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Abstract. We study the influence of the multipliers ξ (n) on the angular distri-
bution of zeroes of the Taylor series

Fξ (z) =
∑

n≥0

ξ (n)
zn

n!
.

We show that the distribution of zeroes of Fξ is governed by certain autocorrela-
tions of the sequence ξ . Using this guiding principle, we consider several examples
of random and pseudo-random sequences ξ and, in particular, answer some ques-
tions posed by Chen and Littlewood in 1967.
As a by-product, we show that if ξ is a stationary random integer-valued sequence,
then either it is periodic, or its spectral measure has no gaps in its support. The
same conclusion is true if ξ is a complex-valued stationary ergodic sequence that
takes values in a uniformly discrete set.

1 Introduction

In this work, we consider entire functions of exponential type represented by the
Taylor series

Fξ (z) =
∑
n≥0

ξ (n)
zn

n!
, ξ : Z+ → C.
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We are interested in the influence of the multipliers ξ (n) on the angular distri-
bution of zeroes of the function Fξ . This question belongs to a “terra incognita” in
the theory of entire functions that contains no general results going in this direction
but several interesting examples. These examples include

(a) random independent identically distributed ξ (n) (Littlewood–Offord [16],
Kabluchko–Zaporozhets [11]),

(b) ξ (n) = e(qn2) with quadratic irrationality q (Nassif [18], Littlewood [15])
and, more generally, arbitrary irrational q (Eremenko–Ostrovskii [7]),

(c) ξ (n) = e(n(log n)β) with β > 1, and e(nβ) with 1 < β < 3/2 (Chen–
Littlewood [5]),

(d) uniformly almost periodic ξ (n) (Levin [14, Chapter VI, §7]).

Here and elsewhere, e(t) = e2πti.

In this work, we consider the following four sequences ξ :

(i) ξ (n) = e(Q(n)), where Q(x) =
∑

k≥2 qkxk is a polynomial with real coeffi-
cients qk, at least one of which is irrational;

(ii) ξ (n) = e(nβ), where β ≥ 3
2 is non-integer;

(iii) ξ (n) is a stationary sequence with a mild decay of the maximal correlation
coefficient;

(iv) ξ (n) is a stationary Gaussian sequence.

In cases (i), (ii), and (iii), using some potential theory, we reduce the question
on the asymptotic distribution of zeroes of Fξ to certain lower bounds for the
exponential sums

WR(θ) =
∑

|n|≤N

ξ (n + R)e(nθ)e− n2

2R

when R � 1 and N has the size R
1
2 +ε; see Lemmas 4.2.1 and 4.3.1. These lower

bounds, in turn, depend on the behaviour of the autocorrelations

m �→ 1
N

N∑
n=1

ξ (n + R) ξ (n + m + R)e(mθ).

In case (iv) (similarly to the almost-periodic case (d)), the zero set of Fξ has an
angular density that, generally speaking, is not constant, as in the cases (i), (ii) and
(iii). This density is determined by the spectrum of the sequence ξ , that is, after
all, also by the autocorrelations between the elements of ξ .
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2 Main results

2.1. We start with the cases when the zeroes of Fξ have the uniform angular
distribution.

Definition 1. We say that the sequence ξ : Z+ → C is an L-sequence if

(2.1.1)
log |Fξ (tz)|

t
−→
t→∞ |z| , in L1

loc(C) .

Since L1
loc(C) convergence implies convergence in the sense of distributions,

and the Laplacian is continuous in the distributional topology, (2.1.1) yields

(2.1.2)
1
t
� log |Fξ (tz)| −→

t→∞ �|z| = dr ⊗ dθ, z = reiθ ,

in the sense of distributions, with rdr ⊗ dθ being planar Lebesgue measure.
Denoting by nF (r; θ1, θ2) the number of zeroes (counted with multiplicities) of
the entire function F in the sector

{
z : 0 ≤ |z| ≤ r, θ1 ≤ arg(z) < θ2

}
and recalling

that 1
2π � log |F | is the sum of point masses at zeroes of F , we can rewrite (2.1.2)

in a more traditional form: for every θ1 < θ2,

(2.1.3) nFξ (r; θ1, θ2) =
(θ2 − θ1 + o(1)) r

2π
as r → ∞ .

Theorem 1. Suppose that Q(x) =
∑d

k =2 qkxk is a polynomial with real coeffi-
cients qk and that at least one of the coefficients is irrational. Then ξ (n) = e(Q(n))
is an L-sequence.

For Q(x) = qx2, q being a quadratic irrationality, this is a result of Nassif [18]
and Littlewood [15]. For arbitrary irrational q’s, this was proven by Eremenko
and Ostrovskii [7]. It seems that the methods used in these works cannot be ex-
tended to polynomials Q of degree higher than 2. According to Chen and Little-
wood [5], “many lines of experience converge to show that there can be nothing
doing if �(n) � n2 ” (in their notation, ξ (n) = e(�(n)), and �(n) � n2 means that
�(n)/n2 → ∞).

Theorem 2. For any non-integer β > 1, the sequence ξ (n) = e(nβ) is an
L-sequence.

As we have already mentioned, the result in case 1 < β < 3/2 is due to
Chen and Littlewood [5]. They used the Poisson summation combined with the
saddle point approximation and obtained much more accurate information about
the asymptotic location of zeroes of the function Fξ . They write, “The gap 3/2 ≤
β < 2 presents a most interesting unsolved problem.”
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2.2. Now, we turn to the case when ξ : Z → C is a stationary sequence of
random variables (formally, we need only the restriction of ξ on Z+, but due
to stationarity, this restriction determines a unique extension of ξ onto Z). As
usual, stationarity means that, for every positive integer k, every choice of integers
n1, . . . , nk, and every integer m, the k-tuples of random variables

〈ξ (n1), . . . , ξ (nk)〉, 〈ξ (n1 + m), . . . , ξ (nk + m)〉

are equidistributed. In what follows, we deal only with stationary sequences hav-
ing a finite second moment. Then the sequence m �→ E

{
ξ (0)ξ (m)

}
is positive-

definite and therefore is the Fourier transform of a non-negative measure
ρ ∈ M+(T). Here and elsewhere, T = {eiθ : |θ| ≤ π} is the unit circle. We
call ρ the spectral measure of ξ . Then the spectrum σ(ξ ) of ξ is the support of
the measure ρ. Note that we do not require that Eξ (0) = 0. The definition of the
spectral measure we use here differs from the one which is more customary in the
theory of stationary processes [10] by the atom at θ = 0 with the mass |Eξ (0)|2.

We also need the maximal correlation coefficient of the sequence ξ

r(m) = rξ (m)
def
= sup

{ ∣∣E{(x − Ex)(y − Ey)}∣∣√
E|x − Ex|2 · E|y − Ey|2 : x ∈ L2

(−∞,0], y ∈ L2
[m,+∞)

}
,

where L2
(−∞,0] is the space of random variables measurable with respect to the σ-

algebra generated by the set
{
ξ (n) : −∞ < n ≤ 0

}
with finite second moment, and

L2
[m,+∞) is the space of random variables measurable with respect to the σ-algebra

generated by the set
{
ξ (n) : m ≤ n < +∞}

with finite second moment.

Theorem 3. Let ξ be a bounded stationary sequence of random variables,
and let the maximal correlation coefficient of ξ satisfy

(2.2.1) r(m) = O
(
(logm)−κ

)
, m → ∞,

with some κ > 1. Then, almost surely, ξ is an L-sequence.

2.3. Now we turn to the Gaussian stationary sequences ξ . In this case, the
leading term of the asymptotics of log |Fξ | is determined by the support of the
spectral measure ρ of the sequence ξ ; see Section 10.

We start with some preliminaries. For any set σ ⊂ T, we denote by ch(σ) the
closed convex hull of σ, and by

Hσ(z)
def
= max
λ∈ch(σ)

Re
(
zλ̄

)
= sup
λ∈σ

Re
(
zλ̄

)
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the “Minkowski functional” of ch(σ). This function is subharmonic in C and ho-
mogeneous, that is, Hσ(reiθ ) = hσ(θ)r, where hσ is the so-called supporting
function of ch(σ). The distributional Laplacian of the function Hσ is �Hσ =
dr ⊗ dsσ(θ), where dsσ(θ) = (h

′′
σ + hσ) dθ , the second derivative h

′′
σ also being

understood in the sense of distributions.

Definition 2. Let σ ⊂ T. We say that the sequence ξ is an L(σ)-sequence if

(2.3.1)
log |Fξ (tz)|

t
−→
t→∞ Hσ(z) , in L1

loc(C) .

Obviously, L-sequences are a special case of L(σ)-sequences that correspond
to the case when the set σ is dense in T.

In the language of entire function theory [14, Chapters II and III] (see also [1]
for a modern treatment), this definition says that Fξ is an entire function of com-
pletely regular growth in the Levin–Pfluger sense with the Phragmén–Lindelöf
indicator hσ. Condition (2.3.1) yields the angular asymptotics of zeroes of Fξ :

(2.3.2) nFξ (r; θ1, θ2) =

(
sσ(θ2) − sσ(θ1) + o(1)

)
r

2π
, r → ∞,

where −π ≤ θ1 < θ2 ≤ π with an at most countable set of exceptional values of
θ1 and θ2 that correspond to possible atoms of the measure sσ; cf. (2.1.3). It also
yields the Lindelöf-type symmetry condition, namely, the existence of the limit

(2.3.3) lim
r→∞

∑
|zn|≤r

1
zn
,

where the sum is taken over zeroes of Fξ . In the reverse direction, for functions of
exponential type, conditions (2.3.2) and (2.3.3) together yield (2.3.1).

