2)(D). As p ∧ (q/2) > 2, Lemma 1(ii) verifies that ∇h is bounded.
Finally, by (5), we have the same conclusion for ∇w; hence w is Lipschitz, as
claimed.

To verify the sharpness of the result, consider the map w0(z) = z loga ( e
|z|2
)
,

where a ∈ (0, 1/2); w0 is a self-homeomorphism of D that is quasiconformal with
continuous Beltrami-coefficient. We can easily compute

(w0)z = loga−1 ( e
|z|2

)
log

(e1−a

|z|2
)

and (w0)z = −a
z
z

loga−1
( e
|z|2

)
,

so the complex dilatation of w0 satisfies

|μw0 (z)| =
∣∣− a

z
z

(
log
(e1−a

|z|2
))−1∣∣ ≤ a

1 − a
< 1.
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In addition, we see that �w0 ∈ L2(D) since

|�w0(z)| =
∣∣4 d

dz
(w0)z(z)

∣∣ =
∣∣∣4a

z
loga−2

( e
|z|2

)(
(a − 1) − log

( e
|z|2

))∣∣∣
� |z|−1

(
log
( e
|z|2

))a−1
.

Finally, it remains to observe that w is not Lipschitz at the origin. �

Remark 2.1. Invoking the known sharp Lp-integrability results of q.c. maps
(see Astaka [4, Theorem 13.2.3]), one sees that, in the above proof, no iteration
is needed in case K < 2. One should also observe that the counterexample given
above in the case p = 2 is already based on the behaviour of w near origin, not
to any boundary effect. So, in this sense, Theorem 1 is quite sharp. We have not
pursued seriously the optimality question related to C2-regularity assumption on
�.

Remark 2.2. Assume that w : B(0, 1) → B(0, 1) is quasiconformal, where
B(0, 1) ⊂ Rd is the d -dimensional unit ball, with d ≥ 3, and is such that
�wk ∈ Lp(B(0, 1)) with p > n for each component ofw (here k = 1, . . . , d ). Then
the above proof, with some modifications, applies and shows that w is Lipschitz.
Actually, in a recent preprint [5] Astala and Manojlović proved that quasiconfor-
mal harmonic gradient mapping of the unit ball B3 on to itself are bi-Lipschitz.
They also provide a short new proof of the Lipschitz-property of quasiconformal
harmonic maps of the unit ball onto a domain with C2 boundary on R

d (cf. [13,
Theorem C]), using bootstrapping argument. The results of [5] and of the present
paper were obtained independently.

3 Proof of Theorem 2: quantitative bounds as � → D

We start with an auxiliary lemma.

Lemma 2. There exists a function ψ : (1, 3/2) → R+ such that if w : D → D

is a K-quasiconformal self-map normalised with ψ(0) = 0, then

‖|wz|2 + |wz|2 − 1‖L3(D) ≤ ψ(K ).

Moreover, limK→1+ ψ(K ) = 0.

Proof. By the sharp area distortion, ‖∇w‖L6(D) < ∞ for K < 3/2. Re-
flecting w over the boundary ∂D, we may also assume that w extends to a K -
quasiconformal map (still denoted by w) to the whole plane. Rotating the plane, if
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necessary, we may also impose the condition that w(1) = 1. Furthermore, we may
even assume that wC\B(0,e3π) is the identity map, since we may use standard quasi-
conformal surgery (choose k = (K −1)/(K +1) and α = 2k in [4, Theorem 12.7.1])
to produce 3K−1

3−K -quasiconformal modification (still denoted by w) that equals the
original function w in D and satisfies w(z) = z for |z| ≥ e3π. Observe that it is a
principal solution. Since 3K−1

3−K → 1 as K → 1 and we are interested in only small
values of K , it thus suffices to prove the corresponding claim only for principal
solutions with complex dilatation supported in B(0, e3π).

Denote by M the norm of the Beurling operator on L6(C). Fix R0 > 0 and
consider a principal solution w to the Beltrami equationwz = μwz with |μ| ≤ k <

1/2M . Then we have the standard Neumann-series representation

wz = μ + μTμ + μTμTμ + · · · and wz − 1 = Twz

and thus obtain

‖wz‖L6(C) ≤ ‖μ‖L6(C)

(
1 +

M
2M

+
(

M
2M

)2

+ · · ·
)

≤ 2‖μ‖L6(C) ≤ Ck1/6

and, a fortiori,

‖wz − 1‖L6(C) ≤ MCk1/6 = C ′k1/6.

