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Abstract. We investigate the non-homogeneous modular Dirichlet problem
�p(·)u(x) = f (x) (where �p(·)u(x) = div(|∇u|p(x)−2∇u(x)) from the functional
analytic point of view and we prove the stability of the solutions (upi )i of the
equation �pi (·)upi (·) = f as pi (·) → q(·) via Gamma-convergence of sequence of
appropriate functionals.

1 Introduction

The study of variational problems on Banach spaces leading to non-linear differ-
ential equations demands the developments of new techniques. In this paper, we
focus on generalizations of the classical Dirichlet problem

�u(x) = f (x), x ∈ �,

u = 0, x ∈ ∂�,

in which the classical Laplacian is replaced with the p(·)−Laplacian with variable
p. The main interest of our paper is then to study the stability with respect to p(·)
of the problem

�p(·)up(·) = f (x), x ∈ �,

u = 0, x ∈ ∂�,
(1.1)

where �p(·)up(·) = div(|∇u|p(x)−2∇u(x)). The p(·)-Laplacian and the variable-
exponent spaces that underlie its study are not only interesting from the point
of view of their incipient applications, which include fluid dynamics and image
processing (see [3],[5] and [6]), but also because the theory constitutes a living ex-
ample of a non-linear situation involving non-rearrangement invariant spaces that
can be used as a testing ground for new techniques in non-linear analysis.
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The solutions of a differential equation involving an operator T on a given
domain � depend mainly on �, the particular structure of T , and the underlying
function space. An enormous amount of work has been devoted to the analysis
of stability of a solution with respect to changes in the domain and in the inner
structure of the differential operator; see [2], [17] and the references therein. In
this work, we present the appropriate definition of the problem (1.1) and then
show that the solutions are stable under perturbations of the integrability of the
underlying space.

The paper is organized as follows. In Section 2, we review the general prop-
erties of generalized Lebesgue spaces. Section 3 is devoted to a brief presentation
of the p(·)−Laplacian, and Sections 4 and 5 contain results about the stability of
the solutions for the non-homogeneous modular Dirichlet problem (1.1).

2 Modulars and generalized Lebesgue spaces

Throughout this paper, � ⊂ R
n, n ≥ 1, is a bounded, Lipschitz domain. For a

measurable function p : � → R
n, we set

p− = inf
�

p(x), p+ = sup
�

p(x),

and consider the family of admissible exponent functions

(2.1) P = {p : � → R, p Borel-measurable, 1 < p− ≤ p+ < ∞} .

We denote by Lp(·)(�) the set of all real-valued, Borel measurable functions on �

for which
ρp(·)( f ) :=

∫
�

| f (x)|p(x) dx < ∞.

The function ρp is a convex monotone modular on Lp(·)(�), and

‖u‖Lp(·)(�) : = inf
{
λ > 0 : ρp(·)

(u
λ

)
≤ 1

}
defines a norm under which Lp(·)(�) is a uniform convex reflexive Banach space;
see [22]. It is apparent that the latter coincides with the usual Lebesgue Lp(�)
norm when p is constant; accordingly, we refer to the family of Lp(·)(�) for p as in
(2.1) as the generalized Lebesgue class in �. The generalized Sobolev class in �

can be defined analogously, namely,

W 1,p(·)(�) :=
{
u ∈ Lp(·)(�) : |∇u| ∈ Lp(·)(�)

}
endowed with the norm

‖u‖W 1,p(·)(�) : = ‖u‖Lp(·)(�) + ‖∇u‖Lp(·)(�).
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We denote the closure of C∞
0 (�) in W 1,p(·)(�) by W 1,p(·)

0 (�) and furnish it with the
norm

‖v‖W 1,p(·)
0 (�) : = inf

{
λ > 0 :

∫
�

( |∇v(x)|
λ

)p(x)

dx ≤ 1

}
.

The reader is referred to [9] and [18] for an exhaustive treatment of variable-
exponent Lebesgue-Sobolev spaces; throughout this work, we use the results
therein extensively, frequently without explicit notice. We highlight the inequali-
ties

(2.2) min
{

ρ
1

p+
p(·)(w), ρ

1
p−
p(·)(w)

}
≤ ‖w‖p(·) ≤ max

{
ρ

1
p+
p(·)(w), ρ

1
p−
p(·)(w)

}
,

which are valid for any w ∈ Lp(·)(�); see [19]. The estimate of the norm of the
embedding Lq(·) ↪→ Lp(·) resulting from the application of Hölder’s inequality turns
out to be too coarse for the present analysis; accordingly, we include the following
version of a more refined estimate first observed in [13, Lemma 4.1] (see also
[19]).

Lemma 2.1. For p, q in P with p < q < p + ε a.e. in � and a Borel-
measurable function f : � → R,∫

�
| f (x)|p(x) dx ≤ ε|�| + ε−ε

∫
�

| f (x)|q(x) dx.

Corollary 2.2. Let p(·) and q(·) be as above. Then, for the norm ‖Ep,q‖ of
the embedding Ep,q : Lq(·)(�) → Lp(·)(�),

‖Ep,q‖ ≤ ε−ε + ε|�|.
To ensure the validity of the Sobolev embedding theorems needed in the sequel,

we assume from now on that the exponent p is continuous in the closure of �,
p ∈ C(�). In particular, this condition on the variable exponent is sufficient for
the (bounded) embedding W 1,p(·)

0 (�) ↪→ Lp(·)(�) to be compact; see [18]. For the
benefit of the reader, we conclude the section with a definition and results to which
we refer to in the body of the paper. In the sequel, we use the standard notation X∗

to denote the dual of a Banach space X . We write the action of 	 ∈ X∗ on x ∈ X
as 〈x,	〉.

Definition 2.3. Let X be a Banach space. An operator T : X → X∗ is said to
be of type M if for any weakly-convergent sequence xn ⇀ x such that T (xn) ⇀ f
and

(2.3) lim sup〈xn,T (xn)〉 ≤ 〈x, f 〉,
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one has T (x) = f . T is said to be hemicontinuous if for any fixed x, y ∈ X , the
real-valued function s → 〈y,T (x + sy)〉 is continuous.

