STABILITY OF THE UNIQUE CONTINUATION FOR THE
WAVE OPERATOR VIA TATARU INEQUALITY:
THE LOCAL CASE
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Abstract. In 1995, Tataru proved a Carleman-type estimate for linear oper-
ators with partially analytic coefficients that is generally used to prove the unique
continuation of those operators. In this paper, we use this inequality to study the
stability of the unique continuation in the case of the wave equation with coef-
ficients independent of time. We prove a logarithmic estimate in a ball whose
radius has an explicit dependence on the C'-norm of the coefficients and on the
other geometric properties of the operator.

1 Introduction

We consider the wave operator in R"*!,

(1.1) P(y,D) =—=Dj+ Y g*(0)D;D+ Y 1 (x)D; + q(x),
k=1 j=1
where y = (z,x) € R x R" are the time-space variables, Dy = —id,, D; = —i0y;.

The coefficients g/ € C!'(R") are real and independent of time, and [g/*] is a
symmetric positive-definite matrix. The coefficients 4/, g € L°(R") are complex
valued and independent of time.

An operator P(y, D) is said to have the unique continuation property if
every solution u of Pu = 0 in a connected open set Q C R"™!, and vanishing
on an open subset B C €, vanishes in Q. In [20], Tataru proved for the first
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time the unique continuation property for (1.1) across every non-characteristic C2-
hypersurface with no limitation to the normal direction. The result is valid for a
larger class of linear operators, where the pseudo-convexity condition across a
surface is fulfilled for the cotangent vectors with & = 0, and it has been extended
to the case of coefficients analytic in time [7, 18, 21]. The key point of these results
is a Carleman-type estimate involving an exponential pseudo-differential operator.

Much is known about the consequences of this property on the uniqueness of
a corresponding Cauchy problem. Actually, the unique continuation property has
proved to be instructive in many areas of mathematics, e.g., in studying the unique-
ness for linear and nonlinear PDEs, together with their blow up or traveling wave
solutions [6], in studying the Anderson localization [4], in control theory to get
controllability results [22], in inverse problems, to obtain uniqueness and stability
estimates [12]. Concerning the continuous dependence of the unique continuation
property, that is, its stability, fewer results are known. The elliptic and parabolic
cases have been studied in several settings, where use was made either of Carleman
estimates or some versions of the Three Ball Theorem; see [1] for a review of the
results.

To our knowledge, the hyperbolic case like (1.1) is still open for arbitrary do-
mains and arbitrary matrix-valued coefficients g/%(x), while there exist results for
particular coefficients or domains; see [19]. This is maybe related to the difficulty
of using standard Carleman estimates for hyperbolic operators to prove unique
continuation close to the characteristic directions; that is the reason Tataru’s work
was so important in this field. The aim of the present work is then to prove a sta-
bility estimate for the unique continuation of the operator P(y, D). We focus on
the local case and formulate an explicit stability estimate for the inhomogeneous
operator Pu = f that can be alternatively reformulated in terms of a boundary
value problem.

Let Q c R"™! be a connected open set, and consider a non-characteristic
oriented hypersurface S written as the level set of the function v : Q — R,
S ={y € Qw() = 0}. Assume that Pu = f in a ball Q; := B(yo, 2R).
Moreover, let supp(u) C Q := {y € Q;w(y) < 0} with |lullgq,) < Ci, and
let || fll;2(q,) < €1 for some small €; > 0. The stable unique continuation is based
upon an estimate like

(1.2) lull 2, < Y(C1, €1)

for some ball Q3 := B(y, r) contained in Q, where the right hand side tends to
0 as €, — 0. Our aim is to prove (1.2) with a function Y that has an explicit
form that depends on constants related to geometrical properties of Q3, €, and
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Q and the norm of the coefficients g/f in C'(Q). We consider the case where the
domains €; and Qj3 are balls centred in yy € €2, and we find a logarithmic function
Y dependent on the radii R and r of the balls and on the norms of g/*, h/, g and .
In the paper [3], we use the local stability estimate to prove (1.2) for quite general
domains. As in the elliptic case, many possible applications can be derived out of
it. In particular, we plan to use inequality (1.2) to obtain an explicit modulus of
continuity for the inverse problem for the wave operator on manifolds. This would
improve the existing inverse stability results for Riemannian manifolds, which are
currently based either on compactness-type arguments (see [2, 15]) or on very
strong geometrical conditions for the coefficients (see, e.g., [5, 13, 14]).

In the unpublished manuscript [23], Tataru suggested the possibility of obtain-
ing a stability estimate by using Gevrey-class localizers to improve the estimates
of u for low temporal frequencies. Here, we develop that idea by employing prop-
erties of subharmonic functions (see Lemma 2.7) and performing the explicit es-
timate of the radii » and R and the constants. Of fundamental importance is the
possibility of linking the positive lower bound for r to the geometric parameters of
the domain to assure that the estimate are valid close to the characteristic surfaces
of the operator. We begin by introducing some assumptions.

Assumption Al. Let Q be a connected open subset of R x R". Let P(y, D)
be the wave operator (1.1), with g/*(x) e CY(Q), h/, g € L®(Q). Let

S={yeQyl =0}

be a C?”-smooth oriented hypersurface, which is non-characteristic in , for some
fixed p € (0, 1). We assume that u € H'(Q) is supported in {y; w(y) < 0}NQ, and
P(y, D)u € L*(Q).

Assumption A2. Let A(Dy) be a pseudo-differential operator with symbol
a(&), 0 < a < 1, where a € C§°(R) is a smooth localizer supported in [§y| < 2
and equal to 1 in |&y| < 1. Furthermore, let a € Gé/“(R) for a fixed a € (0, 1),
here G(;/ “ is the set of Gevrey functions of class 1/a with compact support defined
in Definition‘4.1. We also define the smooth localizer b(y), supported in |y| < 2,
O0<b<landequaltolin|y] < 1.

The main results of the paper are the following two theorems. The first one is
a stability estimate of exponential type for the low temporal frequencies.

Theorem 1.1. Under Assumptions Al and A2, let yo € S with y'(yo) # 0,
and let b Gé/ “(R™) be a Gevrey functions of class 1/a, with compact support
such that 0 < a < a; < 1. Then there exist constants 0 < r < 2r < R and balls
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B(yo, ) C B(yo,2R) C Q centered at yq of radius r and 2R, respectively, such
that for u > 1 there exist constants c129, 131, C132 such that if

_,a
<e

Doy, (¥ = o
lullipoy = L 1Pull iz < 1, HA( )b(222 ) Pu
u R 0

then, for all o < u*/(3c131),

(22

w r

o~ a-ay
< cia9€ Cl32 .

H!

The radii r and R are defined in Table 1 below, while the coefficients cy are com-
puted in the proof of the theorem.

The second result is a log-stability estimate in a ball, valid for all the temporal
frequencies; see Figure 1 below for the construction.

Theorem 1.2. Under Assumption Al, for each yo € S with y'(yo) # 0, there
exist constants r and R, with 0 < 2r < R, and balls B(yy, r) C B(yg, 2R) C Q
centered in yq of radius r and 2R, respectively, such that

el 7By 20))
u <c . .
lull 2By, < €111 N <1 ||u||H1(B(y0’2R)))

I1Pull 25y 28))

The radii r and R and coefficient ¢\ are defined in Table 1 below. Moreover, for
eachm € (0, 1],

el 1 (B yo,2))

- <
Nl f1m B yo,ry < €111 ( ( T4l 11 g 200 ))m
n —_—
1Pull 2

(B(y.2R)
As a consequence, one can find in a domain Qy C Q a uniform radius
ro =ro(1¥ lcrnqy)» |gjk|cl(90), min |p(y, )|, min |y —y|) > 0

veQy yeoQ

such that r > ry.

Theorems 1.1 and 1.2 are proved in Section 2. In Section 3, we compute the
related parameters R, r, and ¢, which depend on the constants of the Carleman
estimate of Theorem 2.1 and a particular geometric construction. The Appendix
is devoted to the main definitions used in the article. Finally, we observe that even
if we study the wave equation, the same method can be generalized to ultrahyper-
bolic operators of the type —|Dg|> + g/*(xp)DyD j» where the variable y = (x4, x3)
has a different splitting and where x, corresponds to the conormal direction for the
pseudo-convexity condition.
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y =0
supp u
CpY;
Bor
v >0 v <0

Figure 1. The domains of the stability estimate

2 Proof of the stability estimate

Notation. We start by introducing some notation and definitions used in the
rest of the article. We consider y = (¢, x) € R x R” a time-space variable and call
& =(&, E ) its Fourier dual variable. Recall that the exponential pseudo-differential
operator in Theorem 2.1 is defined as

—eDolP/2t, _ =1 /2t
e~ Pl /27, =3z, 0/2TF, =,

with F and F~! representing, respectively, the Fourier transform and its inverse.
Then ¢~¢IP0I/27 is an integral operator with kernel

1/2
T e—rlt’—t|2/25
2me

We also define A(Dy) to be a pseudo-differential operator with symbol a(&,), 0 <
a < 1, where a € C{°(R) is a smooth localizer supported in |{y| < 2 and equal to
1 in |&| < 1. Hence we can write

A(@)D = ?g;,a(ﬂgol )?ﬂ—)g“ova
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and the integral kernel is

(s55) o(*5")

We often work under Assumption A2, where the symbol a is of Gevrey class. The
smooth localizer b(y) is supported in |y| < 2 and equal to 1 in |y| < 1.
The norm of the Sobolev space H; is defined as

2 2ys/2
lulls,c = 101 + 222 F s eull 2,

and the space H* corresponds to the case 7 = 1.

According to our notation, the positive coefficients, denoted by c, with x >
100, are defined just once, independently of the variables u, r and are computed
explicitly in terms of the coefficients of the operator (1.1) and the geometric para-
meters. This is essential to recover finally the value of c;;; and the radii R, r in
Theorem 1.2.

We next introduce the Tataru inequality proved in [20] in the version presented
by Hormander [7] and adapted to the wave operator. In the Appendix, one can
find the definition of conormally strongly pseudo-convex function or surface, and
Gevrey function. According to Definition 4.6 and the splitting y = (¢, x), the
conormal bundle in R"*! with respect to the foliation x =const is defined as

N'F:={(»&) e T"R™ : & = (&, O and & =0}
and its fibre in yg is T'y,.

