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Abstract. The purpose of this paper is to prove that, given a dynamical system
(X,M, μ, τ) and 0 < q < 1, the Lorentz spaces L1,q(μ) satisfy the so-called Return
Times Property for the Tail, contrary to what happens in the case q = 1. In fact, we
consider a more general case than in previous papers since we work with a σ-finite
measure μ and a transformation τ which is only Cesàro bounded. The proof uses
the extrapolation theory of Rubio de Francia for one-sided weights. These results
are of independent interest and can be applied to many other situations.

1 Introduction

Initially, let us consider a finite dynamical system (X,M, μ, τ); that is, a finite
measure space with an invertible measure-preserving transformation τ on X . The
following result is usually referred to as Bourgain’s Return Times Theorem ([7],
[8]).

Theorem 1.1. Let (X,M, μ, τ) be a finite dynamical system and f ∈ L∞(μ).
Then there exists X0 ⊂ X of full measure such that for all x0 ∈ X0, all finite
dynamical systems (Y,C, ν, S) and all g ∈ L1(ν), the sequence of averages

Bng(y) =
1
n

n−1∑
i =0

f (τi x0)g(Siy)

converges for almost every y ∈ Y (ν).

We say that L∞(μ) satisfies RTT or simply write L∞(μ) ∈ RTT .
Theorem 1.1 gives no information in the case f ∈ L1(μ); however, it is known

that if the Return Times Theorem holds for f , then the so-called Return Times
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Property for the Tail holds for f ; that is, for all x0 ∈ X0, all dynamical systems
(Y,C, ν, S) and all g ∈ L1(ν), the sequence

Rng(y) =
1
n

f (τnx0)g(Sny)

converges to 0 for almost every y ∈ Y (ν). In this case, we say that f ∈ RTP; and,
if X is a space such that f ∈ RTP for every f ∈ X , we say that X satisfies the RTP
or simply write X ∈ RTP. In particular,

X ∈ RTT implies X ∈ RTP.

Using this necessary condition and the following result, it was proved in [5]
(see also [4]) that the Return Times Theorem does not hold, in general, for L1(μ).

Theorem 1.2 ([3] Theorem 8). Let {cn} be a sequence of nonnegative num-
bers such that limn→∞ cn = 0. Then, the following two statements are equivalent:

(a) supn
1
n#{k : ck > 1

n} < +∞;
(b) for all finite dynamical systems (Y,C, ν, S) and all g ∈ L1(ν), the sequence

cng(Sny) converges to 0 for almost every y ∈ Y (ν).

Now, it is known that given f ∈ L1(μ), the sequence cn = f (τnx)/n converges
to 0 a.e. x, and hence

f ∈ RTP if and only if N f (x) := sup
n∈N

1
n
N 1

n
f (x) < +∞ a.e. x,

where, for α > 0,

Nα f (x) = #
{

k ≥ 1 :
| f (τkx)|

k
> α

}
.

It was proved in [5] that if the measure space is nonatomic and the transforma-
tion is ergodic, there exists f ∈ L1(μ) such that N f (x) = +∞ a.e.; consequently,
under the mentioned hypotheses, the Return Times Property for the Tail and the
Return Times Theorem do not hold for L1(μ) functions; that is,

L1(μ) /∈ RTP and L1(μ) /∈ RTT.

The conclusion of our discussion is that the study of the finiteness of N f is a key
point in the Return Times theorems.

The example in [5] shows that, in general, N does not map L1(μ) into L1,∞(μ).
However, Assani [2] proved that N : L logL(μ) −→ L1(μ), where

L logL(μ) =
{

f : ‖ f ‖L logL(μ) =
∫ 1

0
f ∗
μ(t)

(
1 + log+ 1

t

)
dt < ∞

}
.
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Recall that the decreasing rearrangement of f with respect to μ is

f ∗
μ(t) = inf{y > 0 : λ

μ
f (y) ≤ t},

with λ
μ
f (y) = μ({x : | f (x)| > y}) the distribution function of f with respect

to μ. Hence N f (x) < +∞ a.e. x, for every f ∈ L logL(μ); and therefore,
L logL(μ) ∈ RTP. Some years later, Demeter and Quas [13] proved that
N : L log logL(μ) −→ L1,∞(μ), and hence

(1.1) L log logL(μ) ∈ RTP,

where

L log logL(μ) =
{

f : ‖ f ‖L log logL(μ) =
∫ 1

0
f ∗
μ(t)

(
1 + log+ log+ 1

t

)
dt < ∞

}
.

Finally, it was observed in [13] that if X is an Orlicz (or Lorentz) space strictly
larger than L log log logL(μ), then X /∈ RTP, and hence X /∈ RTT .

