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Abstract. We consider a class of operators of the type sum of squares of real
analytic vector fields satisfying the Hörmander bracket condition. The Poisson-
Treves stratification is associated to the vector fields. We show that if the deepest
stratum in the stratification, i.e., the stratum associated to the longest commutators,
is symplectic, then the Gevrey regularity of the solution is better than the minimal
Gevrey regularity given by the Derridj-Zuily theorem.

1 Introduction and statement of the results

We are concerned with the regularity of the solutions of PDEs of the type “sums
of squares” of vector fields. While in the C∞ category this problem was settled
by L. Hörmander in [13], since the mid-seventies it has been well known that the
problem of the analytic regularity of the solutions is much more involved.

There are examples in three variables showing that, even though the coeffi-
cients of the vector fields are real analytic, the solutions of such equations have
only Gevrey regularity, i.e., something half way between C∞ and real analytic.

In 1999, F. Treves [19] conjectured that the analytic regularity of the solutions
of sums of squares equations depends on the geometry of the characteristic set
of the operator, i.e., the set on which the symbol of the operator vanishes. This
conjecture remains open.

It is clear at this point that the study of the Gevrey regularity of solutions of
sums of squares is an important step toward a possible proof of the Treves conjec-
ture. The characteristic variety of a differential operator of type ”sum of squares”
can be decomposed as the disjoint union of real analytic manifolds, which are
called strata and form a local stratification. After giving a prescription on how to
construct this stratification, Treves conjectured that the operator is analytic hypo-
elliptic if and only if the strata are symplectic manifolds. The strata are ordered
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using the length of the Poisson bracket of vector fields that define them. In this pa-
per, we examine the case when the last strata, i.e., the strata defined by the longest
brackets, are symplectic and show that the regularity can be improved with respect
to the minimal obtained in [9] and [10].

Let us start formulating our problem in a more quantitative way. Let O be an
open subset of Rn, and consider N real analytic vector fields

Xj (x,D), j = 1, . . . ,N,

satisfying the Hörmander bracket condition; see 1 below for a statement of this
condition.

In this paper, we study the Gevrey hypoellipticity of the operator

(1.1) P(x,D) =
N∑
j =1

Xj (x,D)2.

We recall that a function u is of Gevrey class s(≥ 1) in O and write u ∈ Gs(O) if
for every compact set K ⊂ O, there exists a positive constant C such that

|∂αu(x)| ≤ C |α|+1(α!)s for all x ∈ K

for every multi-index α ∈ N
n. In particular, G1(O) is the set Cω(O) of all real

analytic functions defined on O.
Furthermore, the operator P is said to be Gevrey s hypoelliptic in O if for

every U ⊂⊂ O and every distribution u ∈ D′(O), the fact that Pu|U ∈ Gs(U)
implies that u|U ∈ Gs(U).

A result of Derridj and Zuily (see [9], [10] and [2] for a microlocal version)
relates the Gevrey order of hypoellipticity to the Hörmander bracket condition.
More precisely, assume that, at any point of O,

1. the Lie algebra generated by X1, . . . ,XN and their commutators is of dimen-
sion n;

2. only commutators of length1 at most r are needed to generate the algebra.
Derridj and Zuily proved that P is Gevrey r hypoelliptic in O. The index r is

the order of minimal Gevrey hypoellipticity, i.e., without other assumptions on the
vector fields, this is the best index one can hope for.

In order to study the analytic hypoellipticity of a sum of squares operator with
real analytic coefficients, Treves (see [19] and [6]) introduced a stratification with
analytic submanifolds, which we call the Poisson–Treves stratification, associated
to the (real analytic) vector fields X1, . . . ,XN . More precisely,

1The length of an iterated commutator is the number of vector fields involved in the Lie bracket;
for instance, the commutator [Xi , [Xi ,Xk]] is of length 3.
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• the characteristic set

Char(X1, . . . ,XN ) =
{
(x, ξ ) | X1(x, ξ ) = · · · = XN (x, ξ ) = 0

}
is decomposed as a disjoint union of connected real analytic submanifolds,
the strata;

• the symplectic form has constant rank on each stratum;
• if �ν j ,k, k = 1, . . . ,m j , is one of the strata (here, the index k counts the

number of disjoint strata of this type), all the Poisson brackets of symbols
of the vector fields of length < ν j vanish on �ν j ,k, but there is at least one
bracket of length ν j which is nonzero2.