We say that the stationary sequence ξ is Gaussian if
(
Re ξ (n), Im ξ (n)

)
are

random normal vectors in R2 with non-zero covariance matrix (so that this defini-
tion includes also real-valued Gaussian stationary sequences).

Theorem 4. Suppose ξ is a Gaussian stationary sequence with the spectrum
σ = σ(ξ ). Then, almost surely, ξ is an L(σ∗)-sequence, where σ∗ is the reflection
of σ in the real axis.

Comparing this result with Theorem 3, we note that if ξ satisfies condition
(2.2.1), then the spectral measure ρ has a density | f |2, where f belongs to the
Hardy space H 2(T). This follows from a classical result that goes back to
Kolmogorov; see [10, Chapter XVII, § 1]. Since no function in H 2(T) \ {0} van-
ishes on an arc, it follows that for every Gaussian stationary sequence ξ satisfying
(2.2.1), we have σ(ξ ) = T; and, almost surely, ξ is an L-sequence.
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2.4. Theorems 3 and 4 have a counterpart for uniformly almost-periodic se-
quences found by Levin [14, Chapter VI, § 7], which we recall here.

Let ξ : Z → C be a uniformly almost-periodic sequence, that is, a uniform
limit of trigonometric polynomials on Z. Then the limit

ξ̂ (eiλ) = lim
N→∞

1
2N + 1

∑
|n|≤N

ξ (n)e−iλn

exists for every eiλ ∈ T, and does not vanish for a non-empty at most countable set
of eiλ. This set is called the spectrum of ξ , and the values ξ̂ (eiλ) are called the
Fourier coefficients of ξ ; cf. [13, Section VI.5].

Theorem 5 (B. Ya. Levin). Suppose ξ is a uniformly almost-periodic se-
quence with the spectrum σ. Then ξ is an L(σ∗)-sequence, with σ∗ being the re-
flection of σ in the real axis.

The proof of this theorem, given in [14], is based upon deep results on the zero
distribution of entire functions approximated by finite linear combinations of ex-
ponentials. For the reader’s convenience, we include a proof of this theorem which
is based on the same ideas as Levin’s original proof but can be read independently
of the theory developed in [14, Chapter VI].

2.5. Here, we briefly explain how Theorems 1–5 are related to a wealth of
results which deal with the analytic continuation of the Taylor series

fξ (s)
def
=

∑
n≥0

ξ (n)sn

through the boundary of the disk of convergence. A survey of these results ob-
tained prior to 1955 can be found in [2]. First, observe that the function

w−1 fξ (w
−1) =

∑
n≥0

ξ (n)
wn+1

is the Laplace transform of Fξ . Then, by Pólya’s theorem (see [14, Theorem 33,
Chapter I] or [2, Theorem 1.1.5]), the upper limit

(2.5.1) HFξ (z) = lim sup
t→∞

log |Fξ (tz)|
t

is the Minkowski functional of the closed convex hull of the set of singularities
of the function w−1 fξ (w−1), reflected in the real axis. Hence, the results about
analytic continuation of fξ provide information about the upper limit in (2.5.1) but
not about the existence of the limit in (2.3.1).
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For instance, the property that the unit circle is a natural boundary for the
Taylor series fξ is equivalent to the property that the upper limit HF (z) ≡ 1, but it
cannot guarantee that ξ is an L-sequence.

2.6. Here, we mention two curious results which follow from Lemma 7.2.1
and which might be of an independent interest.

2.6.1. The first result sheds some light on the nature of very strong cancella-
tions in Taylor series.

Suppose ξ : Z → C is a stationary sequence with the spectral measure ρ. Then,
almost surely,

lim sup
r→∞

log |Fξ (reiθ )|
r

≤ max
t∈spt(ρ)

cos(θ + t).

In particular, Fξ (reiθ ), almost surely, decays exponentially on some angle
A = {z : θ1 < arg(z) < θ2}, provided that the origin does not belong to the
convex hull ch(σ) of the support of ρ. Just choose A ⊂ ch(σ)O. Here, CO is the
polar cone of a plane set C, CO = {z ∈ C : Re zw̄ ≤ 0, w ∈ C}.

Note that this result is helpful when there are no special restrictions on the
support of the spectral measure.

2.6.2. The second result says that in some situations such restrictions do exist.
We say that a set A ⊂ C is uniformly discrete if

inf
{|z −w| : z,w ∈ A, z �= w}>0.

Theorem 6. Suppose that ξ : Z → Z is a stationary integer-valued sequence.
Let ρ be the spectral measure of ξ . Then either spt(ρ) = T, or the sequence ξ is
periodic and spt(ρ) ⊂ {w : wN = 1} for some N ≥ 1.

The same conclusion holds if ξ : Z → A is an ergodic stationary sequence and
the set A is uniformly discrete.

3 Subharmonic preliminaries

3.1. In this section, we systematically use the following facts on the local
convergence of subharmonic functions; see, e.g., [8, Theorem 4.1.9] and [9, Theo-
rem 3.2.12].

Proposition A. Let (v j ) j be a sequence of subharmonic functions on the
plane having a uniform upper bound on any compact set. Then
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(a) if (v j ) does not converge to −∞ uniformly on every compact set, then there
is a subsequence (v jk ) converging in L1

loc(C);
(b) if v j → U in L1

loc(C), then U is equal almost everywhere to a subharmonic
function;

(c) if v is a subharmonic function and v j → v in L1
loc(C), then

(i) lim sup j→∞ v j (z) ≤ v(z), z ∈ C, with the two sides equal and finite
almost everywhere, and

(ii) lim sup j→∞ supK v j ≤ supK v for every compact set K in the plane.

Now we recall several basic facts from Azarin’s theory of limit sets of subhar-
monic functions [1]. In what follows, we deal only with entire functions F of
exponential type, i.e., |F (z)| ≤ Aeτ|z|, z ∈ C. Consider the family of subharmonic
functions

ut(z) =
1
t

log |F (tz)|, t ≥ 1.

By Proposition A, this family is pre-compact in L1
loc(C). For every L1

loc(C)-limit U
of subharmonic functions utk there is a unique subharmonic function u such that
U = u almost everywhere. We remark that u might not be the pointwise limit of
the utk (for instance, this limit might fail to be upper semi-continuous). Now each
sequence t j → ∞ has a subsequence t jk such that ut jk

converges in L1
loc(C) to a

subharmonic function v . By L(F ) we denote the set of all limiting subharmonic
functions v . The set L(F ) is called the limit set of log |F |. This set is invariant
with respect to the multiplicative action of R+, that is, if v ∈ L(F ), then for each
t > 0,

(3.1.1) the function vt(z) = t−1v(tz) also belongs to L(F ).

Since F is an entire function of exponential type, every function v ∈ L(F ) satisfies

v(z) ≤ τ |z| , z ∈ C .

The homogeneous indicator HF of F is the upper envelope of functions in
L(F ):

HF (z)
def
= sup
v∈L(F )

v(z), z ∈ C .

Then HF (reiθ ) = hF (θ)r, where

hF (θ) = sup
v∈L(F )

v(eiθ ), −π ≤ θ ≤ π

is the Phragmén–Lindelöf indicator of F . An equivalent (more traditional)
definition of hF is

hF (θ) = lim sup
r→∞

log |F (reiθ )|
r

.
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In particular, this definition gives that hF is continuous; see [14, Chapter I, Sec-
tions 15, 16]. To verify the equivalence, we need to check that for every θ ,

A
def
= sup
v∈L(F )

v(eiθ ) = lim sup
r→∞

ur(e
iθ )

def
= B.

First, we can choose a subharmonic function v and a sequence rk → ∞ such that

lim
k→∞ urk (e

iθ ) = B, urk → v in L1
loc(C).

By Proposition A, limk→∞ urk (e
iθ ) ≤ v(eiθ) ≤ A, and we conclude that A ≥ B. In

the opposite direction, if B < A, then again by Proposition A, there exist a subhar-
monic function v , a sequence rk → ∞, and a neighbourhood U of eiθ such that
supz∈U lim supk→∞ urk (z) < v(eiθ ) and for almost all z in U , lim supk→∞ urk (z) =
v(z). This contradicts the subharmonicity of v .

The homogeneous indicator HF is the Minkowski functional of a convex com-
pact set called the indicator diagram IF of F , see [14, Chapter I, Section 19].

The ray
{
arg(z) = θ

}
is called a ray of completely regular growth of the

function F if the set L(F ) restricted to that ray is a singleton. Then

(3.1.2) v(reiθ ) = HF (reiθ ) = hF (θ)r, v ∈ L(F ).

By continuity of the Phragmén–Lindelöf indicator, the set of the rays of completely
regular growth is closed. Clearly, the function F has completely regular growth in
C if it has a completely regular growth on every ray. Hence, it suffices to verify
condition (3.1.2) on a dense set of rays.

3.2.

Definition 3. A sequence Rj ↑ ∞ is thick if lim j→∞ Rj+1/Rj = 1.