In this paper (see, e.g., Theorem 2.9), we weaken the previous assumptions
since we work with σ-finite measures and τ is an invertible measurable transfor-
mation Cesàro bounded in L1(μ); that is, there exists C > 0 such that

sup
n≥1

∥∥∥∥∥1
n

n−1∑
i =0

f ◦ τi

∥∥∥∥∥
L1(μ)

≤ C‖ f ‖L1(μ).

Let now 0 < p, q ≤ ∞ and Lp,q(μ) be the Lorentz space defined as the space
of measurable functions such that

‖ f ‖Lp,q(μ) =
(

q
∫ ∞

0
yq−1λ

μ
f (y)

q
p dy
)1/q

=
(

q
p

∫ ∞

0
f ∗
μ(t)qt

q
p −1dt

)1/q

< ∞

if q < ∞; and, if q = ∞,

‖ f ‖Lp,∞(μ) = sup
y>0

yλμ
f (y)

1/p = sup
t>0

t1/p f ∗
μ(t) < ∞.

Recall that, if q < r < 1, then L1,q(μ) ⊂ L1,r(μ) ⊂ L1(μ).
Our goal is to study the Return Times Property for the Tail. Our main results,

Theorem 2.9 and Corollary 2.10, show that for every 0 < q < 1,

(1.2) L1,q(μ) ∈ RTP.

In fact, we prove that if N ∗ f (x) = supα>0 αNα f (x) (an operator bigger than N ),
then N ∗ : L1,q(μ) −→ L1,∞(μ) is a bounded operator. The interesting part of the
proof of this result is that it uses a new technique, developed in [10], and based
on the Rubio de Francia extrapolation theory. We need to extend this theory to the
case of one-sided weights and do so in Section 3.
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Remark 1.3. Let μ be a non-atomic probability measure. If f is a measurable
function such that

f ∗
μ(t) =

χ(0,1)(t)

t(1 + log+ 1
t )(1 + log+ log+ 1

t )
3
,

then f ∈ L log logL(μ) \ ∪0<q<1L1,q(μ). On the other hand, L1,q(μ) is not embed-
ded in L log logL(μ) since

A := sup
f ↓

∫∞
0 f (t)(1 + log+ log+ 1

t )dt(∫ 1
0 f (t)qtq−1dt

)1/q < ∞.

But it is known (see, e.g., [11]) that

A = sup
0<r<1

∫ r
0 (1 + log+ log+ 1

t )dt(∫ r
0 tq−1dt

)1/q = ∞.

Therefore, (1.1) and (1.2) are independent results, since they provide nonrelated
metric spaces B such that B ∈ RTP.

Finally, as is usual, we let |E | stand for the Lebesgue measure of the set E , and
if μ is the measure dμ = u(x) dx, then λ

μ
f and f ∗

μ are written λu
f and f ∗

u . Moreover,
if the measure is clearly understood, we simply write λ f and f ∗. If the set X
is the set of integers Z and the measure μ is the counting measure, the Lorentz
spaces are denoted by �p,q; and if the measure on the integers is given by a density
u = {un}n∈Z then, we write �p,q(u). In this case, for a sequence a = {an}n∈Z,

‖a‖�p,q(u) =
(

q
∫ ∞

0

( ∑
{n∈Z:an>y}

un

) q
p −1

yq−1dy
)1/q

if q < ∞; and if q = ∞,

‖a‖�p,∞(u) = sup
y>0

y
( ∑

{n∈Z:an>y}
un

)1/p

.

By a positive constant C, we mean a constant independent of all important
parameters. The expression A � B indicates that there exists a constant C such
that A ≤ CB, and A ≈ B means that A � B and B � A.

2 A counting problem for Cesàro bounded transforma-
tions

From now on, (X,M, μ) is a σ-finite measure space and τ : X → X an in-
vertible measurable transformation whose inverse is measurable and (two-sided)-
nonsingular, i.e., μ(E) = 0 if and only if μ(τ−1E) = 0. We emphasize that it



A COUNTING PROBLEM AND ONE-SIDED WEIGHTS 241

is easy to adapt the proof in [3] of Theorem 1.2 to the case of σ-finite measures,
while Theorem 1.1 may fail in this case; see [14].

Let us now consider the ergodic maximal operator

Mτ f (x) = sup
n≥1

An| f |(x), An f =
1
n

n−1∑
i =0

f ◦ τi .

We need the following result, which can be found in [23] and in [27].

