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Abstract. Let G = N � A, where N is a stratified group and A = R acts
on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can
be lifted to left-invariant operators on G, and their sum is a sub-Laplacian � on
G. We prove a theorem of Mihlin–Hörmander type for spectral multipliers of �.
The proof of the theorem hinges on a Calderón–Zygmund theory adapted to a sub-
Riemannian structure of G and on L1-estimates of the gradient of the heat kernel
associated to the sub-Laplacian �.

1 Introduction

Let N be a stratified Lie group of homogeneous dimension Q ≥ 2. Let G be the
semidirect product N � A, where A = R acts on N via automorphic dilations. The
group G is a solvable extension of N that is not unimodular and has exponential
volume growth; see Section 2 for more details. For each p ∈ [1,∞], let Lp(G)
denote the Lp space with respect to a right Haar measure μ on G.

Consider a system X̆1, . . . , X̆q of left-invariant vector fields on N that form a
basis of the first layer of the Lie algebra of N , and let X̆0 be the standard basis of
the Lie algebra of A. The vector fields X̆0 on A and X̆1, . . . , X̆q on N can be lifted
to left-invariant vector fields X0,X1, . . . ,Xq on G which generate the Lie algebra
of G and define a sub-Riemannian structure on G with associated left-invariant
Carnot–Carathéodory distance �.
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Let � be the left-invariant sub-Laplacian on G defined by

(1.1) � = −
q∑

j =0

X2
j .

The operator � extends uniquely to a positive self-adjoint operator on L2(G). For
all bounded Borel functions F : [0,∞) → C, the operator F (�) defined via
the spectral theorem is left-invariant and bounded on L2(G) and, by the Schwartz
kernel theorem,

(1.2) F (�) f = f ∗ kF (�) for all f ∈ L2(G),

for some convolution kernel kF (�), which in general is a distribution on G. The
object of this paper is the multiplier problem for�, i.e., the study of conditions on
F sufficient to imply the Lp-boundedness of F (�) for some p �= 2.

Our main result provides a sufficient condition of Mihlin–Hörmander type for
operators of the form F (�) to be bounded on Lp(G) for 1 < p < ∞; endpoint
results are also obtained, both of weak type (1, 1) and in terms of the Hardy space
H 1(G) and bounded mean oscillation space BMO(G) introduced in [51]; see Sec-
tion 3.

Let ψ be a function in C∞
c (R), supported in [1/4, 4], such that

(1.3)
∑
j∈Z
ψ(2 jλ) = 1 for all λ ∈ (0,∞).

For each s ≥ 0, we define ‖F‖0,s and ‖F‖∞,s as follows:

‖F‖0,s = sup
t<1

‖F (t·)ψ(·)‖Hs(R), ‖F‖∞,s = sup
t≥1

‖F (t·)ψ(·)‖Hs(R),

where Hs(R) denotes the L2-Sobolev space of order s on R. We say that a bounded
Borel function F : [0,∞) → C satisfies a mixed Mihlin–Hörmander condi-
tion of order (s0, s∞) if ‖F‖0,s0 < ∞ and ‖F‖∞,s∞ < ∞.

Theorem 1.1. Suppose that s0 > 3/2 and s∞ > (Q + 1)/2. If F satisfies
a mixed Mihlin–Hörmander condition of order (s0, s∞), then F (�) extends to an
operator of weak type (1, 1) and bounded on Lp(G) for all p ∈ (1,∞), bounded
from H 1(G) to L1(G) and from L∞(G) to BMO(G).

Spectral multiplier theorems for Laplacians and sub-Laplacians have been ob-
tained in many different contexts, so we do not attempt to give a complete account
of the existing literature but instead restrict our discussion to the works that are
more closely related to our result. The interested reader is referred to the cited
works and references therein for more details.
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It is already known in the literature that, unlike other sub-Laplacians on solv-
able groups (see, e.g., [8, 27]), the sub-Laplacian � on the group G has Lp-
differentiable functional calculus. More precisely, Hebisch [25] proved that if
F is compactly supported and F ∈ Hs(R) for some s > (Q + 5)/2, then F (�)
is bounded on Lp(G) for all p ∈ [1,∞]. Mustapha [43] proved the same result
pushing down the smoothness condition on the multiplier F , i.e., requiring that
F ∈ Hs(R) for some s > 2. A further improvement with condition s > 3/2 is
stated in [29, Theorem 6.1]. Subsequently, Gnewuch [18] obtained similar results
for sub-Laplacians on compact extensions of a class of solvable groups, which
strictly include the groups we consider here.

All these results differ from Theorem 1.1 because they treat only the case of
compactly supported multipliers F belonging to a Sobolev space of suitable order
and show that, in that case, the convolution kernel kF (�) is integrable on G. Our re-
sult instead is a genuine Mihlin–Hörmander theorem for multipliers F which need
not be compactly supported nor have bounded derivatives at 0. In this case, the
convolution kernels kF (�) need not be integrable; indeed, for the endpoint values
p = 1 and p = ∞ we prove boundedness only in the weak type (1, 1) sense and in
terms of Hardy and BMO spaces.

Other multiplier theorems on solvable extensions of stratified groups were
previously obtained for distinguished full Laplacians. More precisely, Cowling,
Giulini, Hulanicki and Mauceri [11] proved a multiplier theorem for a distin-
guished Laplacian L on NA groups coming from the Iwasawa decomposition of
a semisimple Lie group of arbitrary rank: they showed that if F ∈ Hs0

loc(R) and
‖F‖∞,s∞ < ∞ for suitable orders s0, s∞ depending on the topological dimen-
sion and the pseudodimension of the group, then F (L) is of weak type (1, 1) and
bounded on Lp for all p ∈ (1,∞). An analogous result was then proved by
Astengo [2] for a distinguished Laplacian on Damek–Ricci spaces, i.e., groups
of the form H �R, where H is a Heisenberg-type group [15].

Hebisch and Steger [29, Theorem 2.4] improved the results in [11] by proving
a genuine Mihlin–Hörmander theorem for spectral multipliers of a distinguished
Laplacian L on the group RQ�R, which corresponds to the case of real hyperbolic
spaces (and coincides with our Theorem 1.1 in the case N is abelian). Their theo-
rem was generalized in [52] to a distinguished Laplacian on Damek–Ricci spaces.
The results in [29, 52] hinge on a new abstract Calderón–Zygmund theory de-
veloped by Hebisch and Steger and L1-estimates of the gradient of the heat kernel
associated to L.

All the aforementioned results for multipliers of a full Laplacian L make strong
use of spherical analysis either on semisimple Lie groups or Damek–Ricci spaces.
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In particular, on Damek–Ricci spaces, the convolution kernels kF (L) have the prop-
erty that m−1/2kF (L) is radial, where m is the modular function and, moreover, an
explicit formula for the heat kernel associated to L is known. These tools are not
available for the analysis of the sub-Laplacian � on G (unless N is abelian). So
we need new techniques to obtain weighted estimates of the convolution kernels of
multipliers of � and to study the horizontal gradient of the heat kernel associated
to �. A brief illustration of these techniques and of our strategy of proof follows.

In Section 2, we obtain a precise description of the left-invariant Carnot–Cara-
théodory distance on G in terms of the analogous distance on N . This is done by
relating solutions to the Hamilton–Jacobi equations on G and N . These equations
are analogous to the geodesic equations on Riemannian manifolds. However on
sub-Riemannian manifolds there may exist “strictly abnormal minimizers”, i.e.,
length-minimizing curves that do not correspond to solutions of the Hamilton–
Jacobi equations. Nevertheless, a density result by Agrachev [3] allows us to
transfer information from solutions of the Hamilton–Jacobi equations to the cor-
responding sub-Riemannian distances.

Based on our analysis of distances, in Section 3, we develop a Calderón–
Zygmund theory adapted to the sub-Riemannian structure of G. More precisely,
we show that the metric measure space (G, �,μ) satisfies the axioms of the ab-
stract Calderón–Zygmund theory introduced in [29] and further developed in [51].
The crucial step is the construction of a suitable family of “admissible sets” which
play the role that in the classical Calderón–Zygmund theory on spaces of homoge-
neous type would be played by balls or “dyadic cubes”; cf. [6]. In this way, when
we study spectral multipliers of the sub-Laplacian�, we can use the theorems for
singular integral operators proved in [29] for the boundedness of type (1, 1) and
those contained in [51] for the boundedness on Hardy and BMO spaces.

In Section 4, we focus on the properties of � and its functional calculus. In
particular, Section 4.2 is devoted to an L1-estimate of the horizontal gradient of
the heat kernel associated to � at any real time. This estimate is well known (in
much greater generality) for small time, but appears to be new for large time (and
nonabelian N ). Our proof is based on a formula that relates the sub-Riemannian
heat kernels on G and N ; this relation was already used in [43, 19] to estimate the
heat kernel on G at complex time 1 + iτ, τ ∈ R.

Another important consequence of the relation between heat kernels on G and
N is discussed in Section 4.3. It turns out that, for all multipliers F , the L2-norm
of the convolution kernel kF (�) on G coincides with the L2-norm of the convolution
kernel kF (�̃) on the real hyperbolic space G̃ = RQ �R, where �̃ is a full Laplacian
on G̃. In fact, it is even possible to estimate weighted L2-norms of kF (�) on G by
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weighted L2-norms of kF (�̃) on G̃, where spherical analysis can be applied. This
crucial observation is already contained, with a different proof, in [24].

Finally, in Section 5, we combine all these ingredients to prove Theorem 1.1.

A natural question is whether the smoothness condition s∞ > (Q + 1)/2 on the
multiplier in Theorem 1.1 is sharp. In fact, via transplantation (cf. [33]), Theo-
rem 1.1 implies a similar theorem for a homogeneous sub-Laplacian on the nil-
potent contraction N × A of G, with a smoothness condition of order (Q + 1)/2.
This is just a particular case of the multiplier theorem of Christ [7] and Mauceri
and Meda [39] on stratified groups, because Q + 1 is the homogeneous dimension
of N × A. If N is abelian, then the transplanted result is sharp and, a fortiori, the
condition s∞ > (Q +1)/2 in Theorem 1.1 is sharp. However, for many nonabelian
stratified groups N , the transplanted result is not sharp: in fact, in several cases, it
is possible to push down the smoothness condition to half the topological dimen-
sion of the group [23, 44, 37, 38]. For this reason, it might be expected that the
smoothness condition s∞ > (Q + 1)/2 in Theorem 1.1 can also be pushed down,
at least for some nonabelian N .

Recently, the second and third named authors, extending a result in [28], have
proved a multiplier theorem for some Laplacians with drift on Damek–Ricci
spaces [46]; part of the proof of their result hinges on a Mihlin–Hörmander type
theorem for a distinguished Laplacian without drift. Inspired by [46], we think
that Theorem 1.1 could be an ingredient for proving a multiplier theorem for sub-
Laplacians with drift on the solvable groups considered here. We recall that among
these sub-Laplacians with drift there is the “intrinsic hypoelliptic Laplacian” as-
sociated with the sub-Riemannian structure on G; see [4].

Let us fix some notation that is used throughout. R+ and R+
0 denote the open

and closed positive half-lines,respectively, in R.
⋃
R denotes the union of a family

of sets R, i.e.,
⋃
R =

⋃
R∈R R. The letter C and variants, such as Cs, denote finite

positive constants that may vary from place to place. Given two expressions A and
B, A � B means that there exists a finite positive constant C such that A ≤ CB.
Moreover, A ∼ B means A � B and B � A.