Lemma 3.2.1. Let F be an entire function of exponential type. Let hF (θ) ≤ κ

for some θ ∈ [−π,π]. Suppose that there exist a thick sequence R j ↑ ∞ and a
sequence θ j → θ such that

(3.2.1) lim inf
j→∞

1
Rj

log |F (Rje
iθ j )| ≥ κ.

Then hF (θ) = κ and F has completely regular growth on the ray {arg(z) = θ}.
Proof. Suppose that there exists a function v ∈ L(F ) such that v(eiθ ) < κ.

Since v is subharmonic (in particular, upper semi-continuous), in a small compact
neighbourhood U of eiθ we have supU v < κ. Next,

1
tk

log |F (tkz)| → v(z) in L1
loc(C)
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for some sequence tk → ∞. By Proposition A, we obtain

lim sup
k→∞

sup
z∈U

1
tk

log |F (tkz)| < κ,

and hence

lim sup
k→∞

1
tk

log |F (tkzk)| < κ,

provided that zk → eiθ .

Now, we choose jk such that Rjk ≤ tk < Rjk+1, and put τk = t−1
k R jk and

zk = τkeiθk . Then τk → 1 (this is the place where we use thickness of the sequence
Rj ), and therefore, zk → eiθ . Thus,

lim sup
k→∞

1
Rjk

log |F (Rjke
iθk )| = lim sup

k→∞
1
τktk

log |F (tkzk)| < κ,

which is a contradiction. �

3.3. The following lemma is a variation on the theme of the maximum prin-
ciple. It is needed for the proof of Theorem 5.

Lemma 3.3.1. Let F be an entire function of exponential type, and let σ ⊂ T.
Suppose that

(i) hF ≤ hσ everywhere on [−π,π];
(ii) hF = hσ = 1 everywhere on σ;
(iii) F has completely regular growth on the set of rays {z : arg(z) ∈ σ}.
Then hF = hσ everywhere, and F has completely regular growth in C.

Proof. If σ is dense on T, then the statement is obvious; so we concentrate on
the case when σ is not dense in T.

Let IF be the indicator diagram of F . By condition (i), IF ⊆ ch(σ). By the
definition of the convex hull, ch(σ) is the smallest convex compact that contains the
set σ. By condition (ii), σ ⊆ IF . Hence, IF = ch(σ), that is, hF = hσ everywhere.

Let S = {θ : hF (θ) < 1}. The set S is a union of disjoint open intervals. Let
J = (α, β) be one of these intervals, i.e., hσ(α) = hσ(β) = 1, while hσ < 1
everywhere on (α, β). For θ ∈ J̄ , we have

hF (θ) = max
(
cos(θ − α), cos(θ − β)

)
=

⎧⎨⎩cos(θ − α), α ≤ θ ≤ 1
2 (α + β),

cos(θ − β), 1
2 (α + β) ≤ θ ≤ β.
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Consider the angle α ≤ arg(z) ≤ 1
2 (α + β). In this angle the indicator hF is

trigonometric, and F has a completely regular growth on the boundary ray arg(z) =
α. Moreover, (hF )′(α+0) = 0 and (hF )′(α−0) = 0. The first relation is obvious. To
see that the second relation holds, we consider two cases: (i) α is not an isolated
point of [−π,π] \ S, and (ii) α is an isolated point of [−π,π] \ S. In the first
case, there is a sequence θ� ↑ α such that hF (θ�) = hF (α) = 1. On each interval
(θ�, θ�+1), we have

0 ≤ 1 − hF (θ) ≤ O
(
(θ�+1 − θ)2

) ≤ O
(
(α− θ)2

)
.

Hence, (hF )′(α− 0) = 0. In the second case, this relation is obvious, since α is a
maximum point of a trigonometric function. Thus, the indicator hF is C1-smooth
at θ = α, and we are in the assumptions of Levin’s theorem on entire functions
with trigonometric Phragmén–Lindelöf indicator [14, Theorem 7, Chapter III]. By
this theorem, F has completely regular growth in the angle

{
α ≤ θ ≤ 1

2 (α + β)
}
.

Similarly, F has completely regular growth in the angle
{ 1

2 (α+β) ≤ θ ≤ β
}
. This

proves Lemma 3.3.1. �
It is worth mentioning that Levin’s theorem used in the proof of Lemma 3.3.1

can be deduced from Hopf’s boundary maximum principle for non-positive subhar-
monic functions vanishing on a part of the boundary.

4 Exponential sums

4.1. For a bounded sequence ξ : Z+ → C, introduce the exponential sum

WR(θ) =
∑

|n|≤N

ξ (n + R)e(nθ)e− n2

2R ,

where R and N are large integer parameters such that N = R1/2 logR + O(1). In
principle, any choice of N in the range R

1
2
√

logR � N �ε R
1
2 +ε would suffice for

our purposes. Here, x(R) �ε y(R, ε) means that for every ε > 0, x(R) = o(y(R, ε))
as R → ∞.

Lemma 4.1.1. Let
Fξ (z) =

∑
n≥0

ξ (n)
zn

n!

with a bounded sequence ξ : Z+ → C. Then, for each ε > 0,

|Fξ (Re(θ))| ≥ μ(R)
[|WR(θ)| − CεR

ε
]
,

where μ(R) = eR/
√

2πR.
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Proof. First, we estimate the tails( ∑
0≤n<R−N

+
∑

n>R+N

)
|ξ (n)|R

n

n!
.

Put N1 = R − N , N2 = R + N . These sums are bounded by

O(1)
∑

0≤n≤N1−1

Rn

n!
and O(1)

∑
n≥N2+1

Rn

n!

correspondingly. Note that the sequence n �→ Rn/n! increases for 0 ≤ n ≤ N1 − 1
and decreases for n ≥ N2 + 1. For 0 ≤ n ≤ N1 − 1, we have

Rn

n!
:

Rn+1

(n + 1)!
=

n + 1
R

≤ 1 − N
R
,

while, for n ≥ N2 + 1,

Rn+1

(n + 1)!
:

Rn

n!
=

R
n + 1

<
R
N2

=
1

1 + N
R

.

Hence, ∑
0≤n≤N1−1

Rn

n!
<

RN1

N1!
1

1 − (
1 − N

R

) =
R
N

· RN1

N1!

and ∑
n≥N2+1

Rn

n!
<

RN2

N2!
1

1 − 1
1+ N

R

< 2
R
N

· RN2

N2!
.

It remains to observe that neither of the quantities RN1/N1! and RN2/N2! exceeds
Ce−cR−1N 2

μ(R), provided that
√

R � N � R. Therefore,

Fξ (Re(θ)) =
∑

|n−R|≤N

ξ (n)e(nθ)
Rn

n!
+ O(1)μ(R),

provided that
√

R logR � N � R.

Now, we turn to the central group of terms of the series. By Stirling’s formula,
we have

∑
|n−R|≤N

ξ (n)e(nθ)
Rn

n!
= μ(R)

∑
|n−R|≤N

ξ (n)e(nθ)
Rn

n!
·
√

2πR
eR

= μ(R)
∑

|n−R|≤N

ξ (n)e(nθ)
(
1 + O(R−1)

) (R
n

)n+ 1
2
en−R.(4.1.1)
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Put t = n − R. Then |t| ≤ N , and(R
n

)n+ 1
2
en−R = exp

((
R + t + 1

2

)
log

(
1 − t

R + t

)
+ t

)
= exp

(
− t2

2(R + t)
− t

2(R + t)
+ O

( |t|3
R2

))
= exp

(
− t2

2R
+ O

( |t|
R

)
+ O

( |t|3
R2

))
= exp

(
− t2

2R
+ O

(N 3

R2

))
=
(
1 + O

(
R− 1

2 +3ε))e− t2

2R .

Hence, the sum on the right-hand side of (4.1.1) equals

μ(R)
∑

|n−R|≤N

ξ (n)e(nθ) e− 1
2R (n−R)2 +�μ(R)

with |�| ≤ O(1)N ·R− 1
2 +3ε = O

(
R4ε

)
. This completes the proof of Lemma 4.1.1.�

4.2. Combining Lemmas 3.2.1 and 4.1.1 we arrive at the following lemma.

Lemma 4.2.1. Let

Fξ (z) =
∑
n≥0

ξ (n)
zn

n!
,

where ξ : Z+ → C is a bounded sequence. Suppose that for every a ∈ [0, 1], there
exist a thick sequence R j ↑ ∞, a sequence θ j → a, and δ > 0 such that

(4.2.1)
∣∣WRj (θ j )

∣∣ ≥ Rδj .

Then ξ is an L-sequence.

4.3. In many instances, it is easier to produce a lower bound for an average of
|WR|2 over short intervals of θ . The following lemma is a straightforward corollary
to the previous lemma.

From now on, we fix a non-negative even function g ∈ C2
0 [− 1

2 ,
1
2 ] with∫

g(θ) dθ = 1.

Lemma 4.3.1. Let

Fξ (z) =
∑
n≥0

ξ (n)
zn

n!
,
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where ξ : Z+ → C is a bounded sequence. Suppose that for every a ∈ [0, 1] and
for every m ∈ N, there exist a thick sequence R j ↑ ∞ and δ > 0 such that

(4.3.1)
∫ a+ 1

2m

a− 1
2m

∣∣WRj (θ)
∣∣2g(m(θ − a))dθ ≥ Rδj , j ≥ j0(a,m).

Then ξ is an L-sequence.