Theorem 2.4. Let X be a reflexive Banach space and T : X → X∗ be hemi-
continuous and monotone. Then T is of type M.

Proof. For fixed y ∈ X , (xn), x and f as in Definition 2.3, the assumed mono-
tonicity of T yields 0 ≤ 〈xn − y,T (xn) − T (y)〉 for all n; hence, from (2.3), we
have 〈x − y,T (y)〉 ≤ 〈x − y, f 〉 . In particular, for any z ∈ X and n ∈ N,〈

z,T
(
x − (z/n)

)〉 ≤ 〈z, f 〉 ,

which, in conjunction with hemicontinuity, immediately yields 〈z,T (x)〉 ≤ 〈z, f 〉
for all z ∈ X . This implies T (x) = f, as claimed. �

We also need the following result.

Theorem 2.5 ([23, Theorem 2.1]). , Let X be a separable and reflexive
Banach space, and let T : X → X∗ be of type M and bounded. If for some
f ∈ X∗ there exists ε > 0 for which 〈x,T (x)〉 > 〈x, f 〉 for every x ∈ X with
‖x‖ > ε, then f belongs to the range of T .

Lemma 2.6. For x, y ∈ R
n and constant p,

(2.4)
1
2

[(
|x|p−2 − |y|p−2

)
(|x|2 − |y|2) + (|x|p−2 + |y|p−2)|x − y|2

]
= (|x|p−2x − |y|p−2y) · (x − y)

Proof. This follows by straightforward calculation:

(|x|p−2 − |y|p−2)(|x|2 − |y|2) + |x − y|2(|x|p−2 + |y|p−2)

= (x − y)
(
(x + y)(|x|p−2 − |y|p−2) + (x − y)(|x|p−2 + |y|p−2)

)
= 2(x − y)(|x|p−2x − |y|p−2y). �

3 The p(·)-Laplacian

In analogy with the constant exponent case, for u ∈ W 1,p(·)
0 (�), we define the

Dirichlet p(·)-Laplacian �p(·)(u) corresponding to a Borel-measurable function
p : � → [1,∞) by

�p(·)(u) = div
(
|∇u(x)|p(x)−2∇u(x)

)
.
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More specifically, �p(·) is the (non-linear) operator

�p(·) : W 1,p(·)
0 (�) →

(
W 1,p(·)

0 (�)
)∗

such that

〈h,�p(·)u〉 = −
∫

�
|∇u(x)|p(x)−2∇u(x) · ∇h(x) dx

for all u, h ∈ W 1,p(·)
0 (�).

A few remarks are in order. The functional F : W 1,p(·)
0 (�) → [0,∞) defined

by

(3.1) F (w) =
∫

�

|∇w(x)|p(x)

p(x)
dx

is convex, weakly-lower semicontinuous and Frechét differentiable with (see [7]),
Frechét derivative given by F ′ = �p(·). It is obvious that when p is constant, the
functional (3.1) is a multiple of the pth power of the Sobolev norm, namely, F (w) =
1
p‖∇w‖p. For variable p(·), the consideration of the derivative of the norm, as
opposed to the derivative of the modular (which is essentially the definition we
have adopted for the p(·)-Laplacian), leads to a different differential operator; see
[10] and [11].

Lemma 3.1. Let � ⊂ R
n be a bounded Lipschitz domain and p : � → R a

Borel-measurable function satisfying 1 < p− ≤ p(x) ≤ p+ < ∞ a.e. in �. Then
the operator �p(·) : W 1,p(·)

0 (�) →
(
W 1,p(·)

0 (�)
)∗

is bounded, hemicontinuous and
monotone. Also, �p(·) is of type M.

Proof. Let S ⊂ W 1,p(·)
0 be bounded, say sup{‖∇u‖p, u ∈ S} ≤ C. For u ∈ S

and w in the unit ball of W 1,p(·)
0 (�),

(3.2) 〈w,�p(·)u〉 =
∫

�
|∇u(x)|p(x)−2∇u(x) · ∇w(x) dx.

Taking absolute values in (3.2) and invoking the variable exponent form of
Hölder’s inequality [18] makes it clear that

sup{‖�p(·)u‖(
W 1,p(·)

0 (�)
)∗, u ∈ S} ≤ C

(
1 +

1
p−

− 1
p+

)
,

which shows that �p(·) is bounded.
For the proof of hemicontinuity, fix t ∈ R. For |s| < |t| + 1

2 and 1 < p(x) ≤ 2,

(3.3) |∇(u + sv)(x)|p(x)−1 ≤ |∇u(x)|p(x)−1 + |s|p(x)−1|∇v(x)|p(x)−1,
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whereas for p(x) > 2,

(3.4) |∇(u + sv)(x)|p(x)−1 ≤ 2p(x)−2(|∇u(x)|p(x)−1 + |s|p(x)−1|∇v(x)|p(x)−1).

On the other hand, it follows by definition that

(3.5) 〈v,�p(·)(u + sv)〉 =
∫

�
|∇(u + sv)(x)|p(x)−2∇(u + sv)(x) · ∇v(x) dx.

In view of (3.3) and (3.4), the integrand in (3.5) is bounded above by

(|∇u|p(x)−1|∇v | + |s|p(x)−1|∇v |p(x))χ{x:1<p(x)≤2}

+ 2p(x)−2
(
|∇u|p(x)−1|∇v | + |s|p(x)−1|∇v |p(x)

)
χ{x:p(x)≥2},

which is integrable by virtue of Hölder’s inequality. A straightforward applica-
tion of Lebesgue’s Dominated Convergence Theorem yields the hemicontinuity of
�p(·).

The proof of monotonicity relies ultimately on the identity (2.4). Observe that
for constant p ≥ 2 and x, y ∈ R

n,

|x − y|p = |x − y|p−2|x − y|2 ≤ 2p−3|x − y|2(|x|p−2 + |y|p−2)

which, when combined with the identity (2.4), yields the estimate

(3.6) |x − y|p ≤ 2p−2(|x|p−2x − |y|p−2y) · (x − y).