We call ν j the depth of the strata �ν j ,k. To be definite, we assume that there exist
positive integers 1 < ν1 < ν2 < . . . < νp+1 and m1, . . . ,mp+1 such that

Char(X1, . . . ,XN ) =
p+1⋃
j =1

m j⋃
k =1

�ν j ,k.

Then the �νp+1,k are the deepest strata.
In the present paper, we show that under a suitable technical assumption, the

following (microlocal) rule of thumb holds: if the deepest stratum of the Poisson-
Treves stratification is a symplectic submanifold, then the Gevrey regularity given
by the Derridj-Zuily theorem can be improved. Analogous phenomena have also
been studied in [4], [6] in particular situations.

The motivation of this work is to make a step forward in the general philosophy
underlying Treves’ conjecture: the more the symplectic is the strata, the closer the
Gevrey regularity is to 1. Actually, the presence of symplectic strata increases the
size of the region on which the operator behaves “elliptically”.

In order to give a precise statement, it is necessary to microlocalize the prob-
lem. Denoting by WFs(u) the Gevrey s (≥ 1) wave front set3 of the distribu-
tion u (see also Subsection 2.1 below), we may define the Gevrey s (micro)-
hypoellipticity of P as follows:

if (x0, ξ0) ∈ Char(P) \ WFs(Pu), then (x0, ξ0) /∈ WFs(u).

In order to state a general theorem, we need a geometrical assumption. This
is formulated in terms of the existence of a certain real analytic function (the
Hamiltonian function) on the cotangent bundle.
(H) Let (x0, ξ0) ∈ �νp+1,k and U be a neighborhood of the point (x0, ξ0) in R

2n.
There exists a real analytic function r : U → [0,+∞[ such that

2The length of a Poisson bracket is the number of fields forming it.
3The analytic wave front set WF1(u) is also denoted by WFa(u).
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(1) r(x0, ξ0) = 0;
(2) r(x, ξ ) > 0 in

A+ = U \
[
{(x0, ξ0)} ∪

( p⋃
j =1

∪m j

�=1�ν j ,�

)
∪
( mp+1⋃
�=1
�
=k

�νp+1,�

)]
;

(3) there exist real analytic functions, α j,k(x, ξ ) defined in U such that

(1.2) {r(x, ξ ),Xj (x, ξ )} =
N∑

h=1

α jh(x, ξ )Xh(x, ξ ),

where j = 1, . . . ,N and

{r(x, ξ ),Xj (x, ξ )} = ∂ξ r(x, ξ )∂xX j (x, ξ ) − ∂xr(x, ξ )∂ξXj (x, ξ )

denotes the Poisson bracket of r and Xj .

Remark 1.1. We point out that the nontrivial part of condition (H) is relation
(1.2). We stress the fact that even though the above assumption may seem a tech-
nical and restrictive assumption, it has been verified in large classes of problems;
see [1] for a detailed discussion of its role. As far as the present paper is concerned,
(1.2) allows us to deduce a priori microlocal weighted estimates on complex do-
mains for the operator P using the FBI transform and the FBI characterization of
the analytic and Gevrey wave front sets; again see [1].

Remark 1.2. On the one hand, the fact that the deepest stratum is symplectic
is not explicitly required in the above assumption. On the other hand, we expect
that the existence of a function r that vanishes at (x0, ξ0) and that is positive on A+

implies that �νp+1,k is a symplectic stratum; see [1, Appendix B].

Theorem 1.1. Let P be as in (1.1), where the vector fields have real ana-
lytic coefficients and satisfy Hörmander’s bracket condition, and assume (H). If
(x0, ξ0) ∈ �νp+1,k \ WFνp(Pu), for some k = 1, . . . ,mp+1, then (x0, ξ0) /∈ WFνp(u).

