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Abstract. In 1995, Tataru proved a Carleman-type estimate for linear oper-
ators with partially analytic coefficients that is generally used to prove the unique
continuation of those operators. In this paper, we use this inequality to study the
stability of the unique continuation in the case of the wave equation with coef-
ficients independent of time. We prove a logarithmic estimate in a ball whose
radius has an explicit dependence on the C1-norm of the coefficients and on the
other geometric properties of the operator.

1 Introduction

We consider the wave operator in R
n+1,

(1.1) P(y,D) = −D2
0 +

n∑
j,k =1

g jk(x)DjDk +
n∑

j =1

h j (x)Dj + q(x),

where y = (t, x) ∈ R × R
n are the time-space variables, D0 = −i∂t, Dj = −i∂x j .

The coefficients g jk ∈ C1(Rn) are real and independent of time, and [g jk] is a
symmetric positive-definite matrix. The coefficients h j , q ∈ L∞(Rn) are complex
valued and independent of time.

An operator P(y,D) is said to have the unique continuation property if
every solution u of Pu = 0 in a connected open set � ⊂ R

n+1, and vanishing
on an open subset B ⊂ �, vanishes in �. In [20], Tataru proved for the first
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time the unique continuation property for (1.1) across every non-characteristic C2-
hypersurface with no limitation to the normal direction. The result is valid for a
larger class of linear operators, where the pseudo-convexity condition across a
surface is fulfilled for the cotangent vectors with ξ0 = 0, and it has been extended
to the case of coefficients analytic in time [7, 18, 21]. The key point of these results
is a Carleman-type estimate involving an exponential pseudo-differential operator.

Much is known about the consequences of this property on the uniqueness of
a corresponding Cauchy problem. Actually, the unique continuation property has
proved to be instructive in many areas of mathematics, e.g., in studying the unique-
ness for linear and nonlinear PDEs, together with their blow up or traveling wave
solutions [6], in studying the Anderson localization [4], in control theory to get
controllability results [22], in inverse problems, to obtain uniqueness and stability
estimates [12]. Concerning the continuous dependence of the unique continuation
property, that is, its stability, fewer results are known. The elliptic and parabolic
cases have been studied in several settings, where use was made either of Carleman
estimates or some versions of the Three Ball Theorem; see [1] for a review of the
results.

To our knowledge, the hyperbolic case like (1.1) is still open for arbitrary do-
mains and arbitrary matrix-valued coefficients g jk(x), while there exist results for
particular coefficients or domains; see [19]. This is maybe related to the difficulty
of using standard Carleman estimates for hyperbolic operators to prove unique
continuation close to the characteristic directions; that is the reason Tataru’s work
was so important in this field. The aim of the present work is then to prove a sta-
bility estimate for the unique continuation of the operator P(y,D). We focus on
the local case and formulate an explicit stability estimate for the inhomogeneous
operator Pu = f that can be alternatively reformulated in terms of a boundary
value problem.

Let � ⊂ R
n+1 be a connected open set, and consider a non-characteristic

oriented hypersurface S written as the level set of the function ψ : � → R,
S = {y ∈ �;ψ(y) = 0}. Assume that Pu = f in a ball �1 := B(y0, 2R).
Moreover, let supp(u) ⊂ �2 := {y ∈ �;ψ(y) ≤ 0} with ‖u‖H 1(�1) ≤ C1, and
let ‖ f ‖L2(�1) ≤ ε1 for some small ε1 > 0. The stable unique continuation is based
upon an estimate like

(1.2) ‖u‖L2(�3) ≤ ϒ(C1, ε1)

for some ball �3 := B(y0, r) contained in �1, where the right hand side tends to
0 as ε1 → 0. Our aim is to prove (1.2) with a function ϒ that has an explicit
form that depends on constants related to geometrical properties of �3, �1, and
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� and the norm of the coefficients g jk in C1(�). We consider the case where the
domains�1 and�3 are balls centred in y0 ∈ �, and we find a logarithmic function
ϒ dependent on the radii R and r of the balls and on the norms of g jk, h j , q and ψ.
In the paper [3], we use the local stability estimate to prove (1.2) for quite general
domains. As in the elliptic case, many possible applications can be derived out of
it. In particular, we plan to use inequality (1.2) to obtain an explicit modulus of
continuity for the inverse problem for the wave operator on manifolds. This would
improve the existing inverse stability results for Riemannian manifolds, which are
currently based either on compactness-type arguments (see [2, 15]) or on very
strong geometrical conditions for the coefficients (see, e.g., [5, 13, 14]).

In the unpublished manuscript [23], Tataru suggested the possibility of obtain-
ing a stability estimate by using Gevrey-class localizers to improve the estimates
of u for low temporal frequencies. Here, we develop that idea by employing prop-
erties of subharmonic functions (see Lemma 2.7) and performing the explicit es-
timate of the radii r and R and the constants. Of fundamental importance is the
possibility of linking the positive lower bound for r to the geometric parameters of
the domain to assure that the estimate are valid close to the characteristic surfaces
of the operator. We begin by introducing some assumptions.

Assumption A1. Let � be a connected open subset of R × R
n. Let P(y,D)

be the wave operator (1.1), with g jk(x) ∈ C1(�), h j , q ∈ L∞(�). Let

S = {y ∈ �;ψ(y) = 0}
be a C2,ρ-smooth oriented hypersurface, which is non-characteristic in�, for some
fixed ρ ∈ (0, 1). We assume that u ∈ H 1(�) is supported in {y;ψ(y) ≤ 0}∩�, and
P(y,D)u ∈ L2(�).

Assumption A2. Let A(D0) be a pseudo-differential operator with symbol
a(ξ0), 0 ≤ a ≤ 1, where a ∈ C∞

0 (R) is a smooth localizer supported in |ξ0| ≤ 2
and equal to 1 in |ξ0| ≤ 1. Furthermore, let a ∈ G1/α

0 (R) for a fixed α ∈ (0, 1),
here G1/α

0 is the set of Gevrey functions of class 1/α with compact support defined
in Definition‘4.1. We also define the smooth localizer b(y), supported in |y| ≤ 2,
0 ≤ b ≤ 1 and equal to 1 in |y| ≤ 1.

The main results of the paper are the following two theorems. The first one is
a stability estimate of exponential type for the low temporal frequencies.

Theorem 1.1. Under Assumptions A1 and A2, let y0 ∈ S with ψ′(y0) 
= 0,
and let b ∈ G1/α1

0 (Rn+1) be a Gevrey functions of class 1/α1 with compact support
such that 0 < α ≤ α1 < 1. Then there exist constants 0 < r < 2r ≤ R and balls
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B(y0, r) ⊂ B(y0, 2R) ⊂ � centered at y0 of radius r and 2R, respectively, such
that for μ ≥ 1 there exist constants c129, c131, c132 such that if

‖u‖H 1(B2R) = 1, ‖Pu‖L2(B2R) < 1,
∥∥∥∥A(D0

μ

)
b
(y − y0

R

)
Pu

∥∥∥∥
0
≤ e−μα,

then, for all ω ≤ μα/(3c131),∥∥∥∥A(D0

ω

)
b
(y − y0

r

)
u

∥∥∥∥
H 1

≤ c129e
−c132μ

α·α1
.

The radii r and R are defined in Table 1 below, while the coefficients ck are com-
puted in the proof of the theorem.

The second result is a log-stability estimate in a ball, valid for all the temporal
frequencies; see Figure 1 below for the construction.

Theorem 1.2. Under Assumption A1, for each y0 ∈ S with ψ′(y0) 
= 0, there
exist constants r and R, with 0 < 2r ≤ R, and balls B(y0, r) ⊂ B(y0, 2R) ⊂ �

centered in y0 of radius r and 2R, respectively, such that

‖u‖L2(B(y0,r)) ≤ c111
‖u‖H 1(B(y0,2R))

ln
(
1 +

‖u‖H1(B(y0,2R))

‖Pu‖L2(B(y0,2R))

) .
The radii r and R and coefficient c111 are defined in Table 1 below. Moreover, for
each m ∈ (0, 1],

‖u‖H 1−m(B(y0,r)) ≤ cm
111

‖u‖H 1(B(y0,2R))(
ln
(
1 +

‖u‖H1(B(y0,2R))

‖Pu‖L2(B(y0,2R))

))m .

As a consequence, one can find in a domain �0 ⊆ � a uniform radius

r0 = r0
(|ψ′|C1,ρ(�0), |g jk|C1(�0),min

y∈�0

|p(y, ψ′)|, min
y∈∂�0

|y0 − y|) > 0

such that r ≥ r0.
Theorems 1.1 and 1.2 are proved in Section 2. In Section 3, we compute the

related parameters R, r, and ck, which depend on the constants of the Carleman
estimate of Theorem 2.1 and a particular geometric construction. The Appendix
is devoted to the main definitions used in the article. Finally, we observe that even
if we study the wave equation, the same method can be generalized to ultrahyper-
bolic operators of the type −|Da|2 + g jk(xb)DkDj , where the variable y = (xa, xb)
has a different splitting and where xa corresponds to the conormal direction for the
pseudo-convexity condition.
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Figure 1. The domains of the stability estimate

2 Proof of the stability estimate

Notation. We start by introducing some notation and definitions used in the
rest of the article. We consider y = (t, x) ∈ R × R

n a time-space variable and call
ξ = (ξ0, ξ̃ ) its Fourier dual variable. Recall that the exponential pseudo-differential
operator in Theorem 2.1 is defined as

e−ε|D0|2/2τv = F−1
ξ0→te

−εξ2
0 /2τFt′→ξ0v,

with F and F−1 representing, respectively, the Fourier transform and its inverse.
Then e−ε|D0|2/2τ is an integral operator with kernel(

τ

2πε

)1/2

e−τ|t′−t|2/2ε.

We also define A(D0) to be a pseudo-differential operator with symbol a(ξ0), 0 ≤
a ≤ 1, where a ∈ C∞

0 (R) is a smooth localizer supported in |ξ0| ≤ 2 and equal to
1 in |ξ0| ≤ 1. Hence we can write

A
(β|D0|

ω

)
v = F−1

ξ0→ta
(β|ξ0|
ω

)
Ft′→ξ0v,
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and the integral kernel is (
ω

2πβ

)1/2

â
(
ω|t′ − t|
β

)
.

We often work under Assumption A2, where the symbol a is of Gevrey class. The
smooth localizer b(y) is supported in |y| ≤ 2 and equal to 1 in |y| ≤ 1.

The norm of the Sobolev space Hs
τ is defined as

‖u‖s,τ = ‖(|ξ |2 + τ2)s/2Fy→ξu‖L2,

and the space Hs corresponds to the case τ = 1.
According to our notation, the positive coefficients, denoted by cx with x ≥

100, are defined just once, independently of the variables μ, τ and are computed
explicitly in terms of the coefficients of the operator (1.1) and the geometric para-
meters. This is essential to recover finally the value of c111 and the radii R, r in
Theorem 1.2.

We next introduce the Tataru inequality proved in [20] in the version presented
by Hörmander [7] and adapted to the wave operator. In the Appendix, one can
find the definition of conormally strongly pseudo-convex function or surface, and
Gevrey function. According to Definition 4.6 and the splitting y = (t, x), the
conormal bundle in R

n+1 with respect to the foliation x =const is defined as

N ∗F := {(y, ξ ) ∈ T ∗
R

n+1 : ξ = (ξ0, ξ̃ ) and ξ0 = 0}
and its fibre in y0 is �y0 .

Theorem 2.1. Let � be an open subset of R × R
n. Let P(y,D) be the wave

operator (1.1), with g jk(x) ∈ C1(�), h j , q ∈ L∞(�). For ρ ∈ (0, 1), let y0 ∈ � and
ψ ∈ C2,ρ(�) be real-valued and such that ψ′(y0) 
= 0. Let S = {y;ψ(y) = 0} be an
oriented hypersurface non-characteristic in y0 for which there always exists λ > 1
such that φ(y) = exp(λψ) is a conormally strongly pseudo-convex function with
respect to P at y0. Then there exists a real-valued quadratic polynomial f defined
in (3.3) with proper σ > 0 and a ball BR2 (y0) such that f (y) < φ(y) whenever
y ∈ BR2 − {y0} and f (y0) = φ(y0). Moreover, f is a conormally strongly pseudo-
convex function with respect to P in BR2 . Thus there exist ε0, τ0, c1,T , c2,T , and R,
such that

‖e−ε|D0|2/2τeτ f u‖1,τ ≤ c1,T τ
−1/2‖e−ε|D0|2/2τeτ f P(y,D)u‖0 + c2,T e−τR2

2/4ε‖eτ f u‖1,τ

for small enough ε < ε0 and large enough τ > τ0. Here, u ∈ H 1
loc(�), with

P(y,D)u ∈ L2(�) and supp(u) ⊂ BR(y0).



LOCAL STABILITY 163

Remarks 2.2. (1) The explicit estimate for the coefficients ε0, τ0, c1,T ,c2,T ,
σ, R2, and R and their dependence upon the parameters of the problem have never
been found. In this paper, we provide proper estimates, which are summarized in
Table 1 of Section 3.1. Notice that this is possible under the condition that ψ ∈
C2,ρ(�) instead of the usual condition ψ ∈ C2(�). Furthermore we assume that
S is not characteristic in y0 and consequently not characterictic in a domain �0 ⊆
�. This assumption is not required in [20, 7], where only the strongly pseudo-
convexity of S in �y0 is assumed. In Remark 3.1 we underscore this difference
with an alternative condition on ψ. In any case, for the practical computations of
the values in Table 1, we prefer to work in the stronger setting of Theorem 2.1.

(2) Our wave operator can be seen in two ways:

(H) an hyperbolic operator with constant-in-time and real-valued coefficients for
the principal part, or

(E) an operator whose principal symbol is elliptic in the set �� ⊂ N ∗F .

In the latter case, Tataru inequality (see [20]) is sharper. Here we prefer to consider
just the case (H).