Theorem 2.1. Let Q be an open subset of R x R". Let P(y, D) be the wave
operator (1.1), with g/*(x) € CY(Q), h/, g € L®(Q). For p € (0, 1), let yo € Q and
w € C*P(Q) be real-valued and such that y'(yo) # 0. Let S = {y; w(y) = 0} be an
oriented hypersurface non-characteristic in yo for which there always exists A > 1
such that ¢(y) = exp(Ay) is a conormally strongly pseudo-convex function with
respect to P at yy. Then there exists a real-valued quadratic polynomial f defined
in (3.3) with proper ¢ > 0 and a ball Bg,(yo) such that f(y) < ¢(y) whenever
Yy € Bg, — {yo} and f(yo) = ¢(yo). Moreover, f is a conormally strongly pseudo-
convex function with respect to P in Bg,. Thus there exist €y, 1o, c1.1, 2,7, and R,
such that

2 2 2
lle=Pl 2oty o < ey 7 V2 lem Pl 2Tt Py, DYullg + core” 4 eV )y,

for small enough € < €y and large enough © > to. Here, u € HIIOC(Q), with
P(y, D)u € L*(Q) and supp(u) C Br(yo).
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Remarks 2.2. (1) The explicit estimate for the coefficients €, 79, ¢1,7.¢2,7,
o, R>, and R and their dependence upon the parameters of the problem have never
been found. In this paper, we provide proper estimates, which are summarized in
Table 1 of Section 3.1. Notice that this is possible under the condition that y €
C?7(Q) instead of the usual condition y € C?(Q2). Furthermore we assume that
S is not characteristic in yy and consequently not characterictic in a domain Qy C
Q. This assumption is not required in [20, 7], where only the strongly pseudo-
convexity of S in I'y is assumed. In Remark 3.1 we underscore this difference
with an alternative condition on . In any case, for the practical computations of
the values in Table 1, we prefer to work in the stronger setting of Theorem 2.1.

(2) Our wave operator can be seen in two ways:

(H) an hyperbolic operator with constant-in-time and real-valued coefficients for
the principal part, or
(E) an operator whose principal symbol is elliptic in the set 'q C N*F.
In the latter case, Tataru inequality (see [20]) is sharper. Here we prefer to consider
just the case (H).

(3) Finally, some improvements to the assumption on the coefficients of (1.1)
may be made. For example, taking Q, C R”" to be the smooth domain of definition
of g(x), we can assume g € L'(Q,) forn > 3, g € L**(Q,) forn =2, g € L¥(Q,)
for n = 1. Of course, by changing the localizers, we can reformulate the result in
another kind of domain, e.g., a cylinder.

(4) After the submission of this article, a different kind of result by Vessella
appeared in the framework of the strong unique continuation; see [24].

We now proceed with the detailed proof of Theorems 1.1 and 1.2. A first step
is the following lemma, introducing a property used often in this section.

Lemma 2.3. Let A(Dy) be a pseudo-differential operator with symbol a(&y),
where a € C§°(R) is a smooth localizer supported in |$o| < 2 and equal to 1 in
&0l < 1. Assume that f(y) € CSO(R”“) N Gé/“(Rtl), where 0 < a < 1.

a) Forevery u > 0, f; > 2, and v € L>(R"™1Y there exist constants o6 and
C107, independent of u, such that

2.1) HA(ﬁlfo)f(y)(l —A(I;O))v

< cro7¢” ||o lo.
0

b) For every h € CC(R™!) satisfying h = 1 on supp(f),

+c1o7¢” " | ho ||o.
0

2.2) HA(ﬂlfo)ﬂw

e A (2020
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c) Forv € H™(R™),, m > 1, (2.1) holds in H™(R"*") under the additional
condition D" f(y) € G,/*(R)),

(2.3) HA(ﬁlﬂDo>f<l —A(ZODD

< c108e "M [0

m

Proof. a) On the set supp[(1 — a(&/w))a(Biél /1)), one obtains |&! — &|* >
(it —2u/p1)%; and the assumption f(z,.) € Gé/“(]R,) implies
|5tt’—>(§d—fo)[f(t/’x)]| < C3€—C117|§&—§o|(‘ < 636—20106ﬂ”e—0117lf(}—é‘ol’l/Z’
uniformly in x on every compact set K C R” for some ¢3 = c3(a, K), c117 =
c117(a, K) and cj06 = c117(1 — 2/51)* /4, We then estimate the operator
Dy Dy
A(Br1— f(-)(l —A(— )
(5) (%)
on the Fourier space, obtaining
P&y ’ - <o :
Ha( IuO 3",,_>§O. f,x) 501_>l, 1 —a; Fiselv] .
(B & , ’
= Ha(# /IR 1=a(50) )T el D alol o O
1
< 03/ dxdé, (/ (1 — a(&)>>a ('B@O )e‘zcl%”a
R+l R H u
2
Cem N2 T (0], )] dfo)
1 _ @ ﬁlé:(;
2
se2enei gmanleo Ol 2| 7, 1 F s, 01, %)
L2(do)
1
< caemteen” (1 - a(@))a(ﬁlfo)
u u
2
. e—cw1lS _fola/zlliz(dg“od«f&)”35’_)50[0](60’ X)
L2(d&ydx)

2 cien® 12
< clgre " ollgs

with

8 /1 1 1 172
=3[ —1(=
1 63(51 (06)06(0117)1/“ (0!0106)1/“>
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and where we have applied in the last step the inequalities

1 a g0 ) emamici =l 2 ’ _ 8 1—(1) !
_af : Syt
‘u =B \a)alcimet

gy P
1

(acio6)'/*

e —cro6 1 <

b) To prove the inequality, we observe that
D D D
(5o, = [ (5o (5
H 0 H K 0

a5 (=)l

where the first term is bounded by || f oo l|A(Do/p)h(y)v|lo. We can apply the
estimate a) to the second term on the right hand side.

¢) The extension to H™ of a) follows from

P14 - 2 () (0-ai)e)

Vi<

1/%(R,); hence we consider

By hypothesis, every derivative D¢~ f belongs to G,
each derivative as a new function g having the same Gevrey-parameters ¢z, 117 as
f. We then apply A(f1Dy/ ) and repeat the computations of step a), replacing v

with D"v. The coefficient cjpg = ¢,,c107 1s a proper multiple in m of c¢y¢;7. O

Another technical lemma is the following result.

Lemma 2.4. Let p(y) be a second order polynomial iny = (t,x) € R x R".
If x(s) € Gy/""(R) for ay € (0, 1), then e y(p(y)) € G'/*1(R™1). If supp(y) =
[—80, 0], then for a cut-off function b((y — yo)/(2R)) € Gé/a‘(R"“), there exist
constants ciy> and c123 such that

< cl22eTf5—0123|§0|"1 )

Frose [ 2O (25 20)]

Proof. By assumption, both ¢(y) and ™ are analytic functions (i.e., in G'),
while ¥ € G)/*(R). Since G' ¢ G'Y* and both G' and G'/* are rings by
[8, Proposition 8.4.1], we deduce that ™ y(s) € G'/* (R). Moreover, e® x(s) has
compact support, since y does. Let us write y as y(s) = y1(s/d), where y; has
the properties of Definition 4.4 with associated coefficient ¢;x. By assumption, for
z€ C, E =supp(y) =1[-80,01, c119 = dcix(a1), B = 6% cyx(ay), and Hg as in
Definition 4.1,

|(Fsmzx ()] < crioexp(Hp(Imz) — B|[Rez|™).
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Consequently, for & € R,

s—>f (e ){(S)) s—>§+lr(X(s))
and for 7 > O,
|Fse (€™ x())]| < crioexp(Hp(7) — BIE|™) = cr19 exp(dr — B|E|™).

Hence we can estimate the derivatives:
|ase™ x(s)| = ’ / e (iE Ty
R

s e ] k+1
=2xci19e™ B “1)F< >
(25} (25}

< / cr1olé[F exp(t — BIE|™)dE
R

2 _
< N9 Lo T'(2)B
o1

wn k+1 k+1\% ;
T ()T s ditentn,
o a1

where, by Stirling formula,
(k+ D®D < fT(k +2) < ket ire™ (27k)' 2,

1ol _(271_)1+1/(2a1)c“91—~(2)( 3 —3)1/0‘18—1/(11, and
kel

k+1 k+1 k+1 k+1 k+1 o
with p = [(k + 1)/a;] — 1. We now recall that the composition of a Gevrey
function with an analytic map is still a Gevrey function, therefore obtaining that

e” x(p(y)) € GY“. Since ¢(y) is a second order polynomial, [¥p(y)|cop, <
c118(R) for k =0, 1, 2; so, without loss of generality, we take c¢y1s > 1. Consider-

ing the composition with ¢ we obtain by induction and setting m(s) = e¢* y(s), for
k > 0, we obtain

62 k—r
Fmipo) = @ms=pn @@ ™ (22)

!
« 2r — k)l(k — r)!

where J ={r >0: 2r > k > r} and

k!
akew(y) < ck+leff5 cr+lrr/a1
161" 29| < i3] 2; eyt
< Ck+letbck+1 k r! rr/al < (en)ck+lck+1)2kkk/a1
= *121 118 — 2k_r(2r _ k)' — 121%118 4

with pra k),rr/ # < kK for r admissible. For the product, applying (4.1) and
setting c122 = max{4cyis¢121, c1x/R}, we obtain

Ob((y — y0)/(2R)) < R 1} kY™, af Im(p()b((y — o)/ (2R))] < e cisskM ™.
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Consider the partial Fourier transform J;_, ¢, in time of 6f €™ x(p)b((y —y0)/(2R));
from the estimate above, it follows that

10X 1F 1=, (€™ x(@)D((y — y0)/(2R)))| < e ki) ke

This implies that

kk/al
1Fsale” x(@)]] < e it

0—k T0—cC 141
< cine < cppet el

12272 & =
1Solk
where for each &, we have chosen k to be the largest integer such that
c122|&ol kY% < e7!. Since k > [e7'eb|E[]1% — 1, we get the result once we
choose c123 = (ec122) ™% O

In Theorem 2.1, we referred to the radius R that is defined in Table 1 as R :=
gR, with ¢ = (16 + 1—16)_1/2 and where R, in the same table is computed in
terms of the pseudo-convexity constants introduced in Subsection 3.1. Using those
quantities, one can introduce the geometric construction of Figure 2. Let f(y) be
the second order polynomial defined in Theorem 2.1, with ¢ = ¢*¥ and y, € Q.