Curiously enough, the assumptions of Lemmas 4.2.1 and 4.3.1 impose restric-

tions only on relatively short blocks
⋃

j

[
Rj − R

1
2 +ε
j ,Rj + R

1
2 +ε
j

]
of elements of the

sequence ξ . The values attained by ξ off these blocks do not matter.

5 Proof of Theorems 1 and 2 (β > 3/2)

In this section, we put ξ (n) = e( f (n)) for some real-valued f . Then

WR(θ) =
∑

|n|≤N

e( f (n + R) + nθ) e− n2

2R ,
√

R logR � N � R
1
2 +ε,

and we are looking for a lower bound for

XR =
∫ a+ 1

2m

a− 1
2m

∣∣WR(θ)
∣∣2g(m(θ − a)) dθ, a ∈ [0, 1], m ∈ N.

The upper bound XR ≤ C
√

R as well as the matching lower bound in the case
when m = 1 follow from Parseval’s theorem. There are some reasons to expect
that if there are no unreasonable cancellations, then a similar lower bound holds
in all scales, that is, XR ≥ c(a,m)

√
R for every m ∈ N and every a ∈ [0, 1]. In the

next subsections, we justify these expectations.

5.1. The following lemma reduces the lower bound for XR to upper bounds
for certain Weyl sums. Put

ST (M1,M2) =
∑

M1≤n<M2

e
(
f (n + R) − f (n + R − T )

)
.

Lemma 5.1.1. There exist positive numerical constants c and C such that

XR ≥ c
√

R
m

− Cm
2N∑
T =1

1
T 2

max
0<M2−M1≤

√
R,

|M1|,|M2|≤N

∣∣ST (M1,M2)
∣∣.
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Proof. We have

XR =
1
m

∫ 1/2

−1/2

∣∣∣ ∑
|n|≤N

e
(

f (n + R) + na +
nθ
m

)
e−n2/(2R)

∣∣∣2 g(θ) dθ

=
1
m

∑
|n|,|n′|≤N

e
(
f (n + R) − f (n′ + R) + (n − n′)a

)
e−(n2+n′2)/(2R) ĝ

(n′ − n
m

)
,

where ĝ denotes the Fourier transform of g extended by 0 to R \ [− 1
2 ,

1
2 ]. The

diagonal sum (n = n′) contributes

1
m

∑
|n|≤N

e−n2/R N≥√
R≥ c

√
R

m
.

We need to estimate from above the contribution of non-diagonal terms

2
m

∣∣∣ ∑
|n|,|n′|≤N

n′<n

e
(
f (n + R) − f (n′ + R) + (n − n′)a

)
e−(n2+n′2)/(2R) ĝ

(n′ − n
m

)∣∣∣.
Letting T = n − n′ and using the fact that ĝ

(
(n′ − n)/m

)
= O

(
m2/(n − n′)2

)
, we

see that the contribution of non-diagonal terms is

(5.1.1) ≤ Cm
2N∑
T =1

1
T 2

∣∣∣ ∑
−N+T≤n≤N

e
(
f (n + R) − f (n + R − T )

)
e−(n2+(n−T )2)/(2R)

∣∣∣.
The function n �→ e−(n2+(n−T )2)/(2R) increases for −∞ < n ≤ 1

2T and decreases
for 1

2T ≤ n < +∞. We consider these two ranges separately. Then the expression
in (5.1.1) is

≤ Cm
2N∑
T =1

1
T 2

[∣∣∣ ∑
−N+T≤n< 1

2 T

· · ·
∣∣∣ + ∣∣∣ ∑

1
2 T≤n≤N

· · ·
∣∣∣].

Next, we split the sums in n into blocks of length
√

R (and several blocks of smaller
length that are treated similarly). We set Jk = [T

2 + (k − 1)
√

R, T
2 + k

√
R) and put

Yk,T =
∑

n∈Jk∩[−N+T,N ]

e( f (n + R) − f (n + R − T ))e−(n2+(n−T )2)/(2R) ,

with |k| ≤ 1√
R

(
N − T

2

)
+ 1. Note that for n = T

2 + λ
√

R with k − 1 ≤ λ < k, we
have

− 1
2R

(
n2 + (n − T )2

)
= − 1

2R

((
λ
√

R +
T
2

)2 +
(
λ
√

R − T
2

)2
)

= − 1
2R

(
2λ2R +

1
2
T 2

)
< −λ2 ≤ −ck2 + c1 .
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Then, applying the Abel summation formula to the sum Yk,T , we see that∣∣Yk,T

∣∣ ≤ Ce−ck2
max

0<M2−M1≤
√

R
|M1|,|M2|≤N

∣∣ST (M1,M2)
∣∣ ,

and the sum of non-diagonal terms we are estimating is

≤ Cm
2N∑
T =1

1
T 2

∑
|k|≤ 1√

R
(N− 1

2 T )+1

∣∣Yk,T

∣∣ ≤ Cm
2N∑
T =1

1
T 2

max
0<M2−M1≤

√
R

|M1|,|M2|≤N

∣∣ST (M1,M2)
∣∣.

This completes the proof of Lemma 5.1.1. �
Now, Theorems 1 and 2 (for β > 3/2) follow readily from the classical Weyl

and van der Corput estimates of exponential sums.

5.2 Proof of Theorem 1. First, we fix T0 = T0(m) so large that

Cm
∑
T>T0

1
T 2

<
1
2

c
m
,

where the positive numerical constants C and c are the same as in the assertion of
Lemma 5.1.1. Then, using the trivial bound

∣∣ST (M1,M2)
∣∣ ≤ √

R, we get

XR >
1
2

c
m

√
R − CmT0 max

1≤T≤T0

max
0<M2−M1≤

√
R

∣∣ST (M1,M2)
∣∣.

Define PT (x) = Q(x) − Q(x − T ), set
∑d−1

k =1 pkxk = PT (x), and observe that at
least one of the coefficients pk is irrational (if � is the maximal index such that the
coefficient q� of Q is irrational, then p�−1 must be irrational too). Then, by Weyl’s
theorem [20, Section 3] (see also the argument in [17, pp. 17–18]), we have

max
0<M2−M1≤M

∣∣∣ ∑
M1≤n<M2

e(PT (n))
∣∣∣ = o(M ) , as M → ∞.

Hence, for each T ∈ {1, . . . ,T0},

max
0≤M2−M1≤

√
R

∣∣ST (M1,M2)
∣∣ = o(

√
R), as R → ∞,

and, for R > R0(m), we have XR > c(m)
√

R with c(m) > 0. An application of
Lemma 4.3.1 completes the proof of Theorem 1.

5.3 Proof of Theorem 2. Here, we prove Theorem 2 for β > 3/2; the case
β = 3

2 is treated in Section 6. Put fT,R(x) = (R + x)β − (R + x − T )β .
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5.3.1 3/2 < β < 2. In this case, we apply the classical summation formula
(see, e.g., [19, (2.1.2)])

∑
M1≤n<M2

ϕ(n) =
∫ M2

M1

ϕ(x)dx +
∫ M2

M1

(
x − [x] − 1

2

)
ϕ′(x)dx +

1
2
ϕ(M1) − 1

2
ϕ(M2)

with ϕ(x) = e( fT,R(x)) and with integers M1 and M2, |M1|, |M2| ≤ N . We get

ST (M1,M2) =
∫ M2

M1

e
(
fT,R(x)

)
dx + 2πi

∫ M2

M1

(
x − [x] − 1

2

)
f ′
T,R(x)e

(
fT,R(x)

)
dx + O(1).

Since the function f ′
T,R is monotonically decreasing, applying a classical estimate

on integrals of oscillating functions (see, e.g., [19, Lemma 4.2]) and recalling that
M2 ≤ N , we get

(5.3.1)
∣∣∣∫ M2

M1

e( fT,R(x))dx
∣∣∣ ≤ 4

f ′
T,R(N )

.

For R ≥ R0(β), |x| ≤ N , and 1 ≤ T ≤ 2N , we have

f ′
T,R(x) = β

(
(R + x)β−1 − (R + x − T )β−1) =

(
β(β − 1) + o(1)

) T
R2−β ,

uniformly in x ∈ [−N,N ]. Therefore, the LHS of (5.3.1) is ≤ c(β)T −1R2−β .
Next,∣∣∣∫ M2

M1

(
x − [x] − 1

2

)
f ′
T,R(x) e

(
fT,R(x)

)
dx

∣∣∣ ≤ (M2 − M1) max|x|≤N

∣∣ f ′
T,R(x)

∣∣ ≤ c(β)N
T

R2−β ,

whence, by Lemma 5.1.1,

XR ≥ c
√

R
m

− C(β)m
(
R2−β + NRβ−2 logN

) ≥ c(m, β)
√

R,

provided that R ≥ R0(m, β). In view of Lemma 4.3.1, this proves Theorem 2 in
the case 3/2 < β < 2.

5.3.2 β > 2. Suppose that k < β < k + 1 with an integer k ≥ 2. To estimate

max
M2−M1≤N

|M1|,|M2|≤N

∣∣ST (M1,M2)
∣∣,

we apply a van der Corput bound [19, Theorem 5.13]. Using the fact that

f (k)
T,R(x) �β,k

T
Rk+1−β uniformly in |x| ≤ N, 1 ≤ T ≤ 2N,
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we get

∣∣ST (M1,M2)
∣∣ �β,k (M2 − M1)

( T
Rk+1−β

) 1
2K−2

+ (M2 − M1)
1− 2

K

(Rk+1−β

T

) 1
2K−2

with K = 2k−1 (x �a y and x �a y mean, correspondingly, c1(a)y ≤ x ≤ c2(a)y
and x ≤ c(a)y). Since M2 − M1 ≤ N , the right-hand side is

� N
(
T 1/2R−δ + R− 1

K + k+1−β
2K−2

)
,

with some δ > 0. Since K ≥ 2, we have

k + 1 − β < 1 ≤ 2 − 2
K

=
2K − 2

K
.