(3) Finally, some improvements to the assumption on the coefficients of (1.1)
may be made. For example, taking�x ⊂ R

n to be the smooth domain of definition
of q(x), we can assume q ∈ Ln(�x) for n ≥ 3, q ∈ L2+ε(�x) for n = 2, q ∈ L∞(�x)
for n = 1. Of course, by changing the localizers, we can reformulate the result in
another kind of domain, e.g., a cylinder.

(4) After the submission of this article, a different kind of result by Vessella
appeared in the framework of the strong unique continuation; see [24].

We now proceed with the detailed proof of Theorems 1.1 and 1.2. A first step
is the following lemma, introducing a property used often in this section.

Lemma 2.3. Let A(D0) be a pseudo-differential operator with symbol a(ξ0),
where a ∈ C∞

0 (R) is a smooth localizer supported in |ξ0| ≤ 2 and equal to 1 in
|ξ0| ≤ 1. Assume that f (y) ∈ C∞

0 (Rn+1) ∩ G1/α
0 (R1

t ), where 0 < α < 1.

a) For every μ > 0, β1 > 2, and v ∈ L2(Rn+1) there exist constants c106 and
c107, independent of μ, such that

(2.1)
∥∥∥∥A(β1D0

μ

)
f (y)

(
1 − A

(D0

μ

))
v

∥∥∥∥
0
≤ c107e

−c106μ
α‖v‖0.

b) For every h ∈ C∞
0 (Rn+1) satisfying h ≡ 1 on supp( f ),

(2.2)
∥∥∥∥A(β1D0

μ

)
fhv

∥∥∥∥
0
≤ ‖ f ‖∞

∥∥∥∥A(D0

μ

)
h(y)v

∥∥∥∥
0
+ c107e

−c106μ
α‖hv‖0.
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c) For v ∈ Hm(Rn+1),, m ≥ 1, (2.1) holds in Hm(Rn+1) under the additional
condition Dm

x f (y) ∈ G1/α
0 (R1

t ),

(2.3)
∥∥∥∥A(β1D0

μ

)
f
(

1 − A
(D0

μ

))
v

∥∥∥∥
m

≤ c108e
−c106μ

α‖v‖m.

Proof. a) On the set supp[(1 − a(ξ0/μ))a(β1ξ
1
0 /μ)], one obtains |ξ1

0 − ξ0|α ≥
(μ− 2μ/β1)α; and the assumption f (t, .) ∈ G1/α

0 (Rt) implies

|Ft′→(ξ1
0 −ξ0)[ f (t

′, x)]| ≤ c3e
−c117|ξ1

0 −ξ0|α ≤ c3e
−2c106μ

α

e−c117|ξ1
0 −ξ0|α/2,

uniformly in x on every compact set K ⊂ R
n for some c3 = c3(α,K ), c117 =

c117(α,K ) and c106 = c117(1 − 2/β1)α/4, We then estimate the operator

A
(
β1

D0

μ

)
f (·)
(

1 − A
(D0

μ

))
on the Fourier space, obtaining∥∥∥∥a(β1ξ

1
0

μ

)
Ft′→ξ1

0

(
f (t′, x)

(
F−1
ξ0→t′

(
1 − a

ξ0
μ

)
Ft→ξ0 [v]

))∥∥∥∥2

0

=
∥∥∥∥a(β1ξ

1
0

μ

)(∫
R

(
1 − a

(ξ0
μ

))
Ft′→(ξ1

0 −ξ0)[ f (t
′, x)]Ft→ξ0 [v] dξ0

)∥∥∥∥2

0

≤ c3

∫
Rn+1

dxdξ1
0

(∫
R

(
1 − a

(ξ0
μ

))
a
(
β1ξ

1
0

μ

)
e−2c106μ

α

· e−c117|ξ1
0 −ξ0|α/2|Ft→ξ0 [v](ξ0, x)| dξ0

)2

≤ c3

∫
Rn+1

dxdξ1
0

∥∥∥∥(1 − a
(ξ0
μ

))
a
(β1ξ

1
0

μ

)
· e−2c106μ

α

e−c117|ξ1
0 −ξ0|α/2‖2

L2(dξ0)‖Ft→ξ0 [v](ξ0, x)
∥∥∥∥2

L2(dξ0)

≤ c3e
−4c106μ

α

∥∥∥∥(1 − a
(ξ0
μ

))
a
(β1ξ

1
0

μ

)
· e−c117|ξ1

0 −ξ0|α/2‖2
L2(dξ0dξ1

0 )‖Ft→ξ0 [v](ξ0, x)
∥∥∥∥2

L2(dξ0dx)

≤ c2
107e

−2c106μ
α‖v‖2

0,

with

c107 = c3

(
8
β1
�
(1
α

) 1
α(c117)1/α

1
(αc106)1/α

)1/2
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and where we have applied in the last step the inequalities∥∥∥∥(1 − a
ξ0
μ

)
a
(
β1
ξ1
0

μ

)
e−c117|ξ1

0 −ξ0|α/2
∥∥∥∥2

L2(dξ0dξ1
0 )

≤ 8
β1
�
(1
α

) 1
α(c117)1/α

μ,

μe−c106μ
α ≤ 1

(αc106)1/α
.

b) To prove the inequality, we observe that∥∥∥∥A(β1D0

μ

)
fhv

∥∥∥∥
0
≤
∥∥∥∥A(β1D0

μ

)
fA
(

D0

μ

)
hv

∥∥∥∥
0

+
∥∥∥∥A(β1D0

μ

)
f
(

1 − A
(D0

μ

))
hv

∥∥∥∥
0
,

where the first term is bounded by ‖ f ‖∞‖A(D0/μ)h(y)v‖0. We can apply the
estimate a) to the second term on the right hand side.

c) The extension to Hm of a) follows from

Dζ f
(

1 − A
(D0

μ

))
v =

∑
υ:υ≤ζ

(
ζ

υ

)(
Dζ−υ f

)((
1 − A

(D0

μ

))
(Dυv)

)
.

By hypothesis, every derivative Dζ−υ f belongs to G1/α
0 (Rt); hence we consider

each derivative as a new function g having the same Gevrey-parameters c3, c117 as
f . We then apply A(β1D0/μ) and repeat the computations of step a), replacing v
with Dυv . The coefficient c108 = cmc107 is a proper multiple in m of c107. �

Another technical lemma is the following result.

Lemma 2.4. Let ϕ(y) be a second order polynomial in y = (t, x) ∈ R × R
n.

If χ(s) ∈ G1/α1
0 (R) for α1 ∈ (0, 1), then eτϕ(y)χ(ϕ(y)) ∈ G1/α1 (Rn+1). If supp(χ) =

[−8δ, δ ], then for a cut-off function b((y − y0)/(2R)) ∈ G1/α1
0 (Rn+1), there exist

constants c122 and c123 such that∣∣∣∣Ft→ξ0

[
eτϕ(y)χ(ϕ(y))b

(y − y0

2R

)]∣∣∣∣ ≤ c122e
τδ−c123|ξ0|α1 .

Proof. By assumption, both ϕ(y) and eτs are analytic functions (i.e., in G1),
while χ ∈ G1/α1

0 (R). Since G1 ⊂ G1/α1 and both G1 and G1/α1 are rings by
[8, Proposition 8.4.1], we deduce that eτsχ(s) ∈ G1/α1 (R). Moreover, eτsχ(s) has
compact support, since χ does. Let us write χ as χ(s) = χ1(s/δ ), where χ1 has
the properties of Definition 4.4 with associated coefficient c1X . By assumption, for
z ∈ C, E = supp(χ) = [−8δ, δ ], c119 = δc1X (α1), B = δα1c2X (α1), and HE as in
Definition 4.1,

|(Fs→zχ(s))| ≤ c119 exp(HE (Im z) − B|Re z|α1 ).
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Consequently, for ξ ∈ R,

Fs→ξ (eτsχ(s)) = Fs→ξ+iτ(χ(s));

and for τ > 0,

|Fs→ξ (eτsχ(s))| ≤ c119 exp(HE (τ) − B|ξ |α1 ) = c119 exp(δτ− B|ξ |α1 ).

Hence we can estimate the derivatives:

|∂k
s e
τsχ(s)| =

∣∣∣∣ ∫
R

eiξs(iξ )k(Fs′→ξ eτs
′
χ(s′))(ξ )dξ

∣∣∣∣ ≤ ∫
R

c119|ξ |k exp(δτ− B|ξ |α1 )dξ

= 2πc119e
τδB− (k+1)

α1
1
α1
�

(
k + 1
α1

)
≤ 2πc119

α1
eτδ�(2)B− (k+1)

α1
(k + 1
α1

)−1
(k + 1
α1

) k+1
α1 ≤ ck+1

121e
τδkk/α1,

where, by Stirling formula,

(k + 1)(k+1) ≤ ek+1�(k + 2) ≤ kek+1kke−1(2πk)1/2,

c121 = (2π)1+1/(2α1)c119�(2)
(
e3α−3

1

)1/α1B−1/α1, and

�
(k + 1
α1

)
=
(k + 1
α1

− 1
)

· · ·
(k + 1
α1

− p
)
�
(k + 1
α1

− p
)

≤ �(2)
(k + 1
α1

− 1
) k+1

α1
−1

with p = [(k + 1)/α1] − 1. We now recall that the composition of a Gevrey
function with an analytic map is still a Gevrey function, therefore obtaining that
eτϕχ(ϕ(y)) ∈ G1/α1 . Since ϕ(y) is a second order polynomial, |∂k

t ϕ(y)|C0(BR) ≤
c118(R) for k = 0, 1, 2; so, without loss of generality, we take c118 ≥ 1. Consider-
ing the composition with ϕ we obtain by induction and setting m(s) = eτsχ(s), for
k ≥ 0, we obtain

∂k
t m(ϕ(y)) =

∑
r∈J

k!
(2r − k)!(k − r)!

(∂r
sm)s=ϕ(y)(∂tϕ)

2r−k
(∂2

t ϕ

2

)k−r
,

where J = {r ≥ 0 : 2r ≥ k ≥ r} and

|∂k
t e
τϕ(y)χ(ϕ(y))| ≤ ck+1

121e
τδ
∑
r∈J

k!
2k−r(2r − k)!(k − r)!

cr+1
118r

r/α1

≤ ck+1
121e

τδck+1
118

∑
r∈J

(
k
r

)
r!

2k−r(2r − k)!
rr/α1 ≤ (eτδck+1

121c
k+1
118)2

kkk/α1,

with r!
(2r−k)!r

r/α1 ≤ kk/α1 , for r admissible. For the product, applying (4.1) and
setting c122 = max{4c118c121, c1X/R}, we obtain

∂k
t b((y − y0)/(2R)) ≤ R−kc1+k

1X kk/α1, ∂k
t [m(ϕ(y))b((y − y0)/(2R))] ≤ eτδc2+k

122k
k/α1 .
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Consider the partial Fourier transform Ft→ξ0 in time of ∂k
t (e

τϕχ(ϕ)b((y−y0)/(2R));
from the estimate above, it follows that

|ξ0|k|Ft→ξ0 (e
τϕχ(ϕ)b((y − y0)/(2R)))| ≤ eτδck+1

122 kk/α1 .

This implies that

|Ft→ξ0 [e
τϕχ(ϕ)]| ≤ eτδck+1

122
kk/α1

|ξ0|k ≤ c122e
τδ−k ≤ c122e

τδ−c123|ξ0|α1+1,

where for each ξ0 we have chosen k to be the largest integer such that
c122|ξ0|−1k1/α1 < e−1. Since k > [e−1c−1

122|ξ0|]α1 − 1, we get the result once we
choose c123 = (ec122)−α1 . �

In Theorem 2.1, we referred to the radius R that is defined in Table 1 as R :=
qR2 with q = 1

4

(
16 + 1

16

)−1/2 and where R2 in the same table is computed in
terms of the pseudo-convexity constants introduced in Subsection 3.1. Using those
quantities, one can introduce the geometric construction of Figure 2. Let f (y) be
the second order polynomial defined in Theorem 2.1, with φ = eλψ and y0 ∈ �.
Recall that f (y0) = φ(y0).

Proposition 2.5. Let δ be a positive constant such that

(2.4) 0 < δ ≤ n|φ′′|C0,ρq2R2+ρ
2 /8 ,

and

(2.5) ϕ(y) := f (y) − f (y0) =
∑

0<|υ|≤2

(∂υφ)(y0) (y − y0)υ

υ!
− σ|y − y0|2.

Then

{y ∈ B(y0,R2) : φ ≤ φ(y0)} ∩ {y ∈ B(y0,R2) : ϕ(y) ≥ −8δ} ⊂ B(y0,R).

In addition, let

(2.6) 0 < r ≤ n|φ′′|C0,ρ(BR2 )q
2R2+ρ

2

2|φ′|C0(BR2 ) + 10n|φ′′|C0,ρ(BR2 )R
1+ρ
2

.

Then B(y0, 2r) ⊂ {y : |ϕ(y)| ≤ δ}.
We postpone the proof of Proposition 2.5 to the end of Section 3.

In the following lemma, we show how an exponential decay for the L2-norm of
a proper localization of Pu is transmitted to the right hand side of Tataru inequality.
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Lemma 2.6. Under Assumption A1, let y0 ∈ � and ϕ be the quadratic poly-
nomial of (2.5). Let 0 < α,α1 < 1 and χ(s) ∈ G1/α1

0 (R) be a localizer supported
in [−8δ, δ ] and equal to 1 in [−7δ, δ/2]. Let μ, δ > 0, b ∈ C∞

0 (Rn+1), and
a ∈ C∞

0 (R). Let A(D0) be a pseudo-differential operator with symbol a, and let
μ∗ = min{μα,μα1}. If

‖u‖H 1(B2R) = 1, ‖Pu‖L2(B2R) < 1, and

∥∥∥∥A(D0

μ

)
b
(y − y0

R

)
Pu

∥∥∥∥
0
≤ e−μα,

then, for each τ ≥ 0, there exist constants c110, c109 such that

‖e−ε|D0|2/2τeτϕχ(ϕ)P(y,D)u‖0 ≤ c110e
2τδ−c109μ∗ .