Recall that f(yg) = ¢(yo)-

Proposition 2.5. Let 0 be a positive constant such that

(2.4) 0 <6 <nlg"|co.q*RS" /8,
and
ov _ v
2.5) o) = fO) = fo0 = 3 ‘/’)(y"f)fy 2% _ oy — yol2.
0<|v]<2 :
Then

{yeB(o,R): ¢ < p(yo)} N{y € B(yo, R2) : p(y) > =85} C B(yo, R).

In addition, let

2
2.6) 0<r< ¢ corne)°Ry ™

— 1+p -
21@' | cogpy,) + 10n|@" | conp,, Ry r

Then B(yo, 2r) C {y : lp(y)| < d}.

We postpone the proof of Proposition 2.5 to the end of Section 3.
In the following lemma, we show how an exponential decay for the L?>-norm of
a proper localization of Pu is transmitted to the right hand side of Tataru inequality.
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Lemma 2.6. Under Assumption Al, let yo € Q and ¢ be the quadratic poly-
nomial of (2.5). Let 0 < a, a1 < 1 and y(s) € Gé/al(]R) be a localizer supported
in [—80, 0] and equal to 1 in [—70,0/2). Let u, 06 > 0, b € CSO(R”“), and
a € Ci°(R). Let A(Dy) be a pseudo-differential operator with symbol a, and let
o =min{ p®, 1} If

a

<e’
0

Dy y—>Yo
Ml =1, (Pullg,y < 1, and HA(ﬂ)b( - )Pu

B

then, for each Tt > 0, there exist constants ci19, C1o9 Such that

—ElDolz/ZfeT(/’ 270 —C109

lle X(@)P(y, D)ullo < crioe

Proof. Define a,,3(s) := a(3s/u), so supp(l — a,,3(&)) C {|S] > u/3}.
Then

le=<1Pol /267 ¥ () P(y, D)ullo = [le™5/P0F, 2 (™ x(0)P(y, D))o
< I(1 — @, 3(E0))e =S/ COF, 2 (€% 4 (0)P(y, D))o

+ lla, 3(E0)e™ 0/ COF,, . (e x(9)P(y, D)u)llo
=1+ 1.

By our construction, b((y — yg)/R) = 1 on supp(y(¢)Pu); hence we can write
x(@)P(y, D)u = x()b((y — y0)/R)P(y, D)u. The first integral can be estimated for
7 < cpp7u as follows, where ¢jp7 = +/€/(360):

—eu? 2
I < e /I8N F, o (e x(@)P(y, D))o < e~/ 189)1e™ y(p)P(y, D)ullo

IN

e—eﬂz/(18r)+r(5||X(¢)P(y, D)u”() < e—6127¢5//-

IA

b

0

where we have used the fact that —eu?/(187) + ©0 < —c270u. Notice that the
estimate for /; holds only for 7 < c¢jo7u. For t > c¢jp7u, we have

_ 2
l|e=<IPl /2™ v ()P (y, D)ullo < €| x(@)P(y, D)ullo

< 6261—c127z5,u

(320 om

b

0
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o - 6261—51 < @25T_

since e <2791 For the second integral, we get

Yy —Yo

I, =
2 R

e/ /3(50)3}%50(5(#)(((0)[)(

)P0 DY)\

Y=o

[N

Aus(Do)e™ y(@b (> ) Py, Dyu
0

y Z_RyO)A/‘(DO)b(y

Yy —=Yo

IA

Ao r()b( )Py, Dyu
0

xz/3(Do)€wx(¢)b< ) 1—A (Do))b(y ;yo

)P(y, D)u

0
=13+ 14.

To estimate /3, we apply the assumption and obtain

[ )eron (3 )a () (e

AP

0

To estimate I, we apply Lemmas 2.3 and 2.4. By the estimates for f(y) at its
derivatives in Step 3 of Section 3.1, we deduce

185 o] < ciig(@) := 1+1¢lo(1 +Ro) + 5n1¢"lo R +1¢"lo(1 + R3) + 0(2 + R3)
for k =0, 1, 2. Lemma 2.4 and the properties of ™ y(¢) imply that
1T s = [ X @ DB = 30)/QRI| < c1ppe™ T /CF D memldf =l /2,

since |5 — ol = p —2u/3 = /3 on suppl(1 — a(éo/ w)a(3&;/w].
To estimate /4, we apply Lemma 2.3.a); and, using the fact that

Yy —XYo
-ernon(3)
f=ePx@b\—g
and recomputing the constants, we get

a2y o252 (1= 4(2) ) (2522

0

2
e — o
< C%loezré Craspt 1Hb<yRy )Pu
0

with ¢io8 = c123 and

’%“12

(8/3)(1/a1) )‘/2

Cii0 = C122< /o
1
aichy' (arcig)/®

Setting c199 = min(1/€0/36, c128/2, 1) we finally get the result. ]
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supp u

2r

¢ > (o) | ¢ < P(yo)

Figure 2. Geometric construction around yq

We now prove Theorem 1.1, giving an estimate of inverse exponential type for
the temporal frequencies || < 2w.

Proof of Theorem 1.1. Lety, € S be as in the Assumption Al. Then,
by Theorem 2.1, there exists 2 > 1 such that ¢(y) = exp(dy) is a conormally
strongly pseudo-convex function with respect to P in Q. We introduce the function
@ defined in (2.5) as the second order polynomial approximation of the conormally
pseudo-convex function ¢ — ¢(yo) around yo, translated by —ca|y — yo|?. In Table 1,
we found ¢ independent of y, such that ¢ also satisfies the conormally pseudo-
convexity condition with respect to P in the ball B(yg, R»). In Proposition 2.5 we
also computed a J independent of y, such that

{(y:¢ <o)} N{y:9> =85} C B(yo, R).

Given J, we found r > 0 such that B(yg, 2r) C {y : |p(y)| < 0}. Let y; € Gé/“‘(R)
be a smooth cut-off function which vanishes on (—oo, —8] U [1, 00), equals 1 in
[—7,1/2], and satisfies O < y; < 1. Then, the scaled version y(s) := y1(s/d) of x
satisfies Py(@)u = y(p)Pu+[P, x(¢p)]u; and, since u is supported in {y : ¢ < ¢(yo)},
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it follows from Proposition 2.5 that

supp(x(@u) C {y: ¢ < d(yo)} N{y: =85 < p(y) <o} N{y:|y—yol <R}.

Moreover, [P, y(¢)] is a partial differential operator of order 1 and satisfies

supp([P, x(9)]u(y)) C {y : —8J < o(y) < =7d}.
We now apply the estimate of Theorem 2.1 to yu to obtain

€lDy|? /27y —€|Dol? /27y

x@uli, < cirle x(@)Pull}
_ 227 1 (p—
+c1 7 e P22 [P, y(o)ullg + 3.7 tlle™ ™ x()ulli ,

Tlle”

for all © > 79, where d = R3/(4¢). We refer to Table 1 for all the involved
parameters. According to our construction, ¢ is chosen such that d > 8.

To estimate the first term at the right hand side, we apply Lemma 2.6. The
second term can be bounded by

2 —€|Dy|?/2 2 —1476 2
i rlle P2 e [P, y(@)ull§ < criae™ ™ [l s,

with

|(0 | . |¢// 2
Cli4 = C%,Tlgléll){ll%‘z (1 + 54C] 52 )

since
/ "

(=A% ro=a(5) 5 A ()

Applying || x(o)ul|? < (1 + |} "/52)”””111(3 L) We see that the third term is such
that

(p—d) —1376
b

2 2 2 3 —14w 2
A rlle x(@ull} <00+ DT x(@ull < cuise

with ¢q15 = C%,T(|¢’|2Co + (B3 3/6%)(1 + | x4 2C0/52). Since 7y > 1 is such that
(1+179)/2 < 7, we get

1+7 o
@7 (—2")||e—f'DO'z/zfef¢x(¢>u||%,, < cripe (eI + 710

for all 7 > 7o, where ¢16 := 3max(c ;¢1jg, €114, C115). We want to extend the
previous estimate to the complex upper half-plane. For 7 > 0, defining

1 _
N(@) = 51+ )l e y(pulli .,
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we get
1 — —el2 /(27 T
N@ = S0+ 1)IVIEP + 2T T a5 L0V 0T (e x (ol

1 —e£2/(27 T
= SA+ VIR + 2T 0T e x(pl;
(1 + ‘L'())

2
x Ty (€™ y(pu)e™ <6/ COF (e y(p)u).

[ addeer + e
Rn+l

We first extend the estimate (2.7) to the interval 0 < 7 < 7(. Setcy2 = (1 + |go’|2co)
and

/12
(2.8) C113 = max {C116, C112(1 + ‘L'g)(l + Ufallz(j")elz&ro}'

Since ¢ < 0 on supp(yu), we have

N(7)

IA

1 -~
51+ 70) /R dEde (169, (e (@l + 1T, xp)?)

(2.9)

IA

1
A+ w) | (19, ol + e glpwl’)

< (1 + )l x(@ull} < cr13e™127 < ¢113e*7 (e 201" 4 71607y

We now consider z € C with Im (z) > 0 and rewrite the previous expression in the
complex half-plane, replacing tr with —iz and obtain

1+71 < ~ <5 .
N(—iz): = ) 0 /R+1 de(IE)? + |Z|2)e%?yﬁi(e_lw)(((ﬂ)u)ei?yﬁf(e_le((”)u)
1 _gimz . .
= 5(1 + To)/R 1 dée (lé:?yeé(e_lw){((ﬂ)u)lz + IZ?yag(e_’zwx(cﬂ)u)IQ)
1 —i —i
< 5(1+To)/]RH dS(IETFye(e Z‘/’)(((ﬂ)u)|2+IZFJ"y—w(e “ x(@w)|?)
(2.10)

1 . .
=30+ [ as(19e ol + e pnol?)