On the other hand, for 1 < p ≤ 2 (with the obvious provision that x �= 0 and
y �= 0),

(3.7) (p − 1)|x − y|2(1 + |x| + |y|)p−2 ≤ (|x|p−2x − |y|p−2y)(x − y).

Inequality (3.7) follows from

(|x|p−2x − |y|p−2y)(x − y) = (x − y)
∫ 1

0

d
dt

(
|y + t(x − y)|p−2(y + t(x − y))

)
dt

= |x − y|2
∫ 1

0
|y + t(x − y)|p−2dt

+ (p − 2)
∫ 1

0
|y + t(x − y)|p−4 ((y + t(x − y))(x − y))2 dt

≥ (p − 1)|x − y|2
∫ 1

0
|y + t(x − y)|p−2dt

≥ (p − 1)|x − y|2(1 + |x| + |y|)p−2.



�-CONVERGENCE AND STABILITY OF MINIMIZERS 581

For fixed u and v in W 1,p(·)
0 (�), the definition of �p(·) yields

(3.8) 〈u − v,�p(·)(u) − �p(·)(v)〉
=
∫

�
(|∇u(x)|p(x)−2∇u(x) − |∇v(x)|p(x)−2∇v(x)) · ∇(u − v)(x) dx.

The desired conclusion is obtained by splitting the integral in the right-hand side
of (3.8) into one over {x : 1 < p(x) ≤ 2} and one over {x : p(x) ≥ 2} and applying
the inequalities (3.7) and (3.6). Since W 1,p(·)

0 (�) is reflexive and separable, �p(·) is
of type M by virtue of Theorem 2.4 and the results just proved. �

Theorem 3.2. Let � ⊂ R
n be a bounded, Lipschitz domain and p : � → R

a Borel-measurable function satisfying 1 < p− ≤ p(x) ≤ p+ < ∞ a.e. in �. Then
the p(·)-Laplacian is a homeomorphism of W 1,p(·)

0 (�) onto its dual
(
W 1,p(·)

0 (�)
)∗

.

Proof. The surjectivity of �p(·) is derived from Theorem 2.5, injectivity fol-
lows from Poincare’s inequality and inequalities (3.6) and (3.7), and the continuity
of �−1

p(·) ensues from a functional-analytic argument coupled with inequalities (3.6)
and (3.7).

We proceed to the details of the proof. Fix f ∈ (
W 1,p(·)

0 (�)
)∗. For

u ∈ W 1,p(·)
0 (�) with

‖∇u‖p(·) > max
{
1, ‖ f ‖1/(p−−1)

(W 1,p(·)
0 (�))∗

}
,

we have

1 =
∫ |∇u(x)|p(x)

‖∇u‖p(x)
p(·)

dx ≤ 1
‖∇u‖p−

p(·)

∫
|∇u(x)|p(x)dx;

thus for such u,

〈u,�p(·)u〉 =
∫

|∇u(x)|p(x)dx ≥ ‖∇u‖p−
p(·) = ‖∇u‖p−−1

p(·) ‖∇u‖
> ‖ f ‖(W 1,p(·)

0 (�))∗‖∇u‖p(·),

which, by virtue of Theorem 2.5, implies that f is in the range of �p(·), i.e., �p(·)
is surjective.

To prove the injectivity of �p(·), consider u, v ∈ W 1,p(·)
0 (�) with �p(·)(u) =

�p(·)(v). We estimate the modular of ∇u − ∇v as

(3.9)
∫

�
|∇u(x) − ∇v(x)|p(x)dx

=
∫

{x:p(x)>2}
|(∇u − ∇v)(x)|p(x)dx +

∫
{x:1<p(x)≤2}

|(∇u − ∇v)(x)|p(x)dx.
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According to (3.6), the first integral in (3.9) is bounded by

(3.10) 2p+−2
∫

�
(|∇u(x)|p(x)−2∇u(x) − |∇v(x)|p(x)−2∇v(x)) · (∇u − ∇v)(x) dx

= 2p+−2 〈�p(·)(u) − �p(·)(v), u − v〉 = 0.

Denote the second integral in (3.9) by I , i.e., set

(3.11) I =
∫

{x:1<p(x)<2}
|(∇u − ∇v)(x)|p(x)(1 + |∇u(x)| + |∇v(x)|)p(x)(2−p(x))/2

(1 + |∇u(x)| + |∇v(x)|)p(x)(2−p(x))/2
dx.

Utilizing the modular Hölder inequality, the right-hand side of (3.11) can be seen
to be bounded above by

2
∥∥∥∥ |∇u − ∇v |p
(1 + |∇u| + |∇v |)p(2−p)/2

χ{x:1<p(x)<2}
∥∥∥∥

2/p(·)

×
∥∥∥(1 + |∇u| + |∇v |)p(2−p)/2

∥∥∥
2/(2−p(·)) .

Hence, from the norm-modular inequalities (2.2), setting

C(u, v) =
∥∥∥(1 + |∇u| + |∇v |)p(2−p)/2

∥∥∥
2/(2−p(·))

and

J =
∫

�

|(∇u − ∇v)(x)|2
(1 + |∇u(x)| + |∇v(x)|)(2−p(x))

dx

one concludes that

(3.12) I ≤ C(u, v)max
{

J
p+
2 , J

p−
2

}
.

Estimates (3.7) and (3.12) imply that

(3.13) I ≤ C(u, v) 〈u − v,�p(·)(u) − �p(·)(v)〉α = 0

for some positive constant α. From (3.9), (3.10), and (3.13), it follows that u − v

is constant. Poincare’s inequality now implies that u = v .
It remains to verify the continuity of the inverse operator �−1

p(·). To that end, set

�p(·) = T and suppose that �p(·)(vn) → �p(·)(u) for (vn)n ⊂ W 1,p(·)
0 (�). Were the

sequence {vn}n unbounded, one could extract a subsequence {un}n with ‖un‖p(·) >

n. Set wn = 1/‖∇un‖p(·)un and observe that for arbitrary φ ∈ W 1,p(·)
0 (�) with

‖∇φ‖p(·) ≤ 1, the equality

| 〈φ,T (wn)〉 | =

∣∣∣∣∣
∫

�

1

‖∇un‖p(x)−1
p(·)

|∇un(x)|p(x)−2∇un(x) · ∇φ(x) dx

∣∣∣∣∣ ,
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yields

| 〈φ,T (wn)〉 | ≤ 1

‖∇un‖p−−1
p(·)

∣∣∣∣
∫

�
|∇un(x)|p(x)−2∇un(x) · ∇φ(x) dx

∣∣∣∣
≤ 1

‖∇un‖p−−1
p(·)

‖T (un)‖(W 1
p(·)(�))∗ .