In other words, if we take a point in a deepest stratum (of depth νp+1) and assume
that such a stratum is symplectic, then we have a Gevrey index of
(micro-)hypoellipticity equal to the depth of the “above” stratum (of depth νp.)
Hence, the index of Gevrey hypoellipticity is improved by νp+1 − νp units with
respect to the minimal Gevrey regularity; see [2].

Remark 1.3. Our method applies also to the seemingly more general oper-
ator

P(x,D) =
N∑

i, j =1

Xi(x,D)ai j (x,D)Xj (x,D) +
N∑
j =1

b j (x,D)Xj (x,D) + c(x,D),
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where Dj = Dxj = i−1∂x j and the ai j (x, ξ ), b j (x, ξ ), c(x, ξ ) are analytic symbols
of order 0 such that

[ai j ]i, j =1,...,N + [ā ji]i, j =1,...,N ≥ c,

for some positive constant c.

We now discuss some classes of operators satisfying the above assumptions.
Let O be an open neighborhood of the origin in R

n+1 with the variables (x, t),
x ∈ R

n and t ∈ R, and consider the operator

(1.3) P =
n∑

j =1

D2
j +

m∑
�=1

(
b�x

α(�)−1Dt

)2
, (x, t) ∈ O,

where m is a positive integer and

• b�, � = 1, . . . ,m, are nonzero real numbers;

• xα
(�)−1 := x

α(�)
1 −1

1 · · · xα(�)
n −1

n , � = 1, . . . ,m, and α(�)
j ≥ 2 for every � = 1, . . . ,m,

j = 1, . . . , n.

In particular, an operator of the form P = D2
x +D2

y +x2(p−1)y2(q−1)D2
t , with p, q ≥ 2

integers, is of the form (1.3).

The 2-dimensional Schrödinger operator associated to P, D2
x +D2

y +x2(p−1)y2(q−1),
has been studied by Simon in [15] and [16]. The peculiarity of such an operator is
that it has discrete spectrum even if the potential x2(p−1)y2(q−1) vanishes at xy = 0,
i.e., the operator is not globally elliptic.

Theorem 1.2. Let P be as in (1.3).

(i) Let k ∈ {1, . . . , n − 1}, i1, . . . , ik ∈ {1, . . . , n} and let j1, . . . , jn−k be such
that {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n}. Then a stratum is given by the
formula

�i1,...,ik,ε = {(x, ξ ) |ξ1 = · · · = ξn = 0, xi1 = · · · = xik = 0, x j1x j2 · · · x jn−k 
= 0},

where ε is an ordered string of n − k + 1 “+” or “−” signs 4. Furthermore,
if k < n and (x, ξ ) ∈ �i1,...,ik,ε \ WFsk (Pu), then (x, ξ ) /∈ WFsk (u), with

sk = min
�=1,...,m

( k∑
r =1

α(�)
ir − k + 1

)
.

The number sk is the depth of the stratum �i1,...,ik,ε.

4If k = n − 3 and ε = {+,−,−}, then �i1,...,in−2,ε = {(x, ξ ) |ξ1 = · · · = ξn = xi1 = · · · = xin−2 =
0,+xin−1 > 0, −xin > 0, −τ > 0}
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(ii) If k = n, the stratum is

�1,...,n,± = {(x, ξ ) |x1 = · · · = xn = ξ1 = · · · = ξn = 0, ±τ > 0}.

Furthermore, if (x, ξ ) ∈ �1,...,n,± \ WFs̃n(Pu), then (x, ξ ) /∈ WFs̃n(u), with

s̃n = max
{i1,...,in−1}⊂{1,...,n}

min
�∈{1,...,m}

n−1∑
r =1

α(�)
ir − n.

Remarks 1.4. (i) The number s̃n is better (lower) than the depth of the stratum
�1,...,n,±, which is

min
�∈{1,...,m}

n∑
r =1

α(�)
r − n + 1.

(ii) The formally more general case of the operator

P(x,D) =
n∑

j,k =1

a jk(x, t)DjDk +
m∑
�=1

(
b�(x, t)x

α(�)−1Dt

)2

where m is a positive integer,

• [a jk(x)] j,k =1,...,n−1 is a family of positive definite matrices with real analytic
entries;

• b�(x, t), � = 1, . . . ,m are positive real analytic functions,

can be treated using the same method.