2 Solvable extensions of stratified groups

In this section, we introduce the class of Lie groups that we study in the sequel
and recall their main properties. In particular, we discuss their metric properties in
Subsection 2.2 and some useful integral formulas in Subsection 2.3.
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2.1 Stratified groups and their extensions. Let N be a stratified
group. In other words, N is a simply connected Lie group whose Lie algebra
n is endowed with a derivation D such that the eigenspace of D corresponding
to the eigenvalue 1 generates n as a Lie algebra. In particular, the eigenvalues of
D are positive integers 1, . . . , S, and n is the direct sum of the eigenspaces of D,
which are called layers: the j th layer corresponds to the eigenvalue j . Moreover,
n is S-step nilpotent, where S is the maximum eigenvalue.

The exponential map expN : n → N is a diffeomorphism and provides global
coordinates for N that are used in the sequel without further mention. Any chosen
Lebesgue measure on n is then a left and right Haar measure on N . Let us fix such
a measure and write |E | for the measure of a measurable subset E ⊂ N .

The formula δt = exp((log t)D) defines a family of automorphic dilations
(δt)t>0 on N . For all measurable sets E ⊂ N and t > 0, |δtE | = tQ|E |, where
Q = trD is the homogeneous dimension of N . Note that Q ≥ d , where d = dim n

is the topological dimension of N ; in fact, Q = d if and only if S = 1, i.e., if and
only if N is abelian. Note, moreover, that, if Q = 1, then N ∼= R. In the following,
we assume that Q ≥ 2, since the case Q = 1 has already been treated in [29].

Let A = R, considered as an abelian Lie group. Again we identify A with its
Lie algebra a. Then A acts on N by dilations, that is, we have a homomorphism
A � u �→ δeu ∈ Aut(N ) and we can define the corresponding semidirect product
G = N � A, with operations

(z, u) · (z′, u′) = (z · euDz′, u + u′), (z, u)−1 = (−e−uDz,−u)

and identity element 0G = (0N , 0). The Lie algebra g of G is then canonically
identified [54, §3.14-3.15] with the semidirect product of Lie algebras n�a, where

[(z, u), (z′, u′)] = ([z, z′] + uDz′ − u′Dz, 0).

The group G is not nilpotent, but is a solvable Lie group of topological dimen-
sion d +1. The left and right Haar measures μ� and μ on G are given, respectively,
by

dμ�(z, u) = e−Qu dz du, dμ(z, u) = dz du

[30, Section (15.29)], and the modular function m is given by m(z, u) = e−Qu.
In particular, G is not unimodular and has exponential volume growth [21, Lem-
me I.3]. In the following, unless otherwise specified, the right Haar measure μ is
used to define Lebesgue spaces Lp(G) = Lp(G, dμ) on G, and ‖ f ‖p denotes the
Lp(G)-norm of a function f on G.
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2.2 Metric structure and geodesics. Consider a system X̆1, . . . , X̆q of
left-invariant vector fields on N that form a basis of the first layer of n. These
vector fields provide a global frame for a subbundle HN of the tangent bundle TN
of N , called the horizontal distribution. Since N is stratified, the first layer
generates n as a Lie algebra; consequently, the horizontal distribution is bracket-
generating.

Let gN be the left-invariant sub-Riemannian metric on the horizontal distribu-
tion of N which makes X̆1, . . . , X̆q an orthonormal basis. Using the metric gN ,
by integrating the gN -norm of the tangent vector, we can define the length of
horizontal curves on N (i.e., absolutely continuous curves γ : [a, b] → N whose
tangent vector γ̇(t) lies in the horizontal distribution for almost all t ∈ [a, b]). The
Carnot–Carathéodory distance �N on N associated to gN is then defined by

�N (z, z′) = inf{lengths of horizontal curves joining z to z′}

for all z, z′ ∈ N . Since the horizontal distribution is bracket-generating, the dis-
tance �N is finite and induces on N the usual topology, by the Chow–Rashevskii
theorem. Moreover, since X̆1, . . . , X̆q are left-invariant and belong to the first layer,
the distance �N is left-invariant and homogeneous with respect to the automorphic
dilations δt. For each z0 ∈ N and r > 0, we denote by BN (z0, r) the ball in
N centered at z0 of radius r, i.e., BN (z0, r) = {z ∈ N : �N (z, z0) < r}. Then
|BN (z0, r)| = rQ|BN (0N , 1)| for all z0 ∈ N , for all r > 0.

Let X̆0 = ∂u be the canonical basis of a. The vector fields X̆0 on A and
X̆1, . . . , X̆q on N can be lifted to left-invariant vector fields X0|(z,u) = X̆0|u = ∂u,
Xj |(z,u) = euX̆ j |z, for j = 1, . . . , q on G. Analogously, as above, the system
X0, . . . ,Xq generates the Lie algebra g and defines a sub-Riemannian structure
on G with associated left-invariant Carnot–Carathéodory distance �. For each
(z0, u0) ∈ G and r > 0, we denote by B�

(
(z0, u0), r

)
the ball in G centered at

(z0, u0) with radius r with respect to the distance �.
We give a more precise description of the distance � and precise asymptotics

for the volume of balls by means of geodesics. Note that the characterization of
length-minimizing curves in sub-Riemannian geometry is more complicated than
in the Riemannian case, because a length-minimizing curve need not correspond
to a solution of the Hamilton–Jacobi equations associated to the metric (see, e.g.,
[41] for an insight). However, by means of a density result of Agrachev [3], we
are able to characterize the distance � by studying the solutions of the Hamilton–
Jacobi equations on N and G.

The sub-Riemannian metric gN determines a dual metric (gN )∗ on the cotangent
bundle T ∗N of N . When S > 1, (gN )∗ is degenerate: its kernel at each point of
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N is the annihilator of the horizontal distribution. If N is identified as a manifold
with the vector space n via the exponential map (see Section 2.1), then, for all
z ∈ N , the tangent space TzN at z is identified with n and the cotangent space T ∗

z N
is identified with n∗. Let us in turn identify n∗ with n by choosing an inner product
〈·, ·〉 on n, and let us fix orthonormal coordinates on n. Then

(gN )∗z (ζ, ζ
′) = 〈Mzζ, ζ

′〉,
where Mz : n → n is a symmetric linear map depending smoothly on z ∈ N . More-
over, HzN is the range of Mz, the restriction Mz|HzN : HzN → HzN is invertible,
and

gN
z (Z,Z ′) = 〈(Mz|HzN )−1Z,Z ′〉.

In the chosen coordinates, the Hamilton–Jacobi equations associated to gN read

(2.1) ż j =
∂HN

∂ζ j
, ζ̇ j = −∂H

N

∂z j

( j = 1, . . . , d), where the Hamiltonian HN : T ∗N → R is given by

HN (z, ζ ) =
1
2
(gN )∗z (ζ, ζ ) =

1
2
〈Mzζ, ζ〉.

A solution (z, ζ ) : I → T ∗N of the Hamilton–Jacobi equations (2.1), where I ⊂ R

is an interval, is called an HJ-curve on N . It is known that the projection to N
of such a curve, namely, z : I → N , is horizontal and locally length-minimizing.
Moreover, z has constant speed, since gN

z (ż, ż) = 2HN (z, ζ ) is constant along the
HJ-curve (z, ζ ). We define the length of an HJ-curve as the length of its projec-
tion. Analogously, we say that an HJ-curve joins two points on N if its projection
does.

Note that, if S ≤ 2, all length-minimizing horizontal curves on N are “nor-
mal minimizers”, i.e., projections of HJ-curves (see, e.g., the argument after [42,
Theorem 4]). However, on higher-step groups N , there may exist “strictly abnor-
mal length-minimizers” [20], i.e., length-minimizers that are not projections of
HJ-curves.

An analogous discussion can be conducted on G. If G is identified as a man-
ifold with the vector space n × a via the map n × a � (z, u) �→ (expN (z), u) ∈ G
(as in Section 2.1), the left-invariant sub-Riemannian metric g on the horizontal
distribution of TG is given by

g(z,u)((Z,U), (Z ′,U ′)) = e−2ugN
z (Z,Z ′) + UU ′.

Hence the dual metric g∗ on the cotangent bundle T ∗G of G is

g∗
(z,u)((ζ, ν), (ζ

′, ν′)) = e2u(gN )∗z (ζ, ζ
′) + νν′,
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and the Hamilton–Jacobi equations on G read

(2.2)
ż j =

∂H
∂ζ j

, ζ̇ j = −∂H
∂z j
,

u̇ =
∂H
∂ν
, ν̇ = −∂H

∂u

( j = 1, . . . , d), where the Hamiltonian H : T ∗G → R is given by

H (z, u, ζ, ν) =
1
2
g∗

(z,u)((ζ, ν), (ζ, ν)) =
1
2

(
e2u〈Mzζ, ζ〉 + ν2

)
.

A solution (z, u, ζ, ν) : I → T ∗G of (2.2) is called an HJ-curve on G.
We now look for HJ-curves on G of the form

(z, u, ζ, ν) = (zN ◦ v, u, ζN ◦ v, ν),
where (zN , ζN ) is an HJ-curve on N and v is a suitable change of variables. Plug-
ging these expressions in the Hamilton–Jacobi equations for G and using the fact
that (zN , ζN ) satisfies the Hamilton–Jacobi equations for N , we obtain the follow-
ing result.

Lemma 2.1. Let (zN , ζN ) be an HJ-curve on N . Then (zN ◦ v, u, ζN ◦ v, ν) is
an HJ-curve on G, provided the functions v, u, ν satisfy

(2.3) v̇ = e2u, u̇ = ν, ν̇ = −2HN
0 e2u,

where HN
0 is the constant value of HN along (zN , ζN ). Moreover, HN

0 is related to
the constant value H0 of H along (zN ◦ v, u, ζN ◦ v, ν) by

H0 = e2uHN
0 + ν2/2.

This leads us to the following definition.

Definition 2.2. We say that an HJ-curve (zN , ζN ) : J → T ∗N on N and an
HJ-curve (z, u, ζ, ν) : I → T ∗G on G are associated if there exists a diffeo-
morphism v : I → J such that z = zN ◦v , ζ = ζN ◦v , and (v, u, ν) : I → R3 solves
(2.3).

The Cauchy problem for the autonomous system of equations (2.3) is solved
as follows.

Lemma 2.3. Suppose that u0, ν0,HN
0 ∈ R and HN

0 ≥ 0. In the case HN
0 > 0,

the maximal solution (v, u, ν) to (2.3) with initial data

(2.4) v(0) = 0, u(0) = u0, ν(0) = ν0
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is given by

v(t) =
1

2HN
0

(ω tanh(ω(t − t∗)) + ν0),

u(t) = u∗ − log cosh(ω(t − t∗)),

ν(t) = −ω tanh(ω(t − t∗)),

where

ω =
√
ν2

0 + 2HN
0 e2u0, u∗ = log

ω√
2HN

0

, t∗ =
1
ω

arctanh
ν0

ω
.

In the case HN
0 = 0, the solution with initial data (2.4) is given by

v(t) =

⎧⎨
⎩

e2u0 e2ν0 t−1
2ν0

if ν0 �= 0,

e2u0 t if ν0 = 0,
, u(t) = u0 + ν0t, ν(t) = ν0.