This last estimate implies that

(3.14) ‖T (wn)‖(W 1,p(·)(�))∗ → 0 as n → ∞.

On the other hand, it follows automatically by definition that

‖T (wn)‖ ≥ 〈wn,T (wn)〉 =
∫

�
|∇wn(x)|p(x) dx = 1,

which contradicts (3.14). Consequently, the sequence {vn}n must be bounded in
W 1,p(·)

0 (�).
Next we write

(3.15)
∫

�
|(∇vn − ∇v)(x)|p(x)dx

=
∫

p≥2
|(∇vn − ∇v)(x)|p(x)dx +

∫
1<p<2

|(∇vn − ∇v)(x)|p(x)dx.

By inequality (3.6), the first term in the right-hand-side of equality (3.15) is
bounded by

(3.16)
∣∣∣2p+−2 〈vn − v,T (vn) − T (v)〉

∣∣∣
≤ 2p+−2‖T (vn) − T (v)‖(W 1,p(·)

0 (�))∗‖vn − v‖W 1,p(·)
0 (�),

and the right-hand side above tends to 0 as n → ∞ since T (vn) − T (v) → 0 and
{vn}n is bounded. The second term in (3.15) can be expressed as∫

1<p<2

|(∇vn − ∇v)(x)|p(x)

(1 + |∇v(x)| + |∇vn(x)|)p(x)(2−p(x))/2 (1 + |∇v(x)| + |∇vn(x)|)p(x)(2−p(x))/2 dx,

which a straightforward application of the generalized Hölder inequality shows to
be dominated by∥∥∥(1 + |∇v | + |∇vn|)p(.)(2−p(.))/2

∥∥∥
2/(2−p(.))

∥∥∥∥ |∇vn − ∇v |p(.)

(1 + |∇v | + |∇vn|)p(.)(2−p(.))/2

∥∥∥∥
2/p(·)

.

Invoking again the boundedness of the sequence {vn}n, we see immediately that
the left factor above is bounded by a constant independent of n. Set

In =
∫

�
|∇(vn − v)(x)|2 (1 + |∇v(x)| + |∇vn(x)|)p(x)−2dx.
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With n chosen so large that

‖T (vn) − T (v)‖(
W 1,p(·)

0 (�)
)∗ < (p− − 1)/(sup

n
‖vn‖ + ‖v‖),

inequality (3.7) yield In < 1. Consequently, using inequalities (2.2), one concludes
that ∥∥∥∥ |∇vn − ∇v |p(.)

(1 + |∇v | + |∇vn|)p(.)(2−p(.))/2

∥∥∥∥
2/p(·)

≤ max
{
Ip+/2
n , Ip−/2

n

}
= Ip−/2

n .

A further application of inequality (3.7) for such n implies

I
p−
2

n ≤ 1
p− − 1

∣∣〈vn − v,T (vn) − T (v)〉∣∣
≤ 1

p− − 1
‖T (vn) − T (v)‖(W 1,p(·)

0 (�))∗‖∇(vn − v)‖p(.)

≤ 1
p− − 1

(sup
n

‖∇vn‖p(.) + ‖∇v‖p(.))‖T (vn) − T (v)‖(W 1,p(·)
0 (�))∗ .

(3.17)

According to (3.15), the bounds (3.16) and (3.17) show that∫
�

|(∇v − ∇vn)(x)|p(·) dx → 0 as n → ∞,

and hence ‖vn − v‖1,p(·) → 0 as n → ∞.

Thus �−1
p(·) :

(
W 1,p(·)

0 (�)
)∗ → W 1,p(·)

0 (�) is continuous. �
Theorem 3.2 can be rephrased as the following existence and uniqueness theo-

rem of Fang-Zhang.

Theorem 3.3 ([15, Theorem 4.2]). For each f ∈ (W 1,p(·)
0 (�)

)∗
, there exists a

unique solution u ∈ W 1,p(·)
0 (�) of the equation �p(·)u = f.

4 Stability with respect to integrability

In this section, the behaviour of the solutions to the Dirichlet problem for the
p(·)-Laplacian with respect to perturbations of the integrability is discussed. In
the sequel, � ⊂ R

n is a bounded Lipschitz domain, and all integrability in-
dexes are tacitly assumed to belong to C(�). We fix a non-decreasing sequence
{pk}k∈N ⊂ C(�) with p ≤ pk → q uniformly for each k ∈ N. In the interest of
facilitating the notation, in the sequel we will not explicitly indicate the depend-
ence of variable exponents on x, i.e., the variable exponent r(x) will be denoted as
r whenever no confusion arises from doing so. As in the previous section, for any
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integrability index m ∈ C(�) we fix the notation m− = inf� m and m+ = sup� m.

We furthermore assume 1 < p− = inf� p and sup� q(x) = q+ < ∞.

Consider an arbitrary f ∈ (
W 1,p(·)

0 (�)
)∗. For each k, let uk ∈ W 1,pk(·)

0 (�),
up ∈ W 1,p(·)

0 (�), and uq ∈ W 1,q(·)
0 (�) be, respectively, the unique solutions of

(4.1) �pk (upk ) = f, �p(up) = f, and �q(uq) = f

given by Theorem 3.3. The following is a variant of [13, Lemma 4.1].

Lemma 4.1. Let 0 < ε < 1/e be arbitrary and N be large enough to guar-
antee that ‖pi − p j‖∞ < ε if i, j > N. Fix k, j such that N ≤ k ≤ j . Then, for
each upj defined by (4.1),

∫
�

|∇upj |pk

pk
dx ≤ ε

∫
�

1
pk

dx + ε−ε

∫
�

|∇upj |p j

pk
dx.

Proof.