We believe the Gevrey thresholds in Theorem 1.2 to be optimal, based on the
following model.

Consider the special case

P = D2
x + D2

y + x2(p−1)y2(q−1)D2
t ,

where p, q ∈ N, q ≥ p > 1. The operator P is Gevrey q hypoelliptic, by Theo-
rem 1.2. The Gevrey index obtained from the Derridj-Zuily theorem is
p + q − 1 > q.

Theorem 1.3. For the operator P above, the index q is optimal.

Remark 1.5. The case p = 1 in Theorem 1.3 boils down to the generalized
Baouendi–Goulaouic operator; in this case, the operator with p = 1 is Gq hypoel-
liptic and not better. Thus it is irrelevant for our purpose.
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2 Preliminaries

2.1 The FBI transform. Define the Fourier-Bros-Iagolnitzer (FBI)
transform of a tempered distribution u as

(2.1) Tu(x, λ) =
∫
Rn

eiλϕ(x,y)u(y)dy,

where λ ≥ 1 is a large parameter and ϕ is a holomorphic function such that
det ∂x∂yϕ 
= 0, Im ∂2

yϕ > 0. Here ∂x denotes the complex derivative with respect to
the complex variable x.

Unless stated otherwise, we always take ϕ to be the classical phase function
ϕ(x, y) = i

2 (x − y)2.
To each phase function ϕ, there corresponds a weight function(x), defined as

(x) = sup
y∈Rn

− Imϕ(x, y), x ∈ C
n.

We may take a slightly different perspective. Consider (x0, ξ0) ∈ C
2n and a

real-valued analytic function (x) defined near x0 such that  is strictly plur-
isubharmonic and 2

i ∂x(x0) = ξ0. Denote by ψ(x, y) the holomorphic function
defined near (x0, x̄0) by

(2.2) ψ(x, x̄) = (x).

Because of the plurisubharmonicity of ,

(2.3) det ∂x∂yψ 
= 0

and

(2.4) Reψ(x, ȳ) − 1
2

[(x) +(y)] ∼ −|x − y|2.

To end this section, we recall the definition of the s–Gevrey wave front set of
a distribution. In particular, for s = 1, we obtain the definition of analytic wave
front set.

Definition 2.1. Let (x0, ξ0) ∈ U ⊂ T ∗
R

n \ 0. We say that (x0, ξ0) /∈ WFs(u) if
there exist a neighborhood � of x0 − iξ0 ∈ C

n and positive constants C1, C2 such
that

|e−λ0(x)Tu(x, λ)| ≤ C1e
−λ1/s/C2,

for every x ∈ �. Here T denotes the classical FBI transform, i.e., that using the
classical phase function.
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Theorem 2.1 ([2, Theorem 1.4]). Let P be as in (1.1) and (x0, ξ0) /∈ WFr(Pu)
be a point in a stratum of depth r. Then (x0, ξ0) /∈ WFr(u).

This is a sort of microlocal Derridj-Zuily theorem. Next we need to define
pseudodifferential operators on the FBI side.

2.2 Pseudodifferential operators. Let λ ≥ 1 be a large positive para-
meter. We write

D̃ =
1
λ

D, D =
1
i
∂.

Denote by q(x, ξ, λ) an analytic classical symbol and by Q(x, D̃, λ) the formal
classical pseudodifferential operator associated to q.

Using “Kuranishi’s trick” (see, e.g., [14, Proposition .1.3], one may represent
Q(x, D̃, λ) as

(2.5) Qu(x, λ) =
(
λ

2iπ

)n ∫
e2λ(ψ(x,θ)−ψ(y,θ))q̃(x, θ, λ)u(y)dydθ.

Here q̃ denotes a formal classic analytic symbol defined in a neighborhood of
(x0, x̄0), which we may write as �×�.

To realize the above operator, we need a prescription for the integration path.
This is accomplished by transforming the classical integration path via the
Kuranishi change of variables and an application of Stokes’ theorem. We obtain

(2.6) Q�u(x, λ) =
(
λ

π

)n ∫
�

e2λψ(x,ȳ)q̃(x, ȳ, λ)u(y)e−2λ(y)L(dy),

where L(dy) = (2i)−ndy ∧ dȳ, the integration path is θ = ȳ, and � is a small
neighborhood of x0. We remark that Q�u(x) is a holomorphic function of x.