Theorem 2.1. Let 1 ≤ p < +∞ and assume that τ is Cesàro bounded in
Lp(μ); that is, supn≥1 ‖An f ‖Lp(μ) � ‖ f ‖Lp(μ) for all f ∈ Lp(μ). Then

(a) if p = 1,
‖Mτ f ‖L1,∞(μ) � ‖ f ‖L1(μ), for all f ∈ L1(μ);

(b) if 1 < p < +∞,

‖Mτ f ‖Lp(μ) ≤ Cp‖ f ‖Lp(μ), for all f ∈ Lp(μ).

Definition 2.2. Let 1 ≤ p < ∞. An operator T is said to be of restricted
weak type (p, p) if there exists a constant C > 0 such that for all measurable sets
E ,

‖TχE‖Lp,∞(μ) ≤ Cμ(E)1/p.

The least of all possible constants C is denoted by ‖T‖p,rest.

The operator N ∗ is closely related to the ergodic maximal operator since, if
A is a measurable set, then N ∗(χA) ≤ Mτ(χA). Hence, using Theorem 2.1, we
immediately have the following result.

Corollary 2.3. Under the hypotheses of Theorem 2.1, N ∗ is of restricted weak
type (p, p).

Theorem 2.4. Let 1 < p < +∞ and assume that τ is Cesàro bounded in
Lp(μ). Then N ∗ : Lp,1(μ) −→ Lp,∞(μ) is bounded with

‖N ∗‖Lp,1(μ)→Lp,∞(μ) ≤ 4p‖N ∗‖p,rest

p − 1
.

Proof. Let f ∈ Lp,1(μ). For each integer number i, define

Ei = {x : 2i−1 < | f (x)| ≤ 2i},
and fi = fχEi . Since N ∗ is sublinear on disjointly supported functions and mono-
tone,

N ∗ f ≤
∞∑

i =−∞
N ∗ fi ≤

∞∑
i =−∞

2iN ∗χEi .



242 M. J. CARRO, M. LORENTE, AND F. J. MARTÍN-REYES

Since p > 1 and N ∗ is of restricted weak type (p, p),

‖N ∗ f ‖Lp,∞(μ) ≤ p
p − 1

∞∑
i =−∞

2i‖N ∗χEi ‖Lp,∞(μ) ≤ p‖N ∗‖p,rest

p − 1

∞∑
i =−∞

2iμ(Ei)
1/p

≤ 4p
p − 1

‖N ∗‖p,rest

∞∑
i =−∞

∫ 2i−1

2i−2
μ({x : | f (x)| > t})1/p dt

=
4p‖N ∗‖p,rest

p − 1
‖ f ‖Lp,1(μ),

and the result follows. �

Remark 2.5. If 1 < p < ∞ and τ is an invertible measurable transformation
which is Cesàro bounded in Lp(μ), then it is Cesàro bounded in Lp−ε(μ) for some
ε, 0 < ε < p − 1; see [23] and [27].

Using Remark 2.5, Theorem 2.4 and Marcinkiewicz’s interpolation theorem
(adapted to sublinear operators on disjointly supported functions), one can easily
prove the boundedness on Lp(μ).

Theorem 2.6. Let 1 < p < +∞ and assume that τ is Cesàro bounded in
Lp(μ). Then N ∗ : Lp(μ) −→ Lp(μ) is bounded.

As mentioned in the introduction, we already know that N ∗ does not map L1(μ)
into L1,∞(μ). However, we can prove some boundedness result on L1,q(μ) for
every 0 < q < 1. To this end, we first need to assume a claim and then prove a
proposition.

Consider the continuous version of the operator N ∗ defined by

N ∗,c f (x) = sup
α>0

α

∣∣∣∣{y > 0 :
| f (x + y)|

y
> α

}∣∣∣∣ ,
and recall the definition of the one-sided weights u ∈ A+

1: a locally integrable
positive function u belongs to A+

1 if there exists C > 0 such that M−u(x) ≤ Cu(x),
a.e. x, where

M− f (x) = sup
h>0

1
h

∫ x

x−h
| f (y)|dy;

we denote by ‖u‖A+
1
the infimum of such constants.

Claim. Let 0 < q < 1 and u ∈ A+
1 . Then

(2.1) N ∗,c : L1,q(u) −→ L1,∞(u)

is bounded with a constant less than or equal to Cq‖u‖A+
1
, for some constant Cq >

0 depending only on q.
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Section 3 is devoted to the proof of this claim.
Let us now take the dynamical system (X,M, μ, τ), where X = Z is the set of

the integers, M = P(X), μ is the counting measure (μ(E) = #(E)) and τ(i) = i +1.
The counting function N ∗ associated to this dynamical system is denoted by
N ∗,d ; that is, if f is a function defined on the integers,

N ∗,d f (i) = sup
α>0

α #
{

k ≥ 1 :
| f (i + k)|

k
> α

}
.