(4.2)
∫

�

|∇upj |pk

pk
dx ≤∫

|∇up j |<ε

|∇upj |pk

pk
dx +

∫
ε≤|∇up j |<1

|∇upj |pk

pk
dx +

∫
|∇up j |≥1

|∇upj |pk

pk
dx.

A brief computation shows that the first integral on the left-hand side above is
less than or equal to ε

∫
� 1/pk dx. Using the conditions on ε, we can deal with the

second integral in (4.2) as follows:

∫
ε≤|∇up j |<1

|∇upj |pk−p j |∇upj |p j

pk
dx ≤

∫
|∇up j |<1

ε−ε|∇upj |p j

pk
dx;

On the other hand, it is clear that the last integral in (4.2) is less than or equal
to
∫
|∇up j |≥1 |∇upj |p j /pk dx. Substituting the last three inequalities in the expression

(4.2) yields the lemma. �
We are now ready to inspect the effect of the variation of the integrability ex-

ponent on the solution of the Dirichlet problem.

Theorem 4.2. For upk , and uq as in the previous paragraph, there exists a
subsequence (still denoted by {upk }) such that upk ⇀ uq, upk → uq strongly in
Lp(�) and for which

lim
k→∞

∫
�

|∇upk |pk dx = −
∫

�
fuq dx =

∫
�

|∇uq|q dx.
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Proof. By definition of �pk(·) and from inequalities (2.2), it immediately fol-
lows that either ‖|∇upk |‖pk ≤ 1 or

‖|∇upk |‖pk−
pk

≤
∫

�
|∇upk |pk dx = −〈 f, upk 〉 ≤ ‖ f ‖(

W 1,p(·)
0 (�)

)∗ · ‖|∇upk |‖p(·).

Young’s inequality, in concert with [13, Lemma 4.1] implies that for every δ > 0,

‖|∇upk |‖pk−
pk

≤
((‖ f ‖

δ

)pk−/(pk−−1) pk− − 1
pk−

+
(‖|∇upk |‖p(·)δ )pk−

pk−

)

≤
((‖ f ‖

δ

)pk−/(pk−−1) pk− − 1
pk−

(4.3)

+

((
‖p − q‖−‖p−q‖∞∞ + ‖p − q‖∞|�|

)
‖|∇upk |‖pkδ

)pk−

pk−

⎞
⎠ .

Since δ is arbitrary, inequality (4.3) shows that (‖|∇upk |‖pk(·))k∈N is bounded. As a
consequence of the inequality

‖|∇upk |‖p(·) ≤ (‖p − q‖−‖p−q‖∞∞ + ‖p − q‖∞|�|) ‖|∇upk |‖pk

[13, Theorem 4.1], it is immediate that the sequence {upk } is bounded in W 1,p(·)
0 (�).

Thus, it has a weakly convergent subsequence, which we continue to denote by
{upk }. Let u be the weak limit of {upk} in W 1,p(·)

0 (�). We now show that u = uq.
To that goal, we fix an exponent r ∈ C(�) such that r > p, and choose k large
enough so that pk > r and ‖q − pk‖∞ ≤ ‖q − r‖∞/2 on �. The sequence {upk+ j } j

is bounded in W 1,r(·)
0 (�), since according to [13, Lemma 4.1],

‖|∇upk+ j |‖r(·) ≤ (‖p − q‖−‖p−q‖∞∞ + ‖p − q‖∞|�|) ‖|∇upk+ j |‖pk+ j (·);

it is therefore clear that {upk+ j } j is weakly convergent in W 1,r(·)
0 (�). Denote the

weak limit by v ∈ W 1,r(·)
0 (�). The uniqueness of the limit implies u = v, so

u ∈ ⋂p≤r<q W 1,r(·)
0 (�). Sobolev’s embedding theorem allows us to assume without

loss of generality that for upk → u strongly in Lpj (�) for k ≥ j .

By virtue of the weak lower semicontinuity of the functional

I : W 1,pk(·)
0 (�) → [0,∞) I(w) =

∫
�

|∇w|pk dx,

for any fixed j , u is subject to the condition

(4.4)
∫

�
|∇u|pk dx ≤ lim inf

j≥k

∫
�

|∇upj |pk dx.
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On the other hand, for j ≥ k,

(4.5)
∫

�
|∇upj |pk dx ≤ ‖pk − p j‖∞|�| + ‖pk − p j‖−‖p j−pk‖∞∞

∫
�

|∇upj |p j dx

which is bounded independently of j by virtue of (4.3) and by the assumption on
the sequence {pk}. Fatou’s Lemma yields

(4.6)
∫

�
lim inf

k
|∇u|pk dx =

∫
�

|∇u|q dx ≤ lim inf
k

∫
�

|∇u|pk dx.

In view of (4.4) and (4.5), the right-hand-side of (4.6) is finite, so u ∈ W 1,q(·)
0 (�).

For a given δ > 0, fix positive numbers θ and γ such that (1 + θ)(1 + γ) < 1 + δ/2.

Since for ε < e−1 the function ω(ε) = ε−ε decreases to 1 as ε → 0+, given the
assumptions on the sequence {pk}, there exists M > 0 such that for M ≤ k ≤ j ,

(4.7) ‖p j − pk‖∞ < min
{

γ,
δ

2|�|p−
}

, ‖p j − pk‖−‖pk−p j‖∞∞ < 1 + θ.

Notice that for such k and j ,

(4.8)
∥∥∥∥p j

pk
− 1

∥∥∥∥∞
< γ.

Next, Lemma 4.1 and (4.7), (4.8) guarantee that for M ≤ k ≤ j,∫
�

|∇upj |pk

pk
dx ≤ ‖pk − p j‖∞

∫
�

1
pk

dx

+ ‖pk − p j‖−‖pk−p j‖∞∞
∫

�

|∇upj |p j

p j
(1 + γ) dx

≤ δ

2
+ (1 + θ)(1 + γ)

∫
�

|∇upj |p j

p j
dx

≤ δ

2
+ (1 +

δ

2
)
∫

�

|∇upj |p j

p j
dx.