The above definition has some useful consequences.
1- If the principal symbol is real, Q� is formally self-adjoint in L2(�, e−2λ).
2- If q̃ is a classical symbol of order 0, Q� is uniformly bounded as λ → +∞

from H(�) into itself.
Here H(�) is the space of all holomorphic functions u(x, λ) such that for every
ε > 0 and for every compact K ⊂⊂ �, there exists a constant C > 0 such that
|u(x, λ)| ≤ Ceλ((x)+ε), for x ∈ K and λ ≥ 1.

For future reference, we also recall that the identity operator can be realized as

(2.7) I�u(x, λ) =
(
λ

π

)n ∫
�

e2λψ(x,ȳ)i(x, ȳ, λ)e−2λ(y)u(y, λ)L(dy)

for a suitable analytic classical symbol i(x, ξ, λ). Moreover, we have the estimate
(see [12] and [17])

(2.8) ‖I�u − u‖−d2/C ≤ C ′‖u‖+d2/C
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for suitable positive constants C and C ′. Here

(2.9) d(x) = dist(x, ��)

is the distance of x from the boundary of �, and

(2.10) ‖u‖2
 =

∫
�

e−2λ(x)|u(x)|2L(dx).

Now we state an a priori estimate for an operator of the type “sum of squares”
on the FBI side. The estimate is optimal as far as the subellipticity index (or the
Gevrey regularity) is concerned. We refer to [2] and [1] for the details.

Let X1(x, ξ ), . . . ,XN (x, ξ ) be classical analytic symbols of the first order defined
in an open neighborhood � of (x0, ξ0) ∈ �. We assume also that the Xj |� are
real valued, so that we may think of the corresponding pseudodifferential operators
as formally self-adjoint in H. Let

(2.11) P(x, D̃) =
N∑

i, j =1

Xi(x, D̃)ai j (x, D̃, λ)Xj (x, D̃)

+ λ−1
N∑
j =1

b j (x, D̃, λ)Xj (x, D̃) + λ−2c(x, D̃, λ),

where Dj = Dxj = i−1∂x j and the ai j (x, ξ ), b j (x, ξ ), c(x, ξ ) are analytic symbols
of order zero such that

[ai j ]i, j =1,...,N + [ā ji]i, j =1,...,N ≥ c,

where c > 0 is a positive constant. Let P� be the �-realization of P (in the sense
of [12]).

We assume also that there is a commutator of length ν = ν(x0, ξ0) which is
elliptic at (x0, ξ0) ∈ � and that involves the minimal number of operators.

Theorem 2.2. Let �1 ⊂⊂ �. Then

(2.12) λ
2
ν ‖u‖ ≤ C

(
‖P�u‖ + λα‖u‖,�\�1

)
,

where α is a positive integer.

3 Proof of Theorem 1.1

Let us write D̃ = λ−1D, where λ denotes a large positive parameter. The operator
P then becomes

(3.1) P(x, D̃) =
N∑
j =1

Xj (x, D̃)2.
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We now perform an FBI tranformation on P and still denote by P the result-
ing pseudodifferential operator. The cotangent bundle T ∗

R
n is thus locally trans-

formed into �0 , where 0 denotes the weight function corresponding to the FBI
transform phase function ϕ0. Note that �0 is contained in C

2n and has real di-
mension 2n.

The next step consists of canonically moving away from �0 . Following
Sjöstrand [18], we use a canonical deformation of 0 for this purpose. Let r(x, ξ )
be the real analytic function whose existence is guaranteed by our assumptions, or
rather its FBI transform. Define the deformed weight functiont, where t denotes
a small nonnegative parameter, as the solution to the following Hamilton–Jacobi
equation:

(3.2)

⎧⎪⎨
⎪⎩

2
∂t(x)
∂t

− r
(

x,
2
i
∂t(x)
∂x

)
= 0,

t(x)∣∣t=0
= 0(x).