Therefore,

max
M2−M1≤N

|M1|,|M2|≤N

∣∣ST (M1,M2)
∣∣ �β,δ T 1/2R1/2−δ/2;

and, by Lemma 5.1.1, XR ≥ c(m)
√

R, provided that R ≥ R0(m, β).

6 Proof of Theorem 2 (β = 3/2)

In [5], Chen and Littlewood showed that the zeroes of the function Fξ with ξ (n) =
e(nβ), 1 < β < 3

2 , are asymptotically very close to a sequence of points that are
regularly distributed on the spiral given in polar coordinates by θ = −π+C(β)rβ−1.
Their analysis yields that this ξ is an L-sequence. In fact, they gave a detailed proof
for another sequence ξ (n) = e(n(log n)β) with β > 1, and mentioned that their
arguments work with minor changes in the case we consider here. Apparently, it
is an intriguing open question which part of their analysis can be extended to the
case 3/2 ≤ β ≤ 2 (or, even to β = 3/2). Nevertheless, as we show in this section,
a certain combination of their method with our techniques is strong enough to
show that the sequence ξ (n) = e(n3/2) is an L-sequence.

Throughout this section,

WR(θ) =
∑

|n|≤N

e
(
(n + R)3/2 + (n + R)θ

)
e−n2/(2R)

with N = R1/2 logR + O(1); this differs from our definition in Subsection 4.1 by a
unimodular factor e(Rθ).

6.1. Here, we give an asymptotic estimate of WR which yields Theorem 2 in
the case β = 3/2.
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Lemma 6.1.1. For R → ∞,

WR(θ) =
2e(1/8 + MR)R1/4

√
3

∑
|m|≤ 1

2 logR

e
(
mR − 4

27 (M + m − θ)3
)
e− 8

9 (m−θ)2

+ O
(
(logR)3

)
with M = 3

2R
1/2, uniformly in θ .

It is worth mentioning that in the case 1 < β < 3/2 considered by Chen and
Littlewood, at most two terms contribute to the corresponding sum on the right-
hand side. This was crucial for finding the asymptotic locations of zeroes of F .

We split the proof of Lemma 6.1.1 into several parts.

6.1.1. Take χ ∈ C∞
0 [0,+∞) with χ ≥ 0,

χ(t) =

⎧⎨⎩1, 0 ≤ x ≤ N,

0, x ≥ N + 1,

and set χ(z) = χ(|z|), and

u(t) = χ(t − R)e(t3/2 + tθ)e−(t−R)2/(2R), t ∈ R.

Then
WR(θ) =

∑
n∈Z

u(n) =
∑
m∈Z

û(m) (the Poisson summation),

where

û(m) =
∫
R

u(t)e(−mt) dt

= e(mR)
∫
R

χ(t)e((t + R)3/2 − (m − θ)(t + R))e−t2/(2R) dt

= e(mR)
∫
R

χ(t)e(ψm(t))e−t2/(2R) dt ,

where ψm(t) = (t + R)3/2 − μ(t + R) is “a phase function”, and μ = m − θ is “a
distorted m”. Put

Im =
∫
R

χ(t)e(ψm(t))e−t2/(2R) dt .

Estimating the integrals Im , we set M = 3
2R

1/2 and consider separately three
cases: |m − M | > logR, 1

2 logR < |m − M | ≤ logR, and |m − M | ≤ 1
2 logR. In

what follows, we extend ψm to an analytic function in {z : Re z > −R} and use the
Taylor approximation of ψm in the disk {z : |z| ≤ 10N }:
(6.1.1) ψm(z) = − 1

2R
3/2 − σR − σz + 3

8z
2R−1/2 − 1

16z
3R−3/2 + O

(
R−1/2(logR)4

)
,

where σ = μ− M .
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6.1.2. We start with the case |m − M | > logR. Then the derivative of the
phase ψm is large on the support of χ; see (6.1.3) below. We show that for R ≥ R0,

(6.1.2) |Im| ≤ e−c(logR)2

(m − M )2
.

Integrating twice by parts, we obtain

Im =
1

(2πi)2

∫
R

[ 1
ψ′

m

(χe−t2/(2R)

ψ′
m

)′]′
(t)e(ψm(t)) dt

=
1

(2πi)2

∫
R

λ(t)
ψ′2

m(t)
e(ψm(t))e−t2/(2R) dt,

where

λ = χ′′ − 3χ′ψ′′
m

ψ′
m

− 2χ′t
R

− χ

R
+
χt2

R2
+

3χψ′′
mt

ψ′
mR

− χψ′′′
m

ψ′
m

+ 3
(ψ′′

m

ψ′
m

)2
χ.

For |z| ≤ N + 1 and R > R0, we have

|ψ′
m(z)| =

∣∣∣ 3
2 (R + z)1/2 − 3

2R
1/2 − σ

∣∣∣ ≥ |σ| − 3
2R

1/2
[√

1 +
N + 1

R
− 1

]
≥ |σ| − ( 3

4 + o(1)) logR ≥ 1
5 |σ|.

(6.1.3)

Since the functions ψ′′
m , ψ′′′

m are bounded on the disk {z : |z| ≤ N +1}, we conclude
that λ is bounded on the same disk.

Next, we set

H (z) = 2πiψm(z) − z2

2R
= 2πi(R + z)3/2 − 2πi

(3
2
R1/2 + σ

)
(z + R) − z2

2R
.

Then

Im = − 1
4π2

∫
R

λ(t)
ψ′2

m(t)
eH (t)dt.

Using the Taylor expansion (6.1.1), we get

| expH (x + iy)|
≤ C exp

(
2πσy − 3π

2
xyR−1/2 +

3π
8

x2yR−3/2 − π

8
y3R−3/2 − x2

2R
+

y2

2R

)
(6.1.4)

= C exp
[(

2πσ− 3π
2

xR−1/2 + o(1)
)
y − x2

2R
+

y2

2R

]
, |x + iy| ≤ 3N.

Now,

4π2|Im| ≤
∣∣∣∫

N
2 ≤|x|≤N+1

∣∣∣ + ∣∣∣∫
|x|≤N/2

∣∣∣ .
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For |x| ≥ 1
2N , | expH (x)| ≤ C exp[−x2/(2R)] ≤ exp[−c(logR)2]. Thus, the first

integral does not exceed

CN |σ|−2e−c(logR)2 ≤ e−c1(logR)2

(m − M )2
.

In the second integral, instead of integrating over the interval [− 1
2N,

1
2N ], we in-

tegrate over the contour �σ shown in Figure 1.

if σ < 0

�σ

N/2−N/2 0

R1/2

if σ > 0

�σ

R1/2

N/2−N/2 0

Figure 1

Estimate (6.1.4) shows that

|eH (x+iy)| ≤
⎧⎨⎩C e−cR1/2 logR, z ∈ �σ, |y| = R1/2,

C e−c(logR)2, z ∈ �σ, |x| = N/2.

Therefore, the integral over the contour �σ is also bounded by

(m − M )−2 e−c(logR)2,

and estimate (6.1.2) follows.

6.1.3. Next suppose 1
2 logR < |m − M | ≤ logR. This case is similar to the

previous one but the proof is somewhat shorter since there is no need to integrate
by parts (instead of (6.1.2) we check a simpler estimate (6.1.5)). We again split
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the integral into two parts:

|Im| =
∣∣∣∫

R

χ(t)e(ψm(t))e−t2/(2R) dt
∣∣∣ ≤

∣∣∣∫
N
2 ≤|x|≤N+1

∣∣∣ + ∣∣∣∫
|x|≤N/2

∣∣∣
≤ Ce−c(logR)2 +

∣∣∣∫
�σ

eH (z) dz
∣∣∣.

Arguing as above, we obtain

(6.1.5) |Im| ≤ e−c(logR)2 .

6.1.4. Finally, we deal with Im such that |m−M | ≤ 1
2 logR. This case requires

a saddle point approximation. Set

z0 =
4
3
σR1/2, A0 = −8

9
σ2 − 8πi

27
μ3.

Then, using the Taylor approximations (6.1.1), we get

H (z0) = A0 + O
(
R−1/2(logR)4

)
,

H ′(z0) = O
(
R−1/2(logR)2

)
,

H ′′(z) =
3πi
2

R−1/2 + O(R−1 logR), |z| < 5N .

Now,

Im =
∫

|x|≤N
+
∫

N≤|x|≤N+1
=
∫
�σ

eH (z)dz + O
(
e−c(logR)2),

where the Fresnel-type contour �σ is as in Figure 2.
Let �0

σ be the vertical part of �σ, and �1
σ be the rest. Then by estimate (6.1.4)

we have ∣∣∣∫
�0
σ

eH (z)dz
∣∣∣ ≤ e−c(logR)2 .

Hence

Im =
∫
�1
σ

eH (z)dz + O
(
e−c(logR)2).