A weight w ∈ A+
1(Z) is a nonnegative function on the integers such that

(2.2) m−w( j) = sup
n≥1

1
n

n−1∑
i =0

w( j − i) ≤ Cw( j)

for all j ∈ Z, where C is a positive constant independent of j and

‖w‖A+
1 (Z) = inf{C > 0; (2.2) holds}.

Remark 2.7. Let w be a nonnegative function on Z. Define W : R → R by
W (x) = w([x]), where [x] is the integer part of x. It is easy to see that w ∈ A+

1(Z) if
and only if W ∈ A+

1 and ‖w‖A+
1 (Z) ≈ ‖W‖A+

1
.

Now, assuming the claim and using a discretization argument, we can prove
the following result.

Proposition 2.8. Let 0 < q < 1 and let w ∈ A+
1(Z). Then N ∗,d : �1,q(w) −→

�1,∞(w) is bounded with constant Cq‖w‖A+
1 (Z), for some constant Cq > 0 depend-

ing only on q.

Proof. Let f : Z → R
+ and define F : R → R by F (x) = f ([x]). Observe

that if α < f (i + k)/k, x ∈ (i, i + 1) and z ∈ (i + k, i + k + 1), then

α <
f (i + k)

k
=

F (z)
k

=
F (x + z − x)

z − x
z − x

k

≤ F (x + z − x)
z − x

k + 1
k

≤ 2
F (x + z − x)

z − x
.

Consequently, ⋃{
k≥1: f (i+k)

k >α
}(i + k, i + k + 1) ⊂

{
z > x :

F (x + z − x)
z − x

>
α

2

}
,

which implies

#
{

k ≥ 1 :
f (i + k)

k
> α

}
≤
∣∣∣∣{y > 0 :

F (x + y)
y

>
α

2

}∣∣∣∣;
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and thus, N ∗,d f (i) ≤ 2N ∗,cF (x) for all x ∈ (i, i + 1). It follows that

‖N ∗,d f ‖�1,∞(w) ≤ 2‖N ∗,cF‖L1,∞(W ).

By Remark 2.7 and the claim, we obtain

‖N ∗,d f ‖�1,∞(w) � Cq‖W‖A+
1
‖F‖L1,q(W ) ≈ Cq‖w‖A+

1 (Z)‖ f ‖�1,q(w),

as we wanted to prove. �
We are now ready to formulate and prove our first main result via a classical

transference argument.

Theorem 2.9. Let 0 < q < 1 and assume that τ is Cesàro bounded in L1(μ).
Then N ∗ : L1,q(μ) −→ L1,∞(μ) is bounded.

Proof. It suffices to prove the theorem for nonnegative measurable functions.
Since τ is two-sided nonsingular, by the Radon-Nikodym theorem (see [27]), there
exists a family of nonnegative measurable functions {Ji(x)}i∈Z such that Ji+ j (x) =
Ji(τ j x)Jj (x); and for all nonnegative measurable functions f ,∫

X
f dμ =

∫
X

f (τi(x))Ji(x) dμ(x).

Furthermore, it is known [27] that

(2.3) hx(i) = Ji(x) ∈ A+
1(Z), a.e. x, and ‖hx‖A+

1 (Z) ≤ sup
n

‖An‖L1(μ).

Fix a natural number L and consider

(Nα)L f (x) = #
{

1 ≤ k ≤ L :
| f (τkx)|

k
> α

}
and the truncated operator N ∗

L f (x) = supα>0 α(Nα)L f (x). Then fix a nonnegative
measurable function f . For any x ∈ X , let f x be the function defined on Z by
f x(i) = f (τi x). Let n ∈ N and λ > 0. If Oλ,L = {x : N ∗

L f (x) > λ}, then

λμ(Oλ,L) =
1

n + 1

∫
X

λ
n∑

i =0

χOλ,L(τ
ix)hx(i) dμ(x).

It is easy to see that if χOλ,L(τ
ix) = 1 (0 ≤ i ≤ n), then N ∗,d ( f xχ[0,n+L])(i) > λ.

Then for all x,

λ
n∑

i =0

χOλ,L(τ
ix)hx(i) ≤ λ

∑
{i:N ∗,d ( f xχ[0,n+L])(i)>λ}

hx(i)

≤ ‖N ∗,d ( f xχ[0,n+L])‖�1,∞(hx).
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Since, by (2.3), for a.e. x ∈ X , the functions hx ∈ A+
1(Z) with a uniform constant,

Proposition 2.8 gives Cq > 0 such that

‖N ∗,d ( f xχ[0,n+L])‖�1,∞(hx) ≤ Cq‖ f xχ[0,n+L]‖�1,q(hx) a.e. x.