We have �t = exp itHr(�0 ).
Next we want to deduce a priori estimates for P with the weight function 0

replaced by t. First we write (1.2) as

(3.3) {r(x, ξ ),X(x, ξ )} = α(x, ξ )X(x, ξ ),

where X denotes a vector whose components are the symbols of the vector fields
X1(x, ξ ), . . . ,XN (x, ξ ) and α denotes a N ×N matrix whose entries are real analytic
symbols.

Denote by Y t
j the symbol Xj ◦ exp(itHr), or the restriction to �t of the holo-

morphic extension of Xj , j = 1, . . . ,N . Then

∂tY
t(x, ξ ) = i{r,X} ◦ exp(itHr)(x, ξ ),

for t small enough. We now deduce that⎧⎨
⎩
∂tY t(x, ξ ) = iα ◦ exp(itHr)Y t(x, ξ ),

Y t(x, ξ )∣∣t=0
= X(x, ξ ).

From the above equation, we obtain that there is a N × N matrix whose entries
are real analytic symbols with a real analytic dependence on the real parameter t,
bt(x, ξ ), such that

(3.4) Y t(x, ξ ) = bt(x, ξ )X(x, ξ )

and b0(x, ξ ) = IdN . In particular, bt is nonsingular, provided t is small.
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Denote by Xt the holomorphic extension of ReY t; since X is real on�0 , using
(3.4), we have

(3.5) Xt(x, ξ ) = βt(x, ξ )X(x, ξ ),

where β0(x, ξ ) = IdN . In particular, βt is nonsingular, provided t is small.
Then we may write

(3.6) P(x, D̃) =
N∑

i, j =1

Xt
i (x, D̃)at

i j (x, D̃;λ)Xt
j (x, D̃)

+ λ−1
N∑
j =1

bt
j (x, D̃;λ)Xt

j (x, D̃) + λ−2ct(x, D̃;λ),

where at
i j , bt

j , ct are symbols of order 0 with real analytic dependence on t.
It is also obvious from what has been said before that the fields Xt

j , j =
1, . . . ,N , also satisfy Hörmander condition with the same bracket length νp+1 as
that associated to the fields Xj . We may thus apply Theorem 2.2 and obtain the a
priori estimate ([2])

(3.7) λ
2

νp+1 ‖u‖t,�1 ≤ C
(‖Pu‖t,� + λα‖u‖t,�\�1

)
,

where �1 ⊂⊂ �, α is a fixed positive integer and P denotes the realization on �
of the given operator P.

Let us now assume that (x0, ξ0) /∈ WFνp(Pu). We may choose � in such a way
that

(3.8) ‖Pu‖0,� ≤ Ce−λ1/νp/C

for a suitable positive constant C.
Furthermore, taking � small enough and still denoting by �ν j ,i the image of

�ν j ,i under the complex canonical transformation associated to the FBI transform,
we may assume that for every ρ ∈ ∂�∩�ν j ,i , j < p+1, there exists a neighborhood
W of ρ in C

2n such that

(3.9) ‖u‖0,W ≤ Ce−λ
1
ν j /C .

Here, we have used Theorem 2.1. There is no loss of generality in assuming that
∂� ∩�νp+1,i = ∅, i 
= k.

By compactness, there are finitely many open sets W , say W1, . . . ,W�, where
an estimate of the kind (3.9) is satisfied. From

(3.10) t(x) = 0(x) +
1
2

∫ t

0
r

(
x,

2
i
∂xs(x)

)
ds,
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using the fact that r|�0
≥ 0, and recalling that �t = exp(itHr)�0 , we deduce

that r|�t
≥ 0, so that

(3.11) t(x) ≥ 0(x), x ∈ �.
Hence, by (3.11), and (3.8),

(3.12) ‖Pu‖t,� ≤ Ce−λ1/νp/C

for a suitable positive constant C.
Let us now estimate the second term in the right hand side of (3.7). Due to

assumption (H), for a suitable positive number a,

r|�0∩�\(�1∪W1∪···∪W�) ≥ a > 0.

It follows, because of (3.10), that

(3.13) t(x) ≥ 0(x) + c′t, x ∈ � \ (�1 ∪ W1 · · · ∪ W�).