The desired L3-estimate for | fz|2 follows, since k → 0 as K → 1. The estimate
for | fz|2 − 1 follows by noting that

∣∣| fz|2 − 1
∣∣ ≤ | fz − 1|(| fz − 1| +2) and applying

Hölder’s inequality. �
Before proving the more general convergence result stated in the introduction

it is useful to consider first the case where the image domain is fixed, and in fact
equals D.

Proposition 3.1. For p > 2, there exist a function

[1,∞) × [0,∞) � (K, t) → C̃p(K, t)

such that ifw : D → D is a K-quasiconformal self map of the unit disc, normalised

by w(0) = 0, and with �w ∈ Lp(D), then

‖∇w‖L∞(D) ≤ C̃p(K, ‖�w‖p).

Moreover, the function C̃p satisfies

(9) lim
K→1+, t→0+

C̃p(K, t) = 1.
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Proof. We follow the line of the proof of Theorem 1; in particular, we employ
its notation, but this time we strive to make the conclusion quantitative. We may
assume that p ≤ 3. Let us then assume that w is as in the assumption of the
proposition with K < 1 + 1/100, say. In addition, we may assume that w(1) = 1.
As the image domain is D, the function h from the proof of Theorem 1 takes the
form h(z) = 1−|w(z)|2. Let us write h0(z) = 1−|z|2, which corresponds to h when
w is the identity map. An application of (6) and Lemma 2 allows us to estimate

‖�(h − h0)‖Lp(D) =
∥∥4(1 − |wz|2) − 4|wz|2 + 2Re(wg)

∥∥
Lp(D)

≤ 4‖(|wz|2 − 1) + |wz|2‖L3(D) + ‖g‖Lp(D)

≤ 4ψ(K ) + ‖g‖Lp(D).

(10)

Lemma 1 implies that ‖∇h − ∇h0‖ ≤ cp(ψ(K ) + ‖g‖Lp(D)).
The quasiconformality of w implies that for almost every z,

|∇h(z)| ≥ K−1|(∇h0)(w(z))||∇w(z)|.
Since |∇h0(z)| = 2|z|, we obtain, by considering the annulus 1 − ε ≤ |z| < 1 with
arbitrarily small ε > 0,

lim sup
|z|→1−

|∇w(z)| ≤ K
2

lim sup
|z|→1−

(|∇h − ∇h0| + |∇h0|
)

≤ cpK
2

(
ψ(K ) + ‖g‖Lp(D)

)
+ K.

We now write w in terms of the standard Poisson decomposition w = u + f ,
where u is harmonic with u|∂D = w|∂D and f has vanishing boundary values and
satisfies � f = �w = g in D. The maximum principle applied to the subharmonic
function |∇u| = |uz| + |uz̄| = |a′| + |b′|, where a and b are analytic functions such
that u = a + b, together with Lemma 1, shows that |∇w| is bounded by c‖g‖Lp(D).
Combining these observations with (11), we deduce that

sup
|z|<1

|∇w(z)| ≤ lim sup
|z|→1−

|∇u| + sup
|z|<1

|∇ f (z)|

≤ lim sup
|z|→1−

|∇w| + 2 sup
|z|<1

|∇ f (z)|

≤ cpK
2

(
ψ(K ) + ‖g‖Lp(D)

)
+ K + 2cp‖g‖Lp(D).

(11)

We may thus choose, for small enough K ,

C̃p(K, t) = K +
cpK
2
ψ(K ) +

cp(K + 4)
2

t;

the obtained bound has the desired behavior as K → 1 and t → 0. �
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Below, Id stands for the identity matrix. We refer to [21] for the standard
definition of Sobolev spaces W 2,p and for the Hölder(Zygmund)-classes Cα and
C1,α.

Definition 3.1. Let p > 2. We say that the sequence of bounded Jordan
domains �n ⊂ C, with 0 ∈ �n for each n ≥ 1, converges in a W 2,p-controlled
sense to the unit disk D if there exist sense-preserving diffeomorphisms
�n : D → �n, normalized by �n(0) = 0, such that

(12) lim
n→∞ ‖D�n − Id‖L∞(D) = 0, and ‖�n‖W 2,p(D) ≤ M0 for all n ≥ 1,

where M0 < ∞ and

(13) ‖��n‖Lp(D) → 0 as n → ∞.