Proof. Define aμ/3(s) := a(3s/μ), so supp(1 − aμ/3(ξ0)) ⊂ {|ξ0| ≥ μ/3}.
Then

‖e−ε|D0|2/2τeτϕχ(ϕ)P(y,D)u‖0 = ‖e−εξ2
0 /(2τ)Ft→ξ0 (e

τϕχ(ϕ)P(y,D)u)‖0

≤ ‖(1 − aμ/3(ξ0))e
−εξ2

0 /(2τ)Ft→ξ0 (e
τϕχ(ϕ)P(y,D)u)‖0

+ ‖aμ/3(ξ0)e
−εξ2

0 /(2τ)Ft→ξ0 (e
τϕχ(ϕ)P(y,D)u)‖0

=: I1 + I2.

By our construction, b((y − y0)/R) = 1 on supp(χ(ϕ)Pu); hence we can write
χ(ϕ)P(y,D)u = χ(ϕ)b((y − y0)/R)P(y,D)u. The first integral can be estimated for
τ < c127μ as follows, where c127 =

√
ε/(36δ ):

I1 ≤ e−εμ2/(18τ)‖Ft→ξ0 (e
τϕχ(ϕ)P(y,D)u)‖0 ≤ e−εμ2/(18τ)‖eτϕχ(ϕ)P(y,D)u‖0

≤ e−εμ2/(18τ)+τδ‖χ(ϕ)P(y,D)u‖0 ≤ e−c127δμ

∥∥∥∥b(y − y0

R

)
P(y,D)u

∥∥∥∥
0
,

where we have used the fact that −εμ2/(18τ) + τδ ≤ −c127δμ. Notice that the
estimate for I1 holds only for τ < c127μ. For τ ≥ c127μ, we have

‖e−ε|D0|2/2τeτϕχ(ϕ)P(y,D)u‖0 ≤ eδτ‖χ(ϕ)P(y,D)u‖0

≤ e2δτ−c127δμ

∥∥∥∥b(y − y0

R

)
P(y,D)u

∥∥∥∥
0
,
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since eδτ = e2δτ−δτ ≤ e2δτ−c127δμ. For the second integral, we get

I2 =
∥∥∥∥e−εξ2

0 /(2τ)aμ/3(ξ0)Ft→ξ0 (e
τϕχ(ϕ)b

(y − y0

R

)
P(y,D)u)

∥∥∥∥
0

≤
∥∥∥∥Aμ/3(D0)e

τϕχ(ϕ)b
(y − y0

R

)
P(y,D)u

∥∥∥∥
0

≤
∥∥∥∥Aμ/3(D0)e

τϕχ(ϕ)b
(y − y0

2R

)
Aμ(D0)b

(y − y0

R

)
P(y,D)u

∥∥∥∥
0

+
∥∥∥∥Aμ/3(D0)e

τϕχ(ϕ)b
(y − y0

2R

)
(1 − Aμ(D0))b

(y − y0

R

)
P(y,D)u

∥∥∥∥
0

=: I3 + I4.

To estimate I3, we apply the assumption and obtain∥∥∥∥A(3D0

μ

)
eτϕχ(ϕ)b

(y − y0

2R

)
A
(D0

μ

)
b
(y − y0

R

)
Pu

∥∥∥∥
0
≤ eτδ

∥∥∥∥A(D0

μ

)
b
(y − y0

R

)
Pu

∥∥∥∥∥
0

≤ eτδ−μ
α

.

To estimate I4, we apply Lemmas 2.3 and 2.4. By the estimates for f (y) at its
derivatives in Step 3 of Section 3.1, we deduce

|∂k
t ϕ(y)| ≤ c118(φ) := 1 + |φ′|0(1 + R2) + 5n|φ′′|0,ρRρ+1

2 + |φ′′|0(1 + R2
2) + σ(2 + R2

2)

for k = 0, 1, 2. Lemma 2.4 and the properties of eτϕχ(ϕ) imply that

|Ft′→(ξ1
0 −ξ0)[e

τϕχ(ϕ)(t′, x)b((y′ − y0)/(2R))]| ≤ c122e
τδe−c123μ

α1/(2 3α1 )e−c123|ξ1
0 −ξ0|α1/2,

since |ξ1
0 − ξ0| ≥ μ− 2μ/3 = μ/3 on supp[(1 − a(ξ0/μ))a(3ξ1

0 /μ)].
To estimate I4, we apply Lemma 2.3.a); and, using the fact that

f = eτϕχ(ϕ)b
(y − y0

2R

)
and recomputing the constants, we get∥∥∥∥A(3D0

μ

)
eτϕχ(ϕ)b

(y − y0

2R

)(
1 − A

(D0

μ

))
b
(y − y0

R

)
Pu

∥∥∥∥2

0

≤ c2
110e

2τδ−c128μ
α1

∥∥∥∥b(y − y0

R

)
Pu

∥∥∥∥2

0
,

with c128 = 1
3α1 2c123 and

c110 = c122

(
(8/3)�(1/α1)

α1c
1/α1
123 (α1c128)1/α1

)1/2

.

Setting c109 = min(
√
εδ/36, c128/2, 1) we finally get the result. �
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y0 B2r����

ϕ = δ

ϕ = 0 ϕ = −8δ
φ > φ(y0) φ < φ(y0)

supp u

�
�

�

BR

Figure 2. Geometric construction around y0

We now prove Theorem 1.1, giving an estimate of inverse exponential type for
the temporal frequencies |ξ0| ≤ 2ω.

Proof of Theorem 1.1. Let y0 ∈ S be as in the Assumption A1. Then,
by Theorem 2.1, there exists λ > 1 such that φ(y) = exp(λψ) is a conormally
strongly pseudo-convex function with respect to P in�. We introduce the function
ϕ defined in (2.5) as the second order polynomial approximation of the conormally
pseudo-convex function φ−φ(y0) around y0, translated by −σ|y−y0|2. In Table 1,
we found σ independent of y0 such that ϕ also satisfies the conormally pseudo-
convexity condition with respect to P in the ball B(y0,R2). In Proposition 2.5 we
also computed a δ independent of y0 such that

{y : φ ≤ φ(y0)} ∩ {y : ϕ > −8δ} ⊂ B(y0,R).

Given δ , we found r > 0 such that B(y0, 2r) ⊂ {y : |ϕ(y)| ≤ δ}. Let χ1 ∈ G1/α1
0 (R)

be a smooth cut-off function which vanishes on (−∞,−8] ∪ [1,∞), equals 1 in
[−7, 1/2], and satisfies 0 ≤ χ1 ≤ 1. Then, the scaled version χ(s) := χ1(s/δ ) of χ
satisfies Pχ(ϕ)u = χ(ϕ)Pu+[P, χ(ϕ)]u; and, since u is supported in {y : φ ≤ φ(y0)},
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it follows from Proposition 2.5 that

supp(χ(ϕ)u) ⊂ {y : φ(y) ≤ φ(y0)} ∩ {y : −8δ < ϕ(y) < δ} ∩ {y : |y − y0| ≤ R}.

Moreover, [P, χ(ϕ)] is a partial differential operator of order 1 and satisfies

supp([P, χ(ϕ)]u(y)) ⊂ {y : −8δ < ϕ(y) < −7δ}.

We now apply the estimate of Theorem 2.1 to χu to obtain

τ‖e−ε|D0|2/2τeτϕχ(ϕ)u‖2
1,τ ≤ c2

1,T ‖e−ε|D0|2/2τeτϕχ(ϕ)Pu‖2
0

+ c2
1,T ‖e−ε|D0|2/2τeτϕ[P, χ(ϕ)]u‖2

0 + c2
2,T τ‖eτ(ϕ−d)χ(ϕ)u‖2

1,τ

for all τ > τ0, where d = R2
2/(4ε). We refer to Table 1 for all the involved

parameters. According to our construction, δ is chosen such that d > 8δ .

To estimate the first term at the right hand side, we apply Lemma 2.6. The
second term can be bounded by

c2
1,T ‖e−ε|D0|2/2τeτϕ[P, χ(ϕ)]u‖2

0 ≤ c114e
−14τδ‖u‖2

H 1(B2R),

with

c114 = c2
1,T |g|2C1 |χ1|2C2

(
1 +

|ϕ′|4C0

δ 4
+

|ϕ′′|2C0

δ 2

)
,

since

χ′(ϕ) = χ′
1

(ϕ
δ

)ϕ′

δ
and χ′′(ϕ) = χ′′

1

(ϕ
δ

)ϕ′ · ϕ′

δ 2
+ χ′

1

(ϕ
δ

)ϕ′′

δ
.

Applying ‖χ(ϕ)u‖2
1 ≤ (1 + |χ′

1|2C0/δ
2)‖u‖2

H 1(B2R), we see that the third term is such
that

c2
2,T τ‖eτ(ϕ−d)χ(ϕ)u‖2

1,τ ≤ c2
2,T (|ϕ′|2C0 + 1)τ3e−14τδ‖χ(ϕ)u‖2

1 ≤ c115 e−13τδ ,

with c115 = c2
2,T (|ϕ′|2C0 + 1)(33e−3/δ 3)(1 + |χ′

1|2C0/δ
2). Since τ0 ≥ 1 is such that

(1 + τ0)/2 ≤ τ, we get

(2.7)
(1 + τ0)

2
‖e−ε|D0|2/2τeτϕχ(ϕ)u‖2

1,τ ≤ c116e
4δτ(e−2c109μ

α

+ e−16δτ)

for all τ > τ0, where c116 := 3max(c2
1,T c2

110, c114, c115). We want to extend the
previous estimate to the complex upper half-plane. For τ ≥ 0, defining

N (τ) :=
1
2
(1 + τ0)‖e−ε|D0|2/2τeτϕχ(ϕ)u‖2

1,τ,
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we get

N (τ) =
1
2
(1 + τ0)‖

√|ξ |2 + τ2Ft→ξ0Fx→˜ξ [F
−1
ξ0→te

−εξ2
0 /(2τ)Ft→ξ0 (e

τϕχ(ϕ)u)]‖2
0

=
1
2
(1 + τ0)‖

√|ξ |2 + τ2e−εξ2
0 /(2τ)Ft→ξ0Fx→˜ξ (e

τϕχ(ϕ)u)‖2
0

=
(1 + τ0)

2

∫
Rn+1

d ξ̃dξ0(|ξ |2 + τ2)e−εξ2
0 /(2τ)

× Fy→ξ (e
τϕχ(ϕ)u)e−εξ2

0 /(2τ)Fy→ξ (eτϕχ(ϕ)u).

We first extend the estimate (2.7) to the interval 0 ≤ τ ≤ τ0. Set c112 = (1 + |ϕ′|2C0 )
and

(2.8) c113 = max
{

c116, c112(1 + τ30)
(
1 +

|χ′
1|2C0

δ 2

)
e12δτ0

}
.

Since ϕ ≤ 0 on supp(χu), we have

N (τ) ≤ 1
2
(1 + τ0)

∫
Rn+1

d ξ̃dξ0
(
|ξFy→ξ (e

τϕχ(ϕ)u)|2 + τ2|Fy→ξ (e
τϕχ(ϕ)u)|2

)
≤ 1

2
(1 + τ0)

∫
Rn+1

dxdt
(
|∇y(e

τϕ(y)χ(ϕ)u)|2 + τ20|eτϕχ(ϕ)u|2
)

≤ c112(1 + τ30)‖χ(ϕ)u‖2
1 ≤ c113e

−12δτ0 ≤ c113e
4δτ(e−2c109μ

α

+ e−16δτ) .

(2.9)

We now consider z ∈ C with Im (z) > 0 and rewrite the previous expression in the
complex half-plane, replacing τ with −iz and obtain

N (−iz) : =
1 + τ0

2

∫
Rn+1

dξ (|ξ |2 + |z|2)e εξ20
i2z Fy→ξ (e

−izϕχ(ϕ)u)e
εξ20
i2z Fy→ξ (e−izϕχ(ϕ)u)

=
1
2
(1 + τ0)

∫
Rn+1

dξe
− εξ20 Im z

|z|2 (|ξFy→ξ (e
−izϕχ(ϕ)u)|2 + |zFy→ξ (e

−izϕχ(ϕ)u)|2)

≤ 1
2
(1 + τ0)

∫
Rn+1

dξ (|ξFy→ξ (e
−izϕχ(ϕ)u)|2 + |zFy→ξ (e

−izϕχ(ϕ)u)|2)

=
1
2
(1 + τ0)

∫
Rn+1

dy
(
|∇y(e

−izϕχ(ϕ)u)|2 + |z(e−izϕχ(ϕ)u)|2
)(2.10)

=
1
2
(1 + τ0)

∫
Rn+1

dy
(

|e−izϕ[∇y(−izϕ) (χ(ϕ)u) + ∇y(χ(ϕ)u)]|2

+ |z|2|e−izϕχ(ϕ)u|2
)

≤ 1
2
(1 + τ0)c112

(
(1 + |z|2)‖χ(ϕ)u‖2

0 + ‖∇yχ(ϕ)u‖2
0

)
≤ 1

2
(1 + τ0)c112 (1 + |z|2)‖χ(ϕ)u‖2

1 ≤ c113(1 + |z|2).
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In the following, we want to apply properties of subharmonic functions. We notice
that the function U(y, z) := e−ε|D0|2/(−2iz)e−izϕχ(ϕ)u(y) is analytic in z and satisfies
Im z > 0, and that N (−iz) is subharmonic in z, as it integral in one parameter of
the sum of two squares of the absolute values of analytic functions.