Then

‖u‖2
t,�\�1

=
∫
�\(�1∪W1∪···∪W�)

e−2λt(x)|u(x)|2L(dx)

+
∫

W1∪···∪W�

e−2λt(x)|u(x)|2L(dx)

≤
∫
�\(�1∪W1∪···∪W�)

e−2λ0(x)−2λc′t|u(x)|2L(dx)

+ C max
j∈{1,...,p} e

−λ
1
ν j /C

≤ C
(
e−2λc′tλN + e−λ 1

νp /C
)

≤ Ce−λ 1
νp c′′t, t > 0.

By (3.7), we deduce that ‖u‖t,�1 ≤ C exp(−λ 1
νp t/C) for a suitable positive con-

stant C. Let now �2 ⊂⊂ �1 be a neighborhood of x0 such that t ≤ 0 + t/(2C)
in �2. We conclude that

‖u‖2
0,�2

≤ Ce−λ 1
νp t/C, t > 0.

In other words, (x0, ξ0) /∈ WFνp(u). This completes our proof.

4 Proof of Theorem 1.2

Part (i) of the theorem is the minimal Gevrey regularity proved in [2]; see Theo-
rem 2.1.
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To prove part (ii), it suffices to show that there exists a function r satisfying
conditions (1), (2) and (1.2) of (H). We may assume, without loss of generality,
that

(x0, t0, ξ0, τ0) = (0, 0, 0, 1) ∈ R
2(n+1).

Let U be a neighborhood of (0, 0, 0, 1) in R
2(n+1). We claim that the function

r(x, t, ξ, τ) =
n∑

j =1

ξ2
j +

m∑
�=1

(
b�x

α(�)−1τ
)2

+ t2τ2 + (τ− 1)2

satisfies all the requirements.
Establishing condition (1) and (1.2) is straightforward. Condition (2) is verified

if r is positive in the intersection of the deepest stratum, {(0, t, 0, τ)|±τ > 0}, with
∂U ; and this follows by the inequality r(x, t, ξ, τ) ≥ t2τ2 +(τ−1)2. The conclusion
follows by applying Theorem 1.1 to the present situation. This completes our
proof.

5 Proof of Theorem 1.3

We need the following preliminary lemma.

Lemma 5.1. Let a(x) be a nowhere vanishing real analytic function defined
in a neighborhood of 0. Then the operator

La(x, y,Dx,Dy,Dt) = D2
x + D2

y + a(x)2y2(q−1)D2
t ,

defined in a small neighborhood of the origin in R
3, is Gq Gevrey hypoelliptic and

not better.

An indirect proof has been given in [8] for the special case q = 2.

Proof. To be definite, we consider an open ball BR ⊂ R
2 with center at the

origin and radius R, and let A be a positive constant such that max(x,y)∈BR a(x) ≤
A. Let ϕ0 = ϕ0(y), λ0 be the first eigenfunction, respectively eigenvalue, of the
operator −∂2

y + y2(q−1), i.e.,

−∂2
yϕ0(y) + y2(q−1)ϕ0(y) = λ0ϕ0(y).

It is known that λ0 > 0 and that ϕ0 is a positive rapidly decreasing function. In
particular, 0 ≤ ϕ0(y) ≤ C0, y ∈ R, for a suitable positive constant C0.

For a positive parameter ρ, we define

sρ(x, y) = ϕ0

(
A

1
2qρy

)
exA

1
2q
√
λ0ρe−C1ρ.
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Here, C1 is a positive constant such that RA
1
2q
√
λ0 − C1 < 0. In particular, there

exists C2 > 0 such that

exA
1
2q
√
λ0ρe−C1ρ ≤ e−C2ρ

for x ∈ [−R,R] and ρ ≥ 1.
Now let uρ be the solution of the Dirichlet problem⎧⎨

⎩(D2
x + D2

y + a(x)y2(q−1)ρ2q)uρ(x, y) = 0, on BR,

uρ(x, y) = sρ(x, y), on ∂BR.