1 .
= 5(1 +170) - dy(le_’w[vy(—iw) (@) + V()]

+ Izlzle_iz‘”x(co)ulz>

IA

1
S+ ena (L + 1P @ulf + 1V, 2ol

A

1
S+ et L+ 2P xuli < ens(l+ 12l
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In the following, we want to apply properties of subharmonic functions. We notice
that the function U(y, z) : = e~</PoI*/(=2i0=i20 » () (y) is analytic in z and satisfies
Imz > 0, and that N(—iz) is subharmonic in z, as it integral in one parameter of
the sum of two squares of the absolute values of analytic functions.

Our aim is now to estimate the H' norm of A(Dy/@)b((y — yo)/R)u)(y), where
w = u*/p, for some f > 0 to be determined. For #; of Gevrey class 1/a; with
support in [—4, 1] and equal to 1 in [—3, 1/2], let #(s) := 751(s/0). To shorten the
notation, let & = u® and 3§ = F_, .. First define

BDo

FO =A(22 ) o)

Because of the regularity of #, we can write the following foliation with respect to
the level sets of ¢:

n(@)(») =/Ri7(S)5(s— p(y))ds = /Rﬁ(z)e—iw(y’) dz.

Recall that according to our construction, y(¢) = 1 on supp(#(@)u), and n(p)u =
n(p) x(p)u. Consequently we rewrite I as

0

D — D .
F(y) =A (ﬁ TO) (@) x(@uw)(y) = / 7n(2) (A (ﬁT) e"“”x(tﬂ)u) () dz.
H R H
Recall that A(SDy/ 1) is an integral operator with kernel
= B By
k(t, 1) = ﬁa<ﬂ(t n).

Hence the previous equality is justified by Fubini’s theorem, because for y' =
(7, x) the integrand |7(2)k(t, £')e*Y) y(p(y'))u(y')| is bounded by the function
ce eIy (¢ x) € LN(R, x Ry).

Since n € C§°, the Fourier-Laplace transform 7(z) is holomorphic for z € C,
and hence 7(z) is also holomorphic. We then need a good estimate for both 7(z)
and A(BDy/ i1)(e ™ y(¢)u(y)) in the upper half plane.

From the Gevrey class condition, we compute

[7(2)| = [671(62)| < dcrorexp(d  sup  (w, Imz) — c1020” [Rez|™).
wesupp(771)
By considering the domain Imz = —Imz < 0, we have
17(2)] < dcro1exp(d sup (w, Imz) — c1026* |[Re Z]™)
we[—4,1]

< dcio1 exp(—40Im z — ¢1020* |Re z|™),
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where c19; = c1o1(a1) is a given constant and ¢y = cj02(ay, c101). We now change
path of integration in the upper half plane Imz > 0:

o = [ EA(PE) (e atouty)

where I'y ={ze R : |z] > \%cnoﬁ } and I', is the open rectangle inside the ball

lz] < c1302t defined by

1 ~ 1 -
I = {Z eC:Rez = —ﬁcmoﬂ, 0<Imz< \ﬁcmoﬂ}

1 - 1 .
U {Z e C:|Rez| < 50130,&, Imz = ﬂcmoﬂ}

1 _ 1 -
U {z eC:Rez =—=cp3ou, 0 <Imz < ﬂcwoﬂ}-

V2
Hence

D .
A(@)@—‘Z%w)u@» 2]
M H!

+ /r el

Along T'y, with z = Re z, we have |7(2)| < dc101 exp(—c1020%' |z|*!) and
2

< le™™ y(@)u)llz
Hl

< 2(12%1¢ 130 + Dl x(@)ull7:

< (Iz1* + Denns.

IF i < / 7@
Iy

A2 ) o)

|dz| :=Ir, + Ir,.
H!

0

HA (ﬁ I;) e~ y(p)u(y)

The final estimate for I, is

+00

Ir‘l < 20c101v/C113 Vs + le_cmzé T ds
1
%

51301

_ 5%1 1 ay 770 _ ay o
< 26¢101+/Crize 20" a0 A / Vs2 + 1 e~ €1020" 5" /2 g
R

_ 5% 1 ) 770 _ a
< 2cio1y/crze 0 A A /\/(5/6)2+le st 2 s,
R

For Ir,, we multiply and divide by the invertible operator ¢<20I"/29_ obtaining

Ir, = /r &)

< 56101/ g*otmz—ci20” [Re 2|l
I

‘A (ﬂ@) e—€|DO|2/(252)65|D0|2/(2iZ)e—iZ(/’u(y) g1 |dz]
o

A ( ﬁ@) e—€lDol?/2i2)
H B(HY)

e P20 50 1 (pyu(y) 1.
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In the region I'; C {z : c130ﬁ/\@ < |z| < ci30/t}, the norm in B(H') can be
estimated independently of x via the Fourier symbol of the product:
210)%1 el
< ex ( €eu)Imz ): « ( emZ)’

S0\ —ec2/2i Loy Gomm:
a( =) e/ = |a( g2 )e 2 s ——=
( ﬂ) ( ﬂ) 282|ci308 /2|2 Bcis

while the latter H'-norm is related to the estimate (2.14) for N(—iz):

N(—iz) - 2e13(L+ 12 _105m-
min{1, z12¢c};,/2} ~ min{1, c¢f;/2}

—e€|Do|? /(—=2iz7) —i 2
e €1Po /(=220 y(@yu() 11 <

where we have used the estimate

(P +1) < (E17 +121%)

min{ 1, 22¢35,/2}

in the first inequality and and the estimate z > 1 in the second. Hence

2c113(1 + @22 c30)\ /2 106 [Realtl P
Ir, < 56101( 130 ) 40Tm z—c128"1 [Re 2l , 20y 551mz|dzl
I

min{ 1, ¢3;,/2}

26‘113(1+~2C2 N\ 1/2 B " .
min{1, ¢j3,/2} I,

where we choose € and £ such thate < § 2cf30 /8. Actually, by our choice of ¢3¢,
this inequality can be written as

9> . €0 iy
€ < 2475 min <%’ 43y 1).

The latter relation is satisfied for any € < €p and f > c31, where

c131 =max{\f2(16)6 \ﬁ(16)63(a1—1)\/6075 (16)6\/6075}

C123 3vV2

with €y computed in Table 1.
Writing z = x’ + iy’ we conclude the estimate

5 e—cl()2(5 1|Rez| 1—(5Imz/2|dzl

I
g ey 5 .
7 sap (€130 Y ool , ey
<20 e BT = 2t s [ e gm0
_ 1304
’ N

—C1000%1 (c130)%1 gl +00 SV /2 1.0 530 & 591 1¥ |1 ’
< 26e ! V27 e 2y 4 e 0w [ om0 VI gy
0 R

N VAN GE Y ha O s, _§c10 5 _ e
< e 1029 A e/ dy. +e Wk [ emclX I gy
0 R
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Comparing the estimates for I, and Ir,, recalling that e~F < ¢=“F"' "and choosing
the largest constants, we obtain the final estimate for F(y)

211 H (ﬁﬂo)(n((ﬂ)x(w)u)(y)H < crzpe e,

with

L. (c130)*" . c130 1 a|>
c137 = — min | ¢1020* , 0——, C1020™"! c
137 =3 ( 102 NN, 102 (Zﬁ 130)

and

Ci36 = 26101\/6113/ \/(s/0)* + Le 05" /2gs
R
2
+ C101 (26“3(1 * Ciz0) ) <2 /+0° e_y//zdyl +/ e_clozmaldx’).
0 R

min{ 1, c¢};,/2}
One can prove a similar estimate with #(¢) replaced by b((y — y9)/r). We have

[SIES

chosen r such that
supp (b(y_ryo)) Asuppu C {y: n(p(y)) =1} Nsuppu,
and we write
A ) (2 Jun =) (P04 (2 Yo

A(%Do)b(y yo)[ (ﬁ )]n(w)u(y)::11+12.

From (2.11), J; has the desired estimate

|b/|C0 _5'137,17(‘1
IJill1 < ci36 1+f e ‘"

since A(38Dy/ 11)b((y — yo)r) is a bounded operator.
To estimate J,, we apply Lemma 2.3.c), using the fact that b € G/* (R™!),
obtaining [|J>]|; < cizae™“5"", where

. . | 1/2
= 7F<7) ’
C134 I”Clx<3 o al(r“'czx)l/“](alcl35)1/“‘)

— o
ci35s =r*'cox

23"
We conclude the proof of Theorem 1.1 by choosing c129 = max{cj34, €136}, C132 =
min{ ¢35, €137} O
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Next, we show in detail the estimate for the function N applied in the proof of
Theorem 1.1.

Lemma 2.7. Let N(—iz) be defined as in (2.10). Then, for z € CN{Imz > 0},
the function N\(—iz) := N(—iz)/|1 — iz|? satisfies

(2.12)
Ni(—iz) < cp13e®Mi(e7 208 4 =160Imay = 7 e RU{Rez =0, Imz > 0},

Ni(—iz) < cii3, Imz> 0,

where cy13 is given in (2.8) and cyyy is defined in Lemma 2.6. Therefore, there
exists some constant c13o, independent of u, such that

(2.13) Ni(=iz) < 2cii3e™ %% |z] < ci30, Imz > 0,

3C109 1 3
C =—\ — .
P07 s e

Consequently, in the region |z| < ci30i, Imz > 0,

with

(2.14) N(—iz) < 2c113(1 + |Z|2)e—1051mz.

Proof. Since Ni(—iz) < N(—iz), the estimates (2.12) for Ny follow from the
equivalent estimates for N proved in (2.7), (2.9), and (2.10). To show (2.13) we
first consider z = x" + iy’ in the region x’ > 0, y’ > 0. Here we define the analytic

function
ek (- ok
]’l(Z) _ 621626 80i(z—C 1t z )’

where z = |z]e’, ¥ = exp(kInz), with Inz =1In|z| +i0, 6 € [0, 7/2], and C; is a
constant to be determined. Taking x = 6/5, so that 1 < x < 2 and « is close to 1,
we write h(z) as

h(z) = exp(25(ix’ —y)) exp(—8[—y + C1 ' ~*|z|* sin(x6)])
-exp(—8di[x — C1 ' 7"|z|* cos(x)]) ,

and use 4 and its inverse to estimate N;. Consider N\(—iz) = No(—iz)|h~'(2)|?,
where N,(—iz) is the subharmonic function in the first quadrant given by

I(z)l2 <
n—ipe”

Ny(—iz):=Ni(=i2)|h(2)]” / (€17 +121) Fooe(e ™ x(pw)l’déds.