Our aim is now to estimate the H 1 norm of A(D0/ω)b((y − y0)/R)u)(y), where
ω = μα/β, for some β > 0 to be determined. For η1 of Gevrey class 1/α1 with
support in [−4, 1] and equal to 1 in [−3, 1/2], let η(s) := η1(s/δ ). To shorten the
notation, let μ̃ = μα and η̂ = Fs→zη. First define

F (y) := A
(βD0

μ̃

)
(η(ϕ)u)(y).

Because of the regularity of η, we can write the following foliation with respect to
the level sets of ϕ:

η(ϕ)(y′) =
∫
R

η(s)δ (s − ϕ(y′)) ds =
∫
R

η̂(z)e−izϕ(y′) dz.

Recall that according to our construction, χ(ϕ) = 1 on supp(η(ϕ)u), and η(ϕ)u =
η(ϕ)χ(ϕ)u. Consequently we rewrite F as

F (y) = A
(
β

D0

μ̃

)
(η(ϕ)χ(ϕ)u)(y) =

∫
R

η̂(z̄)
(

A
(βD0

μ̃

)
e−izϕχ(ϕ)u

)
(y) dz.

Recall that A(βD0/μ̃) is an integral operator with kernel

k(t, t′) =
μ̃

β
â
( μ̃
β

(t′ − t)
)
.

Hence the previous equality is justified by Fubini’s theorem, because for y′ =
(t′, x) the integrand |η̂(z̄)k(t, t′)e−izϕ(y′)χ(ϕ(y′))u(y′)| is bounded by the function
ce−|z|α1 e−|t−t′|αu(t′, x) ∈ L1(Rz × Rt′).

Since η ∈ C∞
0 , the Fourier-Laplace transform η̂(z) is holomorphic for z ∈ C,

and hence η̂(z̄) is also holomorphic. We then need a good estimate for both η̂(z̄)
and A(βD0/μ̃)(e−izϕχ(ϕ)u(y)) in the upper half plane.

From the Gevrey class condition, we compute

|η̂(z)| = |δ η̂1(δz)| ≤ δc101 exp(δ sup
w∈supp(η1)

〈w, Im z〉 − c102δ
α1 |Re z|α1 ) .

By considering the domain Im z̄ = −Im z < 0, we have

|η̂(z̄)| ≤ δc101 exp(δ sup
w∈[−4,1]

〈w, Im z̄〉 − c102δ
α1 |Re z̄|α1 )

≤ δc101 exp(−4δ Im z̄ − c102δ
α1 |Re z|α1 ),
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where c101 = c101(α1) is a given constant and c102 = c102(α1, c101). We now change
path of integration in the upper half plane Im z > 0:

F (y) =
∫
�1∪�2

η̂(z̄)A
(
β

D0

μ̃

)(
e−izϕχ(ϕ)u(y)

)
dz,

where �1 = {z ∈ R : |z| ≥ 1√
2
c130μ̃} and �2 is the open rectangle inside the ball

|z| ≤ c130μ̃ defined by

�2 =
{

z ∈ C : Re z = − 1√
2
c130μ̃, 0 ≤ Im z ≤ 1√

2
c130μ̃

}
∪
{

z ∈ C : |Re z| ≤ 1√
2
c130μ̃, Im z =

1√
2
c130μ̃

}
∪
{

z ∈ C : Re z =
1√
2
c130μ̃, 0 ≤ Im z ≤ 1√

2
c130μ̃

}
.

Hence

‖F‖H 1 ≤
∫
�1

|η̂(z̄)|
∥∥∥∥A(βD0

μ̃

)
(e−izϕχ(ϕ)u(y))

∥∥∥∥
H 1

|dz|

+
∫
�2

|η̂(z̄)|
∥∥∥∥A(βD0

μ̃

)
(e−izϕχ(ϕ)u(y))

∥∥∥∥
H 1

|dz| := I�1 + I�2 .

Along �1, with z = Re z, we have |η̂(z̄)| ≤ δc101 exp(−c102δ
α1 |z|α1 ) and∥∥∥∥A(βD0

μ̃

)
e−izϕχ(ϕ)u(y)

∥∥∥∥2

H 1

≤ ‖e−izϕχ(ϕ)u(y)‖2
H 1

≤ 2(|z|2|ϕ′|2C0 + 1)‖χ(ϕ)u‖2
H 1

≤ (|z|2 + 1)c113.

The final estimate for I�1 is

I�1 ≤ 2δc101
√

c113

∫ +∞
1√
2
c130μ̃

√
s2 + 1e−c102δ

α1 sα1 ds

≤ 2δc101
√

c113e
−c102δ

α1 ( 1
2
√

2
c130)α1 μ̃α1

∫
R

√
s2 + 1 e−c102δ

α1 sα1/2ds

≤ 2c101
√

c113e
−c102δ

α1 ( 1
2
√

2
c130)α1 μ̃α1

∫
R

√
(s/δ )2 + 1 e−c102sα1/2ds.

For I�2 , we multiply and divide by the invertible operator eε|D0|2/(2iz), obtaining

I�2 =
∫
�2

|η̂(z̄)|
∥∥∥∥A(βD0

μ̃

)
e−ε|D0|2/(2iz)eε|D0|2/(2iz)e−izϕu(y)‖H 1 |dz|

≤ δc101

∫
�2

e4δ Im z−c102δ
α1 |Re z|α1

∥∥∥∥A(βD0

μ̃

)
e−ε|D0|2/(2iz)

∥∥∥∥
B(H 1)

·

· ‖e−ε|D0|2/(−2iz)e−izϕχ(ϕ)u(y)‖H 1 |dz|.
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In the region �2 ⊂ {z : c130μ̃/
√

2 ≤ |z| ≤ c130μ̃}, the norm in B(H 1) can be
estimated independently of μ̃ via the Fourier symbol of the product:∣∣∣∣a(β ξ0μ̃ )e−εξ2

0 /(2iz)

∣∣∣∣ =
∣∣∣∣a(β ξ0μ̃ )e εξ20 Im z

2|z|2
∣∣∣∣ ≤ exp

( ε(2μ̃)2Im z

2β2|c130μ̃/
√

2|2
)

= exp
(4εIm z

β2c2
130

)
,

while the latter H 1-norm is related to the estimate (2.14) for N (−iz):

‖e−ε|D0|2/(−2iz)e−izϕχ(ϕ)u(y)‖2
H 1 ≤ N (−iz)

min{1, μ̃2c2
130/2} ≤ 2c113(1 + |z|2)

min{1, c2
130/2}e

−10δIm z

where we have used the estimate

(|ξ |2 + 1) ≤ 1
min{1, μ̃2c2

130/2} (|ξ |
2 + |z|2)

in the first inequality and and the estimate μ̃ ≥ 1 in the second. Hence

I�2 ≤ δc101

(2c113(1 + μ̃2c2
130)

min{1, c2
130/2}

)1/2
∫
�2

e4δ Im z−c102δ
α1 |Re z|α1 e

4εIm z
β2c2130 e−5δ Im z|dz|

≤ δc101

(2c113(1 + μ̃2c2
130)

min{1, c2
130/2}

)1/2
∫
�2

e−c102δ
α1 |Re z|α1 e−δ Im z/2|dz|

where we choose ε and β such that ε ≤ δβ2c2
130/8. Actually, by our choice of c130,

this inequality can be written as

ε ≤ 9β2

247δ
min

(εδ
36
,

c2
123

4(3)2α1 , 1
)
.

The latter relation is satisfied for any ε ≤ ε0 and β ≥ c131, where

c131 = max
{√

2(16)6,

√
2(16)63(α1−1)

√
ε0δ

c123
,
(16)6

√
ε0δ

3
√

2

}
,

with ε0 computed in Table 1.
Writing z = x′ + iy′ we conclude the estimate

δ

∫
�2

e−c102δ
α1 |Re z|α1−δ Im z/2|dz|

≤ 2δ
∫ c130μ̃√

2

0
e−c102δ

α1
(c130μ̃)α1√

2α1 e−δy′/2dy′ + δ
∫ c130μ̃√

2

− c130μ̃√
2

e−c102δ
α1 |x′|α1 e−δ c130μ̃

2
√

2 dx′

≤ 2δe−c102δ
α1

(c130)α1

(
√

2)α1
μ̃α1
∫ +∞

0
e−δy′/2dy′ + δe−δ c130

2
√

2
μ̃
∫
R

e−c102δ
α1 |x′|α1 dx′

≤ 2e−c102δ
α1

(c130)α1

(
√

2)α1
μ̃α1
∫ +∞

0
e−y′/2dy′. + e−δ c130

2
√

2
μ̃
∫
R

e−c102|x′|α1 dx′ .



176 R. BOSI, Y. KURYLEV, AND M. LASSAS

Comparing the estimates for I�1 and I�2 , recalling that e−cμ̃ ≤ e−cμ̃α1 , and choosing
the largest constants, we obtain the final estimate for F (y)

(2.11)
∥∥∥∥A(βD0

μ̃

)
(η(ϕ)χ(ϕ)u)(y)

∥∥∥∥
H 1

≤ c136e
−c137μ̃

α1
,

with

c137 =
1
2

min
(

c102δ
α1

(c130)α1

(
√

2)α1
, δ

c130

2
√

2
, c102δ

α1

( 1

2
√

2
c130

)α1
)

and

c136 = 2c101
√

c113

∫
R

√
(s/δ )2 + 1 e−c102sα1/2ds

+ c101

(
2c113(1 + c2

130)
min{1, c2

130/2}
) 1

2
(

2
∫ +∞

0
e−y′/2dy′ +

∫
R

e−c102|x′|α1 dx′
)
.

One can prove a similar estimate with η(ϕ) replaced by b((y − y0)/r). We have
chosen r such that

supp
(

b
(y − y0

r

))
∩ supp u ⊂ {y : η(ϕ(y)) = 1} ∩ supp u,

and we write

A
(3βD0

μ̃

)
b
(y − y0

r

)
u(y) = A

(3βD0

μ̃

)
b
(y − y0

r

)
A
(βD0

μ̃

)
η(ϕ)u(y)

+ A
(3βD0

μ̃

)
b
(y − y0

r

)[
1 − A

(βD0

μ̃

)]
η(ϕ)u(y) := J1 + J2.

From (2.11), J1 has the desired estimate

‖J1‖1 ≤ c136

(
1 +

|b′|C0

r

)
e−c137μ̃

α1
,

since A(3βD0/μ̃)b((y − y0)r) is a bounded operator.
To estimate J2, we apply Lemma 2.3.c), using the fact that b ∈ G1/α1 (Rn+1),

obtaining ‖J2‖1 ≤ c134e−c135μ̃
α1 , where

c134 = rc1X

(
8
3
�
( 1
α1

) 1
α1(rα1c2X )1/α1 (α1c135)1/α1

)1/2

,

c135 = rα1c2X
1

23α1 .

We conclude the proof of Theorem 1.1 by choosing c129 = max{c134, c136}, c132 =
min{c135, c137}. �
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Next, we show in detail the estimate for the function N applied in the proof of
Theorem 1.1.

Lemma 2.7. Let N (−iz) be defined as in (2.10). Then, for z ∈ C∩{Im z ≥ 0},
the function N1(−iz) := N (−iz)/|1 − iz|2 satisfies

N1(−iz) ≤ c113e
4δ Im z(e−2c109μ̃ + e−16δ Im z), z ∈ R ∪ {Re z = 0, Im z ≥ 0},

N1(−iz) ≤ c113, Im z > 0,

(2.12)

where c113 is given in (2.8) and c109 is defined in Lemma 2.6. Therefore, there
exists some constant c130, independent of μ̃, such that

(2.13) N1(−iz) ≤ 2c113e
−10δIm z, |z| ≤ c130μ̃, Im z ≥ 0,

with

c130 =
3c109

4δ

(
1
16

)5

.

Consequently, in the region |z| ≤ c130μ̃, Im z ≥ 0,

(2.14) N (−iz) ≤ 2c113(1 + |z|2)e−10δIm z.

Proof. Since N1(−iz) ≤ N (−iz), the estimates (2.12) for N1 follow from the
equivalent estimates for N proved in (2.7), (2.9), and (2.10). To show (2.13) we
first consider z = x′ + iy′ in the region x′ > 0, y′ > 0. Here we define the analytic
function

h(z) = e2iδze−8δi(z−C1μ̃
(1−κ)zκ),

where z = |z|eiθ , zκ = exp(κ ln z), with ln z = ln |z| + iθ , θ ∈ [0, π/2], and C1 is a
constant to be determined. Taking κ = 6/5, so that 1 < κ < 2 and κ is close to 1,
we write h(z) as

h(z) = exp(2δ (ix′ − y′)) exp(−8δ [−y′ + C1μ̃
1−κ|z|κ sin(κθ)])

· exp(−8δi[x′ − C1μ̃
1−κ|z|κ cos(κθ)]) ,

and use h and its inverse to estimate N1. Consider N1(−iz) = N2(−iz)|h−1(z)|2,
where N2(−iz) is the subharmonic function in the first quadrant given by

N2(−iz) :=N1(−iz)|h(z)|2 =
∫
Rn+1

(|ξ |2+|z|2) |h(z)|2
|1 − iz|2 |e−εξ20

−i2z Fy→ξ (e
−izϕχ(ϕ)u)|2d ξ̃dξ0.

Observe the following.
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a. On the real axis y′ = 0, we have |h(x′)| = 1; therefore, N2(−iz) ≤ N1(−iz) ≤
2c113.

b. On the positive imaginary axis y′ > 0, x′ = 0,

|h(iy′)| = exp(−2δy′) exp(a(y′)),

with a(y′) := 8δ (y′ − C1μ̃
1−κ(y′)κsκ), where sκ = sin(κπ/2) > 1/2.

Then a(y′) achieves its maximum at y′
M = μ̃(C1κsκ)1/(1−κ) with the value

a(y′
M ) =

8δμ̃(κ− 1)
κ(C1κsκ)1/(κ−1)

.