One should observe that since �n ∈ W 2,p(D) with p > 2 in the above def-
inition, it follows automatically that ∇�n ∈ C(�). Hence requiring �n to be a
diffeomorphism makes perfect sense in terms; and, in particular, by (12), the map
�n is a bi-Lipschitz for large enough n. Also, each �n is a bounded C1- Jordan
domain in the plane. As the following lemma shows, the above condition is, in a
sense, symmetric with respect to the domains D and �.

Lemma 3. Assume that �n converges to D in a W 2,p-controlled sense, and
let (�n) be the associated sequence of diffeomorphisms satisfying the conditions

of definition 3.1. Then the inverse maps n := �−1
n : �n → D satisfy

(14) lim
n→∞ ‖Dn − Id‖L∞(�n) = 0, and ‖n‖W 2,p(�n) ≤ M ′

0 for all n ≥ 1,

and

(15) ‖�n‖Lp(�n) → 0 as n → ∞.

Proof. Conditions (14) follow easily from the formulas for the derivatives
of the implicit function having first been approximated by smooth functions. As
regards condition (15), we note that, in general, the inverse of a harmonic dif-
feomorphism need not to be harmonic, so (15) is not a direct consequence of
(13). However, the first condition in (12) tells us that the maximal complex di-
latation kn of �n tends to 0 as n → ∞, so �n is asymptotically conformal, and
this makes (15) more plausible. Indeed, direct computations show that for C2-
diffeomorphism � : D → � with maximal dilatation k and controlled derivative
|Dψ|, |(Dψ)−1| ≤ C,� = A◦, where (recall that the Jacobian can be expressed
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as J� = |�z|2 − |�z|2)

A =
4

(J�)3

[
−�z

(
�zz J� −�z

(
�z�zz +�z�zz −�z�zz −�z�zz

))

+�z

(
�zz J� −�z

(
�z�zz +�z�zz −�z�zz −�z�zz

))]
.

(16)

This formula is obtained using, as a starting point, the identity � = 4(d/dz)z

and expressingz in a standard manner in terms of the derivatives of �. We next
recall that �z is bounded, and |�z| ≤ k|�z|, and then observe that on the right-
hand side of (16), the terms that do not directly contain either �zz or �z as a factor
sum to �zz(J� − |�z|2) = −�zz|�z|2. We obtain |A| � k|D2�| + |��|, and (15)
follows from this applied to �n. �

We can now generalize Proposition 3.1 to include variable image domains that
converge to the unit disk in a W 2,p-controlled sense.

Theorem 4. Let p > 2, and assume that the planar Jordan domains �n con-
verge to D in a W 2,p-controlled sense. Assume, furthermore, that wn : D → �n is

a Kn-quasiconformal normalised map normalised by w(0) = 0, such that

lim
n→∞ Kn = 1 and lim

n→∞ ‖�wn‖Lp(D) = 0.

Then, for large enough n, the function wn is Lipschitz and its Lipschitz constant

tends to 1 as n → ∞, i.e.,

(17) lim
n→∞ ‖∇wn‖L∞(D) = 1.

Proof. Let �n : D → �n be the maps as in Definition 3.1. By renumbering,
if necessary, we may assume that that |�′

n(z) − 1| < 1/2 for all n and z ∈ D.
Write n = �−1

n and define w̃n := �−1 ◦ wn = n ◦ wn : D → D; w̃n is K̃n-
quasiconformal, with K̃n → 1 as n → ∞, by the first condition in (14). Fix an
index q ∈ (2, p). By conditions (12), (14), and Proposition 3.1, to prove (17) we
need only verify that

(18) lim
n→∞ ‖�w̃n‖Lq(D) = 0.

A computation yields

�w̃n = (�n)(wn)
(
|(wn)z|2 + |(wn)z|2

)
+ 4
(
(n)zz(w)(wn)z(wn)z + (n)zz(wn)(wn)z(wn)z

)
+
(
(n)z(wn)�wn + (n)z(wn)�wn

)
=: S1 + S2 + S3.