All these solutions (v, u, ν) are defined globally in time, and v is an increasing
diffeomorphism onto its image. Moreover, for all u1 ∈ R and T > 0, the following
conditions are equivalent:

(i) T is in the range of v and u(v−1(T )) = u1,
(ii) ν0 = (2T )−1(e2u1 − e2u0 ) + HN

0 T .

Proof. It is not difficult to check that the above formulas give solutions of
(2.3) with initial data (2.4). Since these solutions are defined globally in time,
they must be the maximal solutions, and v is an increasing diffeomorphism onto its
image because v̇ = e2u > 0. It remains to show the equivalence of the conditions
(i) and (ii); we consider only the case HN

0 > 0, the other case being similar and
easier.

Simple manipulations of the above formulas for u and v yield

2u(t) = log
(
ω2

2HN
0

(
1 − (2HN

0 v(t) − ν0)2

ω2

))
,

i.e.,

(2.5) e2u(t) = e2u0 + 2v(t)(ν0 − HN
0 v(t)).

In particular, if there exists t ∈ R with u(t) = u1 and v(t) = T , then, by solving
(2.5) for ν0, we obtain (ii).

Conversely, if (ii) holds, then 2HN
0 T 2 − 2Tν0 = e2u0 − e2u1 < e2u0 ; hence

(2HN
0 T − ν0)

2 < 2HN
0 e2u0 + ν2

0 = ω2.



SPECTRAL MULTIPLIERS ON SOLVABLE EXTENSIONS OF STRATIFIED GROUPS 367

Because of the explicit formula for v , this means that T belongs to the range of v ,
so v(t) = T for some t ∈ R; and (2.5), together with (ii), yields u(t) = u1. �

From the above explicit solution, we derive several consequences. First, we
can construct HJ-curves on G starting with HJ-curves on N .

Proposition 2.4. Suppose that T > 0, (zN , ζN ) : [0,T ] → T ∗N is an HJ-
curve on N , and u0, u1 ∈ R. Then there exists an HJ-curve on G associated to
(zN , ζN ) that joins (zN (0), u0) to (zN (T ), u1).

Proof. Set ν0 = (2T )−1(e2u1 −e2u0 )+HN
0 T . If (v, u, ν) is the maximal solution

of (2.3) with initial data (2.4), then, by Lemma 2.3, T is in the range of v and
u(v−1(T )) = u1. Therefore, by Lemma 2.1,

(zN ◦ v, u, ζN ◦ v, ν) : [0, v−1(T )] → T ∗G

is an HJ-curve on G associated to (zN , ζN ), which clearly joins (zN (0), u0) to
(zN (T ), u1). �

Conversely, HJ-curves on G determine HJ-curves on N .

Proposition 2.5. Every HJ-curve on G is associated to an HJ-curve on N .

Proof. Let (z, u, ζ, ν) : I → T ∗G be an HJ-curve on G. Without loss of
generality, we may assume that 0 ∈ I . Let (zN , ζN ) : J → R be the maximal
solution of the Hamilton–Jacobi equations (2.1) on N with initial data zN (0) =
z(0), ζN (0) = ζ (0). Let HN

0 be the constant value of HN along (zN , ζN ), and set
u0 = u(0), ν0 = ν(0). Let (v, ũ, ν̃) be the solution of (2.3) with initial data (2.4)
given by Lemma 2.3. Then (z, u, ζ, ν) and (zN ◦ v, ũ, ζN ◦ v, ν̃) are both solutions
of (2.2) with the same initial condition; in particular (by uniqueness of solutions
to ODEs), they coincide on the intersections of their intervals of definition.

To finish the proof, it suffices to show that I is contained in the domain Ĩ of
(zN ◦ v, ũ, ζN ◦ v, ν̃). Note that the solution (v, ũ, ν̃) of (2.3) given by Lemma 2.3
is defined globally in time, v : R → v(R) is an increasing diffeomorphism, and
Ĩ = v−1(J) is open. Therefore, if I is not contained in Ĩ , there is a (nonzero)
element t0 ∈ I of minimum modulus that does not belong to Ĩ . Assume, without
loss of generality, that t0 > 0. Then v(t0) does not belong to the domain J of
(zN , ζN ), but [0, v(t0)) ⊂ J . The equation (zN (v(t)), ζN (v(t))) = (z(t), ζ (t)), which
is valid for all t ∈ [0, t0), and the fact that v is a diffeomorphism show that

lim
τ→v(t0)

(zN (τ), ζN (τ)) = (z(t0), ζ (t0)).

This contradicts the fact that (zN , ζN ) is a maximal solution to (2.1). �
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Finally, there is a relation between lengths of associated HJ-curves.

Proposition 2.6. Let I ⊂ R be a compact interval. Let (z, u, ζ, ν) : I → T ∗G
be an HJ-curve on G of length L, which is associated to an HJ-curve on N of
length LN . Let u0 and u1 be the values of u at the endpoints of I . Then

(2.6) coshL =
1 + e2(u1−u0) + (e−u0LN )2

2eu1−u0
.

Proof. Let (zN , ζN ) : J → T ∗N be the associated HJ-curve on N , and let
v : I → J be the diffeomorphism as in Definition 2.2. Without loss of generality
we may assume that I = [0, τ] with τ > 0 and that v(0) = 0. Set T = v(τ),
u0 = u(0), u1 = u(τ), ν0 = ν(0), and let HN

0 be the constant value of HN along
(zN , ζN ). Then, by Lemma 2.3, ν0 = (2T )−1(e2u1 − e2u0 ) + HN

0 T . Moreover, in the
case HN

0 �= 0,

(2.7) τ = v−1(T ) =
1
ω

(
arctanh

ν0

ω
+ arctanh

2HN
0 T − ν0

ω

)
,

where ω =
√

2eu0HN
0 + ν2

0, whereas, in the case HN
0 = 0,

τ =

⎧⎨
⎩

u−1(u1) = u1−u0
ν0

= 2u1−2u0

e2u1−e2u0
T if ν0 �= 0,

v−1(T ) = e−2u0T if ν0 = 0.

Note that LN = T
√

2HN
0 , whereas L = τ

√
2eu0HN

0 + ν2
0. Easy manipulations of the

above expressions then yield (2.6). For example, in the case HN
0 > 0, the equality

L = τω holds and (2.6) can be obtained by multiplying by ω both sides of (2.7),
taking the cosh of both sides, and applying the addition formula for cosh. �

We can now turn the relation (2.6) between lengths into a relation between sub-
Riemannian distances. We mention that formula (2.8) below was already given
without proof in [24, p. 9]. The argument given here can be thought of as a precise
proof of it.

Proposition 2.7. For all (z0, u0), (z1, u1) ∈ G,

�((z0, u0), (z1, u1)) = arccosh
1 + e2(u1−u0) + (e−u0�N (z0, z1))2

2eu1−u0

= arccosh
(
cosh(u0 − u1) + e−(u0+u1)�N (z0, z1)

2/2
)
.

(2.8)

Proof. By left-invariance of � and �N , it is sufficient to check the above for-
mula in the case (z0, u0) = 0G .
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By the results in [3], there exists an open dense subset � of G made up of
points which are joined to the origin 0G by a unique length-minimizing curve, and
this curve is a projection of an HJ-curve. Analogously, there exists an open dense
subset �N of N made up of points which are joined to the origin 0N by a unique
length-minimizing curve, and this curve is the projection of an HJ-curve.

Let �̃ = � ∩ (�N × A). Then �̃ is a dense open subset of G. Moreover,
for all (z1, u1) ∈ �, the length L of the length-minimizing HJ-curve (z, u, ζ, ν)
on G joining 0G to (z1, u1) equals �(0G, (z1, u1)). Moreover, by Proposition 2.5,
(z, u, ζ, ν) is of the form (ζN ◦ v, u, ζN ◦ v, ν) for some HJ-curve (zN , ζN ) on N ,
whose length LN is related to L by (2.6).

We now claim that LN = �N (0N , z1). If not, the length-minimizing HJ-curve
on N joining 0N to z1 (which exists, because z1 ∈ �N ) would have length less than
LN . So, via Proposition 2.4, we could construct an HJ-curve on G joining 0G to
(z1, u1) with length less than L, which leads to a contradiction.

The relation (2.6) between lengths yields (2.8) for all (z1, u1) ∈ �̃. Since �̃ is
dense and �, �N are continuous, (2.8) holds for all (z1, u1) ∈ G. �

2.3 Volume asymptotics and integral formulas for radial functions.
The expression (2.8) for the sub-Riemannian distance � allows us to give precise
formulas and asymptotics for the volume of the corresponding balls. It should
be noted that detailed information on the local behavior of � could be deduced
by the Ball-Box Theorem (see [45] or [41]). For the global behavior, however,
sufficiently precise general results seem not to be available, and formula (2.8)
becomes crucial.

We obtain the volume formulas as corollaries of integral formulas for radial
functions. By a radial function on G, we mean a function of the form x �→ f (|x|�),
where f : R+

0 → C and |x|� = �(x, 0G) is the distance of x ∈ G from the ori-
gin. Analogously by a radial function on N , we mean a function of the form
z �→ f (|z|N ), where |z|N = �N (z, 0N ) is the distance of z ∈ N from the origin.

The homogeneity of �N yields immediately the following integral formula for
radial functions on N : for all Borel functions f : R+

0 → R+
0,

(2.9)
∫

N
f (|z|N ) dz = VNQ

∫ ∞

0
f (s)sQ−1 ds,

where VN = |BN (0N , 1)|. Clearly such a formula can be extended to complex-
valued functions f , as soon as the integrals make sense. We now obtain a similar
formula on G.
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Proposition 2.8. For all Borel functions f : R+
0 → R+

0 ,

(2.10)
∫

G
f (|x|�) dμ(x) =

∫
G

f (|x|�)m(x) dμ(x) = cNQ
∫ ∞

0
f (r) sinhQ r dr,

where cN = VN2Q−1�(Q/2)2/�(Q). In particular,

(2.11) μ
(
B�(0, r)

)
= cNQ

∫ r

0
sinhQ s ds ∼

⎧⎨
⎩

rQ+1 if 0 < r ≤ 1,

eQr if r ≥ 1.

Proof. Since |x|� = |x−1|� by left-invariance of � (cf. [55, Section III.4,
p. 40]),

∫
G

f (|x|�) dμ(x) =
∫

G
f (|x−1|�) dμ(x) =

∫
G

f (|x|�)m(x) dμ(x).

Moreover, by formulas (2.8) and (2.9),
∫

G
f (|x|�) dμ(x) = VNQ

∫ ∞

−∞

∫ ∞

0
f (arccosh(cosh u + e−us2/2))sQ−1 ds du

= VNQ2Q/2−1
∫ ∞

−∞

∫ ∞

0
f (arccosh(cosh u + s))eQu/2sQ/2−1 ds du

= VNQ2Q/2−1
∫ ∞

0
f (r) sinh r

∫ r

−r
eQu/2(cosh r − cosh u)Q/2−1 du dr

(in the last step, we have used the change of variable s = cosh r − cosh u). One
can evaluate the inner integral in the last formula explicitly to obtain

∫ r

−r
eQu/2(cosh r − cosh u)Q/2−1 du = 2Q/2�(Q/2)2

�(Q)
sinhQ−1 r.

This gives (2.10), and (2.11) follows once we take f = χ[0,r). �
Similar computations give expressions for weighted integrals of radial func-

tions that are useful in the sequel. We define the weight w on G by w(z, u) = |z|QN .