Therefore,

λμ(Oλ,L) ≤ Cq

n + 1

∫
X

‖ f xχ[0,n+L]‖�1,q(hx)dμ(x)

=
Cq

n + 1

∫
X

⎛⎝q
∫ ∞

0

⎛⎝t
∑

{i∈[0,n+L]: f x(i)}>t

hx(i)

⎞⎠q

dt
t

⎞⎠1/q

dμ(x).

Applying Minkowski’s integral inequality, we obtain

λμ(Oλ,L) ≤ Cq

n + 1
q

1
q

⎛⎝∫ ∞

0
tq

⎛⎝∫
X

∑
{i∈[0,n+L]: f x(i)>t}

hx(i) dμ(x)

⎞⎠q

dt
t

⎞⎠1/q

=
Cq

n + 1
q

1
q

(∫ ∞

0
tq
(

n+L∑
i =0

∫
{x: f (τi x)>t}

hx(i) dμ(x)

)q
dt
t

)1/q

= Cqq
1
q
n + L + 1

n + 1

(∫ ∞

0
(tμ{x : f (x) > t})q dt

t

)1/q

= Cq
n + L + 1

n + 1
‖ f ‖L1,q(μ).

Letting n → +∞ and then L → +∞, we obtain the desired result. �
The final result of this section is our second main result.

Corollary 2.10. Under the hypotheses of Theorem 2.9, L1,q(μ) ∈ RTP.

Proof. The proof follows easily since for every f ∈ L1,q(μ), 0 < q < 1,

lim
n→∞

f (τnx)
n

= 0, a.e. x,

because the averages converge a.e.; see [23] and [27]. �
With a similar argument we also obtain the following result.

Corollary 2.11. Under the hypotheses of Theorem 2.6, Lp(μ) ∈ RTP.

3 Extrapolation for one-sided weights

The purpose of this section is to prove the claim stated in the previous section.
However, the results obtained here are of independent interest and can be applied
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to many other situations. The main idea is to obtain (2.1) for every u ∈ A+
1, using

the Rubio de Francia extrapolation argument recently developed in [10] adapted
to the case of one-sided weights. We emphasize that we give only the proofs of
those results which do not easily follow in the same way as in the two-sided case.

3.1 One-sided weights. As mentioned in the previous section, by a weight,
we mean a locally integrable function w ≥ 0. The good weights for the clas-
sical Hardy-Littlewood maximal operator M are the weights in the classes Ap of
Muckenhoupt [25]. One-sided weights are the good weights for one-sided op-
erators like the one-sided Hardy-Littlewood maximal functions, defined in R for
locally integrable functions f by

M+ f (x) = sup
h>0

1
h

∫ x+h

x
| f | and M− f (x) = sup

h>0

1
h

∫ x

x−h
| f |.

In general, a one-sided operator T + (respectively, T −) in R is an operator such
that the value of T + f (x) (respectively, T − f (x)) depends only on the values of f in
[x,∞) (respectively, (−∞, x]); for examples of one-sided operators, see [1], [6],
[16], [18], [19], [20], [29]. There are many classical operators in Real Analysis
that are one-sided operators for which the class of weights is wider than the one of
Muckenhoupt.

The one-sided Ap weights, 1 ≤ p < ∞, were introduced by E. Sawyer [28] and
are defined as follows. We say that w ∈ A+

p, p > 1, if

‖w‖A+
p

= sup
h>0

(
1
h

∫ x

x−h
w

)(
1
h

∫ x+h

x
w− 1

p−1

)p−1

< ∞;

A+
1 is defined as in Section 2. The following results about these weights can be

found in [28] and [22].
1. The operator M+ is of weak type (1, 1) with respect to w if and only if

w ∈ A+
1

2. The operator M+ is a bounded operator on Lp(w), p > 1, if and only if
w ∈ A+

p .