(4.9)

For fixed k ∈ N and each M ≤ k, the weak lower semicontinuity of the functional

Ik : W 1,p(·)
0 (�) → [0,∞), Ik(w) =

∫
�

|∇w|pk

pk
dx,

yields ∫
�

|∇u|pk

pk
dx ≤ lim inf

j≥k

∫
�

|∇upj |pk

pk
dx.

Hence, as one sees from (4.9),∫
�

|∇u|pk

pk
dx ≤ lim inf

j≥k

∫
�

|∇upj |pk

pk
dx ≤ lim inf

j≥k

(
δ

2
+ (1 +

δ

2
)
∫

�

|∇upj |p j

p j
dx
)

,



588 JAN LANG AND OSVALDO MÉNDEZ

i.e.,

(4.10)
∫

�

|∇u|pk

pk
dx ≤ lim inf

j≥k

∫
�

|∇upj |p j

p j
dx.

Since u ∈ W 1,q(·)
0 (�), Lebesgue’s Dominated Convergence Theorem yields

lim
k→∞

∫
�

|∇u|pk

pk
dx =

∫
�

|∇u|q
q

dx.

By virtue of the minimizing property of upk , it is clear that∫
�

|∇upk |pk

pk
dx +

∫
�

fupk dx ≤
∫

�

|∇u|pk

pk
dx +

∫
�

fu dx,

which automatically leads to

lim sup
∫

�

|∇upk |pk

pk
dx ≤ lim sup

∫
�

|∇u|pk

pk
dx =

∫
�

|∇u|q
q

dx

which, in conjunction with (4.10), implies

(4.11)
∫

�

|∇u|q
q

dx = lim
∫

�

|∇upk |pk

pk
dx.

Again the minimal character of upk yields the inequality∫
�

|∇upk |pk

pk
dx +

∫
�

fupk dx ≤
∫

�

|∇uq|pk

pk
dx +

∫
�

fuq dx,

which is valid for each k. Passing to the limits as k → ∞ and taking into account
(4.11) and the fact that uq ∈ W 1,q(·)

0 (�), one obtains∫
�

|∇u|q
q

dx +
∫

�
fu dx ≤

∫
�

|∇uq|q
q

dx +
∫

�
fuq dx,

i.e., u minimizes the functional

(4.12) G : W 1,q(·)
0 (�) → [0,∞) , G(v) =

∫
�

|∇v |q
q

dx +
∫

�
fv dx.

In turn, (4.12) implies that �q(·)(u) = f ; and, since u ∈ W 1,q(·)
0 (�), Theorem 3.3

yields u = uq. Hence, letting k → ∞ in∫
�

|∇upk |pk dx = −
∫

�
fupk dx,

which holds by definition, we at once obtain

lim
k→∞

∫
�

|∇upk |pk dx = −
∫

�
fu dx =

∫
�

|∇uq|q dx,

as claimed. �



�-CONVERGENCE AND STABILITY OF MINIMIZERS 589

Corollary 4.3. In the terminology of Theorem 3.2, if inf� q ≥ 2, then for a
subsequence of {upj } (still denoted by {upj }),∫

�
|∇upj − ∇uq|p j dx → 0 as j → ∞.

If n = 1, then the restriction inf� q ≥ 2 is not needed.

Proof. Due to weak-lower semicontinuity and convexity, for fixed j ,∫
�

|∇uq|p j dx ≤ lim inf
j≤k→∞

∫
�

∣∣∣∣∇uq

2
+
∇upk

2

∣∣∣∣
p j

dx

≤ 1
2

∫
�

|∇uq|p j dx +
1
2

lim inf
j≤k→∞

∫
�

|∇upk |p j dx.
(4.13)

From [13, Theorem 4.1] and due to the convergence given in Theorem 4.2, we
have

lim inf
j≤k→∞

∫
�

|∇upk |p j dx ≤ lim inf
k→∞

(
‖p j − pk‖−‖p j−pk‖∞∞

·
∫

�
|∇upk |pk dx + ‖p j − pk‖∞|�|

)

=
(

‖p j − q‖−‖p j−q‖∞∞
∫

�
|∇uq|q dx + ‖p j − q‖∞|�|

)
.

Thus, letting j → ∞ in (4.13) makes it clear that

lim inf
j≤k→∞

∫
�

∣∣∣∣∇uq

2
+
∇upk

2

∣∣∣∣
p j

dx =
∫

�
|∇uq|q dx.

The inequality (valid for inf� p j ≥ 2)

∫
�

∣∣∣∣∇uq

2
+
∇upk

2

∣∣∣∣
p j

dx+
∫

�

∣∣∣∣∇uq

2
− ∇upk

2

∣∣∣∣
p j

dx ≤ 1
2

∫
�

|∇uq|p j dx+
1
2

∫
�

|∇upk |p j dx

(see [1],[12]) yields the first part of the corollary.
As to the 1-dimensional case, observe that there exists a positive constant c

such that as long as 1 < s < S < ∞ and (ξ, r) ∈ (s, S) × [−M,M ],

(4.14)
1
2

(
|r + 1|ξ + |r − 1|ξ

)
− |r|ξ ≥ c.

Set A = {x ∈ (a, b) : |(upj − uq)
′ | > δ |(upj + uq)

′ |} and fix δ > 0. Then if x ∈ A,
the substitution

r =
u

′
q(x) + u

′
p j

(x)

u′
q(x) − u′

p j
(x)

,
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ξ = p j (x) in (4.14) yields, pointwise in �,

1
2

(
|u′

q|p j + |u′
p j

|p j

)
−
∣∣∣∣∣
u

′
q + u

′
p j

2

∣∣∣∣∣
p j

≥ c

∣∣∣∣∣
u

′
q − u

′
p j

2

∣∣∣∣∣
p j

,

whence it follows by integrating on A that

(4.15)
1
2

(∫
�

|u′
q|p j dx +

∫
�

|u′
p j

|p j dx
)

−
∫

�

∣∣∣∣∣
u

′
q + u

′
p j

2

∣∣∣∣∣
p j

dx ≥ c
∫

A

∣∣∣∣∣
u

′
q − u

′
p j

2

∣∣∣∣∣
p j

dx.