Observe the following.
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a. On the real axis y' = 0, we have |h(x')| = 1; therefore, N>(—iz) < Ni(—iz) <
2c113.
b. On the positive imaginary axis y > 0, x’ =0,

|h(iy")| = exp(—=20y") exp(a(y")),

with a(y') := 85(y' — C1 1! 7*(y')*s,), where s, = sin(kz/2) > 1/2.
Then a(y’) achieves its maximum at y}, = z(Cjxs,)"/ 1™ with the value

;. 8ou(k—1)
O = G oD
We choose 18 1)y ret
K — K=
Cc, > (== "7 51{—1
'= KSK( KC109 ) ’

so that —cjgoft + a(yy;) < 0; and consequently, by the estimates of Ny and ||,

Na(=i2) < (erpae™® (€720 4 ¢716%) ) 40 200

— 6113(62(—6109ﬂ+a(y)) + o~ 109y +2a(y ))

_ ~ / _ =K
< C113(62( cloofi+a(y)) 4 o= 166C I "z k) < 2¢113.

c. In the region y’ > 0, x' > 0,
|h(z)] =exp(—20y) exp[85|z|(sin@ — Cy ' ~*|z* "' sin(xh))] < e 2% &<,

Indeed, for each 8 # 0, we can compute the maximum in |z| of that expression and
apply the inequality 1/2 < sin(xf)/sinf < x to obtain

ok —1) _

- ~1—r_ xk—1 _: ~N .
r£12ag§[85r(sm9 — Cru " sin(xh))] < c(u) = Wﬂ,

which implies Na(—iz) < c13e~* €2, To get rid of the i dependency in this
estimate, we apply the Phragmen-Lindel6f Theorem 4.5 for subharmonic func-
tions in the sector x’ > 0,y > 0 to obtain N>(—iz) < 2c¢;13 and note that c¢113 is
independent of x.

To prove (2.13), observe that for k = 6/5, we have sin(xz/2) > 1/2; and the

inequality
|1 (2)| = exp (20Im z) exp (—83Im z + 85C, ii' ~*|z|* sin(xh)) < exp(—5dImz),

where

3C109 1 siné ﬁ
C130 - = 7( )

5
N < 1 N
45 16> —06?8322](8@ sin(xf)
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is valid in the region |z| = cj30u with Rez > 0, Imz > 0, Indeed,
8C1 ' ™ (c1300) " sin(kB) < sind,

which proves the derived estimate; consequently, (2.14) follows.

Next, we observe that the same estimate (2.13) can be obtained in the sector
Rez < 0, Imz > 0 by the following arguments. In the region X' < 0, y' > 0,
we set z =x' +iy and w = —z = —x’ + iy’ (belonging to the first quadrant), and
define N3(—iw) := Ni(—i(—z)) and Na(—iw) := N;(—i(—2))|h(—2)|?>. Notice that
h(w) is an antiholomorphic function in w, and therefore |A(w)| is subharmonic.
Also, N3(—iw) and N4(—iw) are subharmonic and satisfy the same estimates as
Ni(—iz), No(—iz), respectively. We then apply the same procedure as in the first
step with Nj, N; replaced by N3, Ny, respectively. (]

We now can complete the proof of the logarithmic stability estimate in Theo-
rem 1.2.

Proof of Theorem 1.2. We consider the following two cases.
Case A: ||Pull;2(p,,) = ltllg1(s,,)/€- In this case, the estimate is trivial, as

”u”H'(BZR)
In (1 4 ”“”H1(32R> ) '

TPull 2,

el 2,y < Nl sy < In(l+e)

Case B: [[Pulli2pyy < lullgis, /e Without loss of generality, we take
lleell 1,y = 1. Our aim is to consider separetely estimates for low and high
temporal frequencies.

Let A(Dg) be a pseudo-differential operator with symbol a(y), where
a e Gé/ “(R) with a € (0, 1) is a smooth Gevrey class localizer that is supported
in |&| < 2, equals 1in |&| < 1 and satisfies 0 < a < 1. The function a(fS&y/ i)
is a scaled version of a, where & > 1 is the parameter to be optimized, and S > 0
an adjusting constant. Let b € Gé/ “I(R™!) with 0 < a < a; be another localizer
supported in B, equal to 1 in B; and satisfying O < b < 1. Observe that according
to our geometric construction,
Yy —Yo

B, C suppb( ) C By, C Bg C suppb()%) C By

(see Proposition 2.5), and hence ||ul|;25,) < [|b((y — yo)/r)ul|2. Then we perform
the splitting

=22 (1A () o2
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For high temporal frequencies |&| > u/f we estimate as follows:
BDo Y=o > Béo Y=o
H(l —A( - ) )5( - Juts) = 1—a<7) Ty, b( )u()
B’ / / < Y=o ’
<= SoFise | b u(t, x)
12 Desqp Jeo 1 ( r )

2, (y yo iz
— 752

dxdfo

5 Pl S LI

For low temporal frequencies, we first choose u such that ||Pull g,
= ¢ ¥ < ¢!, Then we take 4 > 1 such that 7z = u*. Hence for A and b as

above, we get

Dy — Y0 L
(2.15) HA(Cﬂ)b(y )P = WPuliagp =
for all ¢ > 0.
For ¢ =11in (2.15), we can apply Theorem 1.1 to obtain
D - . Inia\
(2.16) HA(’BNO)b(y yo)u < cro9e” 1 ﬁ > 3cy31.
u r 12

By collecting the previous estimates for low and high temporal frequencies we
conclude that, as g > 1,

|b,| 1/2 _ ~a C C
lullz2s,) < é(l ZCO> +cppge B < 105 OIS
H r o —In(||Pullo)
ll2ell £71(Bo)

< 2c¢105 n (l N Nl 1.5 ) )
”Pu”LZ(BZR)

where

2
|b/ 0 1/2
C
C105 =ﬁ(1 + 2 ) + C129

and in the last step we have applied the inequality In(y) > In(1 +y)/2 fory =
llll g1 By / 1PNl 2B,y > €, and then returned to the original notation. Choosing
ci11 =1In(1 + e) + 2cy05, we obtain the result. O

3 Geometric constants

3.1 Pseudoconvexity constants. In the following, we work under the fol-
lowing assumptions, derived from those in Theorem 1.2.
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Assumption A3. Consider the case of the wave operator (1.1) with principal
symbol p(y, &) = =& + Yoy g4 (0E&, With 0 < aio/ < g*(x) < bio¥,
ay, by > 0. Let & = (&, &) € R x R”, where |£]? = PO &2

Assumption A4. We fix a function y € C>?(R"*!), for some p € (0, 1), such
that p(y, ¥'(y)) # 0 and y/(y) # 0 in a domain Qy C Q, containing the point yg
lying on the level set S = {y; w(y) = 0}. In particular, we assume that |y/'(y)| > C;
in Q for C; > 0.

We use Einstein’s convention for repeated indexes.

To get Tataru inequality, we proceed in three steps. The computed constants
are listed in Table 1.

Step 1. Given a function y € C>*(R"") satisfying Assumptions A3 and A4
in a domain Qg, we find positive constants M», M|, Mp such that

. / 2
- i++l|r§2@))| + (L0, & +iTy (), V/(y)>|2)

L PO, S +ity' (), p(Oi € + ity (1))
2it
for every & € R x R", & # 0, v € R. The previous inequality proves that the hy-

(B.1) MxE2 +M, (

> Mp(* + [E)

persurface S = {y; w(y) = 0} is conormally strongly pseudo-convex with respect
to P in Q.

Step 2. For ¢ = ¢*¥, with y, on the level set ¢(y) = 1, we find 2 > 0 such that
the following inequality holds true

M, PO, & + it (W)
min{ 1, A2¢%(y)} 2+ |&]?
L {p(, < +itgd' (), p(y, & +it’ ()}
Ap(y) 2it
> Mpmin{1, *¢*M}(z* + |£]7)

(32) M+

forevery £ € R x R*, £ # 0, t € R. The previous inequality proves that the
function ¢ is conormally strongly pseudo-convex with respect to P in €.

Step 3. We consider a perturbation of ¢ by the shifted second order polyno-
mial centered at the point yy,

@°P)yo) (v — yo)®

| —aly — yol*.
V!

(3.3) OEDY

[v]<2

In a ball B(yg, R1) C Qg where f’ # 0, we define

¢o = min @(y), ¢u = max  P(y).

YEB(yo,R1) YeB(yo,R1)



182 R. BOSI, Y. KURYLEV, AND M. LASSAS

We find ¢ and R, > 0 small enough so that in the ball B(yg, R»),

f() < @) in B(yo, R)\{yo}
and

PG, & +itf' O L PO, S +if'()), G, € +inf' ()}

(3.4) Magj +2M1 == KT (o)2it

(@ +1E1).

>

S

The previous inequality proves that f is conormally strongly pseudo-convex with
respect to P in B(yg, R»).