Furthermore, ∫
�1
σ

eH (z)dz = eiπ/4
∫ R1/2(NR−1/2−4σ/3)

−R1/2(NR−1/2+4σ/3)
eH (teiπ/4+z0)dt.

For |t| ≤ 2N , we have

H (teiπ/4 + z0) = A0 + O
( (logR)4

R1/2

)
+ O

(
t
(logR)2

R1/2

)
− 3π

4
t2R−1/2 + O

(
t2

logR
R

)
,
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0
z0

�σ

−N

N

π/4

Figure 2

and hence

∫
�1
σ

eH (z)dz = eiπ/4+A0 R1/4

R1/4(logR−4σ/3+o(1))∫
R1/4(− logR−4σ/3+o(1))

exp
[
−3π

4
t2

+ O
( (logR)4

R1/2
+ t

(logR)2

R1/4
+ t2

logR
R1/2

)]
dt

= eiπ/4+A0 R1/4
(∫

R

exp
[−3π

4
t2
]
dt + O

( (logR)3

R1/4

))
=

2√
3
R1/4e

( 1
8 − 4

27μ
3)e− 8

9σ
2
+ O

(
(logR)3

)
.

Finally, for |m − M | ≤ 1
2 logR, we get

Im =
2√
3
R1/4e

( 1
8 − 4

27μ
3)e− 8

9σ
2
+ O

(
(logR)3

)
+ O

(
e−c(logR)2)

=
2√
3
R1/4e

( 1
8 − 4

27 (m − θ)3
)
e− 8

9 (m−M−θ)2 + O
(
(logR)3

)
.
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6.1.5. Thus,

WR(θ) =
∑
m∈Z

û(m + M ) =
[ ∑
|m|≤ 1

2 logR

+
∑

1
2 logR<m≤logR

+
∑

|m|>logR

]
e((M + m)R)Im+M

=
2e(1/8 + MR)R1/4

√
3

∑
|m|≤ 1

2 logR

e
(
mR − 4

27 (M + m − θ)3
)
e− 8

9 (m−θ)2

+ O
(
(logR)3

)
,

which proves Lemma 6.1.1.

6.2. At last, we are able to prove Theorem 2 for β = 3
2 . Consider the shifts

WR(θ + t) with 0 ≤ t ≤ 9
8M

−1. We have

WR(θ + t) =
2e(1/8 + MR)R1/4

√
3

∑
|m|≤ 1

2 logR

e
(
mR − 4

27 (M + m − θ − t)3
)
e− 8

9 (m−θ−t)2

+ O
(
(logR)3

)
.

Furthermore, since |t| = O
(
M−1

)
with M = 3

2R
1/2, we have

e
(− 4

27 (M + m − θ − t)3
)
e− 8

9 (m−θ−t)2

= e
(− 4

27 (M + m − θ)3 + 4
9 (M

2 − 2Mθ)t + 8
9Mmt

)
e− 8

9 (m−θ)2

+ O
( (logR)2

R1/2

)
.

Therefore,

WR(θ + t) = KR1/4
∑

|m|≤ 1
2 logR

e
( 8

9Mtm + mR − 4
27 (M + m − θ)3

)
e− 8

9 (m−θ)2

+ O
(
(logR)3

)
with

K = K (M, θ, t) =
2e

( 1
8 + MR + 4

9(M
2 − 2Mθ)t

)
√

3
.

Now, notice that the sum on the right-hand side is a Fourier series in the vari-
able 8

9Mt. Hence, by Parseval’s theorem, there exists t ∈ [0, 9
8M

−1] such that

|WR(θ + t)| ≥ 2R1/4

√
3

( ∑
|m|≤ 1

2 logR

e− 16
9 (m−θ)2

)1/2 − O
(
(logR)3

) ≥ CR1/4

with a positive numerical constant C. Applying Lemma 4.2.1, we finish off the
proof.
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7 Wide-sense stationary sequences

Here, we prove several simple lemmas pertaining to the case when ξ : Z+ → C

is a wide-sense stationary sequence, that is, E|ξ (n)|2 < ∞ for every n, and
Eξ (n) and E

{
ξ (n)ξ (n + m)

}
do not depend on n. We also always assume that ξ is

not the zero sequence. By ρ we denote the spectral measure of such a sequence ξ ,
i.e., ρ is a finite non-negative measure on the unit circle T such that

E
[
ξ (n1)ξ (n2)

]
= ρ̂(n2 − n1).

By σ(ξ ), we denote the spectrum of ξ , i.e., the closed support of the spectral meas-
ure ρ. In what follows, by σ∗ we always mean the reflection of the spectrum σ in
the real axis.

Observe that if ξ is a wide-sense stationary sequence then, almost surely, Fξ is
an entire function of exponential type at most 1. Indeed, for every ε > 0,

P
{|ξ (n)| > (1 + ε)n

} ≤ (1 + ε)−2n E|ξ (n)|2,
whence, by the Borel–Cantelli Lemma, lim supn→∞ |ξ (n)|1/n ≤ 1 almost surely,
which is equivalent to the inequality |Fξ (z)| ≤ C(ε)e(1+ε)|z| being valid for every
z ∈ C and every ε > 0.

7.1. First, we compute the variance of Fξ in terms of the spectral measure ρ.

Lemma 7.1.1. Suppose ξ is a wide-sense stationary sequence. Then

(7.1.1) E
∣∣Fξ (reiθ )

∣∣2 =
∫ π

−π
e2r cos(θ+t) dρ(t) ,

and

(7.1.2) logE
∣∣Fξ (reiθ )

∣∣2 = 2rhσ∗(θ) + o(r) , r → ∞ .

Proof. We have

E
∣∣Fξ (reiθ )

∣∣2 =
∑

n1,n2≥0

E
[
ξ (n1)ξ (n2)

]
ei(n1−n2)θ rn1+n2

n1!n2!

=
∑

n1,n2≥0

[∫ π

−π
e−i(n2−n1)t dρ(t)

]
ei(n1−n2)θ rn1+n2

n1!n2!

=
∫ π

−π

[ ∑
n1,n2≥0

ein1(θ+t) rn1

n1!
· e−in2(θ+t) rn2

n2!

]
dρ(t)

=
∫ π

−π
er
[
ei(θ+t)+e−i(θ+t)

]
dρ(t)

=
∫ π

−π
e2r cos(θ+t)dρ(t),
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which proves (7.1.1). Now, recalling the definition of the supporting function

hσ∗(θ) = max
t∈spt(ρ)

cos(θ + t),

we readily get asymptotics (7.1.2). �

7.2. As a straightforward consequence of the previous lemma, we get the fol-
lowing result.

Lemma 7.2.1. Suppose ξ is a wide-sense stationary sequence. Then, almost
surely,

hFξ (θ) ≤ hσ∗(θ) , θ ∈ [−π,π] .

In other words, the indicator diagram IFξ of Fξ is contained in the closed con-
vex hull of the spectrum σ(ξ ) reflected in the real axis.

Proof. Using (7.1.2) and Chebyshev’s inequality, we see that for every ε > 0,

P
{
log |Fξ (reiθ )| > (hσ∗(θ) + ε)r

}
= P

{|Fξ (reiθ )|2 > e2(hσ∗ (θ)+ε)r}
≤ E

{|Fξ (reiθ )|2} e−2(hσ∗ (θ)+ε)r = e−2εr+o(r) , r → ∞ .

Hence, by the Borel–Cantelli Lemma, for every κ > 0 and every θ ∈ [−π,π],

lim sup
n→∞

log |Fξ (κneiθ )|
κn

≤ hσ∗(θ), almost surely.

Since the exponential type of the entire function Fξ does not exceed 1, for any
κ < π, we have

lim sup
r→∞

log |Fξ (reiθ )|
r

= lim sup
n→∞

log |Fξ (κneiθ )|
κn

.

This is a special instance of a classical result that goes back to Pólya and to
Vl. Bernstein; for a simple proof of this result see, e.g., [2, Theorem 1.3.5]. There-
fore, given θ ∈ [−π,π], almost surely, we have hFξ (θ) ≤ hσ∗(θ). Since both func-
tions in this inequality are continuous on [−π,π], we immediately conclude that,
almost surely, the inequality holds for all θ ∈ [−π,π]. �

We will use Lemmas 7.1.1 and 7.2.1 in the Gaussian case (Theorem 4).

7.3. The next lemma is needed for the mixing case (Theorem 3). As above,
we use the notation

WR(θ) =
∑

|n|≤N

ξ (n + R)e(nθ) e− n2

2R , N = R1/2 logR + O(1),



ENTIRE FUNCTIONS REPRESENTED BY TAYLOR SERIES 387

fix a non-negative even function g ∈ C2
0 [− 1

2 ,
1
2 ] with

∫
g(θ) dθ = 1, and set

XR =
∫ a+ 1

2m

a− 1
2m

∣∣WR(θ)
∣∣2g(m(θ − a))dθ

=
1
m

∑
|n1|,|n2|≤N

ξ (n1 + R)ξ (n2 + R)e
(
(n1 − n2)a

)
e−(n2

1+n2
2)/(2R)ĝ

(n2 − n1

m

)
.

Lemma 7.3.1. Suppose ξ is a wide-sense stationary sequence whose spectral
measure ρ has no gaps in its support. Then for every a ∈ [0, 1] and every m ∈ N,
there exists a positive limit

(7.3.1) lim
R→∞ R−1/2 EXR = c(a,m) > 0.