Proposition 2.9. There exists a constant CQ > 0 such that

(2.12)
∫

G
m(x) f (|x|�)w(x) dμ(x) ≤ CQ

∫
G

f (|x|�)|x|� dμ(x)

for all Borel functions f : R+
0 → R+

0 . Moreover,

(2.13)
∫

B�(0,r)
(1 +w)−1 dμ �

⎧⎨
⎩

rQ+1 if 0 < r ≤ 1,

r2 if r ≥ 1.
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Proof. A simple modification of the proof of Proposition 2.8 gives the integral
formula

(2.14)
∫

G
m(x) f (|x|�)w(x) dμ(x)

= 2Q−1VNQ
∫ ∞

0
f (r) sinh r

∫ r

−r
(cosh r − cosh u)Q−1 du dr.

Since
∫ r
−r(cosh r − cosh u)Q−1 du � r sinhQ−1 r, the estimate (2.12) follows by

comparison of (2.10) and (2.14).

As for (2.13), this is clear by (2.11) in the case r ≤ 1. For r ≥ 1,

∫
B�(0,r)

(1 +w)−1 dμ = VNQ
∫ ∞

−∞

∫ ∞

0
χ[0,r)

(
arccosh

(
cosh u +

e−us2

2

)) sQ−1

1 + sQ
ds du

∼
∫ r

−r

∫ 2eu(cosh r−cosh u)

0

sQ/2−1

1 + sQ/2
ds du

�
∫ r

−r

∫ 2e2r

0

1
1 + s

ds du ∼ r2,

and we are done. �

3 Calderón–Zygmund theory

3.1 Abstract Calderón–Zygmund theory. It is well known [9, 10] that
in spaces of homogeneous type, integrable functions admit a Calderón–Zygmund
decomposition and that in this context, the classical Calderón–Zygmund theory
for singular integrals and the theory of Hardy and BMO spaces [48] can be gen-
eralized. However, because of exponential volume growth, the group G under
consideration is not a space of homogeneous type, and a further generalization of
the Calderón–Zygmund theory is necessary. This generalization was introduced
by Hebisch and Steger [29] and further developed by Vallarino [51]. Here we
summarize some of the results of this theory that are used in the sequel.

Definition 3.1. A CZ-space is a metric measure space (X, d, μ) such that
there exist a positive constant κ0 and a family R of measurable subsets of X with
the following properties: for all R ∈ R, there exist x ∈ X and r > 0 such that

(i) R ⊂ B(x, κ0r);
(ii) μ(R∗) ≤ κ0μ(R), where R∗ = {x ∈ X : d(x,R) < r}.

Moreover, for all f ∈ L1(X) and for all α > κ0‖ f ‖1/μ(X) (α > 0 if μ(X) = ∞),
there exist a decomposition f = g +

∑
i∈N bi and sets Ri ∈ R such that
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(iii) ‖g‖∞ ≤ κ0α;
(iv) supp bi ⊂ Ri and

∫
bi dμ = 0 for all i ∈ N;

(v)
∑

i μ(Ri) ≤ κ0‖ f ‖1/α;
(vi)

∑
i ‖bi‖1 ≤ κ0‖ f ‖1.

The constant κ0 is called the CZ-constant of (X, d, μ). A decomposition
f = g +

∑
i∈N bi which has properties (iii)-(vi) of Definition 3.1 is said to be a

Calderón–Zygmund decomposition of f at height α. The elements of the
family R are called admissible sets and, for each R ∈ R, the point x ∈ X and the
number r > 0 satisfying properties (i)-(ii) of Definition 3.1 are called, respectively,
the center and the radius of R.

Note that the above definition of CZ-space is more restrictive than the definition
of “Calderón–Zygmund space” given by Hebisch and Steger in [29]. Hence the
following boundedness theorem for a class of linear operators on CZ-spaces is a
consequence of [29, Theorem 2.1].

Theorem 3.2. Let (X, d, μ) be a CZ-space. Let T be a linear operator
bounded on L2(X) such that T =

∑
j∈Z T j , where

(i) the series converges in the strong topology of operators on L2(X);
(ii) every T j is an integral operator with kernel K j ;
(iii) there exist positive constants b,B, ε and c > 1 such that

∫
X

|Kj (x, y)|
(
1 + c jd(x, y)

)εdμ(x) ≤ B for all y ∈ X,
∫

X
|Kj (x, y) − Kj (x, z)|dμ(x) ≤ B

(
c jd(y, z)

)b
for all y, z ∈ X.

Then T extends from L1(X)∩L2(X) to an operator of weak type (1, 1) and bounded
on Lp(X), for 1 < p ≤ 2.

In [51] it was noticed that if a CZ-space satisfies a certain additional condition,
then one can develop an H 1-BMO theory on it.

Definition 3.3. We say that the CZ-space (X, d, μ) with family of admissible
sets R satisfies condition (C) if there exists a subfamily R′ of R such that

(i) if R1,R2 ∈ R′ are such that R2 ∩ R1 �= ∅, then either R1 ⊂ R2 or R2 ⊂ R1;
(ii) for each R ∈ R, there exists R′ ∈ R′ such that R ⊂ R′.

Suppose now that (X, d, μ) is a CZ-space with family of admissible sets R that
satisfies condition (C). We introduce an atomic Hardy space H 1 and a space of
bounded mean oscillation functions on X as follows.
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Definition 3.4. An atom is a function a ∈ L1(X) such that
(i) a is supported in an admissible set R ∈ R,
(ii) ‖a‖2 ≤ μ(R)−1/2,

(iii)
∫
S a dμ = 0.

Definition 3.5. The Hardy space H 1(X) is the Banach space

H 1(X) =
{

f ∈ L1(X) : f =
∑

j

λ j a j , a j atoms, λ j ∈ C,
∑

j

|λ j | < ∞
}

endowed with the norm

‖ f ‖H 1 = inf
{∑

j

|λ j | : f =
∑

j

λ j a j , a j atoms, λ j ∈ C
}
.

We denote by H 1
fin(X) the subspace of H 1(X) of finite linear combinations of atoms.

Definition 3.6. The space BMO(X) is the space

BMO(X) =
{

f ∈ L2
loc(X) : sup

R∈R

( 1
μ(R)

∫
R
| f − fR|2 dμ

)1/2
< ∞

}
,

where fR = 1
μ(R)

∫
R f dμ. The space BMO(X) is the quotient space of BMO(X)

modulo constant functions, and, endowed with the norm

‖ f ‖BMO = sup
R∈R

( 1
μ(R)

∫
R
| f − fR|2 dμ

)1/2
,

is a Banach space.

For more details on the spaces H 1(X) and BMO(X) we refer the reader to
[51]. In particular, the space BMO(X) can be identified with the dual of H 1(X)
[51, Theorem 3.9].

Proposition 3.7. (i) For each g in BMO(X), the functional � defined on
H 1

fin(X) by

�( f ) =
∫

fg dμ for all f ∈ H 1
fin(X)

extends to a bounded functional on H 1(X). Furthermore, there exists a con-
stant C such that

‖�‖(H 1(X))∗ ≤ C‖ f ‖BMO.

(ii) For each bounded linear functional � on H 1(X), there exists a function g in
BMO(X) such that

�( f ) =
∫

g f dμ for all f ∈ H 1
fin(X), and ‖g‖BMO ≤ C‖�‖(H 1(X))∗,

with C independent of g and �.
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Moreover, the following H 1-L1 boundedness result holds for singular integral
operators on CZ-spaces.

Theorem 3.8 ([51, Theorem 3.10].). Let (X, d, μ) be a CZ-space which sat-
isfies condition (C). If T is a linear operator which satisfies the hypotheses of
Theorem 3.2, then T is bounded from H 1(X) to L1(X).

3.2 Calderón–Zygmund theory on (G, �,μ). We prove that the space
(G, �,μ) is a CZ-space as defined in the previous subsection. This fact was already
announced and proved by Hebisch in [26] for a more general class of amenable
Lie groups, including the groups we consider here. However, for our groups, the
construction of the Calderón–Zygmund decomposition becomes more transparent
than the one given in [26], and it is worthwhile to see the explicit construction
in our setting. Moreover, our construction allows us to show that the CZ-space
(G, �,μ) satisfies condition (C). Consequently, a theory of Hardy spaces can be
developed on G.

The difficulty in the construction is in finding a suitable family R of admissible
sets on G. We cannot use balls as in the classical case, because their measure
increases exponentially, and condition (ii) of Definition 3.1 is not satisfied. To
define admissible sets, we adapt to the sub-Riemannian distance the ideas of [29]
and [52].

Christ [6, Theorem 11] proved the existence of a family of dyadic sets in a
space of homogeneous type, which can be formulated for the stratified group N as
follows.

Theorem 3.9. There exist constants η,CN > 1, an integer J ≥ 2, a collection
of Borel subsets Qk

α ⊂ N, and points nk
α ∈ N, where k ∈ Z, α ∈ Ik and Ik is a

countable index set, such that, for all k ∈ Z,

(i) |N − ⋃
α∈Ik Qk

α| = 0;
(ii) BN (nk

α,C
−1
N ηk) ⊂ Qk

α ⊂ BN (nk
α,CNη

k) for all α ∈ Ik;
(iii) Qk

α ∩ Qk
β = ∅ for all α, β ∈ Ik with α �= β;

(iv) for all α ∈ Ik, Qk
α has at most J subsets of the form Qk−1

β for β ∈ Ik−1;
(v) for all � ≤ k and β ∈ I�, there is a unique α ∈ Ik such that Q�

β ⊂ Qk
α;

(vi) for all � ≤ k, α ∈ Ik, and β ∈ I�, either Qk
α ∩ Q�

β = ∅ or Q�
β ⊂ Qk

α.

Let us fix a system of dyadic sets Qk
α, points nk

α, index sets Ik, and constants
η,CN , J in accordance with Theorem 3.9. Further, let us fix positive constants M
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and r0 such that

1 < r0 < 2 log 2,(3.1)

M > 1,(3.2)

er0e2Mr0 ≤ e2Mr0,(3.3)

6M > log η− log 2 +
r0

2
,(3.4)

ηe4Mr0 < 2e8M inf{re−r/2 : r0 < r ≤ 2r0},(3.5)

η < 4e(4M−1)r0 .(3.6)

We define admissible sets as the product of dyadic sets in N and intervals in A as
follows.

Definition 3.10. An admissible set in G is a set of the form

Qk
α × (u0 − r, u0 + r),

where k ∈ Z, α ∈ Ik, u0 ∈ R, r > 0 are such that

re2Meu0 ≤ ηk < 4re8Meu0 if 0 < r ≤ r0,

e2Mreu0 ≤ ηk < 4e8Mreu0 if r > r0.
(3.7)

A small admissible set is an admissible set corresponding to a parameter r ∈
(0, r0], and a big admissible set is an admissible set corresponding to a para-
meter r ∈ (r0,∞). We denote by R the family of all admissible sets in G.

Proposition 2.7 allows us to obtain precise relations between balls and “rect-
angles” on G, which are important in the following.

Proposition 3.11. There exists a positive constant C1 such that
(i) BN

(
0N , 4CNe8Mr

) × (−r, r) ⊂ B�(0G,C1r) for every r ∈ (0,∞),
(ii) BN

(
0N , 4CNe8Mr

) × (−r, r) ⊂ B�(0G,C1r) for every r ∈ (r0,∞),
(iii) B�(0G, r) ⊂ BN

(
0N , er

) × (−r, r) for every r ∈ (0,∞),
(iv) B�(0G, r) ⊂ BN

(
0N ,C1r

) × (−r, r) for every r ∈ (0, r0].