Proof of Step 1. We recall that

pOLE+ity' () =p(y, &) — Tp(y, ¥) + it{p, v}
PG, & + ity O)I? = Ip(y, &) — Tp(, Y)HIF + Pl{p, wil?
= pO, O + 2 Ip(y, v)OIP = 22°p(y, EOp Oy, v + 1 p, Wil
PO, E+ity' ), w' ) = {p, v, &) +i2tp(y, y)
(pL(, & +ity/ ), W OO = I{p, w3, OIF + 427 pQy, w1

We have to estimate the quantities

. / 2
_ O fz++l|2”|z(y D . + ity o), WO P,

Lo {p(, < +ity'(y), p(y, € +ity'(v))}
Zy T 2it

={p, (P, w1}, E) + {p, {p, w0, Y O)),

where the last equality holds for our second order wave operator. For the second

Il,y/:

term we get, by setting a” = —1,4/° =0,a/* =g/, jk=1...n,

n n n n
L, = Z Elm (4 Z a’l w;fkakm +4 Z a]laxjakm W —2 Z 8xjalmak-’ l//;()

1,m=0 Jok=0 Jok=0 Jk=0
n n n
2 /o il 1k il ki / 2 2
2 Y (43 @ypd 42 Y alogd ™) = —CiE + ),
1,m=0 J k=0 J k=0

where Cj is defined by

max (4 Z a'yd" + 4 Z a’'oy,d" y —2 Z o, a"a" 1//2) QC+yv,)
Jik Jk Jk

ey

< 20(1 +n?1g"" |EOIW e (1 + [y [80) = Cs.
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For the first term, we get

2 2 2
L, = m +7°|p(y, 1//)|2(4+ 5 jIéIQ) —25 jléPp(y’ G, v
2
2 T
U P (14 )

PG, I 2 INY: 2 I\ !
e URIORR (4|5| +(5—w)r)12+|5|2
2
U P (1+ e

1
(PG OP(1 = @) +41pG, wPIEPE + Ip(r, W) (5 - E)T4

EEEE
+lp piPRE +1EP));

Observe that by Young’s inequality,

1
2p(, E)Tp(y, W) < olp(y, O + 5# I, ¥)I%,

where we choose w € (0, 1), so that (4 >) 5 — i > 0. We now split the estimate
into two parts.
Case 1: p(y, &) > 0. In this case,

PO, N =p(, &) ==&+ gM&& = ailé) — &,

kj
P, O = (=& + > 89&E) > (@il — =&+ g &¢E))
kj kj
=& +allPOgvas) — &1 gvas +alél)
kj kj

> &+ at ||t — (by +a)IE)E.
Our aim is to find M,, M|, Mp such that M2§§+M111,,,,+12,y, > Mp(2?+|&)?). Then
lp(y, I

2+ &)
2o, v [ s 1, ) o
L A (4121 +(5—g)r)+|{p, l <1+712+|5|2>]

(Mzuzéé +1E12ED) + My(1 — )@ |E* + &F — (ar + b))IE1RER

Mo+ Ml + by > MaGd = Cy(2 + [E12) + M, | (1 -

= 2T e
1
+ M |pQy, YOI [471E1P + (5 — 5)#} — (7" + &) +2r2|5|2)>

> Mp(T* + |E]?).
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To solve the last inequality we have to solve the following system of seven in-

equalities:
(M1 = af =€) 1E1* = MplE)*
(M1 = )+ M — G5 ) & = Mp&y
(M2 = @1+ adMi(1 = @) = 2C3) 1EPE = 2MplEPEG
(4M11pGs, v)I2 = 2C5) 2IEPR = 2Mp PGP
(4M11p0, WOP = 2C3+ M) 26 = 2MpeE]
(Mulpt P (5= 1) = C3) ¢ = Mpe*
Case 2: p(y,¢) < 0. In this case,

PO =—p(.&) =& =Y Va0 = & =) gMag = ailé)

kj kj

Once again we seek M>, My, and Mp such that Mo+ M1y + 1, > Mp(2*+|E]).
Then

Mo+ M1y, + 1, > M, {W(Mgﬁ +(5- é)#)
+lp w1+ ﬂfmzﬂ +Mz(%5 ' %5) — G +1EP)
(MulpG P 210 + (5= )

2 z)2
- G e 220 M (D DBy )

> Mp(z* +E1).

1
>
Rl

To solve the last inequality, we have to solve the following system of three in-

equalities:
2 M, . 2o S
<4M1Ip(y, yOI" —2C5 + - minf{ai, 1}) ZIE1 = 2Mpri<]
, 1
(MilpG, pIP (5= =) = G5) 7 = Mpe?
w
M, . ‘
(552 mintar, 1) = C3) I = Mylct

From Cases 1 and 2, we obtain two systems of inequalities for the coefficients;
by choosing @ = 1/2 and solving them, we obtain the pseudo-convexity estimate
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(3.1) with M| and M, shown in Table 1 and with Mp a free parameter to be set in
the following. (]

Remarks 3.1. 1. Notice that the estimate is valid also in the limit 7 — O.
Indeed, for & #0

PG, 12
45

> Mr&§ — GslE17 + M,

Ma&G + My, + I, = Ma&G + M ( +{p, Wi +{p, {p, i}

PG, )7
I£12

2. From the constraint on M/, one can understand the reason for the assump-

> Mp|&l*.

tion p(y, ¥') # 0. Actually, as observed in [7] and by other authors, in the case

pvo, ¥ (o)) =0, the estimate (3.1) is still possible if {p, {p, w}}(yo, ¥ (7)) > O.
Indeed, in that case, there exist positive constants C4 and Cs such that I, >

Cs57?> — C4|¢)?; and one can proceed as above to get (3.1) with different coeffi-
cients.

Proof of Step 2. Let 4(y) =", 7; = tA¢(y), and recall that
@' () = ApMY' ) =y’ (), ") = 1MW ) + Ay () @ ¥ (),

where ¢/(y) # 0 in Q. Then, for 7 # 0 (see [7, Lemma 4.2]),

—./ . / 1
P, € +it¢'(¥), p(y, € +itd' )} _ PO EH TN, PO € iy v O

Ap(»)(2it) 2i
+ AP0, &+ ity ), W )12,

where on the right hand side one has first to perform the derivatives and then

substitute 7; (which, consequently, must not be seen as a function of y and 7 in the
bracket). In the case 7 =0,

{p, {p, P}y, C)
Ap(y)

Hence, for 2 > M, substituting in (3.1) the variables 7, &, we obtain
7 +£17 = min (1, 22¢°() (27 + €],
and finally (3.2). (]

= {p. AP, Y}, O + AP0, O, Y )17

Proof of Step 3. For simplicity, we now consider 4 and a domain B (yg, R;)
on which ¢9 = ¢! < ¢(y) < e = ¢y and min (1, 2?¢*(y)) = 1. Since
ly(y) — wo)l < [¥'lcoyR1, we choose

A >e.

(3.5) R, §min{1,min|y0—y|,}, >
Q Ay | oy
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We then rewrite f as

) =p(o) + Z 0;p(yo)(x; — xo, ;) + 0:p(yo)(t — o)

j=1

1 n
*t3 Z aikgﬁ(y())(xj — X0, )(Xk — Xo,x)

Jk=1

+ Z ai,qs(Y())(xj — X(),j)(l‘ — 1)

j=1
1
+ 35600 = 10) = alx = xol* = alt — 10l

and its derivatives, identifying o, with ¢y and denoting the Kroenecker symbol by
Oap, a8

F10) =500+ > #7,00) 0, — Xon)

h=1
+ ¢/ (vo)t — 10) — 20((x; — x0;)(1 — do;) + (1 — 10)Jo;)
f;;n()’) = ¢;/n1(y0) — 200, Jj,me{0,1,...,n}

First we require f’ # 0 in the ball |y — yg| < R, to satisfy

1F'DI = 18" Go)l — 1" Go)lly — yol = 2aly — yol

> ¢’ o)l — 1¢"(vo)IR2 — 20R, > |$ (2VO)| ,

which implies the constraint on R,

(3.6) 16" O0)Rs + 20k, < 12001

2

In order to pass from (3.2) to (3.4), we compute

Py, & + it O = Ip(v, &) — Tp(y, [+ T, f1) — (s NI
+2{p, £} +{p. ¢ — fDI
< 2lp(y, &) — Tp(y, [P + 2% p(y, ¢)) — pO, I
+27{p, fF}I> +22°1({p. ¢ — fHI
< 2lp(y, & +itf O + 27 p(y, ¢') — p(y, SO + 271U p. ¢ — fDIP
< 2lp(, & +itf O + 27 + 277 |E P
< 2Ip(y, & +itf O + m(1+ ¢ o + 1 [e0) (7 + 1E1),
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where #; and #, are defined by
n n 2
PG.#) = pOL O = | = @7+ D g™k + (1 = D ™ fifi

Jjk=1 jk=1

<21f, = HIPABI+ D> +21 > 8B — fi + fj(—=fi + s

Jk=1
< 4L+ 115129 100 + 1 1EOIf — ¢/ leo :=mi

and

{p. ¢ — [P =125 — D +2>_ g™ &(d — fOI
< 81 +n*g*IZOIf — P lE1 1= mlél.
Next we have

PO 2 0D PO TPON _ () 4, gy 0+ 2 (9, B0 $'0))

< A{p, {p, IO, + 2 {p, {p, 1O, FON+ P, (P, p — F1, )]
+ 7 1{p. {p. ¢ — IO, 'O+ U p. {p. FH ') — {p. {p. FHOL F O
<P AP, FHO,E) + Pp, AP, F10, £/ O)) + 13IE1 + nat + 57,

where 73, 34, s, are defined by

(P AP & — FHOE) =4y — FDE+ D & (4 > &N — fig™

Lm=1 jk=1
n ) n )
+4 > ¢'ogd " — -2 0,8 (g — f;é))
k=1 k=1

< 4" — [l
+ (4107 = 1 colg” eun' + 618701, 8" |con* 1 = f'lco ) IEP
< 101+ Y1 120 (10" = £/ lco + 18" = flleo) IE1 2= m3I& .
Analogously, setting & = ¢'(y), we have

P AP, — IO, ¢ < 3l 20 = na.