The existence of the (classical) solution of this Dirichlet problem is a classical
result of the theory of elliptic equations; see, e.g., [11, Corollary 6.9]. Using the
maximum principle, we deduce that

(5.1) sρ(x, y) ≤ uρ(x, y) ≤ C0e
−C2ρ, (x, y) ∈ BR, ρ ≥ 1.

Now set

v(x, y, t) =
∫ +∞

1
eitρq

uρ(x, y) dρ.

By (5.1), this integral is convergent. A direct computation shows that

La(x, y,Dx,Dy,Dt)v(x, y, t) = 0.

Furthermore, for every positive integer k,

ϕ0(0)
∫ +∞

1
ρkqe−C1ρ dρ ≤ |Dk

t v(0, 0, 0)| ≤ C0

∫ +∞

1
ρkqe−C2ρ dρ,

i.e., |Dk
t v(0, 0, 0)| ∼ k!q. This shows that the function v has Gevrey regularity not

better than Gevrey q. �
Next we prove Theorem 1.3. We argue by contradiction, assuming that the

operator P is Gevrey s hypoelliptic, with s ∈ [1, q[ in a neighborhood O of the
origin in R

3.
Let ε denote a parameter so small that (2ε, 0, 0) ∈ O, and let Q ⊂⊂ O be a open

cube of side 2ε centered at (2ε, 0, 0). viz,

Q =]ε, 3ε[×] − ε, ε[×] − ε, ε[.

We now use the above argument on the optimality of the Gevrey q regularity for
the operator La. In particular, we showed that there is a Gevrey q (and not better)
solution of

(5.2) Pv = 0 in Q.
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Let χ = χ(y) be a cut-off function of class Gs such that

χ(y) =

⎧⎨
⎩1, y ≤ ε/4,

0, y ≥ ε/2.

Then P(χv) = [P, χ]v . Furthermore, defining

Q̃ = O ∩
(
]ε, 3ε[×] − ε,∞[×] − ε, ε[

)
,

we have that χv ∈ Gq(Q̃) \ Gs(Q̃) (by the definition of v). We claim that
[P, χ]v ∈ Gs(Q̃). Indeed, the commutator [P, χ]v is supported in

Q0 =
(
]ε, 3ε[×]ε/4, ε/2[×] − ε, ε[

)
⊂ Q.

Now the operator P is elliptic in Q0 with real analytic coefficients; hence, in
particular, it is Gs hypoelliptic in Q0. Thus v ∈ Gs(Q0), and we deduce that
[P, χ]v ∈ Gs(Q0) ∩ Gs(Q̃). We have found a subset Q̃ ⊂⊂ O and two functions
w = χv ∈ Gq(Q̃) \ Gs(Q̃), g = [P, χ]v ∈ Gs(Q̃) such that Pw = g in Q̃. Define

u(x, y, t) =

⎧⎨
⎩w(x, y, t), (x, y, t) ∈ Q̃,

0, (x, y, t) ∈ O \ Q̃,

and let

W =
{(

]ε, 3ε[×] − ε, 3ε[
)

∪
(
]
ε

2
, ε[×]2ε, 3ε[

)
∪
(
] − ε

2
,
ε

2
[×] − ε, 3ε[

)}
,
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2ε

W

3ε

ε/2

−ε/2 ε 3ε

−ε

U = W×] − ε, ε[.

We may assume that ε > 0 is such that U ⊂ O.
Then we have u ∈ D′(O) such that for a suitable neighborhood of the origin,

U ⊂⊂ O, Pu ∈ Gs(U). On the other hand, u ∈ Gq(U) \ Gs(U) near the origin,
which contradicts the assumption that P is Gevrey s hypoelliptic in O.

This completes our proof of the optimality.

Note added in proofs. Since the acceptance of this paper, the sufficient part
of Treves conjecture has been disproved by Albano, Bove and Mughetti in the pa-
pers [3] and [5]. The necessary part is still an open problem. Furthermore, there
are no conjectures as to when a real analytic sum of squares is analytic hypoel-
liptic, not to mention Gevrey hypoellipticity.
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[12] A. Grigis and J. Sjöstrand, Front d’onde analytique et somme de carrés de champs de vecteurs,
Duke Math. J. 52 (1985), 35–51.
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