Proof. We first prove (i). If (z, u) ∈ BN
(
0N , 4CNe8Mr

) × (−r, r), then, by
formula (2.8),

�
(
(z, u), 0G

)
< arccosh

(
cosh r +

16erC2
N e16Mr2

2

)

≤ arccosh cosh(C1r),

for a sufficiently large C1 and for every r ∈ (0,∞).
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We now prove (ii). If (z, u) ∈ BN
(
0N , 4CNe8Mr

) × (−r, r), then, by formula
(2.8),

�
(
(z, u), 0G

)
< arccosh

(
cosh r +

16erC2
Ne16Mr

2

)
≤ arccosh cosh(C1r),

for a sufficiently large C1 and for every r ∈ (r0,∞).
We now consider any point (z, u) ∈ B�(0G, r). By formula (2.8), it is obvious

that cosh u < cosh r, and then u ∈ (−r, r). Suppose now that |z| ≥ er . Then

�
(
(z, u), 0G

) ≥ arccosh
(

1 +
e−re2r

2

)
≥ arccosh cosh r = r.

Then |z| < er , and (iii) is proved. Take now any point (z, u) ∈ B�(0G, r), and
suppose that |z| ≥ C1r. Then

�
(
(z, u), 0G

) ≥ arccosh
(

1 +
e−rC2

1r
2

2

)
≥ arccosh cosh r = r

for every r ∈ (0, r0], if C1 is chosen sufficiently large. Then |z| < C1r, and (iv) is
proved. �

We now investigate some properties of admissible sets.

Proposition 3.12. There exists a positive constant C∗ such that, for every
admissible set R = Qk

α × (u0 − r, u0 + r),
(i) R ⊂ B�

(
(nk
α, u0),C1r

)
, where C1 is the constant which appears in Proposi-

tion 3.11;
(ii) μ

(
R∗) ≤ C∗μ

(
R
)
, where R∗ = {(z, u) ∈ G : �

(
(z, u),R

)
< r}.

Proof. Case 0 < r ≤ r0. By Theorem 3.9 and Definition 3.10,

R ⊂ BN
(
nk
α, 4CNe8Meu0r

) × (u0 − r, u0 + r)

= (nk
α, u0) · BN

(
0N , 4CNe8Mr

) × (−r, r).

By Proposition 3.11, BN
(
0N , 4CNe8Mr

) × (−r, r) ⊂ B�(0G,C1r), which implies
(i).

To prove (ii), we remark that R∗ =
⋃

(z,u)∈R B�
(
(z, u), r

)
. By the left-invariance

of the metric and Proposition 3.11, for every (z, u) ∈ R,

B�
(
(z, u), r

)
= (z, u) · B�(0G, r) ⊂ (z, u) · BN

(
0N ,C1r

) × (−r, r)

= BN
(
z,C1e

ur
) × (u − r, u + r)

⊂ BN
(
nk
α,C1e

ur + CNη
k) × (u0 − 2r, u0 + 2r)

⊂ BN
(
nk
α,Ceu0r

) × (u0 − 2r, u0 + 2r),
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where C = C1er0 + 4CNe8M ; we have applied the triangle inequality in N and
the admissibility condition. This implies that μ(R∗) � eQu0rQr ∼ ηQkr ∼ μ(R),
which gives (ii).

Case r > r0. To prove (i), note that by Theorem 3.9

R ⊂ BN
(
nk
α,CNη

k) × (u0 − r, u0 + r),

which is contained in BN
(
nk
α, 4CNe8Mreu0 ) × (u0 − r, u0 + r), by the admissibility

condition (3.7). By the left-invariance of the metric and Proposition 3.11

R ⊂ (nk
α, u0) · BN

(
0N , 4CNe8Mr) × (−r, r) ⊂ (nk

α, u0) · B�(0G,C1r) = B�
(
(nk
α, u0),C1r

)
.

To prove (ii), we remark that R∗ =
⋃

(z,u)∈R B�
(
(z, u), r

)
. By the left-invariance of

the metric and Proposition 3.11, for every (z, u) ∈ R,

B�
(
(z, u), r

)
= (z, u) · B�(0G, r) ⊂ (z, u) · B�

(
0N , e

r) × (−r, r)

= BN
(
z, euer) × (u − r, u + r).

Using the fact that (z, u) ∈ R and the admissibility condition on R, we see that

(u − r, u + r) ⊂ (u0 − 2r, u0 + 2r)

and

BN
(
z, euer) ⊂ BN

(
z, eu0+rer) ⊂ BN

(
nk
α, e

u0+2r + CNη
k) ⊂ BN

(
nk
α, (1 + CN )ηk).

Thus
R∗ ⊂ BN

(
nk
α, (1 + CN )ηk) × (u0 − 2r, u0 + 2r),

and so
μ
(
R∗) � |BN

(
nk
α, η

k)|r ∼ μ
(
R
)
,

as required. �
We now define a way of splitting an admissible set into at most J disjoint

admissible subsets, where J is the constant which appears in Theorem 3.9.

Definition 3.13. An admissible set R = Qk
α×(u0−r, u0+r) is called strongly

admissible if (3.7) also holds with k − 1 in place of k, i.e., if

re2Meu0 ≤ ηk−1 < 4re8Meu0 when 0 < r ≤ r0,

e2Mreu0 ≤ ηk−1 < 4e8Mreu0 when r > r0.

Note that the upper bound for ηk−1 in the above inequalities is automatically
satisfied, because R is admissible and ηk−1 < ηk; the additional requirement for R
to be strongly admissible is the lower bound for ηk−1.
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Definition 3.14. Let R = Qk
α × (u0 − r, u0 + r) be admissible. If R is

strongly admissible, we define the children of R to be the sets of the form
Qk−1
β × (u0 − r, u0 + r), where β ∈ Ik−1 and Qk−1

β ⊂ Qk
α. If R is not strongly

admissible, we define the children of R to be the sets Qk
α × (u0 − r, u0) and

Qk
α × (u0, u0 + r). We denote by C(R) the set of the children of R.

Definition 3.15. Let E be a measurable subset of a measure space. A quasi-
partition of E is an at most countable family of non-negligible, pairwise disjoint
measurable subsets of E whose union has full measure in E .

Lemma 3.16. Let C2 = max{2, (C2
Nη)

Q}. Then, for all admissible sets R,
(i) R has at most J children,
(ii) C(R) is a quasi-partition of R,
(iii) C−1

2 μ(R) ≤ μ(R′) ≤ μ(R) for all R′ ∈ C(R),
(iv) all the children of R are admissible.

Proof. Let R = Qk
α × (u0 − r, u0 + r). Since R is admissible, (3.7) holds.

Suppose that R is strongly admissible. Then the children of R are admissible too.
Moreover, from the properties of dyadic sets given by Theorem 3.9, it is clear that
properties (i), (ii), and (iii) hold.

Suppose now that R is not strongly admissible. Then, for r ≤ r0,

(3.8) re2Meu0 ≤ ηk < ηre2Meu0,

while, for r > r0,

(3.9) e2Mreu0 ≤ ηk < ηe2Mreu0 .

Moreover the children of R, i.e., R1 = Qk
α× (u0 − r, u0) and R2 = Qk

α× (u0, u0 + r),
are “centered” at (nk

α, u0 − r/2) and (nk
α, u0 + r/2), respectively. It is clear that

properties (i), (ii), and (iii) hold.
We prove that R1 and R2 are admissible: to do so, we distinguish three cases.
Case r ≤ r0. In this case, R is a small admissible set, and we must prove that

R1,R2 are both small admissible sets, because r/2 ≤ r0. Notice that

eu0−r/2e2M r
2

≤ eu0+r/2e2M r
2

≤ 1
2
ηker/2 ≤ 1

2
ηke

r0
2 ≤ ηk,

since r0 ≤ 2 log 2 by (3.1). Moreover,

ηk < ηeu0e2Mr < 4e8Meu0−r/2 r
2
< 4e8Meu0+r/2 r

2
,

since η < 2e6Me− r0
2 by condition (3.4). This proves that R1 and R2 are admissible.
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Case r0 < r ≤ 2r0. In this case, R is a big admissible set, and we must prove
that R1,R2 are both small admissible sets, because r/2 ≤ r0. Notice that

eu0−r/2e2M r
2

≤ eu0+r/2e2M r
2

≤ eu0e2Mr ≤ ηk,

since er0e2Mr0 ≤ e2Mr0 by condition (3.3). Moreover,

ηk < ηeu0e2Mr < 4e8Meu0−r/2r/2 < 4e8Meu0+r/2r/2,

since ηe4Mr0 < 2e8M infr0<r≤2r0 re−r/2 by condition (3.5). This proves that R1 and
R2 are admissible.

Case r > 2r0. In this case, R is a big admissible set, and we must prove that
R1, R2 are both big admissible sets, because r/2 > r0. Notice that

eu0−r/2e2Mr/2 ≤ eu0+r/2e2Mr/2 ≤ eu0e2Mr ≤ ηk,

since M > 1/2 by (3.2). Moreover,

ηk < ηeu0e2Mr < 4e8Mr/2eu0−r/2 < 4e8Mr/2eu0+r/2,

since η < 4e(4M−1)r0 by condition (3.6). This proves that both R1 and R2 are
admissible. �

By adapting the proof of [51, Lemma 3.16], we can construct a quasi-partition
of G in big admissible sets whose measure is as large as we want.

Lemma 3.17. For all σ > 0, there exists a quasi-partition P of G in big
admissible sets whose measure is greater than σ.

Proof. Choose r1 > r0 and k1 ∈ Z such that e2Mr1 ≤ ηk1 < 4e8Mr1 . Then the
sets R1

α = Qk1
α × (−r1, r1), α ∈ Ik1 , are a quasi-partition of N × (−r1, r1) made

up of big admissible sets. It is possible to choose k1 and r1 in such a way that
|BN (0N ,C−1

N ηk1 )|2r1 > σ, so that μ(R1
α) > σ for all α ∈ Ik1 .

Suppose that a quasi-partition of N × (r1 + · · · + 2rn−1, r1 + · · · + 2rn−1 + 2rn),
made up of big admissible sets of measure greater than σ, has been constructed.
Choose rn+1 > r0 and kn+1 ∈ Z such that e2Mrn+1eun+1 ≤ ηkn+1 < 4e8Mrn+1eun+1 , where
un+1 = r1 + · · · + 2rn + rn+1. Then the sets Rn+1

α = Qkn+1
α × (un+1 − rn+1, un+1 + rn+1),

α ∈ Ikn+1 , are a quasi-partition of N × (r1 + · · · + 2rn, r1 + · · · + 2rn + 2rn+1) made
up of big admissible sets. It is possible to choose kn+1 and rn+1 in such a way that
|BN (0N ,C−1

N ηkn+1 )|2rn+1 > σ, so that μ(Rn+1
α ) > σ for all α ∈ Ikn+1 .

Iterating this process, we get a quasi-partition of N × (−r1,∞) made up of
big admissible sets with measure greater than σ. By a similar procedure, we get
a quasi-partition of N × (−∞,−r1) made up of big admissible sets with measure
greater than σ, as required. �
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Lemma 3.16 shows that we can iteratively consider children, grandchildren,
great grandchildren, etc., i.e., descendants of an admissible set, and all descend-
ants are admissible. In this way, we can also define subsequent refinements of a
quasi-partition of G in admissible sets. Namely, let P be a quasi-partition of G in
admissible sets, and define Dn(P) iteratively for all n ∈ N by

D0(P) = P, Dn+1(P) =
⋃

R∈Dn(P)

C(R).

Finally, define GP =
⋂

n∈N
⋃
Dn(P) and D(P) =

⋃
n∈N Dn(P). The set D(P) is the

set of descendants of elements of P.