We choose

C1 ≥ 1
κsκ

(8(κ− 1)
κc109

)κ−1
δκ−1,

so that −c109μ̃ + a(y′
M ) ≤ 0; and consequently, by the estimates of N1 and |h|2,

N2(−iz) ≤
(
c113e

4δy′
(e−2c109μ̃ + e−16δy′

)
)
e−4δy′

e2a(y′)

= c113(e
2(−c109μ̃+a(y)) + e−16δy′+2a(y′))

≤ c113(e
2(−c109μ̃+a(y′

M )) + e−16δC1μ̃
1−κ|z|κsκ) ≤ 2c113.

c. In the region y′ > 0, x′ > 0,

|h(z)| = exp (−2δy′) exp [8δ |z|(sin θ − C1μ̃
1−κ|z|κ−1 sin(κθ))] ≤ e−2δy′

ec(μ̃).

Indeed, for each θ 
= 0, we can compute the maximum in |z| of that expression and
apply the inequality 1/2 < sin(κθ)/ sin θ ≤ κ to obtain

max
r≥0

[8δr(sin θ − C1μ̃
1−κrκ−1 sin(κθ))] ≤ c(μ̃) :=

8δ (κ− 1)
κ(κC1/2)1/(κ−1)

μ̃,

which implies N2(−iz) ≤ c113e−4δy′
e2c(μ̃). To get rid of the μ̃ dependency in this

estimate, we apply the Phragmen-Lindelöf Theorem 4.5 for subharmonic func-
tions in the sector x′ ≥ 0, y′ ≥ 0 to obtain N2(−iz) ≤ 2c113 and note that c113 is
independent of μ̃.

To prove (2.13), observe that for κ = 6/5, we have sin(κπ/2) > 1/2; and the
inequality

|h−1(z)| = exp (2δIm z) exp (−8δIm z + 8δC1μ̃
1−κ|z|κ sin(κθ)) ≤ exp(−5δ Im z),

where

c130 :=
3c109

4δ

( 1
16

)5 ≤ min
θ∈[0,π/2]

( sin θ
8C1 sin(κθ)

) 1
κ−1
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is valid in the region |z| = c130μ̃ with Re z ≥ 0, Im z ≥ 0, Indeed,

8C1μ̃
1−κ(c130μ̃)κ−1 sin(κθ) ≤ sin θ,

which proves the derived estimate; consequently, (2.14) follows.

Next, we observe that the same estimate (2.13) can be obtained in the sector
Re z ≤ 0, Im z ≥ 0 by the following arguments. In the region x′ < 0, y′ > 0,
we set z = x′ + iy′ and w = −z̄ = −x′ + iy′ (belonging to the first quadrant), and
define N3(−iw) := N1(−i(−z̄)) and N4(−iw) := N1(−i(−z̄))|h(−z̄)|2. Notice that
h(w) is an antiholomorphic function in w, and therefore |h(w)| is subharmonic.
Also, N3(−iw) and N4(−iw) are subharmonic and satisfy the same estimates as
N1(−iz),N2(−iz), respectively. We then apply the same procedure as in the first
step with N1,N2 replaced by N3,N4, respectively. �

We now can complete the proof of the logarithmic stability estimate in Theo-
rem 1.2.

Proof of Theorem 1.2. We consider the following two cases.

Case A: ‖Pu‖L2(B2R) ≥ ‖u‖H 1(B2R)/e. In this case, the estimate is trivial, as

‖u‖L2(Br ) ≤ ‖u‖H 1(B2R) ≤ ln(1 + e)
‖u‖H 1(B2R)

ln
(
1 +

‖u‖H1(B2R )

‖Pu‖L2(B2R )

) .
Case B: ‖Pu‖L2(B2R) < ‖u‖H 1(B2R)/e. Without loss of generality, we take

‖u‖H 1(B2R) = 1. Our aim is to consider separetely estimates for low and high
temporal frequencies.

Let A(D0) be a pseudo-differential operator with symbol a(ξ0), where
a ∈ G1/α

0 (R) with α ∈ (0, 1) is a smooth Gevrey class localizer that is supported
in |ξ0| ≤ 2, equals 1 in |ξ0| ≤ 1 and satisfies 0 ≤ a ≤ 1. The function a(βξ0/μ̃)
is a scaled version of a, where μ̃ > 1 is the parameter to be optimized, and β > 0
an adjusting constant. Let b ∈ G1/α1

0 (Rn+1) with 0 < α ≤ α1 be another localizer
supported in B2 equal to 1 in B1 and satisfying 0 ≤ b ≤ 1. Observe that according
to our geometric construction,

Br ⊂ supp b
(y − y0

r

)
⊆ B2r ⊂ BR ⊂ supp b

(y − y0

R

)
⊆ B2R

(see Proposition 2.5), and hence ‖u‖L2(Br ) ≤ ‖b((y − y0)/r)u‖L2 . Then we perform
the splitting

b
(y − y0

r

)
u = A

(βD0

μ̃

)
b
(y − y0

r

)
u +

(
1 − A

(βD0

μ̃

))
b
(y − y0

r

)
u.
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For high temporal frequencies |ξ0| ≥ μ̃/β we estimate as follows:∥∥∥∥(1−A
(βD0

μ̃

))
b
(y − y0

r

)
u(y)

∥∥∥∥2

L2

=
∥∥∥∥(1 − a

(βξ0
μ̃

))
Ft→ξ0

(
b
(y − y0

r

)
u(y)

)∥∥∥∥2

L2

≤ β2

μ̃2

∫
|ξ0|>μ̃/β

∫
Rn

∣∣∣∣ξ0Ft→ξ0

(
b
(y − y0

r

)
u(t, x)

)∣∣∣∣2dxdξ0

≤ β2

μ̃2

∥∥∥∥b(y − y0

r

)
u(y)

∥∥∥∥2

H 1

≤ β2

μ̃2

(
1 +

|b′|2C0

r2

)
‖u(y)‖2

H 1(BR).

For low temporal frequencies, we first choose μ̃ such that ‖Pu‖L2(B2R)

= e−μ̃ < e−1. Then we take μ > 1 such that μ̃ = μα. Hence for A and b as
above, we get

(2.15)
∥∥∥∥A(ζD0

μ

)
b
(y − y0

R

)
Pu

∥∥∥∥
0
≤ ‖Pu‖L2(B2R) = e−μ̃

for all ζ > 0.

For ζ = 1 in (2.15), we can apply Theorem 1.1 to obtain

(2.16)
∥∥∥∥A(βD0

μ̃

)
b
(y − y0

r

)
u

∥∥∥∥
L2

≤ c129e
−c132μ̃

α1
, β ≥ 3c131.

By collecting the previous estimates for low and high temporal frequencies we
conclude that, as μ̃ ≥ 1,

‖u‖L2(Br ) ≤ β

μ̃

(
1 +

|b′|2C0

r2

)1/2
+ c129e

−c132μ̃
α1 ≤ c105

μ̃
=

c105

− ln(‖Pu‖0)

≤ 2c105
‖u‖H 1(B2R)

ln
(
1 +

‖u‖H1(B2R )

‖Pu‖L2(B2R )

) ,
where

c105 = β
(
1 +

|b′|2C0

r2

)1/2
+ c129

and in the last step we have applied the inequality ln(y) ≥ ln(1 + y)/2 for y =
‖u‖H 1(B2R)/‖Pu‖L2(B2R) > e, and then returned to the original notation. Choosing
c111 = ln(1 + e) + 2c105, we obtain the result. �

3 Geometric constants

3.1 Pseudoconvexity constants. In the following, we work under the fol-
lowing assumptions, derived from those in Theorem 1.2.
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Assumption A3. Consider the case of the wave operator (1.1) with principal
symbol p(y, ξ ) = −ξ2

0 +
∑n

jk =1 g jk(x)ξ jξk, with 0 < a1δ
jk ≤ g jk(x) ≤ b1δ

jk,
a1, b1 > 0. Let ξ = (ξ0, ξ̃ ) ∈ R × R

n, where |ξ̃ |2 =
∑n

j =1 ξ
2
j .

Assumption A4. We fix a functionψ ∈ C2,ρ(Rn+1), for some ρ ∈ (0, 1), such
that p(y, ψ′(y)) 
= 0 and ψ′(y) 
= 0 in a domain �0 ⊆ �, containing the point y0

lying on the level set S = {y; ψ(y) = 0}. In particular, we assume that |ψ′(y)| ≥ Cl

in �0 for Cl > 0.

We use Einstein’s convention for repeated indexes.
To get Tataru inequality, we proceed in three steps. The computed constants

are listed in Table 1.
Step 1. Given a function ψ ∈ C2,ρ(Rn+1) satisfying Assumptions A3 and A4

in a domain �0, we find positive constants M2, M1, MP such that

(3.1) M2ξ
2
0 + M1

( |p(y, ξ + iτψ′(y))|2
τ2 + |ξ |2 + |〈p′

ξ (y, ξ + iτψ′(y), ψ′(y)〉|2
)

+
{p(y, ξ + iτψ′(y)), p(y, ξ + iτψ′(y))}

2iτ
≥ MP(τ2 + |ξ |2)

for every ξ ∈ R × R
n, ξ 
= 0, τ ∈ R. The previous inequality proves that the hy-

persurface S = {y; ψ(y) = 0} is conormally strongly pseudo-convex with respect
to P in �0.

Step 2. For φ = eλψ, with y0 on the level set φ(y) = 1, we find λ > 0 such that
the following inequality holds true

(3.2) M2ξ
2
0 +

M1

min{1, λ2φ2(y)}
|p(y, ξ + iτφ′(y))|2

τ2 + |ξ |2

+
1

λφ(y)
{p(y, ξ + iτφ′(y)), p(y, ξ + iτφ′(y))}

2iτ

≥ MP min{1, λ2φ2(y)}(τ2 + |ξ |2)
for every ξ ∈ R × R

n, ξ 
= 0, τ ∈ R. The previous inequality proves that the
function φ is conormally strongly pseudo-convex with respect to P in �0.

Step 3. We consider a perturbation of φ by the shifted second order polyno-
mial centered at the point y0,

(3.3) f (y) =
∑
|υ|≤2

(∂υφ)(y0) (y − y0)υ

υ!
− σ|y − y0|2.

In a ball B(y0,R1) ⊂ �0 where f ′ 
= 0, we define

φ0 = min
y∈B(y0,R1)

φ(y), φM = max
y∈B(y0,R1)

φ(y).
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We find σ and R2 > 0 small enough so that in the ball B(y0,R2),

f (y) < φ(y) in B(y0, R2)\{y0}
and

(3.4) M2ξ
2
0 + 2M1

|p(y, ξ + iτ f ′(y))|2
τ2 + |ξ |2 +

{p(y, ξ + iτ f ′(y)), p(y, ξ + iτ f ′(y))}
(λφ0)2iτ

≥ 1
2
(τ2 + |ξ |2).

The previous inequality proves that f is conormally strongly pseudo-convex with
respect to P in B(y0,R2).

Proof of Step 1. We recall that

p(y, ξ + iτψ′(y)) = p(y, ξ ) − τ2p(y, ψ′) + iτ{p, ψ}
|p(y, ξ + iτψ′(y))|2 = |p(y, ξ ) − τ2p(y, ψ′)|2 + τ2|{p, ψ}|2

= |p(y, ξ )|2 + τ4|p(y, ψ′)|2 − 2τ2p(y, ξ )p(y, ψ′) + τ2|{p, ψ}|2
〈p′
ξ (y, ξ + iτψ′(y), ψ′(y)〉 = {p, ψ}(y, ξ ) + i2τp(y, ψ′)

|〈p′
ξ (y, ξ + iτψ′(y), ψ′(y)〉|2 = |{p, ψ}(y, ξ )|2 + 4τ2|p(y, ψ′)|2.

We have to estimate the quantities

I1,ψ :=
|p(y, ξ + iτψ′(y))|2

τ2 + |ξ |2 + |〈p′
ξ (y, ξ + iτψ′(y), ψ′(y)〉|2,

I2,ψ :=
{p(y, ξ + iτψ′(y)), p(y, ξ + iτψ′(y))}

2iτ
= {p, {p, ψ}}(y, ξ ) + τ2{p, {p, ψ}}(y, ψ′(y)),

where the last equality holds for our second order wave operator. For the second
term we get, by setting a00 = −1, a j0 = 0, a jk = g jk, j, k = 1 . . . n,

I2,ψ =
n∑

l,m =0

ξlξm
(
4

n∑
j,k =0

a jlψ′′
jka

km + 4
n∑

j,k =0

a jl∂x j a
kmψ′

k − 2
n∑

j,k =0

∂x j a
lmak jψ′

k

)

+ τ2
n∑

l,m =0

ψ′
lψ

′
m

(
4

n∑
j,k =0

a jlψ′′
jka

km + 2
n∑

j,k =0

a jl∂x j a
kmψ′

k

)
≥ −C3(|ξ |2 + τ2),

where C3 is defined by

max
y∈�0

(
4
∑
j,k

a jlψ′′
jka

km + 4
∑
j,k

a jl∂x j a
kmψ′

k − 2
∑
j,k

∂x j a
lmak jψ′

k

)
(2 +ψ′

lψ
′
m)

≤ 20(1 + n2|g jl|2C1 )|ψ′|C1 (1 + |ψ′|2C0 ) := C3.
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For the first term, we get

I1,ψ =
|p(y, ξ )|2
τ2 + |ξ |2 + τ2|p(y, ψ′)|2

(
4 +

τ2

τ2 + |ξ |2
)

− 2
τ2

τ2 + |ξ |2 p(y, ξ )p(y, ψ′)

+ |{p, ψ}|2
(
1 +

τ2

τ2 + |ξ |2
)

≥ |p(y, ξ )|2
τ2 + |ξ |2 (1 − ω) + τ2|p(y, ψ′)|2

(
4|ξ |2 +

(
5 − 1

ω

)
τ2
)

1
τ2 + |ξ |2

+ |{p, ψ}|2
(
1 +

τ2

τ2 + |ξ |2
)

≥ 1
τ2 + |ξ |2

(
|p(y, ξ )|2(1 − ω) + 4|p(y, ψ′)|2|ξ |2τ2 + |p(y, ψ′)|2

(
5 − 1

ω

)
τ4

+ |{p, ψ}|2(2τ2 + |ξ |2)
)
;

Observe that by Young’s inequality,

2p(y, ξ )τ2p(y, ψ′) ≤ ω|p(y, ξ )|2 +
1
ω
τ4|p(y, ψ′)|2,

where we choose ω ∈ (0, 1), so that (4 ≥) 5 − 1
ω
> 0. We now split the estimate

into two parts.
Case 1: p(y, ξ ) > 0. In this case,

|p(y, ξ )| = p(y, ξ ) = −ξ2
0 +

∑
k j

gk jξkξ j ≥ a1|ξ̃ |2 − ξ2
0 ,

|p(y, ξ )|2 = (−ξ2
0 +

∑
k j

gk jξkξ j )
2 ≥ (a1|ξ̃ |2 − ξ2

0 )(−ξ2
0 +

∑
k j

gk jξkξ j )

= ξ4
0 + a1|ξ̃ |2(

∑
k j

gk jξkξ j ) − ξ2
0 [
∑
k j

gk jξkξ j + a1|ξ̃ |2]

≥ ξ4
0 + a2

1|ξ̃ |4 − (b1 + a1)|ξ̃ |2ξ2
0 .