Then, replacing ¢ — f with f and & with ¢ or f” in the computations for 73, we
obtain

1P, (P, SN0 0D = (2, 1P SNOH OV < A Neo(8 leo + 1 el = Fleo
+ (417 1ol 2an* + 6187048 ™ L con* | I o ) (1 lco + 1f |eo)l” = o
< 101 ler(1+ 7187 o) o + 1 eol’ = flco = 7.
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In summary,

Moo M (2|p<y, E+itf P +2m7t +217er|§|2>

min{ 1, A2¢2} 2+ |E)?
, (PO.Ex iy %); oo SHITODE 75(:73|é| + (g1t 1))
> Mpmin{ 1, 2262} + &)

Without loss of generality, we can take Mp = 1, while on the ball Bg,(yo) C
B(yo, R;) we also have min{1, 4¢3} = 1. Then

P, E+ it/ O | (PO E+itf (), pOy E+itf OGN} |
2 +|&|2 (Ap)2it
> (P +[E]D) — nzM1(1 +1¢ oo + | f/120)(T + |E17)

Mzég + 2M1

- ﬁ|§| - ﬁ(’hkﬁ |co + ’75)1'

> (1= M1+ 120+ 1 120)
= 2 LI+ 1 e (9l #1160 ) (2 + 1)
= M (2 + 1),

where we have used the fact that 75 < 73|f’|c1(|¢ |co + |f/|co). Furthermore, on
o, we must set the constraint f < ¢ for y # yo. Define v(s) = ¢(p(s)) and p(s) =
vo + s(y — yo). Then there exists g € (0, 1) such that o(1) = 0(0) +0'(0) + %v”(q);
hence

1 1
o(1) —v(0) = '(0) — 2v”(O)’ = *Iv”(q) —0"(0)]|

=1> 5(6%@@) — & (o)) (v — yo)*
¢1=2

2
< crly = yol”*,

lp(y) — Z*(f)é@()’o)(y Yo)| < crly = yol”*? for 7 = nmax |5 ¢lco..
=2

On the set |y — yg| < Rz, ¥ # yo, we now consider the inequality
) =) < —aly = yol* +crly = yol”? < —(6 = cr Ry — yol?
This is satisfied by taking

(37) o .= 2CTRp = 2n|¢”|co,p(3R2(y0))R§.
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Since R;rp < R;, with this choice and C; as in Assumption A2, the constraint (3.6)
becomes

(3.8) (19”10 +4nlg”"lo, )R> < 2C1/2.
Hence, the main quantities can be estimated as follows':

|¢/|C0(BR2) < Adul¥|co,
19" | cowse,) < AW |co + 21y 180),
Bl s, < 18 lcolylcos < Adulyleo Ry,
|¢//|C°’/’(BR2) < Aoy lo,, + 2Pgy o ¥ lo,p
< Al lop + A2l wloalw 10R, ™"
+ 2220 1w Lol lo.1 Ry~ + 23 bulwloi |w/ 13R, 7,

A

n
" = Flcosey < sup | (@9 (p(@) — & (o)) Gk — yo.)l + 201y — yol
J k=0
119" 0,51y — Yol + 261y — yol < 5nl¢”lo,,R>",
18" — £ |co@ey) < 18" Icosly = yol” + 20 < 2n+ DI$"|cosRS,
1
|f/|C0(BR2) <|P'lco+ 19" = flco < @0 + 5n|¢”|0,pR2+p

If//|C0(BR2) < 19" lco +20 =1¢"|co +4nl¢” | co, RS

We end up with the estimates above

n2 < (18 1co) I¢' — feo,
ns < c(181e) (¢ — flleo + 19" — £/l o),
ns < m31f (19 leo + 1 | o)

Let c100(g) = 10(1 + ”4|gjk|2cl(3(y0,R1)))’ which is the largest constant entering in the

estimates for #;. Then, for R, < 1,

IA

A

AN

IN

My = 1= ci00) |16 = 1M (1 +1¢/ [ + 1 120)

1
(0 = [Mleo +18" = [ len) 3o (1418 o + 1 ler (9l + 1 |ev) |

> 1= c100(9) | (SRS [0, M1 (1 + 5165 [20)

1 1 / / 1 4 /
+(10nR}|¢ |co,p)7%(1+|¢ o + ¢ |co + 1@ | co +4n|p" |5 ,R(B|p |c0))-}

I'Unless specified otherwise, the cO ¢!, c?, and C%” norms of w and g-f" refer to operators on the
given domain B(yq, R), while the norms for ¢ and f refer to operators on the smaller ball |[y—yo| < R»,
with radius R, < R; to be determined.
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In the last step, we have used the constraint on Bg, |f'|co < 2|¢’|co, Which is a
consequence of (3.8).

Defining the term |4 y],;qc by

1" |cor < dpr max(Aylo.ps A1wlo.ilw 1o, 22 1wloa ¥/ 13) := 1AW maxs

we can refine condition (3.8) and add an extra conditions on Ré’ (which is qualita-
tively equivalent to | f”|co < 2|¢"|c0):

(3.9)  Gdu 1y co + Ay [20) + 4] 2yl mar)R2 < AC1/2,
4n|p" |0, ,RS < 4nAylmaRy < 2pu (19" |co + AW |20),

where we have applied the previous estimates to the norms of ¢’ and ¢”. By
including the numeric constants into cjgy, we can then write

Mp = 1= ci00®) |10 5By ML+ 251 )

7Y narRE (14 228510/ 13 + 2203 (1 loly Lo + 210/19) |

p L
2 2o
We first require R; to satisfy

2(1
c100@IA YR M (1 + 2243 19 12) <

>

Blm b

100(@)|A W lmaxR L+ 2205, 10/ 13+ 2245 ol 1o + AW 1)) <

1
270

Then we add the previous two constraints (3.9). The resulting upper bound for R,
is in Table 1. g

We collect in the following table all the constants computed in Step 1, 2, 3 and

2

in the following sections . In case of special geometries for which y is given

explicitly, the constraints in the table can be improved.

2Unless specified otherwise, the c°, c',c?, c% norms of w and gfk refer to operators on the
domain B(yy, R1), while the other norms for ¢ and f refer operators on the smaller ball Bg, : |y —yo| <
R>.
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Name Limit Value
21 oJk12 / 712
G > | 201 +n Ig C‘(Qo))ll// |C‘(QO)(1 + |l// ICO(QO))
M > | (Mp + C3) max, 2 Ll
1 - ( P C3) a yGQo (}l)f’ zlp(y’v/)lz
2 (bi+ay)
MZ > min{lal}(MP+C3)+ 2 Ml
Mp < |1
21y o
A = maX{Mla e, %}
L
%o > | et
Pum < |e
. . 1
R, < | min{1, minyeaq, [yo — ¥I, W com )}
0
1 7" 712 1
R2 min {Rl < C ) (A¢M(|l// |CO(B<R}))+M1// |C0(B(R1)))) »
- ? 2¢M(|W”'C"(B(Rl))*—;‘lw/léo(B(R ))) ’ An| Ay |max ’
( | )™
4Cloo(g)|/ll//lgza,le(l"'/lz(ﬁ,ﬁ|W’|i,0<B(R1)) ?
1
( Ao )p
4C100(g)|;“//|”’“"'(l+iz¢1%/lIW('?;()(B(RI))+/12¢I%/I(|V/lCO(B(Rl))lV//llCO(b’(Rl))+'1|W/IZO(B(R1))>
" P
o > 2n|¢ |C0‘/’(BR2)R2
1
€ < | s
0 = | 2nlf’ |Co(BR2)
70 > max{l, 64(4M1 +ﬁ)
72 21,7k 2 2 72 2
(B + 1218 co)? + Al 2+ 21 120) + 2l ) |
—172
1 1
< | ni(16+L _1|¢”| RZ*
= 32 16 COr(Bg,) %2
” 1 1) T p2ee
< nl¢ |C0>/’(BR2)Z l6+15) R;
r = / 1+p
|¢/|CO(BR2)+SH|¢/lco,ﬂ(BR2>R2
23l (16+i)71R2+"
"o < [ 16 2
- 1+,
26(|¢/|CO(BR2)+5n|¢//|CO’P(BR2)R2 ﬁ)
4M, 1
cir | = \/4< n T 4(2«/)0))
1 2| 410 cLr
or | = (§+\/2M2)(1+#)+T%C133
112\ 172
C111 > ln(1+e)+6c131(1+r—f> + 2¢129

Table 1. Table for the constants computed under Assumptions A3 and A4 with the
notation of Step 1, 2, 3 at the beginning of the section.

The coefficient ¢33 is defined and derived in Subsection 3.2; ci29 and c;3; are

defined and derived in the proof of Theorem 1.1.
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3.2 Tataru inequality for the wave operator. We now go quickly
through [7] to compute the coefficients of the inequality in Theorem 2.1. We
decompose the wave operator (1.1) into the sum of its principal part P, and the
lower order part Py:

P>(y, D) = —Dj + g™ (x)D; Dy,
Pi(y, D) = ' (x)D; + q(x),

and then split the conjugate operator
P(y, D +itf'(y)) = e/ VP(y, D)e™ "
into the sum of its principal part P3 and the lower order part Pj:

P3(y, D, 7) = Pa(y, D) + ((fg)* — &7°f}.f) + 2in(= fgDo + 87 Do),
Py(y, D, 1) = —t(fg — &" fji) + Pr(3, D +itf").
The principal symbol of P(y, D) and P(y, D + itf’) are, respectively,
PO, &) = =& + & ¢k,
PO, < +itf') = p(y, &) — Cp, f) +ielp, f).

Since f is a quadratic function and the coefficients g/* are time independent, we
can write

el /@0t Py DYy = =P /@0 p(y D+ icfYe u
=, D —¢f"-(Dy,0)+ itf’)e_‘lDo'Z/(zr)erfu.
Let D = D —ef” - (Dy, 0) andgj =& —€ j’/ofo, j =0,1,...,n For € such
that 2ne|f"|co < 1, we have |&;]> < 2|&|? + 22| f” toéd and [€17/2 < IE)? <
2|&|2. Since p(y, & + itf’) is the symbol of P3(y, D, 1), p(y, & + itf’) is the symbol

of P3(y, D, 7). Now substitute 5 for & into the (3.4), which then becomes, for
V e C3°(B(yo, R2)),

Im(Re(P5(y, D, 1)V, Im(P5(y, D, 7))V)
(Agpo)27

2M|[|Do| V|I*+4M, | P3(y, D, DV |2 .+
1
> VI3

Since W5 > 2 |W |2, .. we see that ||[P3W|§ > 2Im((ReP3)W, ImP3)W); and
for r > 1, we get

M, 1 )||P3<y,5,r)V||% 1

4
1 2M,|[|Dol V|12 ~IVI3 ..
(3.10) 2MDoIVIE+ (= + 570 : = VI,
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‘We now estimate the error term E;:

Ey: = |P(y,D +itf")V — P3(y, D, 0)VI[;
=l = ©(f§ — g™ fjOV + P1(v, D + i)V}
< 22[1f" o1 +nP1g7 | )V 15 + 21h/ DV — el f§; DoV |5
+ 22 [l f | co + |ql) VI
< 41711+ 1?18 co)? + Al (2 + 21 f [20) + 2lalE< ) IV IR ..