Lemma 3.18. Let P be a quasi-partition of G in admissible sets. Then

(i) for all n ∈ N, Dn(P) is a quasi-partition of G in admissible sets;
(ii) for all R,R′ ∈ D(P), either R ∩ R′ = ∅ or R ⊂ R′ or R′ ⊂ R;
(iii) GP has full measure in G;
(iv) for all x ∈ GP and n ∈ N, there is a unique Rn

x ∈ Dn(P) such that x ∈ Rn
x;

(v) for all x ∈ GP and all neighborhoods U of x, there exists n ∈ N such that
Rn

x ⊂ U.

Proof. Item (i) is an immediate consequence of Lemma 3.16, and (iii) follows
because GP is a countable intersection of sets of full measure in G.

As for (ii), take R ∈ Dn(P) and R′ ∈ Dn′
(P) for some n, n′ ∈ N. If R ∩ R′ �= ∅,

then n �= n′. Suppose that n < n′. Then, by construction, R′ is descendant of
exactly one element R′′ ∈ Dn(P). Consequently, either R′′ = R and therefore
R′ ⊂ R, or R′′ ∩ R = ∅, in which case also R′ ∩ R = ∅.

As for (iv), clearly, since x belongs to the union of Dn(P) and Dn(P) is a quasi-
partition of G, there exists a unique set Rn

x ∈ Dn(P) such that x ∈ Rn
x . In fact, from

the construction, it is clear that Rn+1
x is a child of Rn

x for all n ∈ N. In particular, the
sets Rn

x for fixed x form a decreasing sequence as n grows in N; and, at each step,
in the passage from Rn

x = Qk
α× (u0 −r, u0 +r) to its child Rn+1

x , either the first factor
Qk
α is replaced by one of its children Qk−1

β , or the second factor (u0 − r, u0 + r) is
halved.

To prove (v), it is thus sufficient to show that each of these two alternatives
occurs infinitely many times, i.e., that for infinitely many n, Rn

x is strongly admis-
sible and for infinitely many n, Rn

x is not strongly admissible. In fact, in this case,
the diameter of both projections of Rn

x onto the two factors N and A of G tends to
0 as n → ∞.

In search of a contradiction, suppose that, for all n greater than some n0, Rn
x

is strongly admissible. This means that, if Rn0
x = Qk

α × (u0 − r, u0 + r), then
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Rn
x has the form Qk+n0−n

αn
× (u0 − r, u0 + r) for all n ≥ n0, where αn ∈ Ik+n0−n.

Since the Rn
x are all admissible, (3.7) must hold when k is replaced by � for all

integers � ≤ k, while u0 and r remain the same, and, allowing � to tends to −∞,
one obtains a contradiction. Similarly one obtains a contradiction by assuming
that, for all n ≥ n0, Rn

x is not strongly admissible: in this case, one would have
ηk < 4(2−�r)e8Meu0+r for fixed k,u0,r and for all sufficiently large �, which is
clearly impossible. �

For all quasi-partitions P of G in admissible sets, we define the maximal oper-
ator MP as follows: for all functions f in L1

loc(G) and x ∈ G,

MP f (x) =

⎧⎪⎪⎨
⎪⎪⎩

sup
R∈D(P)

R�x

1
μ(R)

∫
R
| f | dμ if x ∈ ⋃

D(P),

0 otherwise.

Proposition 3.19. Let P be a quasi-partition of G in admissible sets. Then
(i) MP f is measurable for all f ∈ L1

loc(G), and

(3.10) MP(λ f + λ′ f ′) ≤ |λ|MP f + |λ′|MP f ′

for all λ, λ′ ∈ C and f, f ′ ∈ L1
loc(G);

(ii) the maximal operator MP is of weak type (1, 1);
(iii) for all f ∈ L1

loc(G), | f | ≤ MP f almost everywhere.

Proof. (i). MP f = supn∈N MP
n f , where

MP
n f (x) =

⎧⎪⎨
⎪⎩

1
μ(Rn

x )

∫
Rn

x

| f | dμ if x ∈ ⋃
Dn(P),

0 otherwise,

and the sets Rn
x are defined as in Lemma 3.18. Clearly, the MP

n f are measurable,
and consequently, MP f is measurable too. The inequality (3.10) is clear by the
definition.

(ii). Let f be in L1(G), and let α > 0. Consider the set �α = {MP f > α}. For
each point x ∈ �α let Rx be the largest set (in the sense of inclusion) in D(P) that
contains x such that the average of | f | on Rx is greater than α. If S = {Rx : x ∈ �α},
then S is a partition of �α made up of elements of D(P). Thus,

μ
(
�α

)
=
∑
R∈S

μ(R) ≤ 1
α

∑
R∈S

∫
R
| f | dμ ≤ ‖ f ‖1

α
.

(iii). By (ii) and standard arguments (cf. [49, Theorem II.3.12] or [16, Theo-
rems 2.2 and 2.10]), it is sufficient to consider the case where f is continuous. In
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this case,

MP f (x) ≥ lim
n→∞

1
μ(Rn

x )

∫
Rn

x

| f | dμ = | f (x)|

for all x ∈ GP, by Lemma 3.18(v), and GP has full measure by Lemma 3.18(iii).
�

Now we are able to construct the Calderón–Zygmund decomposition of an
integrable function on G.

Theorem 3.20. The space (G, �,μ) with the family R of admissible sets is a
CZ-space which satisfies condition (C).

Proof. By Proposition 3.12, the family R of admissible sets in G satisfies
conditions (i)-(ii) of Definition 3.1.

Let now f be in L1(G), and let α > 0. Our purpose is to construct a Calderón–
Zygmund decomposition of f at height α. Let P be a quasi-partition of G in big
admissible sets whose measure is greater than ‖ f ‖1/α (it exists, by Lemma 3.17).
For each R in P, we have 1

μ(R)

∫
R | f | dμ < α.

Let B = {R ∈ D(P) : μ(R)−1
∫
R | f | dμ ≥ α}. We define the family C of the

stopping sets as follows:

C = {R ∈ B : R′ /∈ B for all R′ ∈ D(P) such that R � R′}.
By Lemma 3.18(ii), it is clear that the elements of C are pairwise disjoint. On the
other hand,

⋃
C =

⋃
B; therefore,

(3.11) MP f (x) ≤ α for all x ∈ �,
where � is the complement of

⋃
C in G. Further, R ∈ B for all R ∈ C. Hence

R /∈ P; consequently, R is the child of some R′ ∈ D(P) \ B. Therefore,

(3.12) α ≤ μ(R)−1
∫

R
| f | dμ ≤ C2μ(R′)−1

∫
R′

| f | dμ < C2α,

by Lemma 3.16(iii).
For E ∈ C, define

g =
∑
E∈C

( 1
μ(E)

∫
E

f dμ
)
χE + fχ� and bE =

(
f − 1

μ(E)

∫
E

f dμ
)
χE .

By (3.12), it follows that |g| ≤ C2α on each set E ∈ C. Moreover, by (3.11) and
Proposition 3.19(iii),

|g(x)| = | f (x)| ≤ α for a.a. x ∈ �.
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Each function bE is supported in E and has average zero. Moreover,

∑
E∈C

‖bE‖1 ≤ 2
∑
E∈C

∫
E

| f | dμ ≤ 2‖ f ‖1.

Finally, again by (3.12) and the disjointness of C,

∑
E∈C

μ(E) ≤ 1
α

∑
E∈C

∫
E

| f | dμ ≤ 1
α

‖ f ‖1.

Thus f = g +
∑

E∈C bE is a Calderón–Zygmund decomposition of the function f
at height α. The CZ-constant of the space is κ0 = max{C1,C2,C∗}.

To conclude the proof, we construct a family of admissible sets R′ which satis-
fies condition (C). For all k ∈ Z+, set rk = k

2M log η. Clearly, e2Mrk ≤ ηk < 4e8Mrk ,

and rk → ∞ as k → ∞, so rk ≥ r0 if k ≥ k0, say. Consequently, for all k ≥ k0

and α ∈ Ik, the sets

(3.13) Rk
α = Qk

α × (−rk, rk)

are admissible. Set R′ = {Rk
α : k ≥ k0, α ∈ Ik} and note that the following

properties hold.

(i) If Rk
α ∩ R�β �= ∅ and k > �, then R�β ⊂ Rk

α.
(ii) If R = Q�

β × (u0 − r, u0 + r) is an admissible set, then there exist k ≥ k0

and α ∈ Ik such that R ⊂ Rk
α. Indeed, we may choose k ≥ max{�, k0} such

that (u0 − r, u0 + r) ⊂ (−rk, rk). In this case, there exists α ∈ Ik such that
Q�
β ⊂ Qk

α.

Thus condition (C) is satisfied. �
Since by Theorem 3.20 the space (G, �,μ) with the family R of admissible sets

satisfies condition (C), we can define a Hardy space H 1(G) and a space BMO(G)
as in Definitions 3.5 and 3.6. By using the geometric properties of (G, �,μ) and
the properties of admissible sets, one can easily check that all the results obtained
in [53] and [35] for Hardy and BMO spaces on ax + b-groups can be proved also
in our setting, with only slight changes in their proofs; see, e.g., [5] for definition
and discussion of the real and complex interpolation methods.

Proposition 3.21. (i) (John–Nirenberg inequality) There exist positive
constants γ and D such that

μ
({x ∈ R : |g(x) − gR| > s‖g‖BMO}) ≤ De−γsμ(R)

for all s > 0, R ∈ R, and g ∈ BMO(G).
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(ii) (
H 1(G),L2(G)

)
θ,p = Lp(G),

where θ ∈ (0, 1), 1
p = 1 − θ

2 and
(·, ·)

θ,p denotes the interpolation space
obtained by the real method;

(iii) (
H 1(G),L2(G)

)
[θ] = Lp(G),

where θ ∈ (0, 1), 1
p = 1 − θ

2 , and
(·, ·)[θ] denotes the interpolation space

obtained by the complex method;
(iv) (

L2(G),BMO(G)
)
θ,p = Lp(G),

where θ ∈ (0, 1), 1
p = 1−θ

2 ;
(v) (

L2(G),BMO(G)
)
[θ] = Lp(G),

where θ ∈ (0, 1) and 1
p = 1−θ

2 .

4 The sub-Laplacian �, its heat kernel, and its spectral
multipliers

4.1 The sub-Laplacian. Let � be the sub-Laplacian defined in (1.1). We
recall now some well-known properties of�, that are common to all left-invariant
sub-Laplacians on Lie groups; see, e.g., [55], [36], and references therein for fur-
ther details.