3. If M− f < ∞ a.e., then (M− f )δ ∈ A+
1 for every 0 < δ < 1 and ‖(M− f )δ‖A+

1
≤

C 1
1−δ

.
4. Factorization: w ∈ A+

p if an only if w = u0u
1−p
1 for some u0 ∈ A+

1 and
u1 ∈ A−

1 .
Of course, there are similar definitions and theorems for A−

p , obtained by reversing
the orientation of R. All the results that we state in this section have a correspond-
ing result for a reversed orientation of the real line.
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Remarks 3.1. i) Unlike the two-sided case, f not identically 0 does not imply
M+ f > 0 a.e.; therefore, one-sided weights can be 0 in a set of positive measure.
Here we are adopting the usual conventions ∞ · t = t · ∞ = ∞, for 0 < t ≤ ∞,
0 · ∞ = ∞ · 0 = 0, ∞−1 = 0 and 0−1 = ∞.

ii) It follows from the definitions that if w ∈ A+
p , there exist −∞ ≤ a ≤

b ≤ ∞ such that w = 0 in (−∞, a), w = ∞ in (b,∞), 0 < w < ∞ in (a, b),
w ∈ L1

loc(a, b) and, if 1 < p < ∞, w1−p′ ∈ L1
loc(a, b), where p′ = p

p−1 is the
dual exponent of p; see [15]. Thus, when working with one-sided weights, we can
assume without loss of generality that (a, b) = R.

There is a vast amount of work dealing with one-sided weights and one-sided
operators, extending the results for the standard cases to the one-sided case. Most
of the time, this involves significant technical difficulties.

In this section, we extend the results in [10] to the setting of one-sided weights.
We use them to prove the claim in Section 2. Other extrapolation results for one-
sided weights can be found in [12], [21], [17], [9].

3.2 Restricted weak-type extrapolation.

Definition 3.2. Let 1 ≤ p < ∞. We say that a weight w ∈ AR,+
p if there exists

a constant C > 0 such that for any three numbers a < b < c and any measurable
set E ⊂ (b, c),

w((a, b))
( |E |

c − a

)p

≤ Cw(E);

we denote by ‖w‖AR,+
p

the infimum of these constants.

It is easy to see that to check this condition, it suffices to check the condition
only for a < b < c such that b − a = c − b (the constant appearing is 2pC). The
following result gives a characterization of the class AR,+

p .

Lemma 3.3 ([26, Lemma 3]). Let 1 < p < +∞. Then w ∈ AR,+
p if and only

if

sup
a<b<c

‖χ(a,b)‖Lp,1(w)‖w−1χ(b,c)‖Lp′,∞(w)

c − a
< +∞.

Theorem 3.4 ([24]). Let 1 ≤ p < ∞ and let u be a weight. Then

M+ : Lp,1(u) → Lp,∞(u)

is bounded if and only if u ∈ AR,+
p . Furthermore, if 1 < p < ∞,

(p − 1)‖M+‖Lp,1(u)→Lp,∞(u) � ‖u‖AR,+
p

≤ ‖M+‖Lp,1(u)→Lp,∞(u);
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and, if p = 1,

‖M+‖L1(u)→L1,∞(u) ≈ ‖u‖A+
1
.

Following the same steps as in the two-sided case, it is easy to see that the
following result also holds.

Proposition 3.5. For every ε > 0,

A+
p ⊂ AR,+

p ⊂ A+
p+ε and ‖u‖AR,+

p
≤ ‖u‖1/p

A+
p
.

3.3 Construction of AR,+
p weights.

Lemma 3.6. Suppose 0 < M+ f (x) < ∞ a.e. Let a < c < d be such that
d − c = c − a. If g = fχ(d,∞), there exists K , 0 < K < +∞, such that K/2 ≤
M+g(x) ≤ K for all x ∈ (a, c).

Proof. Let f ≥ 0. Let x, y ∈ (a, c), x ≤ y and h > 0. Then

1
h + d − x

∫ d+h

d
f ≤ 1

h + d − y

∫ d+h

d
f ≤ M+g(y).

It follows that M+g(x) ≤ M+g(y). Analogously,

1
h + d − y

∫ d+h

d
f ≤ h + d − x

h + d − y
· 1
h + d − x

∫ d+h

d
f ≤ h + d − x

h + d − y
M+g(x)

=
(
1 +

y − x
h + d − y

)
M+g(x) ≤

(
1 +

c − a
d − c

)
M+g(x)

= 2M+g(x).

Therefore, M+g(y) ≤ 2M+g(x). Taking K = supx∈(a,c) M
+g(x), we have the

result. �
The following results (Theorem 3.7 and Corollary 3.8) are proved in a com-

pletely different way from the two-sided case.

Theorem 3.7. Let 1 < p < +∞. Let f be a measurable function. Then
w = (M+ f )1−p ∈ AR,+

p , with constant independent of f .

Proof. We may assume that 0 < M+ f (x) < ∞ a.e.; otherwise, we have to
work only in the interval where 0 < M+ f (x) < ∞. By Lemma 3.3, it suffices to
prove that there exists C > 0 such that for all a < b < c and for all t > 0,(∫ b

a
w

)1/p

t
(∫

{x∈(b,c):w−1(x)>t}
w

)1/p′

≤ C(c − a).
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Let a < b < c and d be such that d−c = c−a. Consider K and g as in Lemma 3.6.
Then w ≤ (M+g)1−p since g ≤ f .