From Lebesgue’s Dominated Convergence Theorem and the proof of Theorem 4.2,
it follows that

lim
j→∞

∫
�

|u′
q(x)|p j dx = lim

j→∞

∫
�

∣∣∣∣∣
u

′
q + u

′
p j

2

∣∣∣∣∣
p j

dx =
∫

�
|u′

q|q dx.

Letting j → ∞ in (4.15) makes it clear that

∫
A

∣∣∣∣∣
u

′
q − u

′
p j

2

∣∣∣∣∣
p j

dx → 0 as , j → ∞

which through an easy calculation yields∫
A
|u′ − u′

p j
|pdx → 0 as j → ∞.

On the other hand,∫
�\A

∣∣∣∣∣
u

′
q − u

′
p j

2

∣∣∣∣∣
p j

dx ≤ δ p−
∫

�

∣∣∣∣∣
u

′
q + u

′
p j

2

∣∣∣∣∣
p j

dx ≤ δ p− .

Putting this all together, we have∫
�

|u′
q − u′

p j
|pdx → 0 as j → ∞. �

Consider next a non-increasing sequence {p j } j . We retain the terminology
from the beginning of Section 4.

Theorem 4.4. Let � ⊂ R
n be a bounded Lipschitz domain, {pk}k ⊂ C(�) a

non-increasing sequence converging to p uniformly on �. Let upk for k ∈ N and
up be as in (4.1). Assume that for some r > p, the higher integrability condition∫
� |∇up|r dx < ∞ holds 1. Then there exists a subsequence of {upk } (still denoted

by {upk}) for which upk ⇀ up and upk → up strongly in Lp(�) and∫
�

|∇upk |pk dx →
∫

�
|∇up|p dx.

1This condition is satisfied, for example, if Rn \ � is p(·)-fat (see [16, Theorem 5.1])



�-CONVERGENCE AND STABILITY OF MINIMIZERS 591

Proof. Owing to inequality (4.3) and the argument thereafter, the sequence
{upj } is bounded in W 1,p(·)

0 (�), and the numerical sequence
{ ∫

� |∇upj |p j dx
}

is
bounded. Therefore, no generality is lost in assuming that

{ ∫
� |∇upj |p j dx

}
(and

therefore also
{ ∫

� |∇upj |p j /p j dx
}

) is convergent unless it is finite, in which case
the claim follows trivially since 〈 f, upj 〉 → 〈 f, u〉.

We point out that for fixed j ,
∫
� |∇upj |pk dx → ∫

� |∇upj |p dx as j ≤ k → ∞.
Taking k ≥ j and invoking the estimate∫

�
|∇upj |pk dx ≤ ‖p j − pk‖−‖pk−p j‖∞∞

∫
�

|∇upj |p j dx + ‖p j − pk‖∞|�|,
we see easily that∫

�
|∇upj |p dx ≤ ‖p j − p‖−‖p j−p‖∞∞

∫
�

|∇upj |p j dx + ‖p j − p‖∞|�|.
Weak-lower semicontinuity yields∫

�
|∇u|p dx ≤ lim inf

j

∫
�

|∇upj |p dx ≤ lim inf
j

∫
�

|∇upj |p j dx = lim
j

∫
�

|∇upj |p j dx.

In a similar fashion, via Lemma 4.1 one obtains∫
�

|∇u|p
p

dx ≤ lim
j

∫
�

|∇upj |p j

p j
dx.

In view of the above considerations, the minimality condition

(4.16)
∫

�

|∇upj |p j

p j
dx + 〈 f, upj 〉 ≤

∫
�

|∇up|p j

p j
dx + 〈 f, up〉,

implies ∫
�

|∇u|p
p

dx + 〈 f, u〉 ≤
∫

�
|∇up|p dx + 〈 f, up〉,

and the minimal character of up implies automatically that u = up. A further
application of (4.16) yields

lim
j→∞

∫
�

|∇upj |p j

p j
dx ≤

∫
�

|∇u|p
p

dx.

In conclusion,

lim
j→∞

∫
�

|∇upj |p j dx ≤
∫

�
|∇u|p dx. �

Corollary 4.5. In the terminology of Theorem 4.4, if inf� p ≥ 2, then for a
subsequence of {upj } (still denoted by {upj }),∫

�
|∇upj − ∇up|p dx → 0 as j → ∞.

Corollary 4.5 can be obtained via arguments similar to those used in the proof
of Corollary 4.3; its proof is omitted.
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5 �-convergence

The concept of �-convergence was introduced by E. De Giorgi in the 1970’s. Its
flexibility and ubiquity in the direct methods of variational calculus have brought
this idea to the main stage of mathematical research; see [8], [4] and the references
therein. In this section, we explore the connection between the results in Section 4
and �-convergence.

Definition 5.1. Let X be a metric space. A sequence {Fk} of functionals
Fk : X → [0,∞] is said to �-converge to F : X → [0,∞] at x ∈ X if and only if

(i) for any sequence {xk} ⊆ X with xk → x as k → ∞,

F (x) ≤ lim inf
k→∞ Fk(xk);

(ii) there exists a sequence {yk}k ⊆ X , converging to x for which

F (x) = lim
k→∞ Fk(yk).

A sequence {Fk} that �-converges to F at every x ∈ X is said to �-converge to
F on X . A sequence {Fk} is said to be equicoercive if there exists a compact set
K ⊂ X such that infX Fk = infK Fk for each k ∈ N.

Notice that the second condition in Definition 5.1 is satisfied automatically if
limk→∞ Fk(x) = F (x). For a bounded Lipschitz domain � and s ∈ C(�), fix
f ∈

(
W 1,s

0 (�)
)∗

; and for s ≤ r ∈ C(�), define Fr : Lr(�) → [0,∞] by

(5.1) Fr(u) =

⎧⎨
⎩
∫
�

|∇u|r
r dx + 〈 f, u〉, if u ∈ W 1,r(�)

∞ otherwise.

Theorem 5.2. Let � ⊂ R
n be a bounded Lipschitz domain, p, q ∈ C(�) and

f ∈ (W 1,p
0 (�)

)∗
.