Our aim is to find M2,M1,MP such that M2ξ
2
0 +M1I1,ψ+I2,ψ ≥ MP(τ2 + |ξ |2). Then

M2ξ
2
0 + M1I1,ψ + I2,ψ ≥ M2ξ

2
0 − C3(τ

2 + |ξ |2) + M1

[ |p(y, ξ )|2
τ2 + |ξ |2 (1 − ω)

+
τ2|p(y, ψ′)|2
τ2 + |ξ |2

(
4|ξ |2 +

(
5 − 1

ω

)
τ2
)

+ |{p, ψ}|2
(
1 +

τ2

τ2 + |ξ |2
)]

≥ 1
τ2 + |ξ |2

(
M2(τ

2ξ2
0 + |ξ |2ξ2

0 ) + M1(1 − ω)[a2
1|ξ̃ |4 + ξ4

0 − (a1 + b1)|ξ̃ |2ξ2
0 ]

+ M1|p(y, ψ′)|2[4τ2|ξ |2 +
(
5 − 1

ω

)
τ4
]− C3(τ

4 + |ξ |4 + 2τ2|ξ |2)
)

≥ MP(τ2 + |ξ |2).
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To solve the last inequality we have to solve the following system of seven in-
equalities: (

M1(1 − ω)a2
1 − C3

)
|ξ̃ |4 ≥ MP|ξ̃ |4(

M1(1 − ω) + M2 − C3

)
ξ4
0 ≥ MPξ

4
0(

M2 − (b1 + a1)M1(1 − ω) − 2C3

)
|ξ̃ |2ξ2

0 ≥ 2MP|ξ̃ |2ξ2
0(

4M1|p(y, ψ′)|2 − 2C3

)
τ2|ξ̃ |2 ≥ 2MPτ

2|ξ̃ |2(
4M1|p(y, ψ′)|2 − 2C3 + M2

)
τ2ξ2

0 ≥ 2MPτ
2ξ2

0(
M1|p(y, ψ′)|2

(
5 − 1

ω

)
− C3

)
τ4 ≥ MPτ

4.

Case 2: p(y, ξ ) ≤ 0. In this case,

|p(y, ξ )| = −p(y, ξ ) = ξ2
0 −∑

k j

gk jξkξ j ≥ 0 ⇒ ξ2
0 ≥ ∑

k j

gk jξkξ j ≥ a1|ξ̃ |2.

Once again we seek M2, M1, and MP such that M2ξ
2
0 +M1I1,ψ+I2,ψ ≥ MP(τ2+|ξ |2).

Then

M2ξ
2
0 + M1I1,ψ + I2,ψ ≥ M1

[τ2|p(y, ψ′)|2
τ2 + |ξ |2

(
4|ξ |2 +

(
5 − 1

ω

)
τ2
)

+ |{p, ψ}|2
(
1 +

τ2

τ2 + |ξ |2
)]

+ M2

(ξ2
0

2
+
ξ 2
0

2

)
− C3(τ

2 + |ξ |2)

≥ 1
τ2 + |ξ |2

(
M1|p(y, ψ′)|2[4τ2|ξ |2 +

(
5 − 1

ω

)
τ4
]

− C3(τ
4 + |ξ |4 + 2τ2|ξ |2) + M2

(ξ2
0

2
+

a1|ξ̃ |2
2

)
(τ2 + |ξ |2)

)
≥ MP(τ2 + |ξ |2).

To solve the last inequality, we have to solve the following system of three in-
equalities:(

4M1|p(y, ψ′)|2 − 2C3 +
M2

2
min{a1, 1}

)
τ2|ξ |2 ≥ 2MPτ

2|ξ |2(
M1|p(y, ψ′)|2

(
5 − 1

ω

)
− C3

)
τ4 ≥ MPτ

4(M2

2
min{a1, 1} − C3

)
|ξ |4 ≥ MP|ξ |4.

From Cases 1 and 2, we obtain two systems of inequalities for the coefficients;
by choosing ω = 1/2 and solving them, we obtain the pseudo-convexity estimate
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(3.1) with M1 and M2 shown in Table 1 and with MP a free parameter to be set in
the following. �

Remarks 3.1. 1. Notice that the estimate is valid also in the limit τ → 0.
Indeed, for ξ 
= 0

M2ξ
2
0 + M1I1,ψ + I2,ψ = M2ξ

2
0 + M1(

|p(y, ξ )|2
|ξ |2 + |{p, ψ}|2) + {p, {p, ψ}}

≥ M2ξ
2
0 − C3|ξ |2 + M1

|p(y, ξ )|2
|ξ |2 ≥ MP|ξ |2.

2. From the constraint on M1, one can understand the reason for the assump-
tion p(y, ψ′) 
= 0. Actually, as observed in [7] and by other authors, in the case
p(y0, ψ

′(y0)) = 0, the estimate (3.1) is still possible if {p, {p, ψ}}(y0, ψ
′(y0)) > 0.

Indeed, in that case, there exist positive constants C4 and C5 such that I2,ψ ≥
C5τ

2 − C4|ξ |2; and one can proceed as above to get (3.1) with different coeffi-
cients.

Proof of Step 2. Let φ(y) = eλψ(y), τ1 = τλφ(y), and recall that

τφ′(y) = τλφ(y)ψ′(y) = τ1ψ
′(y), φ′′(y) = λφ(y)(ψ′′(y) + λψ′(y) ⊗ ψ′(y)),

where φ′(y) 
= 0 in �0. Then, for τ 
= 0 (see [7, Lemma 4.2]),

{p(y, ξ + iτφ′(y)), p(y, ξ + iτφ′(y))}
λφ(y)(2iτ)

=
1

2iτ1
{p(y, ξ + iτ1ψ′(y)), p(y, ξ + iτ1ψ

′(y))}
+ λ|〈p′

ξ (y, ξ + iτ1ψ
′(y), ψ′(y)〉|2,

where on the right hand side one has first to perform the derivatives and then
substitute τ1 (which, consequently, must not be seen as a function of y and τ in the
bracket). In the case τ = 0,

{p, {p, φ}}(y, ξ )
λφ(y)

= {{p, {p, ψ}}(y, ξ ) + λ|〈p′
ξ (y, ξ ), ψ

′(y)〉|2.

Hence, for λ ≥ M1, substituting in (3.1) the variables τ1, ξ , we obtain

τ21 + |ξ |2 ≥ min
(
1, λ2φ2(y)

)
(τ2 + |ξ |2),

and finally (3.2). �
Proof of Step 3. For simplicity, we now consider λ and a domain B(y0,R1)

on which φ0 = e−1 ≤ φ(y) ≤ e = φM and min
(
1, λ2φ2(y)

)
= 1. Since

|ψ(y) − ψ(y0)| ≤ |ψ′|C0(�0)R1, we choose

(3.5) R1 ≤ min
{

1,min
�0

|y0 − y|, 1
λ|ψ′|C0(�0)

}
, λ ≥ e.
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We then rewrite f as

f (y) = φ(y0) +
n∑

j =1

∂ jφ(y0)(x j − x0, j ) + ∂tφ(y0)(t − t0)

+
1
2

n∑
j,k =1

∂2
j,kφ(y0)(x j − x0, j )(xk − x0,k)

+
n∑

j =1

∂2
j,tφ(y0)(x j − x0, j )(t − t0)

+
1
2
∂2

t φ(y0)(t − t0)
2 − σ|x − x0|2 − σ|t − t0|2

and its derivatives, identifying ∂t with ∂0 and denoting the Kroenecker symbol by
δab, as

f ′
j (y) = φ′

j (y0) +
n∑

h=1

φ′′
jh(y0)(xh − x0h)

+ φ′′
t j (y0)(t − t0) − 2σ

(
(x j − x0 j )(1 − δ0 j ) + (t − t0)δ0 j

)
f ′′
jm(y) = φ′′

jm(y0) − 2σδ jm, j,m ∈ {0, 1, . . . , n}.

First we require f ′ 
= 0 in the ball |y − y0| ≤ R2 to satisfy

| f ′(y)| ≥ |φ′(y0)| − |φ′′(y0)||y − y0| − 2σ|y − y0|
≥ |φ′(y0)| − |φ′′(y0)|R2 − 2σR2 ≥ |φ′(y0)|

2
,

which implies the constraint on R2

(3.6) |φ′′(y0)|R2 + 2σR2 ≤ |φ′(y0)|
2

.

In order to pass from (3.2) to (3.4), we compute

|p(y, ξ + iτφ′(y))|2 = |p(y, ξ ) − τ2p(y, f ′) + τ2(p(y, f ′) − p(y, φ′))|2
+ τ2|{p, f } + ({p, φ − f })|2

≤ 2|p(y, ξ ) − τ2p(y, f ′)|2 + 2τ4|p(y, φ′) − p(y, f ′)|2
+ 2τ2|{p, f }|2 + 2τ2|({p, φ − f })|2

≤ 2|p(y, ξ + iτ f ′(y))|2 + 2τ4|p(y, φ′) − p(y, f ′)|2 + 2τ2|({p, φ − f })|2
≤ 2|p(y, ξ + iτ f ′(y))|2 + 2τ4η1 + 2τ2|ξ |2η2

≤ 2|p(y, ξ + iτ f ′(y))|2 + η2(1 + |φ′|2C0 + | f ′|2C0 ) (τ2 + |ξ |2)2,
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where η1 and η2 are defined by

|p(y, φ′) − p(y, f ′)|2 =
∣∣∣∣− (φ′

t)
2 +

n∑
jk =1

g jkφ′
jφ

′
k + ( f ′

t )
2 −

n∑
jk =1

g jk f ′
j f

′
k

∣∣∣∣2

≤ 2| f ′
t − φ′

t |2(|φ′
t | + | f ′

t |)2 + 2|
n∑

jk =1

g jk((φ′
j − f ′

j )φ
′
k + f ′

j (− f ′
k + φ′

k))|2

≤ 4(1 + n4|g jk|2C0 )(|φ′|2C0 + | f ′|2C0 )| f ′ − φ′|2C0 := η1

and

|{p, φ − f }|2 = |2ξ0( f ′
t − φ′

t) + 2
∑

g jkξ j (φ
′
k − f ′

k)|2
≤ 8(1 + n4|g jk|2C0 )| f ′ − φ′|2C0 |ξ |2 := η2|ξ |2.

Next we have

{p(y, ξ + iτφ′(y)), p(y, ξ + iτφ′(y))}
2iτ

= {p, {p, φ}}(y, ξ ) + τ2{p, {p, φ}}(y, φ′(y))

≤ {p, {p, f }}(y, ξ ) + τ2{p, {p, f }}(y, f ′(y)) + |{p, {p, φ − f }}(y, ξ )|
+ τ2|{p, {p, φ − f }}(y, φ′(y))| + τ2|{p, {p, f }}(y, φ′(y)) − {p, {p, f }}(y, f ′(y))|
≤ {p, {p, f }}(y, ξ ) + τ2{p, {p, f }}(y, f ′(y)) + η3|ξ |2 + η4τ

2 + η5τ
2,

where η3, η4, η5, are defined by

{p, {p, φ − f }}(y, ξ ) = 4(φ′′
tt − f ′′

tt )ξ
2
0 +

n∑
l,m =1

ξlξm
(
4

n∑
j,k =1

g jl(φ′′
jk − f ′′

jk)g
km

+ 4
n∑

j,k =1

g jl∂x j g
km(φ′

k − f ′
k) − 2

n∑
j,k =1

∂x j g
lmgk j (φ′

k − f ′
k)
)

≤ 4|φ′′ − f ′′|C0ξ2
0

+
(
4|φ′′− f ′′|C0 |g jl|2C0n4 + 6|g jl∂x j g

km|C0n4|φ′ − f ′|C0

)
|ξ̃ |2

≤ 10(1 + n4|g jl|2C1 )
(|φ′′ − f ′′|C0 + |φ′ − f ′|C0

)|ξ |2 := η3|ξ |2.
Analogously, setting ξ = φ′(y), we have

{p, {p, φ − f }}(y, φ′) ≤ η3|φ′|2C0 := η4.