Since the horizontal distribution on G is bracket-generating, � is hypoelliptic
[31]. Moreover, � is essentially self-adjoint and positive with respect to the right
Haar measure; in fact, for all f, g ∈ C∞

c (G),

(4.1) 〈� f, g〉 =
q∑

j =0

〈Xj f,Xjg〉,

where 〈·, ·〉 denotes the inner product of L2(G).
In particular, � extends uniquely to a positive self-adjoint operator on L2(G);

and, for all bounded Borel functions F : R+
0 → C, the operator F (�) is a convo-

lution operator with kernel kF (�); see (1.2). By means of the convolution formula,
when kF (�) ∈ L1

loc(G), we can interpret F (�) as an integral operator with integral
kernel KF (�) given by

(4.2) KF (�)(x, y) = kF (�)(y
−1x)m(y) for a.a. x, y ∈ G.
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In the sequel, we will often make use of some properties of differential equa-
tions associated with �. First of all, we have finite propagation speed [40, 13] for
solutions of the wave equation:

supp(cos(t
√
�) f ) ⊂ {x ∈ G : �(x, supp f ) ≤ t}

for all f ∈ L2(G) and all t ≥ 0.
Moreover, since � is associated to the Dirichlet form (4.1) and annihilates

constants, the heat kernel t �→ ht = ke−t� is a semigroup of probability measures
on G [32]. By hypoellipticity of ∂t +�, the distribution (t, x) �→ ht(x) is in fact a
smooth function on R+ × G; and, from the above discussion, it follows that

ht ∗ ht′ = ht+t′, ht ≥ 0, ‖ht‖1 = 1

(semigroup of probability measures) and

h∗
t = ht, ht(x) ≤ m(x)1/2ht(0)

(self-adjointness and positivity on L2). It is also possible to obtain “Gaussian-
type” estimates for ht and its left-invariant derivatives: for all p ∈ [1,∞], α =
(α0, . . . , αq) ∈ N1+q, and b ≥ 0, there exist C, ω ≥ 0 such that

(4.3) ‖eb|·|�Xαht‖p ≤ Ct−(Q+1)/(2p′)−|α|/2eωt,

where p′ = p/(p − 1), Xα = Xα0
0 · · ·Xαq

q , and |α| = α0 + · · · + αq; see, e.g., [55],
[50], or [36, Theorem 2.3(f)]. However, these estimates are of little use for t large.

4.2 L1 gradient heat kernel estimates. The heat kernel ht associated to
� can be expressed in terms of the heat kernel hN

t associated to the sub-Laplacian
�N = −∑q

j =1 X̆2
j on N (see [43, §3] or [19, §2]):

(4.4) ht(z, u) =
∫ ∞

0
�t(ξ ) exp

(
−cosh u

ξ

)
hN

euξ/2(z) dξ,

where

(4.5) �t(ξ ) =
ξ−2

√
4π3t

exp
(
π2

4t

)∫ ∞

0
sinh θ sin

πθ

2t
exp

(
−θ

2

4t
− cosh θ

ξ

)
dθ.

This formula was used in the aforementioned works to obtain L1-estimates for the
heat kernel ht at complex times t = 1 + iτ, τ ∈ R. Here we show that the same
formula can be used to obtain L1-estimates for the horizontal gradient of the heat
kernel ht at real times t ∈ R.
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For a (smooth) function f on G, define the horizontal gradient ∇H f (x) ∈ HxG
at x ∈ G by

gx(∇H f (x), v) = ( d f )x(v) for all v ∈ HxG,

where ( d f )x is the differential of f at x. It is easily seen that

(4.6) |∇H f (x)|2g = gx(∇H f (x),∇H f (x)) =
q∑

j =0

|Xj f (x)|2.

We use the following technical lemma repeatedly to estimate the L1-norm
of |∇Hht|g.

Lemma 4.1. For all α, θ ≥ 0,

∫
R

∫ ∞

0

cosh(αu)
ξ2+α

exp
(

−cosh θ + cosh u
ξ

)
dξ du ≤ Cα

⎧⎨
⎩

e−θ if α > 0,

e−θ (1 + θ) if α = 0.

Proof. The inner integral in ξ is convergent and, after a rescaling, is equal to
a constant times (cosh θ + cosh u)−1−α cosh(αu). Consequently, the integral in u is
controlled by a constant times

∫ ∞

0
(eθ + eu)−1−αeαu du = e−θ

∫ ∞

e−θ
(1 + v)−1−αvα−1 dv,

and the conclusion follows. �

Proposition 4.2. There exists C > 0 such that
∥∥|∇Hht|g

∥∥
1 ≤ Ct−1/2 for all t ∈ R+.

Proof. By (4.6), it suffices to show that ‖Xjht‖1 ≤ Ct−1/2 for all
j ∈ {0, 1, . . . , q} and t ∈ R+. These estimates are already known in the case
t ≤ 1; see (4.3). Therefore, throughout the rest of the proof, we assume that t ≥ 1.

Note that, by homogeneity considerations, the corresponding estimates for the
heat kernel on N are easily shown to hold for all times. In fact,

(4.7) ‖hN
s ‖L1(N ) = 1, ‖X̆ j h

N
s ‖L1(N ) = Cjs

−1/2

for all s ∈ R+ and j ∈ {1, . . . , q}; see, e.g., [17, Proposition (1.75)]. These
equations, together with the formula (4.4), are the main ingredient of our proof.

We consider first the case j > 0. Recall that Xj = euX̆ j . Then, by (4.4) and
differentiation under the integral sign,

Xjht(z, u) =
∫ ∞

0
�t(ξ ) exp

(
−cosh u

ξ

)
euX̆ j h

N
euξ/2(z) dξ.
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Therefore, by (4.7),

‖Xjht‖1 �
∫
R

∫ ∞

0
|�t(ξ )| e

u/2

ξ1/2
exp

(
−cosh u

ξ

)
dξ du.

Since t ≥ 1, by (4.5), the above integral is controlled by a constant times

t−1/2
∫ ∞

0
sinh θ

∣∣∣∣sin πθ2t

∣∣∣∣ exp
(

−θ
2

4t

)

×
∫
R

∫ ∞

0

eu/2

ξ2+1/2
exp

(
−cosh θ + cosh u

ξ

)
dξ du dθ.

By applying Lemma 4.1 (with α = 1/2), we can control the integral in u by a
constant times e−θ . Hence

‖Xjht‖1 � t−1/2
∫ ∞

0

sinh θ
eθ

θ

t
exp

(
−θ

2

4t

)
dθ � t−1/2.

For j = 0 we have instead, again by (4.4),

X0ht(z, u) = −
∫ ∞

0
�t(ξ )

sinh u
ξ

exp
(

−cosh u
ξ

)
hN

euξ/2(z) dξ

+
∫ ∞

0
�t(ξ ) exp

(
−cosh u

ξ

)
∂

∂u
[hN

euξ/2(z)] dξ = I1 + I2.

The L1-norm of the first summand I1 can be controlled analogously as above (here
the first identity in (4.7) is used and Lemma 4.1 is applied with α = 1). For the
second term I2, we need some further manipulation.

Note that ∂u[hN
euξ/2(z)] = ξ∂ξ [hN

euξ/2(z)]. Hence, by integration by parts,

I2 = −
∫ ∞

0

∂

∂ξ
[ξ�t(ξ )] exp

(
−cosh u

ξ

)
hN

euξ/2(z) dξ

−
∫ ∞

0
�t(ξ )

cosh u
ξ

exp
(

−cosh u
ξ

)
hN

euξ/2(z) dξ = I3 + I4.

The term I4 can be controlled in the same way as I1. As for I3, we observe, by
(4.5), that
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∂

∂ξ
[ξ�t(ξ )]

=
exp

(
π2

4t

)

ξ 2
√

4π3t

∫ ∞

0
sinh θ sin

πθ

2t
exp

(
−θ

2

4t
− cosh θ

ξ

)(
cosh θ
ξ

− 1
)

dθ

= −
exp

(
π2

4t

)

ξ 2
√

4π3t

∫ ∞

0
cosh θ sin

πθ

2t
exp

(
−θ

2

4t

)
∂

∂θ

[
exp

(
−cosh θ

ξ

)]
dθ −�t(ξ )

=
exp

(
π2

4t

)

ξ 2
√

4π3t

∫ ∞

0

∂

∂θ

[
cosh θ sin

πθ

2t
exp

(
−θ

2

4t

)]
exp

(
−cosh θ

ξ

)
dθ −�t(ξ )

=
exp

(
π2

4t

)

2tξ 2
√

4π3t

∫ ∞

0
cosh θ

[
π cos

πθ

2t
− θ sin

πθ

2t

]
exp

(
−θ

2

4t

)
exp

(
−cosh θ

ξ

)
dθ.

Consequently, since t ≥ 1, by (4.7) the L1-norm of I3 is bounded by a constant
times

t−3/2
∫ ∞

0
cosh θ

∣∣∣∣π cos
πθ

2t
− θ sin

πθ

2t

∣∣∣∣ exp
(

−θ
2

4t

)

×
∫
R

∫ ∞

0
ξ−2 exp

(
−cosh θ + cosh u

ξ

)
dξ du dθ.

By applying Lemma 4.1 (with α = 0), we can control the integral in u by a constant
times e−θ (1 + θ); hence

‖I3‖1 � t−3/2
∫ ∞

0

cosh θ
eθ

(1 + θ2/t)(1 + θ) exp
(

−θ
2

4t

)
dθ � t−1/2,

and we are done. �

4.3 The Plancherel measure and weighted L2-estimates. By abstract
nonsense (see, e.g., [36, Theorem 3.10] for a quite general statement), one can
show that there exists a Plancherel measure associated with �, i.e., a positive
Borel measure σ� on R+

0 whose support is the L2(G)-spectrum of �, such that

(4.8) ‖kF (�)‖2
2 =

∫
R+

0

|F (λ)|2 dσ�(λ)

for all bounded Borel functions F : R+
0 → C.

In the case N is abelian, G is a real hyperbolic space, and the Plancherel meas-
ure σ� can be explicitly computed via spherical analysis (cf. [11, 12]); namely,
there exists c� ∈ R+ such that

(4.9)
∫
R+

0

F (λ) dσ�(λ) = c�

∫
R

F (s2)|cQ(s)|−2 ds,
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where cQ is the Harish-Chandra function for the (Q + 1)-dimensional real hyper-
bolic space (see, e.g., [22, Theorem IV.6.14]), so

|cQ(s)|−2 ∼
⎧⎨
⎩

|s|2 for |s| small,

|s|Q for |s| large.

In the case N is nonabelian, spherical analysis can no longer be applied directly
to the functional calculus of �. Nevertheless, as we show, the above formula for
the Plancherel measure remains valid.

Let J be the set of functions R+
0 → C that are finite linear combinations of

decaying exponentials λ �→ e−tλ (t ∈ R+). Note that J is uniformly dense in C0(R+
0)

by the Stone–Weierstrass Theorem. The following fundamental observation is in
[24, Lemma (1.10)]; here we provide an alternative proof, using (4.4).

Proposition 4.3. For all F ∈ J and all u ∈ R, there exists a bounded Borel
function MF,u : R+

0 → C such that

(4.10) kF (�)(·, u) = kMF,u(�N ),

and MF,u depends neither on the stratified group N nor on the sub-Laplacian �N .

Proof. By linearity, it is sufficient to consider the case F (λ) = e−tλ. However
in this case, if we set

MF,u(λ) =
∫ ∞

0
�t(ξ ) exp

(
−cosh u

ξ

)
exp(−euξλ/2) dξ,

then (4.10) follows from the formula (4.4) for the heat kernel ht = ke−t� . Note that
the above expression for MF,u depends only on t and u and does not depend on the
particular choice of N or �N . �

Let �R
Q

be the Laplacian on RQ and �̃ = −∂2
u + e2u�R

Q
be the corresponding

Laplacian on G̃ = RQ � R. Homogeneity and finite propagation speed properties
of �N and �R

Q
yield the following result.

Proposition 4.4 (See [47, formula (3) and Lemme 2]). For all a ≥ 0, there
is C ∈ R+ such that, for all bounded Borel functions f : R → C,

∫
N

|z|aN |k f (�N )(z)|2 dz ≤ C
∫
RQ

|z|a
RQ |k f (�RQ )(z)|2 dz,

with equality if a = 0.
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Corollary 4.5. For all a ≥ 0, there is C ∈ R+ such that, for all bounded
Borel functions F : R → C,

(4.11)
∫

G
|z|aN |kF (�)(z, u)|2 dμ(z, u) ≤ C

∫
G̃

|z|a
RQ |kF (�̃)(z, u)|2 dμ̃(z, u),

with equality if a = 0, where dμ̃(z, u) = dz du is the right Haar measure on G̃.