Now choose 73 > 1 such that

2 1 1 5
?0<4M1 + m)El = §||V||1,r

and let

4 1
cLr = \/4( Zl + 4(l¢0))'

From (3.10) and ||[P3(D)v||> < 2E; + 2||P(D)v||?, we have after multiplying by 2
and squaring,

IPG. D +izf)Vlo _ 1

(3.1D V2Ma ||| DoV lo + 1,1 SVl
N p
for r > 79, Now consider u € H'(By/s) and define v := =Dl /@0l Y =

x1(t/(2K))v, with yy asin (4.4) with N =1, B; =[—1, 1] B, =[—2,2]. Then
supp(V) C {y: [t] < 4x, |x| < x/4} C{y: |y —yol < Ra},

with © = (16 + %)_l/sz. From [7, Lemma 3.4] (see also [11, Lemma 2.79]), we

have

t

5 ) e~ IDP /@0 7f p(y DY
K

‘F@5+ﬁﬁV—m<
0

H [P(y,5+irf’),)(1(2tlc)]v

0

t
< ci33 (1 - X ())(V +7v| < 0133€_TK2/(4E)||€TfM||1,r
K 0
21 x| co t
D01V lo < [[1Dolo [y + =<5 (1= 0 () Jo

A

2kt 2l xilco\ 2
T||U||0+ <1+1'017c e ™ /(4€)||€Tfu||1,r,
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and

20000\ v ey of
lolli,: < VI + |1+ — )€ lle¥ ull1,.
0

for ¢ > 79 and

' 1 ] .
e =20+ g ooy (IS Valer gy Tl
ToK K 70

As last step, we use the above relations to estimate the terms of (3.11) and notice
that according to our choice of the parameters,

M 2K - 1
260 4.

Therefore, we obtain, for 7 > 7¢, the Tataru inequality of Theorem 2.1 with coef-
ficients as in Table 1.

Remark 3.2. According to the computations above, € cannot be smaller that
€, since this affects the size of R, and t.

3.3 Proof of Proposition 2.5. In the previous subsection, we considered
u € H'(Bg), with the radius R is defined as R : = gR, with

q= %(16 + 1716)_”2,

and R, given in Table 1. Let us compute J such that / is inside the ball, i.e.,
Ip :={y € B(yo, R2) : f())=¢(yo) = =83}N{y € B(yo, R2):¢ < ¢(yo)} C B(yo, R).

By assumption, f(y) — ¢(y) < —crRSly — yol? in B(yo, R2) — {yo}. Moreover,
in Iz, f(y) — ¢(vo) < f(y) — ¢(y). Hence, the limit case is reached along the
boundary {y : |y — yo| = R}, where f(y) — ¢(vo) < —crq2R§+p. Define ¢ such that
—ch2R§+p < —84,i.e.,

8 =crq®Ry*" /8 =n|¢"|corq* RS

Under this condition, Iz C B(yg, R).
In order to compute the smaller radius r, we apply a rougher estimate, using
the definition of f. In the region {y : |f — ¢(vo)| <5} N {y : |y —yo| < 2r},

[fO) — dOo)l < |f/|CU(BR2)|y —yol < |f'|co2r < 6.
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Hence the radius » must satisfy r < §/2|f’ |C0(BR2), which is guaranteed by

2 p2+p
n|@" | cors )R>

r <
— 1+
2|¢,|C”(BR2) + 10n|¢”|c(),/:(BR2)R2 ’

(= R2/10).

By hypothesis, ¢'(yo) # 0, hence the denominator does not vanish.
Choosing 4 > 2|y |coq,)/C# and applying y/(y) > C;, we obtain

"(y) = pAy" + Ay x ) = e 1 I2CE)2
1

in Bg,. Consequently, ¢"(y) # 0 and |¢"|cos(s,,) > Cp, With C, 1= e~ 122C?/2 >
0. We get the uniform lower bound for r in Bg,
nC,q*R3*"
pd Y2

o < 2Ny 10 / 1+p°
19"l coBe,) + 10n1P" | cory, Ry

4 Appendix

We recall results on Gevrey class functions that are used in the article. The refer-
ences are [8, 19].

Definition 4.1. Let L, be an increasing sequence of positive numbers such
that
L() = la s < Lsa Ls+l < CLA"

for some constant C > 1. We denote by C” the set of all u € C*°(X) (with X ¢ RV
open subset) for which for every compact set K C X there exists a constant Cg
such that

ID¢u(x)| < Cx(CxLio)*!, xeKk,

for all multi-indices ¢. By Stirling’s formula, we can replace |¢|'¢! by |¢]!. CE(X)
is a ring which is closed under differentiation. If f : ¥ — X is an analytic map
from the open set ¥ C R to the open set X C RY, the composition with f defines
the map f* : CEH(Y) = CH(X), f*u = uo f. The class CX(X) with Ly = (s + 1)™
and m > 1 is called the Gevrey class of order m and is denoted by G™(X). If
m =1, G'(X) is the set of real analytic functions in X.

We denote the set G™(RY) N CP(RY) by GJ'(RY). For m > 1, one has
> 1/k™ < oo, and it follows from [8, Theorem1.4.2] that G{]' is large enough
to contain cut-off functions; of course, it is an algebra. In particular, let f, g €
G™(RV), and let K C R be a compact set. Then, by calling the constants
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Ck for f and g cy and c 4, respectively, we get fg € G™(RY) such that for
cp =max{cy s, C1 g},

(4.1) ID(f(x)g(x))| < 2M B2 pemidl - x e K.

Definition 4.2. For a compact subset E of RV, we define the supporting
function of £ Hg as ([8, (4.3.1), p. 105])
He (&) =sup(x, &), ¢ eRY.
xekE

In the present paper, we use the Paley-Wiener-Schwartz Theorem for Gevrey
class functions often. For reference, we give the following statement, proved in
[9] for a proper subset y{ (RV) of Gy (RM). The theorem can also be reformulated
for ¢ € G with substitution of the phrase “to every B > 0, there exists a constant
Cp such that” with “there exist positive constants B and C such that”. The proof
is the same.

Theorem 4.3 ([9, Theorem 12.7.4, p. 137]). An entire function ®(;), ; € CV,
is the Fourier-Laplace transform of a function ¢ € yg(RN) with support in the
compact convex set K with supporting function Hy if and only if for every B > 0
there exists a constant Cg such that

|®O()| < Cpexp(Hx(Img) — B|Re¢|Y™), ¢ e CV.

In particular, we can introduce the main properties of the Gevrey class local-
izers used in the paper.

Definition 4.4. Define y; € G(’)"(]RN) and ys5(v) := y1(v/d) such that y; =1
in a ball By ¢ RY, y; = 0 outside a larger ball B, and 0 < y; < 1. Hence
Fosexs) =0V F, 5 x1(v) and

ID*1(0)| < K™, v e By,
4.2)  |Fpsexi1@)] < crxexp(Hp,(Im () — cox[Re ™), ¢ eC,
|Fomse x5 < 6V erx exp(6Hp,(Im () — cox8'/"[Re¢|V™), ¢ €C,
with ¢;x = cix(m) a given number and c,x = 1/(eNcx)/™.

We now present the Phragmen-Lindelof Theorem for subharmonic functions
in a sector D C C used in Lemma 2.7.

Theorem 4.5 ([16, Chapter 7.3.]). Let D be an angle of opening r/ A, and let
u(z) be a function subharmonic in this angle, satisfying an asymptotic estimate

uiz) < |z|”, ae., p<A2,
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and bounded by a constant M on the boundary of the angle. Then u(z) < M inside
the full angle D.

‘We now recall the concept of conormal pseudo-convexity for operators as given
in [20, 21]. We can represent a C>-oriented hypersurface S as level set surface
S :={y: w(y) =0} of a C>-function y such that / #0 on S.

Definition 4.6. Decompose the coordinates of RY into y = (y/,y”). The
conormal bundle of the foliation F of RN with the surfaces y” =const is the
set

N*F :={(»&) e T'RY : & =(¢,¢") and &' =0}
The reduction of N*F to a subset K C R is defined by
g :={(»¢& eT'K : ¢ =0};
the fibre of N*F in yy is defined by
[y, :={(, <) e N'F}.

Let P(y, D) be a partial differential operator of order m with smooth coeffi-
cients. Denote its principal symbol by p(y, &).

Definition 4.7. Let S be a smooth oriented hypersurface which is a level
surface of a C2-function y, and let yy € S be such that y/(yy) # 0. We say that S
is conormally strongly pseudo-convex with respect P at y if

(4.3) Re{p, {p, y}}(vo,<) > 0

on p(yo, &) ={p, ¥}, <) =0,0 #& € Ty

0

{p(y, ¢ +ity' (), p(y, & +ity/'(y))} -

4.4) i

ony =ygsuchthat0 #¢ e I'y, 7 > 0, and

Po, & +ity' () = {p(, & +ity/' (), y(MI(Y =yo) =0.

Definition 4.8. A CZ?-real-valued function y is conormally strongly
pseudo-convex with respect to P at yy if

(4.5) Re {p, {p, y}}(v0, &) > 0
onp(yp, <) =0,0 #S e I'y;

4.6) {p(y, &+ iﬂ//(y);,if(y, ¢ +ity' ()} >0

ony =y such that p(yo, & +ity/(y)) =0,0 #& eIy, 7> 0.
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Hence, the term conormally strongly pseudo-convex means strongly
pseudo-convex in N*F or in a subset ['x. Definition 4.7 implies that for a suf-
ficiently small neighborhood € of yy, there exist constants such that an inequality
like (3.1) holds, while Definition 4.8 implies that the inequality (3.2) holds for the
function ¢ = e*V.

For second order differential operators, the definitions above are simpler. In
particular, for the wave operator (1.1), the conditions are void for noncharacteristic
surfaces y, as shown in Section 3.1; see also Remark 3.1.
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