If 0 < t ≤ (2K )p−1, then

(∫ b

a
w

)1/p

t
(∫

{x∈(b,c):w−1(x)>t}
w

)1/p′

≤ t
(∫ b

a
(M+g)1−p

)1/p (∫
x∈(b,c)

(M+g)1−p
)1/p′

≤ t
(∫ b

a
(K/2)1−p

)1/p (∫
x∈(b,c)

(K/2)1−p
)1/p′

≤ t(K/2)1−p(b − a)1/p(c − b)1/p′

≤ (2K )p−1(K/2)(1−p)(c − a) = 4p−1(c − a).

If t > (2K )p−1, then for all x ∈ (b, c),

M+ f (x) ≤ M+( fχ(b,d))(x) + M+g(x) ≤ M+( fχ(b,d))(x) + K

< M+( fχ(b,d))(x) +
t1/(p−1)

2
.

Therefore,

{x ∈ (b, c) : w−1(x) > t} =
{
x ∈ (b, c) : M+ f (x) > t1/(p−1)

}
⊂
{

x ∈ (b, c) : (M+( fχ(b,d))(x))
p−1 >

t
2p−1

}
.

Since M+ is of weak type (1, 1) with respect to Lebesgue measure,

t
(∫

{x∈(b,c):w−1(x)>t}
w

)1/p′

≤ t

(∫
{

x∈(b,c):(M+( fχ(b,d))(x))p−1> t
2p−1

} w

)1/p′

≤ t1/p

(
t
∫
{

x∈(b,c):(M+( fχ(b,d))(x))p−1> t
2p−1

}(M+( fχ(b,d)))
1−p

)1/p′

≤ t1/p
(∣∣∣∣{x ∈ (b, c) : M+( fχ(b,d))(x) >

t1/(p−1)

2

}∣∣∣∣ 2p−1
)1/p′

= 2(p−1)/p′
t1/p

(
2

t1/(p−1)

∫ d

b
f
)1/p′

= 2p−1
(∫ d

b
f
)1/p′

.



250 M. J. CARRO, M. LORENTE, AND F. J. MARTÍN-REYES

Consequently,

(∫ b

a
w

)1/p

t
(∫

{x∈(b,c):w−1(x)>t}
w

)1/p′

≤
(∫ b

a
w

)1/p

2p−1
(∫ d

b
f
)1/p′

≤ 2p−1
(∫ b

a
w(M+ f )p−1

)1/p

(d − a)1/p′

= 2p−1(b − a)1/p(2(c − a))1/p′ ≤ 2p−1/p(c − a).
�

Corollary 3.8. Let f be a measurable function. Let 1 ≤ p < ∞. If u ∈ A+
1 ,

then w = (M+ f )1−pu ∈ AR,+
p and

‖w‖AR,+
p

� ‖u‖1/p
A+

1
.

Proof. As before, we may assume that 0 < M+ f (x) < ∞ a.e. Let a < b < c,
and let E ⊂ (b, c) be a measurable set. For x ∈ (a, b), consider the decreasing
sequence {zn} defined by

z0 = c,

zn+1 =
x + zn

2
, n ∈ N.

For α ∈ (0, 1), (M+ f )α ∈ A−
1 , with constant depending only on α. Then, for every

n ∈ N,

(3.1)
1

zn+1 − x

∫ zn+1

x
(M+ f )α ≤ M+(M+ f )α(x) ≤ C(M+ f )α(x) .

Now, from Hölder’s inequality, we get that for every q > 1,

(zn+1 − x)q ≤
(∫ zn+1

x
(M+ f )α

)(∫ zn+1

x
(M+ f )−α/(q−1)

)q−1

.

Therefore,

zn+1 − x∫ zn+1

x (M+ f )α
≤
(

1
zn+1 − x

∫ zn+1

x
(M+ f )−α/(q−1)

)q−1

.

Take q = 1 + α
p−1 . Then the last inequality and (3.1) give

C(M+ f (x))−α ≤
(

1
zn+1 − x

∫ zn+1

x
(M+ f )1−p

) α
p−1

.
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Raising to the power p−1
αp > 0, using that (M+ f )1−p ∈ AR,+

p with x < zn+1 < zn

and En = E ∩ (zn+1, zn), and taking into account that zn − x = 2(zn − zn+1) and
zn+1 − x = zn − zn+1, we get

(M+ f (x))
1−p
p |En| ≤ 2C(zn − zn+1)

(p−1)/p
(∫

En

(M+ f )1−p
)1/p

.