Proof. In the case F ∈ J, the above inequality (or equality if a = 0) follows
immediately from a combination of Propositions 4.3 and 4.4. The general case is
then given by density. �

By comparing the case a = 0 of Corollary 4.5 with the characterization (4.8)
of the Plancherel measure, we obtain immediately the following result.

Corollary 4.6. For an arbitrary stratified group N of homogeneous dimen-
sion Q, the Plancherel measure σ� is given by (4.9) for some constant c� ∈ R+.
In particular, the L2-spectrum of � is R+

0 and, for all Borel functions F : R → C,

‖kF (
√
�)‖2 ∼

(∫ ∞

0
|F (λ)|2(λ3 + λQ+1)

dλ
λ

)1/2

.

5 The multiplier theorem

In this section, we prove Theorem 1.1. To do so, we need some preliminary esti-
mates of the L1-norm of the convolution kernels of spectral multipliers of �.

Proposition 5.1. There exists a positive constant C such that, for all r > 0
and all even bounded Borel functions F : R → C whose Fourier transform F̂ is
supported in [−r, r],

‖kF (
√
�)‖1 ≤ C min{r(Q+1)/2, r3/2}‖kF (

√
�)‖2.

Proof. Note that, since � satisfies finite propagation speed, supp kF (
√
�) ⊂

B�(0, r); see, e.g., [14, Lemma 1.2]. Then, if r ≤ 1, by Hölder’s inequality and
(2.11),

‖kF (
√
�)‖1 � r(Q+1)/2‖kF (

√
�)‖2,

and we are done.

If r ≥ 1, then, by Hölder’s inequality and (2.13),

(5.1) ‖kF (
√
�)‖1 � r

(
‖kF (

√
�)‖2 + ‖kF (

√
�)w

1/2‖2

)
,
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where the weight w is given by w(z, u) = |z|QN . Therefore, by applying Corol-
lary 4.5 with a = Q, we obtain

(5.2) ‖kF (
√
�)w

1/2‖2 � ‖kF (
√
�̃)w̃

1/2‖L2(G̃),

where w̃ is the analogous weight on G̃ = RQ � R. By spherical analysis on
real hyperbolic spaces, if m̃ is the modular function on G̃, then kF (

√
�̃) = m̃1/2φF

for some radial function φF on G̃; see, e.g., [11, Proposition 1.2] and [1, p.
148]. Moreover, if �̃ denotes the left-invariant Riemannian distance on G̃, then
suppφF = supp kF (

√
�̃) ⊂ B�̃(0, r), because �̃ satisfies finite propagation speed

too. We can then apply (2.12) and (2.10) to obtain

‖kF (
√
�̃)w̃

1/2‖L2(G̃) = ‖w̃1/2 m̃1/2φF‖L2(G̃) � ‖φF �̃(·, 0G̃)1/2‖L2(G̃)

� r1/2‖φF‖L2(G̃) = r1/2‖φF m̃1/2‖L2(G̃) = r1/2‖kF (
√
�̃)‖L2(G̃)

∼ r1/2‖kF (
√
�)‖2,

(5.3)

where the last step is given by Corollary 4.5 in the case a = 0. The conclusion
follows once we combine (5.2) and (5.3) and plug the resulting inequality into
(5.1). �

The next lemma shows that every function f supported in [1/2, 2] may be
written as sum of functions whose Fourier transforms have compact support.

Lemma 5.2 (See [24, Lemma (1.3)]). Let f ∈ L2(R) be even and supported
in [−2, 2]. Then there exist even functions f�, � ∈ N, such that

(i) f =
∑∞
�=0 f�;

(ii) supp f̂� ⊂ [−2�, 2�];
(iii) for all α, β, s ∈ R+

0 ,∫ ∞

0
| f�(λ)|2(λα + λβ) dλ ≤ Cα,β,s2

−2s�‖ f ‖2
Hs(R).

Let ft denote the dilated of f defined by ft = f (t·). Then
(i’) ft =

∑
� f�,t, where f�,t = f�(t·);

(ii’) supp f̂�,t ⊂ [−2�t, 2�t];
(iii’) for all α, β, s ∈ R+

0 ,∫ ∞

0
| f�,t(λ)|2(λα + λβ) dλ ≤ Cα,β,s max{t−(α+1), t−(β+1)}2−2s�‖ f ‖2

Hs(R).

Proposition 5.3. Let F ∈ L2(R) be supported in [−4, 4]. Then

(5.4) sup
y∈G

∫
G

|KF (t�)(x, y)|
(
1 + t−1/2�(x, y)

)ε dμ(x) ≤ Cs,ε‖F‖Hs
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for all ε ∈ R+
0 and s, t ∈ R+ satisfying one of the following conditions:

• t ≥ 1 and s > 3/2 + ε;
• t ≤ 1 and s > (Q + 1)/2 + ε.

Proof. First we observe that, for all y ∈ G, by (4.2) and the left-invariance of
the metric �,∫

G
|KF (t�)(x, y)|

(
1 + t−1/2�(x, y)

)ε dμ(x)

=
∫

G
|kF (t�)(y

−1x)|m(y)
(
1 + t−1/2�(y−1x, 0G)

)ε dμ(x)

=
∫

G
|kF (t�)(x)|

(
1 + t−1/2�(x, 0G)

)ε dμ(x).

Define f (λ) = F (λ2) for all λ ∈ R. The function f is even and supported in
[−2, 2], and F (t�) = f (t1/2

√
�) for all t ∈ R+. Moreover,

(5.5) ‖ f ‖Hs � ‖F‖Hs .

Let f =
∑∞
�=0 f� be the decomposition given by Lemma 5.2. Since f (t1/2·) =∑

� f�,t1/2 and supp f̂�,t1/2 ⊂ [−2�t1/2, 2�t1/2], we can apply Proposition 5.1 to each
function f�,t1/2 and sum these estimates. Namely, by finite propagation speed,
Proposition 5.1, Corollary 4.6, Lemma 5.2(iii’), and (5.5),∫

G
|k f

�,t1/2 (
√
�)(x)|

(
1 + t−1/2�(x, 0G)

)ε dμ(x)

� (1 + t−1/22�t1/2)ε‖k f
�,t1/2 (

√
�)‖1

� 2�εmin{(2�t1/2)(Q+1)/2, (2�t1/2)3/2}‖k f
�,t1/2 (

√
�)‖2

� 2�εmin{(2�t1/2)(Q+1)/2, (2�t1/2)3/2}
( ∫ ∞

0
| f�,t1/2 (λ)|2(λ2 + λQ) dλ

)1/2

� 2�εmin{(2�t1/2)(Q+1)/2, (2�t1/2)3/2}max{t−3/4, t−(Q+1)/4}2−�s‖F‖Hs .

In the case t ≥ 1,∫
G

|kF (t�)(x)|
(
1 + t−1/2�(x, 0G)

)ε dμ(x) ≤ Cs‖F‖Hs

∑
�≥0

2�(ε+3/2−s),

and the series on the right-hand side converges. since s > 3/2 + ε.
In the case t ≤ 1,∫
G

|kF (t�)(x)|
(
1 + t−1/2�(x, 0G)

)ε dμ(x)

� ‖F‖Hs

⎛
⎝t3/4−(Q+1)/4

∑
�:2�≥t−1/2

2�(ε+3/2−s) +
∑

�:2�<t−1/2

2�
(
ε+(Q+1)/2−s

)⎞⎠ ,
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and the term in parentheses is finite and bounded above uniformly in t, since s >
(Q + 1)/2 + ε. �

We denote by Ry the right translation operator defined by

Ry f (x) = f (xy) for all f : G → C and x, y ∈ G.

Lemma 5.4. For all f ∈ L1(G) and y, z ∈ G,

‖Ry f − Rz f ‖1 ≤ �(y, z)
∥∥∥|∇H f |g

∥∥∥
1
.

This follows, since the proof of [55, Lemma VIII.1.1] applies also to non-
unimodular groups.

Proposition 5.5. Let F ∈ L2(R) be supported in [−4, 4]. Then

(5.6)
∫

G
|KF (t�)(x, y) − KF (t�)(x, z)| dμ(x) ≤ Cst

−1/2�(y, z)‖F‖Hs

for all y, z ∈ G and s, t ∈ R+ satisfying one of the following conditions:
• t ≥ 1 and s > 3/2,
• t ≤ 1 and s > (Q + 1)/2.

Proof. Since F can be split into its real and imaginary parts, it is not restrictive
to assume that F is real-valued. In particular, the operator F (t�) is self-adjoint,
and∫

G
|KF (t�)(x, y) − KF (t�)(x, z)| dμ(x) =

∫
G

|KF (t�)(y, x) − KF (t�)(z, x)| dμ(x)

=
∫

G
|kF (t�)(x

−1y) − kF (t�)(x
−1z)|m(x) dμ(x)

=
∫

G
|kF (t�)(xy) − kF (t�)(xz)| dμ(x)

= ‖RykF (t�) − RzkF (t�)‖1.

Define the function φ(λ) = F (λ)e−λ for all λ ∈ R. Then kF (t�) = kφ(t�) ∗ ht and,
by Young’s inequality,

‖RykF (t�) − RzkF (t�)‖1 ≤ ‖kφ(t�)‖1‖Ryht − Rzht‖1.

Note now that, under our assumptions on t and s, it follows from Proposition 5.3
that

‖kφ(t�)‖1 � ‖φ‖Hs � ‖F‖Hs .

On the other hand, by Lemma 5.4 and Proposition 4.2,

‖Ryht − Rzht‖1 ≤ �(y, z)
∥∥|∇Hht|g

∥∥
1 � t−1/2�(y, z),

and the conclusion follows. �
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We can finally prove our main result.

Proof of Theorem 1.1. Choose ε > 0 such that s0 >
3
2 +ε and s∞ > Q+1

2 +ε.
Let F be as in the statement of the theorem. It is not restrictive to assume that F
is real-valued, so F (�) is self-adjoint. For each j ∈ Z, define the function

Fj (λ) = F (2 jλ)ψ(λ) for all λ ∈ R+,

where ψ is as in (1.3). Then F (�) =
∑

j∈Z Fj (2− j�) in the sense of strong
convergence of operators on L2(G), because the L2-spectrum of � is R+

0 and {0}
has null spectral measure. Since each function Fj is supported in [1/4, 4], we may
apply estimates (5.4) and (5.6) to Fj and t = 2− j to obtain

(5.7) sup
y∈G

∫
G

|KFj (2− j�)(x, y)|
(
1+2 j/2�(x, y)

)ε dμ(x) �

⎧⎨
⎩

‖F‖0,s0 for all j ≤ 0,

‖F‖∞,s∞ for all j > 0;

and, for all y, z ∈ G,

(5.8)
∫
G |KFj (2− j�)(x, y) − KFj (2− j�)(x, z)| dμ(x) �

⎧⎨
⎩

2 j/2�(y, z)‖F‖0,s0 for all j ≤ 0

2 j/2�(y, z)‖F‖∞,s∞ for all j > 0.

Thus the operator F (�) satisfies the hypotheses of Theorem 3.2 and consequently
is of weak type (1, 1), bounded on Lp(G) for all p ∈ (1, 2] and, by duality, for all
p ∈ [2,∞). By Theorem 3.8 it follows that F (�) is also bounded from H 1(G) to
L1(G), and a duality argument gives the boundedness from L∞(G) to BMO(G). �
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