Proof. We have

EXR =
1
m

∑
|n1|,|n2|≤N

ρ̂(n2 − n1) ĝ
(n2 − n1

m

)
e((n1 − n2)a)e−(n2

1+n2
2)/2R.

Put k = n2 − n1, � = n2 + n1. Then

|k| ≤ 2N, |�| ≤ 2N − k, � ≡ k mod2,

and n2
1 + n2

2 = 1
2 (k

2 + �2). Hence,

EXR =
1
m

∑
|k|≤2N

ρ̂(k) ĝ
( k
m

)
e(−ka) e−k2/(4R)

∑
|�|≤2N−k
�≡k mod2

e−�2/(4R).

Because of the cut-off e−k2/(4R), we discard the sum over N ≤ |k| ≤ 2N (recall
that N = R1/2 logR + O(1)) and consider only the range |k| ≤ N . Then the inner
“�-sum” equals

√
πR + O(R−1/2), and we get

EXR =

√
πR
m

∑
|k|≤N

ρ̂(k) ĝ
( k
m

)
e(−ka)e−k2/(4R) + O(logR).

Since ĝ ∈ l1(Z), by the dominated convergence on Z, we have

lim
R→∞ R−1/2EXR =

√
π

m

∑
k∈Z

ρ̂(k) ĝ
( k
m

)
e(−ka).

The sum on the right-hand side is the density of the convolution ρ∗gm at the point
−a, where

gm(θ) =

⎧⎨⎩mg(mθ), |θ| ≤ 1/(2m)

0, otherwise.

Since the support of ρ is the whole circle T and the function g is non-negative, this
value is positive. This proves the lemma. �
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8 Proof of Theorem 6

8.1. First, we assume that ξ : Z → Z is an integer-valued stationary sequence
with the spectral measure ρ. Let Kξ be the convex hull of spt(ρ), and let K ∗

ξ be
its reflection in the real axis. Suppose that spt(ρ) �= T, i.e., K ∗

ξ �= D. By Pólya’s
theorem (see [14, Theorem 33, Chapter I] or [2, Theorem 1.1.5]), the series

fξ (w) =
∑
n≥0

ξ (n)
wn+1

is analytic on Ĉ \ K ∗
ξ . Since ξ attains only integer values, another theorem of

Pólya [2, Theorem 6.2.1] yields that for every fixed ξ , the function fξ is rational
with poles at roots of 1, fξ = P/Q, with mutually prime P,Q ∈ Z[w] and monic
Q.

Next, we use simple algebra. Noting that P is a product of irreducible poly-
nomials, and recalling that if a polynomial is irreducible in Z[w] then it is also
irreducible in Q[w] (“Gauss lemma”), and that two different irreducible polyno-
mials in Q[w] are mutually prime, we conclude that P has no common zeroes with
Q.

Since every polynomial in Z[w] is a product of irreducible polynomials, and
since the cyclotomic polynomials�n(w) =

∏
gcd(k,n)=1(w− e(k/n)) belong to Z[w]

and are irreducible therein, we see that Q =
∏

1≤k≤u�n(k). Since fξ is analytic on
a fixed arc of the unit circle, we obtain that n(k) ≤ M for some M independent
of ξ . Thus, the set of poles of fξ is contained in {w : wN = 1} for some N ≥ 1
independent of ξ .

Furthermore, since E|ξ (n)|2 is finite (and does not depend on n), applying
Chebyshev’s inequality and the Borel-Cantelli Lemma, we see that, for any λ >
1/2, almost surely, |ξ (n)| = o(nλ), whence

max|w|=r
| fξ (w)| = o((r − 1)−2), r ↓ 1

follows. Therefore, all poles of fξ are simple and fξ can be written in the form
fξ (w) = (wN − 1)−1S(w), where S is a polynomial (depending on ξ ) and N ∈ N

does not depend on ξ . Hence, the coefficients ξ (n) of fξ are eventually periodic
with period N .

Since the sequence ξ is stationary, we conclude that it is periodic with period
N . Indeed, given M < ∞, we consider the bounded sequence ξM given by

ξM (n) =

⎧⎪⎪⎨⎪⎪⎩
M, ξ (n) > M,

ξ (n), −M ≤ ξM (n) ≤ M,

−M, ξ (n) < −M.
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Then ξM is also stationary, and the values E(ξM (k + N ) − ξM (k))2 do not de-
pend on k. On the other hand, almost surely, the sequence ξM (n) is eventually
periodic with period N , and by the bounded convergence theorem, the values
E(ξM (k + N ) − ξM (k))2 converge to 0 for k → ∞. Hence they are equal to 0,
and the sequences ξM (n) are periodic with period N for every M . Thus, ξ is peri-
odic with period N . This completes the proof of the first part of Theorem 6.

Note that we used stationarity of ξ only in the last step of the proof. The rest is
valid for wide-sense stationary integer-valued sequences. Also note that this last
step can be made for wide-sense stationary sequences ξ satisfying the condition
supn E|ξ (n)|κ < ∞ for some κ > 2. Hence, the first statement in Theorem 6 is
valid for wide-sense stationary sequences satisfying this moment condition.

8.2. To prove the second part of Theorem 6, we use the following result of
Hausdorff [2, Theorem 4.2.4].

If the set A is uniformly discrete, then there exist at most countably many se-
quences ξ such that the series fξ (w) can be analytically continued across an arc
in T.

Let μ be a translation invariant probability measure in the space of sequences
AZ corresponding to the stationary sequence ξ . Suppose that there exists a la-
cuna in the support of the spectral measure ρ. Then, as above, by Lemma 7.2.1
combined with Pólya’s theorem, almost surely, the function fξ has an analytic con-
tinuation across an arc in T; and by the theorem of Hausdorff, the measure μ has at
most countable support. Since μ is translation invariant, we conclude that, almost
surely, the sequence ξ (n) is periodic. Since μ is ergodic, the period is not random
and the stationary sequence ξ is periodic.

9 Proof of Theorem 3

9.1. The proof of Theorem 3 needs in addition an estimate of the fourth order
correlations.

Lemma 9.1.1. Let ξ be a bounded stationary sequence of random variables,
and let the maximal correlation coefficient of ξ satisfy

r(t) = O
(
(log t)−κ

)
, t → ∞ ,

with some κ > 1. Then, for every a ∈ [0, 1] and every m ∈ N,

E
(
XR − EXR

)2 = O
( R
(logR)κ1

)
, R → ∞,

with some 1 < κ1 < κ.
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Proof. We have

m2E
(
XR − EXR

)2

= E
[ ∑
|n1|,|n2|≤N

(
ξ (n1 + R)ξ (n2 + R) − E

{
ξ (n1 + R)ξ (n2 + R)

})
ĝ
(n2 − n1

m

)
× e((n1 − n2)a) e(n2

1+n2
2)/(2R)

]2

=
∑

|n1|,...,|n4|≤N

C(n1, n2, n3, n4) ĝ
(n2 − n1

m

)
ĝ
(n4 − n3

m

)
× e((n1 − n2 + n3 − n4)a) e(n2

1+n2
2+n2

3+n2
4)/(2R),

where
C(n1, n2, n3, n4) = E

{
η(n1, n2) · η(n3, n4)

}
with

η(ni, n j ) = ξ (ni + R)ξ (n j + R) − E
{
ξ (ni + R)ξ (n j + R)

}
.

Let I be the interval with endpoints n1 and n2, and let J be the interval with end-
points n3 and n4. Setting t = dist(I, J), we estimate C by the maximal correlation
coefficient r(t):∣∣C(n1, n2, n3, n4)

∣∣ ≤ r(t)
√
E|η(n1, n2)|2 · E|η(n3, n4)|2 ≤ 4r(t)‖ξ‖4

∞.

Therefore,

E
(
XR − EXR

)2 = O(1)‖ξ‖4
∞

× ∑
|n1|,...,|n4|≤N

r(t)
m2

1 + (n1 − n2)2
m2

1 + (n3 − n4)2
e−(n2

1+n2
2+n2

3+n2
4)/(2R).

To estimate the sum on the right-hand side, we put

k1 = n1 − n2, �1 = n1 + n2, k2 = n3 − n4, �2 = n3 + n4.

Then t ≥ 1
2

(|�1 − �2| − (|k1| + |k2|)
)
, and we need to estimate the sum

∑
|k1|,|k2|,|�1|,|�2|≤2N

r
( 1

2

(|�1 − �2| − (|k1| + |k2|)
))e−(k2

1+k2
2+�

2
1+�

2
2)/(4R)

(1 + k2
1)(1 + k2

2)
.

Here and later on, r(t) = r(max([t], 0)), where [t] is the maximal integer not ex-
ceeding t.

We split this sum into two parts: the first taken over |�1 − �2| ≤ 2(|k1| + |k2|),
the second taken over |�1 − �2| > 2(|k1| + |k2|).
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The first sum does not exceed∑
k1,k2≥0

e−(k2
1+k2

2 )/(4R)

(1 + k2
1) (1 + k2

2)
· O(1 + k1 + k2) · O(N )

= O(R1/2 logR)
∑

k1,k2≥0

1 + k1 + k2

(1 + k2
1) (1 + k2

2)
e−(k2

1+k2
2 )/(4R)

= O(R1/2 logR)
[∑

k≥1

e−k2/(4R)

k
+ O(1)

]
= O

(
R1/2(logR)2

)
,

while the second sum is bounded by

O(1)
∑

|�1|,|�2|≤2N

r
( 1

4 |�1 − �2|
)
e−(�21+�

2
2)/(4R) = O(

√
R)

∑
�>1

r
( 1

4�
)
e−�2/(8R) .