Summing in n ∈ N and using Hölder’s inequality with exponents (p′, p), we obtain

(M+ f (x))
1−p
p |E | = (M+ f (x))

1−p
p

∞∑
n=0

|En|

≤ C

( ∞∑
n=0

(zn − zn+1)

)(p−1)/p( ∞∑
n=0

∫
En

(M+ f )1−p

)1/p

= C(c − x)(p−1)/p
(∫

E
(M+ f )1−p

)1/p

.

Therefore,

(3.2) (M+ f (x))1−p|E |p ≤ C(c − a)p−1
∫

E
(M+ f )1−p

for almost every x ∈ (a, b). Now, since u ∈ A+
1,

1
c − a

∫ b

a
u(x)dx ≤ 1

y − a

∫ y

a
u(x)dx ≤ M−u(y) ≤ ‖u‖A+

1
u(y)

for almost every y ∈ E . Then, multiplying in (3.2) by u(x) and integrating in (a, b),
we get

|E |p
∫ b

a
(M+ f (x))1−pu(x)dx ≤ C(c − a)p

1
c − a

∫ b

a
u(x)dx

∫
E
(M+ f )1−p(y)dy

� ‖u‖A+
1
(c − a)p

∫
E
(M+ f )1−p(y)u(y)dy,

i.e., w = (M+ f )1−pu ∈ AR,+
p . �

We now define the class of weights that we use to extrapolate.

Definition 3.9. Let 1 ≤ p < ∞. We say that a weight w belongs to Â+
p if there

exist f ∈ L1
loc and u ∈ A+

1 such that w = (M+ f )1−pu, with ‖w‖Â+
p

= inf ‖u‖1/p
A+

1
.

By Corollary 3.8, Â+
p ⊂ AR,+

p and ‖w‖AR,+
p

� ‖w‖Â+
p
.

The following distribution inequality is used in the proof of our first extrap-
olation result. Its proof follows exactly the same pattern as that of [10, Proposi-
tion 2.10], and we omit it.
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Proposition 3.10. Let u be a weight, f and g nonnegative functions, γ > 0
and 1 ≤ p < p0. Then

λu
g(y) ≤ λu

M+ f (γy) + γp0−p yp0

yp

∫
{x:g(x)>y}

(M+ f )p−p0 (x)u(x)dx.

Now we state the extrapolation result, which also follows the same pattern as
the two-sided case.

Theorem 3.11. Let T be an operator such that

‖T f ‖Lp0,∞(v) ≤ ϕp0 (‖v‖Â+
p0
)‖ f ‖Lp0,1(v)

for some p0 > 1 and every v ∈ Â+
p0

, where ϕp0 is an increasing function on (0,∞).
Then, for every 1 ≤ p < p0 and every v ∈ Â+

p ,

‖T f ‖Lp,∞(v) ≤ C‖v‖1−p/p0

Â+
p

ϕp0 (C‖v‖p/p0

Â+
p

)‖ f ‖Lp,p/p0 (v).

In particular, T is of restricted weak-type (p, p) with respect to v .

4 Proof of the Claim

Using Theorem 3.4 and the fact that N ∗,cχE = M+χE , and arguing as in the proof
of Theorem 2.4, we easily have that for every 1 < p < +∞ and every u ∈ AR,+

p ,
N ∗,c : Lp,1(u) −→ Lp,∞(u) is bounded with

‖N ∗,c‖Lp,1(u)→Lp,∞(u) �
‖u‖AR,+

p

p − 1
;

hence, by Theorem 3.11, we finally obtain (2.1).

Remark 4.1. If T is a quasi-sub-linear operator which satisfies the same hy-
pothesis of Theorem 3.11, we also get that it is possible to extrapolate up to a space
quite near to L1(u), for u ∈ A+

1. Namely, for every ε > 0,

‖T f ‖L(logL)ε(u) ≤ C‖ f ‖L1,∞
loc (u),

with constant C � 1
ε
‖u‖1−1/p0

A+
1

ϕp0 (‖u‖1/p0
A+

1
), where the spaces L(logL)ε(u) and

L1,∞
loc (u) are defined by the conditions

‖ f ‖L(logL)ε(u) =
∫ ∞

0
f ∗
u (t)

(
1 + log+ 1

t

)ε

dt < ∞,

‖ f ‖L1,∞
loc (u) = sup

0<t≤1
t f ∗

u (t) < ∞,

respectively. The proof of this fact follows the same pattern as in [10].
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