(19)
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Since |Dn| remains uniformly bounded and ‖�wn‖Lp(D) → 0, we see that
‖S3‖Lp(D) → 0 as n → ∞, hence the same is true for the Lq-norm. Set q̃ :=

√
qp,

so that q < q̃ < p. Since w̃n is a normalized Kn-quasiconformal self-map of the
unit disk D, and Kn → 1, we may assume (again by discarding small values of n
and relabeling, if necessary), by the higher integrability of quasiconformal maps,
that

∫
D

|∇wn|2(q̃/q)′ < C and
∫
�(Jw−1

n
)(p/q̃)′dA(z) < C for all n. Here, e.g., (q̃/q)′

stands for the dual exponent. Writing kn = (Kn − 1)/(Kn + 1), we thus obtain, for
any measurable function F on �,∫
D

∣∣F ◦wn|(wn)z|2
∣∣qdA(z) ≤

( ∫
D

∣∣F ◦wn

∣∣q̃dA(z)
)q/q̃( ∫

D

|∇wn|2(q̃/q)′dA(z)
)1/(q̃/q)′

�
( ∫

D

∣∣F ◦wn

∣∣q̃dA(z)
)q/q̃ ≤

( ∫
�

∣∣F ∣∣q̃ Jw−1
n

dA(z)
)q/q̃

�
( ∫

�

∣∣F ∣∣pdA(z)
)q/p( ∫

�
(Jw−1

n
)(p/q̃)′dA(z)

)q/(q̃(p/q̃)′)

≤
( ∫

�

∣∣F ∣∣pdA(z)
)q/p

.

Employing this formula and Lemma 3, we obtain immediately that

‖S1‖Lq(D) � ‖�n‖Lp(�) → 0 as n → ∞.

In a similar vein,

‖S2‖Lq(D) � kn → 0 as n → ∞. �

We next examine what kind of convergence of the boundaries ∂�n → ∂D

implies W 2,p-controlled convergence of the domains itself. First of all, given
ψn : D → � as in Definition 3.1 we have �n ∈ W 2,p(D), so by the standard
trace theorem for Sobolev spaces, the induced map�n|∂D on the boundary satisfies
�n|∂D ∈ B2−1/p

p,p (D). On the other hand, for p > 2, we may pick α, α′ ∈ (1/2, 1)
such that

C1,α′
(∂D) ⊂ B2−1/p

p,p (D) ⊂ C1,α(∂D);

see [23]. Hence about the best one can hope is to have a theorem where the bound-
ary converges in C1,α for some α > 1/2. In fact, this can be realized.

Theorem 5. Let (�n) be a sequence of bounded Jordan domains in C such
that there is the parametrisation ∂�n = { fn(θ) : θ ∈ (0, 2π)} for each n, where fn
satisfies, for some α > 1/2,

(20) ‖ fn(θ) − eiθ‖L∞(T) → 0 as n → ∞ and sup
n≥1

‖ fn(θ)‖C1,α(T) < ∞.
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Then the sequence (�n) converges to D in a W 2,p-controlled manner. In particular,

the conclusion of Theorem 4 holds for the sequence (�n).

Proof. Let us first observe that instead of imposing (20), we can fix
α′ ∈ (1/2, α) and assume that ‖ fn(θ) − eiθ‖C1,α′ → 0 as n → ∞; this follows
from an interpolation on (20). Write gn(θ) = fn(θ) − eiθ . Relabeling, if necessary,
we may assume that ‖gn‖C1,α(T) ≤ 1/10, say, for all n ≥ 1. Since Id : T → C is
1-bi-Lipschitz and the Lipschitz norm of gn is small, we obtain that fn : T → ∂�n

is a diffeomorphism. We simply define �n to be the harmonic extension

�n(z) =
1
2π

∫ 2π

0
P(z, eit) fn(e

it)dt = z +
1
2π

∫ 2π

0
P(z, eit)gn(e

it)dt

= z + Gn(z), z ∈ D.

Since ‖g′
n‖∞ → 0 and ‖Hg′

n‖∞ → 0 (recall that the Hilbert transform H is con-
tinuous in Cα(T)), we may also assume that |DGn(z)| ≤ 1/2 for all n, and we have
limn→∞ ‖DGn‖L∞(D) = 0. In particular, �n : D → �n is C1 and bi-Lipschitz,
hence a diffeomorphism. The first condition in (12) follows immediately, and
condition (13) is immediate since �n is harmonic. It remains to verify the second
condition in (12). To that end, we observe that by [21], the fact that ‖gn‖C1,α(T) ≤ C

for all n implies that the Poisson extension satisfies

‖D2Gn(z)‖ ≤ C ′

(1 − |z|)1−α .