(i) If {p j } is a non-increasing sequence in C(�) converging uniformly in � to
its infimum p, then the sequence {Fpj } is equicoercive in Lp(�) and Fp(u) =
�lim j→∞Fpj (u) at every u ∈ Lp(�) for which there exists ε > 0 such that∫
� |∇u|p+ε dx < ∞.

(ii) If {p j } is a non-decreasing sequence in C(�) converging uniformly in � to
its supremum q with 1 < inf� p ≤ sup� q < ∞, then the sequence {Fpj }
of functionals defined on Lp(�) via (5.1) is equicoercive in Lp(�) and �-
converges to Fq in Lp(�).
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Proof. For the proof of (i), we observe that it is clear that the infimum of
each Fpj is attained in W

1,p j

0 (�). It is well known that the Fréchet derivative of

Fpj is the functional on W
1,p j

0 (�) given by h → ∫
� |∇u|p j−2∇u∇h dx + 〈 f, h〉; by

virtue of Theorem 3.3, the unique minimizer of Fpj in W
1,p j

0 (�) is upj . Owing to
Sobolev’s embedding theorem, the closure K̃ in Lp(�) of the set K = {upj , j ∈ N}
is compact. Also it follows from the preceding discussion that infLp Fpj = F (upj ) =
infK̃ Fp j for each j ∈ N. The sequence {Fpj } is thus equicoercive; see [8].

Consider a sequence {v j } in Lp(�) that converges to v ∈ Lp(�). If

L = lim inf
j→∞

(∫
�

|∇v j |p j

p j
dx + 〈 f, v j 〉

)
< ∞,

one can extract from {v j } a subsequence {w j } for which∫
�

|∇w j |p j

p j
dx + 〈 f,w j 〉 → L.

Since p ≤ p j , it is easy to see that∫
�

|∇w j |p j

p j
dx ≤ C

(
1 + ‖ f ‖(

W
1,p j
0 (�)

)∗‖∇w j‖W
1,p j
0 (�)

)

for some positive constant C and each j ∈ N. It follows from inequalities (2.2)
and Young’s inequality that if

∫
� |∇w j |p j dx > 1, then

‖|∇w j |‖p j −
p j ≤

(
C +

(‖ f ‖
δ

)p j −/(p j −−1) p j− − 1

p j −
+

(‖|∇w j |‖p j δ )p j −

p j−

)

for every δ > 0. Thus the sequence {w j } is bounded in W 1,p
0 (�). Owing to

the reflexivity of W 1,p
0 (�) in conjunction with Sobolev’s embedding theorem, one

readily concludes that v ∈ W 1,p
0 (�). Therefore, without loss of generality one

can consider w j ⇀ v in W 1,p
0 (�). Moreover, v ∈ W 1,pk

0 (�) for sufficiently large
k ∈ N, which follows immediately from the higher integrability assumption on the
gradient.

Weak-lower semicontinuity and the appropriate version of Lemma 4.1 imply∫
�

|∇v |p
p

dx ≤ lim inf
j→∞

∫
�

|∇w j |p
p

dx

≤ lim inf
j→∞

(
‖p − p j‖−‖p−p j‖∞∞

∫
�

|∇w j |p j

p j
dx + ‖p − p j‖∞|�|

)

= lim inf
j→∞

(
‖p − p j‖−‖p−p j‖∞∞

(∫
�

|∇w j |p j

p j
dx + 〈 f,w j 〉

))

+ lim inf
j→∞

(
‖p − p j‖∞|�| − ‖p − p j‖−‖p−p j‖∞∞ 〈 f,w j 〉

)
= L − 〈 f, v〉.(5.2)
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It is evident from the preceding argument that if
∫
� |∇v |p/p dx = ∞, then

lim inf
j→∞

(∫
�

|∇v j |p j

p j
dx + 〈 f, v j 〉

)
= ∞;

if this is the case, then obviously

Fp(v) = ∞ = lim inf
j→∞

(∫
�

|∇v j |p j

p j
dx + 〈 f, v j 〉

)
.

It then follows from the latter and (5.2) that if v j → v in Lp(�), then also
Fpj (v j ) → Fp(v) in [0,∞]. The proof of the �-convergence is completed by
observing that for each u ∈ Lp(�),

lim
j→∞ Fpj (u) = lim

j→∞

∫
�

|∇u|p j

p j
dx + 〈 f, u〉 =

∫
�

|∇u|p
p

dx + 〈 f, u〉 = Fp(u)

if u ∈ W 1,p
0 (�), or else lim j→∞ Fpj (u) = ∞ = Fp(u).

The proof of (ii) follows along similar lines and is omitted. �

Theorems 4.2 and 4.4 follow from Theorem 5.2 via the general theory of �-
convergence; see [8, Corollary 7.20] . Rather than deploying the full theoretical
details of �-convegence, we have opted for the ad hoc argument presented in Sec-
tion 4 in this particular case for the benefit of those readers not familiar with �-
convergence. For constant exponent p, Theorem 4.2 and 4.4 were treated in [21],
though not using any �-convergence. We hope this section will elicit further in-
terest in the application of �-convergence in the framework of non-rearrangement
invariant function spaces.

6 Final Comments

The stability question for constant exponent p was addressed by Lindqvist in [21].
For the variable exponent case, the stability of the homogeneous problem for a
general operator was studied in [14], [16] for a certain class of domains. More
specifically, it is shown that in the notation of Section 4, under the assumption
of log-Hölder continuity of the sequence {pi}i (see [14, Theorem 7.3]) and for
f ∈ W 1,p(·)(1+δ )

0 (�) for some δ > 0, if for each i ∈ N

(6.1)

⎧⎨
⎩�pi (·) = 0,

ui |∂� = 0
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with ui − f ∈ W 1,pi (·)
0 (�), a subsequence of {ui}i converges strongly to the solution

u of

(6.2)

⎧⎨
⎩�p(·) = 0

u|∂� = 0

with with u − f ∈ W 1,p(·)
0 (�). We remark that the stronger assumptions upon the

exponents yield higher regularity and stronger convergence results of the sequence
of solutions. Similar results are obtained in [16] for inf� pi → 1.

Acknowledgments. We are indebted to the referee for pointing out refer-
ences [14], [16] and for further variable comments.
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