Then, replacing φ − f with f and ξ with φ′ or f ′ in the computations for η3, we
obtain

|{p, {p, f }}(y, φ′(y)) − {p, {p, f }}(y, f ′(y))| ≤ 4| f ′′|C0 (|φ′|C0 + | f ′|C0 )|φ′ − f ′|C0

+
(
4| f ′′|C0 |g jl|2C0n4 + 6|g jl∂x j g

km|C0n4| f ′|C0

)
(|φ′|C0 + | f ′|C0 )|φ′ − f ′|C0

≤ 10| f ′|C1 (1 + n4|g jl|2C1 )(|φ′|C0 + | f ′|C0 )|φ′ − f ′|C0 := η5.
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In summary,

M2ξ
2
0 +

M1

min{1, λ2φ2}
(

2|p(y, ξ + iτ f ′(y))|2 + 2η1τ
4 + 2η2τ

2|ξ |2
τ2 + |ξ |2

)
+

{p(y, ξ + iτ f ′(y)), p(y, ξ + iτ f ′(y))}
(λφ)2iτ

+
1
λφ

(η3|ξ |2 + (η4 + η5)τ
2)

≥ MP min{1, λ2φ2}(τ2 + |ξ |2) .
Without loss of generality, we can take MP = 1, while on the ball BR2 (y0) ⊂
B(y0,R1) we also have min{1, λ2φ2

0} = 1. Then

M2ξ
2
0 + 2M1

|p(y, ξ + iτ f ′(y))|2
τ2 + |ξ |2 +

{p(y, ξ + iτ f ′(y)), p(y, ξ + iτ f ′(y))}
(λφ)2iτ

+

≥ (τ2 + |ξ |2) − η2M1(1 + |φ′|2C0 + | f ′|2C0 )(τ2 + |ξ |2)
− η3

λφ
|ξ |2 − 1

λφ
(η3|φ′|2C0 + η5)τ

2

≥
(
1 − η2M1(1 + |φ′|2C0 + | f ′|2C0 )

− η3

λφ
(1 + |φ′|2C0 + | f ′|C1 (|φ′|C0 + | f ′|C0 ))

)
(τ2 + |ξ |2)

:= MR (τ2 + |ξ |2),
where we have used the fact that η5 ≤ η3| f ′|C1 (|φ′|C0 + | f ′|C0 ). Furthermore, on
σ, we must set the constraint f < φ for y 
= y0. Define v(s) = φ(p(s)) and p(s) =
y0 + s(y − y0). Then there exists q ∈ (0, 1) such that v(1) = v(0) + v ′(0) + 1

2v
′′(q);

hence∣∣∣∣v(1) − v(0) − v ′(0) − 1
2
v ′′(0)

∣∣∣∣ =
1
2
|v ′′(q) − v ′′(0)|

=
∣∣∣∣ ∑
|ζ |=2

1
ζ !

(∂ζφ(p(q)) − ∂ζφ(y0)) (y − y0)
ζ

∣∣∣∣
≤ cT |y − y0|ρ+2,

|φ(y) − ∑
|ζ |≤2

1
ζ !

(∂ζφ)(y0) (y − y0)
ζ | ≤ cT |y − y0|ρ+2 for cT = nmax|ζ |=2

|∂ζφ|C0,ρ .

On the set |y − y0| ≤ R2, y 
= y0, we now consider the inequality

f (y) − φ(y) ≤ −σ|y − y0|2 + cT |y − y0|ρ+2 ≤ −(σ− cT Rρ2)|y − y0|2 < 0.

This is satisfied by taking

(3.7) σ := 2cT Rρ2 = 2n|φ′′|C0,ρ(BR2 (y0))R
ρ
2 .
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Since R1+ρ
2 ≤ R2, with this choice and Cl as in Assumption A2, the constraint (3.6)

becomes

(3.8) (|φ′′|0 + 4n|φ′′|0,ρ)R2 ≤ λCl/2.

Hence, the main quantities can be estimated as follows1:

|φ′|C0(BR2 ) ≤ λφM |ψ′|C0,

|φ′′|C0(BR2 ) ≤ λφM (|ψ′′|C0 + λ|ψ′|2C0 ),

|φ|C0,ρ(BR2 ) ≤ |φ′|C0 |ψ|C0,ρ ≤ λφM |ψ|C0,1R1−ρ
2 ,

|φ′′|C0,ρ(BR2 ) ≤ λ|φψ′′|0,ρ + λ2|φψ′ ◦ ψ′|0,ρ
≤ λφM |ψ′′|0,ρ + λ2φM |ψ|0,1|ψ′′|0R1−ρ

2

+ 2λ2φM |ψ′|0|ψ′|0,1R1−ρ
2 + λ3φM |ψ|0,1|ψ′|20R1−ρ

2 ,

|φ′ − f ′|C0(BR2 ) ≤ sup
j

|
n∑

k =0

(∂kφ′
j (p(q̃)) − ∂kφ′

j (y0)) (yk − y0,k)| + 2σ|y − y0|

≤ n|φ′′|0,ρ|y − y0|1+ρ + 2σ|y − y0| ≤ 5n|φ′′|0,ρR1+ρ
2 ,

|φ′′ − f ′′|C0(BR2 ) ≤ |φ′′|C0,ρ |y − y0|ρ + 2σ ≤ (2n + 1)|φ′′|C0,ρRρ2 ,

| f ′|C0(BR2 ) ≤ |φ′|C0 + |φ′ − f ′|C0 ≤ |φ′|C0 + 5n|φ′′|0,ρR1+ρ
2

| f ′′|C0(BR2 ) ≤ |φ′′|C0 + 2σ = |φ′′|C0 + 4n|φ′′|C0,ρRρ2 .

We end up with the estimates above

η2 ≤ c(|g jk|C0 ) |φ′ − f ′|2C0,

η3 ≤ c(|g jk|C1 ) (|φ′ − f ′|C0 + |φ′′ − f ′′|C0 ),

η5 ≤ η3| f ′|C1 (|φ′|C0 + | f ′|C0 ).

Let c100(g) = 10(1+n4|g jk|2C1(B(y0,R1))
), which is the largest constant entering in the

estimates for η j . Then, for R2 < 1,

MR := 1 − c100(g)
[
|φ′ − f ′|2C0M1(1 + |φ′|2C0 + | f ′|2C0 )

+ (|φ′ − f ′|C0 + |φ′′ − f ′′|C0 )
1
λφ0

(
1 + |φ′|2C0 + | f ′|C1 (|φ′|C0 + | f ′|C0 )

)]
≥ 1 − c100(g)

[
((5n)2R2(1+ρ)

2 |φ′′|2C0,ρ)M1(1 + 5|φ′|2C0 )

+ (10nRρ2 |φ′′|C0,ρ)
1
λφ0

(
1 + |φ′|2C0 + (2|φ′|C0 + |φ′′|C0 + 4n|φ′′|20,ρRρ2)(3|φ′|C0 )

)
.
]

1Unless specified otherwise, the C0, C1, C2, and C0,ρ norms of ψ and g jk refer to operators on the
given domain B(y0,R1), while the norms for φ and f refer to operators on the smaller ball |y−y0| ≤ R2,
with radius R2 ≤ R1 to be determined.
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In the last step, we have used the constraint on BR2 | f ′|C0 ≤ 2|φ′|C0 , which is a
consequence of (3.8).

Defining the term |λψ|max by

|φ′′|C0,ρ ≤ φM max(λ|ψ′′|0,ρ, λ2|ψ|0,1|ψ′′|0, λ3|ψ|0,1|ψ′|20) := |λψ|max,

we can refine condition (3.8) and add an extra conditions on Rρ2 (which is qualita-
tively equivalent to | f ′′|C0 ≤ 2|φ′′|C0 ):

(3.9) (λφM (|ψ′′|C0 + λ|ψ′|2C0 ) + 4n|λψ|max)R2 ≤ λCl/2,

4n|φ′′|0,ρRρ2 ≤ 4n|λψ|maxR
ρ
2 ≤ λφM (|ψ′′|C0 + λ|ψ′|2C0 ),

where we have applied the previous estimates to the norms of φ′ and φ′′. By
including the numeric constants into c100, we can then write

MR ≥ 1 − c100(g)
[
|λψ|2maxR

2(1+ρ)
2 M1(1 + λ2φ2

M |ψ′|20)

+ |λψ|maxR
ρ
2

1
λφ0

(
1 + λ2φ2

M |ψ′|20 + λ2φ2
M (|ψ′|0|ψ′′|0 + λ|ψ′|30)

)]
.

We first require R2 to satisfy

c100(g)|λψ|2maxR
2(1+ρ)
2 M1(1 + λ2φ2

M |ψ′|20) ≤ 1
4
,

c100(g)|λψ|maxR
ρ
2

1
λφ0

(
1 + λ2φ2

M |ψ′|20 + λ2φ2
M (|ψ′|0|ψ′′|0 + λ|ψ′|30)

) ≤ 1
4
.

Then we add the previous two constraints (3.9). The resulting upper bound for R2

is in Table 1. �

We collect in the following table all the constants computed in Step 1, 2, 3 and
in the following sections 2. In case of special geometries for which ψ is given
explicitly, the constraints in the table can be improved.

2Unless specified otherwise, the C0, C1,C2, C0,ρ norms of ψ and g jk refer to operators on the
domain B(y0,R1), while the other norms for φ and f refer operators on the smaller ball BR2 : |y−y0| ≤
R2.
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Name Limit Value

C3 ≥ 20(1 + n2|g jk|2C1(�0)
)|ψ′|C1(�0)(1 + |ψ′|2C0(�0)

)

M1 ≥ (MP + C3)maxy∈�0

{
2
a2

1
, 1

2|p(y,ψ′)|2
}

M2 ≥ 2
min{1,a1} (MP + C3) + (b1+a1)

2 M1

MP ≤ 1

λ ≥ max{M1, e,
2|ψ′′|C0(�0)

C2
l

}
φ0 ≥ e−1

φM ≤ e

R1 ≤ min{1,miny∈∂�0 |y0 − y|, 1
λ|ψ′|C0(�0)

}
R2 ≤ min

{
R1,

(
Cl

2φM (|ψ′′|C0(B(R1))+λ|ψ′|2
C0(B(R1))

)

)
,
(λφM (|ψ′′|C0(B(R1))+λ|ψ′|2

C0(B(R1))
)

4n|λψ|max

) 1
ρ
,(

1
4c100(g)|λψ|2maxM1(1+λ2φ2

M |ψ′|2
C0(B(R1))

) 1
2+2ρ

,(
λφ0

4c100(g)|λψ|max

(
1+λ2φ2

M |ψ′|2
C0(B(R1))

+λ2φ2
M (|ψ′|C0(B(R1))|ψ′′|C0(B(R1))+λ|ψ′|3

C0(B(R1))

)) 1
ρ
}

σ ≥ 2n|φ′′|C0,ρ(BR2 )R
ρ
2

ε0 ≤ 1
2n| f ′′|C0(BR2

)

τ0 ≥ max
{
1, 64

(
4M1 + 1

4λφ0

)
·
(
| f ′′|2C0 (1 + n2|g jk|C0 )2 + n|h|2L∞(2 + 2| f ′|2C0 ) + 2|q|2L∞

)}
R ≤ 1

4

(
16 + 1

16

)−1/2
R2

δ ≤ n 1
32

(
16 + 1

16

)−1|φ′′|C0,ρ(BR2 )R
2+ρ
2

r ≤ n|φ′′|C0,ρ(BR2
)
1
4

(
16+ 1

16

)−1
R2+ρ

2

|φ′|C0(BR2
)+5n|φ′′|C0,ρ(BR2

)R
1+ρ
2

r0 ≤ nλ2C2
l

1
4

(
16+ 1

16

)−1
R2+ρ

2

2e
(
|φ′|C0(BR2

)+5n|φ′′|C0,ρ(BR2
)R

1+ρ
2

)
c1,T ≥

√
4
(

4M1
τ0

+ 1
4(λφ0)

)
c2,T ≥ ( 1

2 +
√

2M2)(1 +
2|χ′

1|C0

τ0κ
) + c1,T√

τ0
c133

c111 ≥ ln(1 + e) + 6c131

(
1 +

|b′|2
C0

r2

)1/2
+ 2c129

Table 1. Table for the constants computed under Assumptions A3 and A4 with the
notation of Step 1, 2, 3 at the beginning of the section.

The coefficient c133 is defined and derived in Subsection 3.2; c129 and c131 are
defined and derived in the proof of Theorem 1.1.
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3.2 Tataru inequality for the wave operator. We now go quickly
through [7] to compute the coefficients of the inequality in Theorem 2.1. We
decompose the wave operator (1.1) into the sum of its principal part P2 and the
lower order part P1:

P2(y,D) = −D2
0 + g jk(x)DjDk,

P1(y,D) = h j (x)Dj + q(x),

and then split the conjugate operator

P(y,D + iτ f ′(y)) = eτ f (y)P(y,D)e−τ f (y)

into the sum of its principal part P3 and the lower order part P4:

P3(y,D, τ) = P2(y,D) + τ2(( f ′
0)

2 − g jk f ′
j f

′
k) + 2iτ(− f ′

0D0 + g jk f ′
jDk),

P4(y,D, τ) = −τ( f ′′
0 − g jk f ′′

jk) + P1(y,D + iτ f ′).

The principal symbol of P(y,D) and P(y,D + iτ f ′) are, respectively,

p(y, ξ ) = −ξ2
0 + g jk(x)ξ jξk,

p(y, ξ + iτ f ′) = p(y, ξ ) − τ2p(y, f ′) + iτ{p, f }.
Since f is a quadratic function and the coefficients g jk are time independent, we
can write

e−ε|D0|2/(2τ)eτ f P(y,D)u = e−ε|D0|2/(2τ)P(y,D + iτ f ′)eτ f u

= (y,D − ε f ′′ · (D0, 0) + iτ f ′)e−ε|D0|2/(2τ)eτ f u.

Let �D = D − ε f ′′ · (D0, 0) and �ξ j = ξ j − ε f ′′
j0ξ0, j = 0, 1, . . . , n. For ε such

that 2nε| f ′′|C0 ≤ 1, we have |�ξ j |2 ≤ 2|ξ j |2 + 2ε2| f ′′|2C0ξ
2
0 and |ξ |2/2 ≤ |�ξ |2 ≤

2|ξ |2. Since p(y, ξ + iτ f ′) is the symbol of P3(y,D, τ), p(y, ξ̂ + iτ f ′) is the symbol
of P3(y, �D, τ). Now substitute �ξ for ξ into the (3.4), which then becomes, for
V ∈ C∞

0 (B(y0,R2)),

2M2‖|D0|V‖2+4M1‖P3(y, �D, τ)V‖2
−1,τ+

Im〈Re(P3(y, �D, τ))V, Im(P3(y, �D, τ))V 〉
(λφ0)2τ

≥ 1
4
‖V‖2

1,τ.