This obviously yields the desired uniform bound for ‖D2Gn‖Lp(D); we take
p < (1 − α)−1. �

Another condition is obtained by specializing to Riemann maps – the proof of
the the preceding theorem can also be based on certain results of Smirnov con-
cerning the regularity of conformal extensions and the following lemma.

Lemma 4. Let p > 2. The sequence �n ⊂ C of bounded Jordan domains

converges in a W 1,p-controlled sense to the unit disk D if the Riemann maps
Fn : D → �n (normalized by Fn(0) = 0 and argF ′

n(0) > 0) satisfy

(21) lim
n→∞ ‖F ′

n − 1‖L∞(D) = 0, and ‖F ′′
n ‖Lp(D) ≤ M0 for all n ≥ 1,

with some M0 < ∞.

This is obvious from the definition of controlled convergence.

Remark 3.1. It is an open question whether the conclusion of condition The-
orem 2 holds with the condition α > 1/2 weakened.
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4 Proof of Theorem 3 and Corollary 1 : A Smirnov the-
orem for qc-maps

Proof of Theorem 3. We first assume that f is as in the theorem, so that
� f (z) ≤ (1 − |z|)−a with a ∈ (0, 1). Then we are to show that the boundary map
induced by w is absolutely continuous. To that end, we need two simple lemmas.

Lemma 5. Assume that u ∈ C(D) is a harmonic mapping of the unit disk into

C such that U := u|T is a homeomorphism and U(T) = � is a rectifiable Jordan
curve. Then |�r | :=

∫
T |∂θu(reiθ)|dθ is increasing in r, so |�r | ≤ |�|. In particular,

the angular derivative of u satisfies ∂θu(z) ∈ h1.

Proof. Differentiating the Fourier-series representation

u(reiθ) =
∞∑

n=−∞
ĝnr

|n|einθ ,

we see immediately that ∂θu(z) is the harmonic extension to U of the distributional
derivative ∂θg. By assumption, g is of bounded variation; hence ∂θg is a finite
(signed) Radon measure, which implies that ∂θu ∈ h1. It is well known (see
[20, 11.17]) that since ∂θu ∈ h1, the integral average

∫
T |∂θu(reiθ)|dθ is increasing

in r. �

Lemma 6. Let g ∈ Lp( ) with p > 1. Then there is a unique solution v of the

Poisson equation �v = g satisfying v ∈ C(U) and v|T = 0. Moreover, the weak

derivative Dv can be modified on a set of measure zero so that∫ 2π

0
|Du(reiθ)|dθ ≤ C(g) <∞ for r ∈ (1/2, 1).

Proof. The classical regularity theory for elliptic equations (see [1],[8]) yields
a quick approach, as it guarantees that the Poisson equation has a unique solution
v in the Sobolev space W 2,p(U) (which, of course, is given by the Green potential;
see (2)), and we have continuity up to the boundary. The derivatives ∂z, ∂z are in
W 1,p(U). We then have ‖Dv‖W 1,p(B(0, r)) ≤ C ′ for all r ∈ (1/2, 1). At this stage,
the trace theorem (see, e.g., [23]) for the space W 1,p(U) and a simple scaling
argument show that, for a suitable representative of Dv ,

‖(Dv)r‖B1−1/p
p,p (D) ≤ C ′ for r ∈ (1/2, 1).

Here, (Dv)r stands for the function T � θ �→ v(reiθ). The claim follows from the
continuous embeddings B1−1/p

p,p (D) ⊂ Lp(D) ⊂ L1(D). �
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Recall also that any analytic (or anti-analytic) function in h1 can be represented
as the Poisson integral of an L1-function; see [20, Theorem 17.11] or [9]. To
proceed towards the absolute continuity of boundary values of f , we write f =
a + b + v , where v solves �v = g := � f with v|T = 0 and a and b are analytic in
the unit disk. Since u := a + b̄ = P[ f|T], where f|T is a homeomorphism, it follows
from Lemma 5 that ∂θu = i(za′ − zb′) ∈ h1( ), because f (T) is a rectifiable curve.
Furthermore, the weak derivatives satisfy fz = a′ + vz and fz̄ = b′ + vz̄. Now we use
the fact that | fz̄| ≤ k| fz|, k = (K−1)/(K+1), which implies that |a′+vz| ≤ k|b′+vz̄|.
Since