Recall that r(t) = O
(
1/ logκ R

)
, and let κ = 1 + 2ε. Then∑

�>1

r
( 1

4�
)
e−�2/(8R) ≤ ∑

1≤�≤√
R logε R

r
( 1

4�
)
+

∑
�>

√
R logε R

e−�2/(8R)

= O(1)
[√R logε R

log1+2ε R
+
√

R e−c log2ε R
]

= O(1)

√
R

log1+ε R
.

This completes the proof of Lemma 9.1.1. �

9.2. Now, the proof of Theorem 3 is straightforward. Since the maximal cor-
relation coefficient r(m) decays to 0 as m → ∞, the bounded stationary sequence
ξ is linearly regular, i.e.,

⋂
m L2

(−∞,m] = {0}, where L2
(−∞,m] is the Hilbert space

which consists of the random variables measurable with respect to the σ-algebra
generated by

{
ξ (n) : − ∞ < n ≤ m

}
that have a finite second moment. Then

the spectral measure ρ has a density | f |2, where f belongs to the Hardy space
H 2(T), see [10, Chapter XVII, §1], and therefore, spt(ρ) = T. Hence, we are
in the assumptions of Lemma 7.3.1. Fix a ∈ [0, 1], m ≥ 1. Then, combining
Lemma 7.3.1 with Lemma 9.1.1 and using Chebyshev’s inequality, we see that,
for some c = c(a,m) > 0, κ > 0,

P
{
XR < c

√
R
}

= O(R−1)E
(
XR − EXR

)2 = O
(
(logR)−κ

)
.

Then we take any δ ∈ (κ−1, 1), and put Rj = e j δ . This is a thick sequence (i.e.,
Rj+1/Rj → 1), while

P
{
XRj < c

√
Rj

}
= O

(
j−δκ)

with δκ > 1. Applying the Borel–Cantelli Lemma, we get estimate (4.3.1). Then
Lemma 4.3.1 does the job.
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10 Proof of Theorem 4

Given z = reiθ , Fξ (z) is a Gaussian random variable. As before, σ∗ is the reflection
of the spectrum σ(ξ ) in the real axis. By Lemma 7.1.1,

E|Fξ (reiθ )|2 = e2hσ∗ (θ)r+o(r), r → ∞.

Then, for every ε > 0, every r > rε, and every θ ∈ [−π,π], we have

P
{
log |Fξ (reiθ )| < (hσ∗(θ)−ε)r} = P

{|Fξ (reiθ )| < e−εr+o(r)
√
E|Fξ (reiθ )|2} < e− 1

2 εr

(the last inequality is where we are using the Gaussianity of Fξ ). Applying this
with R = j and using the Borel–Cantelli Lemma, we see that, given θ ∈ [−π,π],

lim inf
j→∞

1
j

log |Fξ ( jeiθ )| ≥ hσ∗(θ), almost surely.

By Lemma 7.2.1, hFξ ≤ hσ∗ everywhere on [−π,π]. Therefore, applying Lem-
ma 3.2.1, we conclude that, almost surely, Fξ has completely regular growth on
the ray {arg(z) = θ} with the indicator hσ∗(θ). To complete the proof, we apply
this argument to a dense countable set of θ’s.

11 Proof of Theorem 5

Now, ξ is a uniformly almost-periodic sequence. By ξ̂ we denote the Fourier
transform of ξ , ξ̂ : T → C. The spectrum of ξ is σ(ξ ) = {eiλ ∈ T : ξ̂ (eiλ) �= 0}; this
is an at most countable subset of T.

We use the following result of Bochner.
There exist an enumeration of the spectrum σ(ξ ) = {eiλ1, eiλ2, . . . } and a se-

quence of multipliers β(m)
k , k ∈ {1, . . . ,m}, satisfying 0 ≤ β(m)

k ≤ 1 and β(m)
k → 1

as m → ∞ and k stays fixed, such that the finite exponential sums

m∑
k =1

β(m)
k ξ̂ (eiλk )eiλkn

converge to ξ (n) uniformly in n ∈ Z as m → ∞.
For the proof, see, for instance, [13, Chapter VI, § 5], where the proof is given

for almost periodic functions. The proof for almost periodic sequences is almost
the same.

As before, by σ∗ we denote the reflection of σ(ξ ) in the real axis. First, we show
that hF ≤ hσ∗ everywhere, and then that |F (reiθ )| ≥ c(θ)er with some c(θ) > 0,
whenever θ ∈ σ∗ and r ≥ r0(θ). Then Lemma 3.3.1 does the job.



ENTIRE FUNCTIONS REPRESENTED BY TAYLOR SERIES 393

11.1. The following lemma is an old result of Bochner and Bohnenblust [3].
The proof given here follows that in [14, Chapter VI].

Lemma 11.1.1. Everywhere, hFξ ≤ hσ∗ .

Proof. If the spectrum σ(ξ ) is dense on T, then hσ∗ ≡ 1, and there is nothing
to prove. So we assume that there is an open arc J ⊂ T such that σ(ξ )

⋂
J =

∅. Rotating the complex plane, z �→ ze−it, we shift the spectrum σ∗(ξ ) and the
indicator function hFξ by t. Therefore, without loss of generality, we may assume
that σ(ξ ) is contained in the arc {eiθ : |θ| ≤ π − δ} for some δ > 0. We need
to show that the indicator diagram IF is contained in the closed convex hull of
{eiθ : |θ| ≤ π− δ}.

By our assumption, the functions

w �→ �m(w) =
m∑

k =1

β(m)
k ξ̂ (eiλk )eiλkw

are entire functions of exponential type at most π − δ . By Bochner’s theorem,
given ε > 0, there exists Mε such that, for all m1,m2 > Mε,

‖�m1 −�m2‖�∞(Z) < ε.

Then, by Cartwright’s theorem [14, Chapter IV, Theorem 15],

‖�m1 −�m2‖L∞(R) < C(δ )ε;

and, invoking one of the Phragmén–Lindelöf theorems, we conclude that the se-
quence of entire functions �m converges to an entire function � uniformly in any
horizontal strip. Obviously, the entire function � interpolates the sequence ξ at Z,
the exponential type of � does not exceed π − δ , and � is bounded on R. Thus,
the indicator diagram of � is contained in the interval [(−π + δ )i, (π− δ )i] of the
imaginary axis. It is worth noting that in what follows, we use only the fact that
the exponential type of � does not exceed π− δ .

Now, consider the Taylor series

f (s) =
∑
n≥0

ξ (n)sn,

which is analytic in the unit disk. Since the coefficients ξ (n) can be interpolated
by an entire function of exponential type at most π − δ , the function f can be
analytically continued across the arc {eiθ : |θ − π| < δ} to C̄ \ D̄. This is a clas-
sical result that goes back to Carlson and Pólya (see [14, Appendix 1, § 5] or
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[2, Theorem 1.3.1]). On the other hand, the function w−1 f (w−1) is nothing but
the Laplace transform of the entire function Fξ , and, as we have seen, this func-
tion is analytic outside the closed convex hull of the arc {eiθ : |θ| ≤ π− δ}. Then,
by Pólya’s theorem (see [14, Chapter I, Theorem 33] or [2, Theorem 1.1.5]), the
indicator diagram IFξ is contained in the closed convex hull of {eiθ : |θ| ≤ π− δ}.
This completes the proof of the lemma. �

11.2. Here, we show that Fξ grows as er on the rays corresponding to the set
σ∗.

Lemma 11.2.1. For every θ ∈ σ∗, there exists c(θ) > 0 and r(θ) < ∞ such
that ∣∣Fξ (reiθ )

∣∣ ≥ c(θ)er, r ≥ r(θ).

Proof. Once again, we use Bochner’s theorem. We fix eiλ j ∈ σ(ξ ), take m ≥ j
and put

ξm(n) =
m∑

k =1

β(m)
k ξ̂ (eiλk )eiλkn.

Then, uniformly in z,

(11.2.1)
∣∣Fξ (z) − Fξm (z)

∣∣ ≤ εme|z|, with εm → 0.

Furthermore, Fξm (z) is a finite sum of exponential functions

Fξm (z) =
m∑

k =1

β(m)
k ξ̂ (eiλk )ezeiλk

,

whence ∣∣Fξm (re−iλ j )
∣∣ ≥ β(m)

j |ξ̂ (eiλ j )|er −
m∑

k =1
k �= j

β(m)
k |ξ̂ (eiλk )|er cos(λk−λ j )

≥ β(m)
j |ξ̂ (eiλ j )|er − Cme(1−δm)r ,

follows with some δm > 0. Therefore,

(11.2.2) lim inf
r→∞ e−r

∣∣Fξm (re−iλ j )
∣∣ ≥ β(m)

j |ξ̂ (eiλ j )| ≥ 1
2 |ξ̂ (eiλ j )|,

provided that m ≥ m0( j). Juxtaposing (11.2.1) and (11.2.2), we obtain
Lemma 11.2.1. �

To finish off the proof of Theorem 5, we observe that, by Lemmas 11.1.1
and 11.2.1, the function Fξ satisfies the assumptions of Lemma 3.3.1. Theorem 5
then follows readily.
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