Since ‖W‖2
0 ≥ τ2‖W‖2−1,τ, we see that ‖P3W‖2

0 ≥ 2Im〈(ReP3)W, (ImP3)W 〉; and
for τ ≥ 1, we get

(3.10) 2M2‖|D0|V‖2 +
(4M1

τ
+

1
4(λφ0)

)‖P3(y, �D, τ)V‖2
0

τ
≥ 1

4
‖V‖2

1,τ.
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We now estimate the error term E1:

E1 : = ‖P(y, �D + iτ f ′)V − P3(y, �D, τ)V‖2
0

= ‖ − τ( f ′′
0 − g jk f ′′

jk)V + P1(y, �D + iτ f ′)V‖2
0

≤ 2τ2‖| f ′′|C0 (1 + n2|g jk|C0 )V‖2
0 + 2‖h jD jV − εh j f ′′

0 jD0V‖2
0

+ 2τ2‖(n|h|L∞| f ′|C0 + |q|L∞)V‖2
0

≤ 4
(
| f ′′|2C0 (1 + n2|g jk|C0 )2 + n|h|2L∞(2 + 2| f ′|2C0 ) + 2|q|2L∞

)
‖V‖2

1,τ.

Now choose τ0 > 1 such that

2
τ0

(
4M1 +

1
4λφ0

)
E1 ≤ 1

8
‖V‖2

1,τ

and let

c1,T :=

√
4
(4M1

τ0
+

1
4(λφ0)

)
.

From (3.10) and ‖P3(�D)v‖2 ≤ 2E1 + 2‖P(�D)v‖2, we have after multiplying by 2
and squaring,

(3.11)
√

2M2‖|D0|V‖0 + c1,T
‖P(y, �D + iτ f ′)V‖0√

τ
≥ 1

2
‖V‖1,τ

for τ ≥ τ0, Now consider u ∈ H 1(Bκ/4) and define v := e−ε|D0|2/(2τ)eτ f u, V :=
χ1(t/(2κ))v , with χ1 as in (4.4) with N = 1, B1 = [−1, 1] B2 = [−2, 2]. Then

supp(V ) ⊂ {y : |t| ≤ 4κ, |x| ≤ κ/4} ⊂ {y : |y − y0| ≤ R2},

with κ =
(
16 + 1

16

)−1/2
R2. From [7, Lemma 3.4] (see also [11, Lemma 2.79]), we

have∥∥∥∥P(y, �D + iτ f ′)V − χ1

( t
2κ

)
e−ε|D0|2/(2τ)eτ f P(y,D)u

∥∥∥∥
0

=
∥∥∥∥[P(y, �D + iτ f ′), χ1

( t
2κ

)]
v

∥∥∥∥
0

≤ c133

∥∥∥∥(1 − χ1

( t
κ

))
(∇ + τ)v

∥∥∥∥
0
≤ c133e

−τκ2/(4ε)‖eτ f u‖1,τ

‖|D0|V‖0 ≤ ∥∥ |D0|v
∥∥

0 +
2|χ′

1|C0

κ

∥∥∥∥(1 − χ1

( t
κ

))
v

∥∥∥∥
≤ 2κτ

ε
‖v‖0 +

(
1 +

2|χ′
1|C0

τ0κ

)
e−τκ2/(4ε)‖eτ f u‖1,τ,
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and

‖v‖1,τ ≤ ‖V‖1,τ +
(

1 +
2|χ′

1|C0

τ0κ

)
e−τκ2/(4ε)‖eτ f u‖1,τ

for τ ≥ τ0 and

c133 = 2(1 + n2|g jk|C0 )
( |χ′′

1|C0

τ0κ2
+

|χ′
1|C0

κ
(1 + | f ′|C0 +

|h|L∞

τ0
)
)
.

As last step, we use the above relations to estimate the terms of (3.11) and notice
that according to our choice of the parameters,

√
2M2

2κ
ε0
<

1
4
.

Therefore, we obtain, for τ > τ0, the Tataru inequality of Theorem 2.1 with coef-
ficients as in Table 1.

Remark 3.2. According to the computations above, ε cannot be smaller that
ε0, since this affects the size of R2 and τ.

3.3 Proof of Proposition 2.5. In the previous subsection, we considered
u ∈ H 1(BR), with the radius R is defined as R := qR2 with

q =
1
4

(
16 +

1
16

)−1/2
,

and R2 given in Table 1. Let us compute δ such that IB is inside the ball, i.e.,

IB := {y ∈ B(y0,R2) : f (y)−φ(y0) ≥ −8δ}∩{y ∈ B(y0,R2);φ ≤ φ(y0)} ⊂ B(y0,R).

By assumption, f (y) − φ(y) < −cT Rρ2 |y − y0|2 in B(y0,R2) − {y0}. Moreover,
in IB , f (y) − φ(y0) ≤ f (y) − φ(y). Hence, the limit case is reached along the
boundary {y : |y − y0| = R}, where f (y) −φ(y0) < −cT q2R2+ρ

2 . Define δ such that
−cT q2R2+ρ

2 ≤ −8δ , i.e.,

δ = cT q2R2+ρ
2 /8 = n|φ′′|C0,ρq2R2+ρ

2 /8 .

Under this condition, IB ⊂ B(y0,R).

In order to compute the smaller radius r, we apply a rougher estimate, using
the definition of f . In the region {y : | f − φ(y0)| ≤ δ} ∩ {y : |y − y0| ≤ 2r},

| f (y) − φ(y0)| ≤ | f ′|C0(BR2 )|y − y0| ≤ | f ′|C02r ≤ δ.
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Hence the radius r must satisfy r ≤ δ/2| f ′|C0(BR2 ), which is guaranteed by

r ≤ n|φ′′|C0,ρ(BR2 )q
2R2+ρ

2

2|φ′|C0(BR2 ) + 10n|φ′′|C0,ρ(BR2 )R
1+ρ
2

(≤ R2/10).

By hypothesis, φ′(y0) 
= 0, hence the denominator does not vanish.

Choosing λ > 2|ψ′′|C0(�0)/C
2
l and applying ψ′(y) > Cl , we obtain

φ′′(y) = φλ(ψ′′ + λψ′ × ψ′) ≥ e−1λ2C2
l /2

in BR1 . Consequently, φ′′(y) 
= 0 and |φ′′|C0,ρ(BR2 ) > Cρ, with Cρ := e−1λ2C2
l /2 >

0. We get the uniform lower bound for r in BR1

r0 ≤ nCρq2R2+ρ
2

2|φ′|C0(BR2 ) + 10n|φ′′|C0,ρ(BR2 )R
1+ρ
2

.

4 Appendix

We recall results on Gevrey class functions that are used in the article. The refer-
ences are [8, 19].

Definition 4.1. Let Ls be an increasing sequence of positive numbers such
that

L0 = 1, s ≤ Ls, Ls+1 ≤ CLs,

for some constant C > 1. We denote by CL the set of all u ∈ C∞(X) (with X ⊂ R
N

open subset) for which for every compact set K ⊂ X there exists a constant CK

such that

|Dζu(x)| ≤ CK (CKL|ζ |)|ζ |, x ∈ K,

for all multi-indices ζ . By Stirling’s formula, we can replace |ζ ||ζ | by |ζ |!. CL(X)
is a ring which is closed under differentiation. If f : Y → X is an analytic map
from the open set Y ⊂ R

N to the open set X ⊂ R
N , the composition with f defines

the map f ∗ : CL(Y ) → CL(X), f ∗u = u ◦ f . The class CL(X) with Ls = (s + 1)m

and m > 1 is called the Gevrey class of order m and is denoted by Gm(X). If
m = 1, G1(X) is the set of real analytic functions in X .

We denote the set Gm(RN ) ∩ C∞
0 (RN ) by Gm

0 (RN ). For m > 1, one has∑
1/km < ∞, and it follows from [8, Theorem1.4.2] that Gm

0 is large enough
to contain cut-off functions; of course, it is an algebra. In particular, let f, g ∈
Gm(RN ), and let K ⊂ RN be a compact set. Then, by calling the constants
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CK for f and g c1, f and c1,g, respectively, we get fg ∈ Gm(RN ) such that for
cP = max{c1, f , c1,g},
(4.1) |Dκ( f (x)g(x))| ≤ 2|κ|c|κ|+2

P |κ|m|κ|, x ∈ K.

Definition 4.2. For a compact subset E of RN , we define the supporting
function of E HE as ([8, (4.3.1), p. 105])

HE (ξ ) = sup
x∈E

〈x, ξ〉, ξ ∈ R
N .

In the present paper, we use the Paley-Wiener-Schwartz Theorem for Gevrey
class functions often. For reference, we give the following statement, proved in
[9] for a proper subset γm

0 (RN ) of Gm
0 (RN ). The theorem can also be reformulated

for φ ∈ Gm
0 with substitution of the phrase “to every B > 0, there exists a constant

CB such that” with “there exist positive constants B and C such that”. The proof
is the same.

Theorem 4.3 ([9, Theorem 12.7.4, p. 137]). An entire function�(ζ ), ζ ∈ C
N ,

is the Fourier-Laplace transform of a function φ ∈ γm
0 (RN ) with support in the

compact convex set K with supporting function HK if and only if for every B > 0
there exists a constant CB such that

|�(ζ )| ≤ CB exp(HK (Imζ ) − B|Reζ |1/m), ζ ∈ C
N .

In particular, we can introduce the main properties of the Gevrey class local-
izers used in the paper.

Definition 4.4. Define χ1 ∈ Gm
0 (RN ) and χδ (v) := χ1(v/δ ) such that χ1 = 1

in a ball B1 ⊂ R
N , χ1 = 0 outside a larger ball B2, and 0 ≤ χ1 ≤ 1. Hence

Fv→ζχδ (v) = δNFv→δζχ1(v) and

|Dκχ1(v)| ≤ c|κ|+1
1X |κ|m|κ|, v ∈ B2,

|Fv→ζχ1(v)| ≤ c1X exp(HB2 (Im ζ ) − c2X |Re ζ |1/m), ζ ∈ C,

|Fv→ζχδ (v)| ≤ δN c1X exp(δHB2 (Im ζ ) − c2Xδ
1/m|Re ζ |1/m), ζ ∈ C,

(4.2)

with c1X = c1X (m) a given number and c2X = 1/(eNc1X )1/m .

We now present the Phragmen-Lindelöf Theorem for subharmonic functions
in a sector D ⊂ C used in Lemma 2.7.

Theorem 4.5 ([16, Chapter 7.3.]). Let D be an angle of opening π/λ, and let
u(z) be a function subharmonic in this angle, satisfying an asymptotic estimate

u(z) < |z|ρ, a.e., ρ < λ,
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and bounded by a constant M on the boundary of the angle. Then u(z) ≤ M inside
the full angle D.

We now recall the concept of conormal pseudo-convexity for operators as given
in [20, 21]. We can represent a C2-oriented hypersurface S as level set surface
S := {y : ψ(y) = 0} of a C2-function ψ such that ψ′ 
= 0 on S.

Definition 4.6. Decompose the coordinates of R
N into y = (y′, y′′). The

conormal bundle of the foliation F of RN with the surfaces y′′ =const is the
set

N ∗F := {(y, ξ ) ∈ T ∗
R

N : ξ = (ξ ′, ξ ′′) and ξ ′ = 0}.
The reduction of N ∗F to a subset K ⊂ R

N is defined by

�K := {(y, ξ ) ∈ T ∗K : ξ ′ = 0};
the fibre of N ∗F in y0 is defined by

�y0 := {(y0, ξ ) ∈ N ∗F}.
Let P(y,D) be a partial differential operator of order m with smooth coeffi-

cients. Denote its principal symbol by p(y, ξ ).

Definition 4.7. Let S be a smooth oriented hypersurface which is a level
surface of a C2-function ψ, and let y0 ∈ S be such that ψ′(y0) 
= 0. We say that S
is conormally strongly pseudo-convex with respect P at y0 if

Re {p, {p, ψ}}(y0, ξ ) > 0(4.3)

on p(y0, ξ ) = {p, ψ}(y0, ξ ) = 0, 0 
= ξ ∈ �y0 ;

{p(y, ξ + iτψ′(y)), p(y, ξ + iτψ′(y))}
2iτ

> 0(4.4)

on y = y0 such that 0 
= ξ ∈ �y0 , τ > 0, and

p(y0, ξ + iτψ′(y0)) = {p(y, ξ + iτψ′(y)), ψ(y)}(y = y0) = 0.

Definition 4.8. A C2-real-valued function ψ is conormally strongly
pseudo-convex with respect to P at y0 if

Re {p, {p, ψ}}(y0, ξ ) > 0(4.5)

on p(y0, ξ ) = 0, 0 
= ξ ∈ �y0 ;

{p(y, ξ + iτψ′(y)), p(y, ξ + iτψ′(y))}
2iτ

> 0(4.6)

on y = y0 such that p(y0, ξ + iτψ′(y0)) = 0, 0 
= ξ ∈ �y0 , τ > 0.
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Hence, the term conormally strongly pseudo-convex means strongly
pseudo-convex in N ∗F or in a subset �K . Definition 4.7 implies that for a suf-
ficiently small neighborhood�0 of y0, there exist constants such that an inequality
like (3.1) holds, while Definition 4.8 implies that the inequality (3.2) holds for the
function φ = eλψ.

For second order differential operators, the definitions above are simpler. In
particular, for the wave operator (1.1), the conditions are void for noncharacteristic
surfaces ψ, as shown in Section 3.1; see also Remark 3.1.
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