b′ =
z̄
z
a′ − i

z
uθ ,

we obtain, for z �= 0,

|a′| ≤ k
∣∣∣ z̄
z
a′ − i

z
uθ + vz̄

∣∣∣ + |vz|.
This yields for |z| ≥ 1/2 the inequality, valid almost everywhere,

|a′| ≤ 1
1 − k

(2|uθ| + |vz̄| + |vz|).
Our assumption on the size of the Laplacian of f yields � f ∈ Lp(D) for some

p > 1. Combining this with above inequality and noting that uθ ∈ h1 by Lemma 5,
we infer (using a simple argument based on Fubini’s theorem–the above inequality
holds only for a.e. z) that a′ ∈ H 1. Then the relation b′ = z̄

z a
′ − i

z uθ verifies that
also b ∈ H 1. Thus ∂θu is the Poisson integral of an L1 function, and we conclude
that f|T = u|T is absolutely continuous.

To prove the optimality of Theorem 3, we construct quasiconformal maps with
non-absolutely continuous boundary values but with not too large Laplacian. To
that end, it is easier to work in the upper half space C

+ := {z : Im z > 0}. We
construct the desired functions with the help of Zygmund measures.

Recall first that a bounded and continuous function g : R → R is Zygmund
if ∣∣g(x + t) + g(x − t) − 2g(x)

∣∣ ≤ C|t| for all x, t ∈ R.

The Zygmund norm of g is the smallest possible C for which this inequality
holds. If g is increasing, its derivative g′ is a positive finite Borel measure on
R, i.e., g′ = μ. If, in addition, μ is singular, we call g a singular Zygmund
function. It is well-known ( see [19] or [10]) that there exist singular Zygmund
measures. We refer the reader to the interesting article [3] for further information
on this type of measure.

We next recall a modified version of the Beurling-Ahlfors extension of
Fefferman, Kenig, and Pipher [7]. We denote by ψ(x) := (2π)−1/2e−x2/2 the Gaus-
sian density and notice that −ψ′(x) = −xψ(x). As is usual, for t > 0, we define



QUASICONFORMAL MAPS WITH CONTROLLED LAPLACIAN 265

the dilation ψt(x) := t−1ψ(x/t); ψ′
t is defined analogously. Then the extension u

of an (at most polynomially) increasing homeomorphism g : R → R is defined by
setting

(22) u(x + it) := (ψt ∗ g)(x) + i(−ψ′
t ∗ g)(x), for all x + it ∈ C

+.

Obviously, u is smooth in C
+ and has the correct boundary values.

Lemma 7 ([7, Lemma 4.4.]). If g : R → R is quasisymmetric, the extension u

defined by (22) defines a quasiconformal homeomorphism of C+ whose boundary
map coincides with g.

We need one more auxiliary result.

Lemma 8. Assume that g : R → R is Zygmund. Then the extension (22) of g

satisfies

|�u(x + it)| ≤ Ct−1 and |∇u(x + it)| ≤ C max
(
1, log(t−1)

)
,

for all x ∈ R and t > 0, where C > 0 is a constant.

Proof. Let us first observe that if g is Zygmund, then for all ϕ ∈ W 2,1(R) (i.e.,
ϕ, ϕ′′ ∈ L1(R)),

(23)

∥∥∥∥ d2

dx2ϕt ∗ g

∥∥∥∥
L∞(R)

= O(t−1) for all t > 0.

In the case ϕ is even, this follows easily from the definition of Zygmund functions;
but, for general ϕ, we use the fact that g can be decomposed as the sum g =∑∞

j =0 g j , where ‖g j‖L∞(R) = O(2− j ) and ‖g′′
j‖L∞(R) = O(2 j ) for all j ≥ 0,; see

[21, Corollary 1, p. 256]. We can compute in two ways:

d2

dx2 (ϕt ∗ g(x)) =
∫ ∞

−∞
ϕt(x − y)g′′(y)dy = t−2

∫ ∞

−∞
ϕ′′

t (x − y)g(y)dy.

Assuming first that t ≤ 1 with t ∼ 2−k, we apply the first formula above to the
sum g =

∑k
j =0 g j and the second formula to the remainder g =

∑∞
j =k+1 g j . Noting

that
∫∞
−∞ |ϕt(y)|dy = O(1) and

∫∞
−∞ |ϕ′′

t (y)|dy = O(1), we obtain

∣∣∣ d2

dx2 (ϕt ∗ g(x))
∣∣∣ = O

( k∑
j =1

2 j + t−2
∞∑

j =k+1

2− j
)

= O(t−1),

which proves (23) for t ∈ (0, 1]. For t > 1, we simply apply the second formula
directly to the bound ‖g‖L∞(R) <∞ and obtain∥∥∥ d2

dx2
(ϕt ∗ g)

∥∥∥
L∞(R)

≤ O(t−2) = O(t−1)
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for t > 1.
We then consider the Laplacian of the extension u of g. Since ψ,ψ′ ∈ W 2,1(R),

we obtain immediately from (23) that | d2

dx2 u(x + it)| = O(t−1) uniformly in x ∈ R.

In turn, to consider differentiation with respect to t, we assume that φ : R → R is
smooth and that (1 + |t|2)φ(t) is integrable. Then

d
dt
ϕt ∗ g(x) =

∫ ∞

−∞

(
− t−2ϕt(x − y) − t−3(x − y)ϕ′

t(x − y)
)
g(y)dy

=
∫ ∞

−∞
g(y)

d
dy

(
t−2(x − y)ϕt(x − y))

)
dy

= −t−1
∫ ∞

−∞
(x − y)

t
ϕ
(x − y

t

)
g′(y)dy

= (ϕ1)t ∗ g′(x),

where ϕ1(y) := −yϕ(y). An iteration gives (where ϕ2(y) := y2ϕ(y))

(24)
d2

dt2
(
ϕt ∗ g(x)

)
= (ϕ2)t ∗ g′′(x) =

d2

dx2

(
(ϕ2)t ∗ g(x)

)
.

Since all the functions tψ(t), t2ψ(t), tψ(t), t2ψ(t) and their second derivatives are
integral, we may apply (24) and obtain as before the desired estimate for d2

dt2 u(x+it).
The stated estimate for ∇u is proved in a similar way. We use the fact that in

the decomposition g =
∑∞

j =0 g j , one may demand that also ‖g′
j‖∞ ≤ C for all

j ≥ 1 (see [22, Formula (53), p. 254]), which yields, as before,∣∣∣∣ ddx
(ϕt ∗ g(x))

∣∣∣∣ = O
( k∑

j =1

1 + t−1 ·
∞∑

j =k+1

2− j
)

= O
(
log(t−1)

)
for t ∼ 2−k < 1. The case t ≥ 1 is trivial, and the case of the t-derivative is
reduced to estimating the x-derivative as before. �

Given these preparations it is now a simple matter to produce the desired ex-
ample. Let g0 be a singular Zygmund function which is constant outside [−1, 1].
Set g(x) = x + g0(x) for x ∈ R. Since g0 is Zygmund, g is quasi symmetric. Its
Fefferman-Kenig-Pipher extension u : C

+ → C
+ is quasiconformal with non-

absolutely continuous boundary values over [−1, 1]. Since the extension of the
linear function x �→ x is linear, we see that the Laplacian of u equals that of the
extension of g0; and, by the Lemma 8, we obtain the estimate

|�u(x + it)| ≤ Ct−1 for all x + it ∈ C
+.

Next, let h : D → �′ be conformal, where �′ is a bounded and smooth Jordan
domain that is contained in the upper half space C+ and contains [−2, 2] as a
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boundary segment. Set � = u(�′), so that � is smooth, by construction. Finally,
pick a conformal map h̃ : � → D and define f := u◦h. Function f satisfies all the
requirements: the main terms in the formula for the Laplacian of f (cf. (19)) are
|�u| and |∇u|2, and the Lemma 8 a yields suitable bounds for the gradient term.�

Proof of Corollary 1. Obviously, the example for optimality constructed
above works also for the corollary. In a similar vein, the proof of the positive
direction of Theorem 3 also applies as such for the corollary since in the proof we
used as a starting point the fact that �u ∈ Lp(D) for some p > 1. �

Remark 4.1. There exists singular Zygmund functions g on the real line such
that g(x + t) + g(x − t) − 2g(x) = o(t) with quantitative little o on the right-hand
side – the derivatives of such functions are sometimes called Kahane measures. A
possible decay of the right-hand side is o(t log−1/2(1/t)) for small t, but one cannot
decrease the power of log here. Use of this kind of measure in our construction
gives examples of functions with Laplacian growth o(t−1), where the little o can
be made explicit.

However, it is an open problem whether the conclusion of Corollary 1 is valid
for the exponent p = 1, as merely implementing the Kahane measures described
above appears not to give enough extra decay for the Laplacian.
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monic mappings of the unit disk onto surfaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), 565–580.
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