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Abstract. A number of results are proved concerning non-real zeros of deriv-
atives of real and strictly non-real meromorphic functions in the plane.

1 Introduction

If f is a non-constant meromorphic function in the plane, then so is the function
g(z) = f̃ (z) = f (z̄). Here f is called real if g = f and strictly non-real if g/ f is
non-constant. If f and g = f̃ have zeros and poles at the same points with the
same multiplicities, which certainly is the case if all zeros and poles of f are real,
then g/ f has no zeros and poles and has modulus 1 on R, and so f̃ = eih f , where
h is a real entire function.

There has been extensive research into the existence of non-real zeros of deriv-
atives of real entire or meromorphic functions [2, 3, 5, 19, 20, 28, 32, 33, 37, 46,
48], but rather less in the strictly non-real case. Meromorphic functions which, to-
gether with all their derivatives, have only real zeros were classified in [24, 25, 26].
The only other general result treating the strictly non-real case appears to be the
following theorem from [18].

Theorem 1.1 ([18, Theorem 1]). Let f be a strictly non-real meromorphic
function in the plane with only real poles, such that f , f ′ and f ′′ have only real
zeros. Then f has one of the following forms:

(I) f (z) = AeBz;
(II) f (z) = A

(
ei(cz+d) − 1

)
;

(III) f (z) = A exp(exp(i(cz + d)));
(IV) f (z) = A exp

[
K (i(cz + d) − exp(i(cz + d)))

]
;

(V) f (z) =
(
A exp[−2i(cz + d) − 2 exp(2i(cz + d))]

)
/ sin2(cz + d);

(VI) f (z) = A/[ei(cz+d) − 1].
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Here A,B ∈ C, while c, d and K are real with K ≤ −1/4.

In the last example (VI), it is easy to verify that f is strictly non-real but f ′ is
not, while f and g = f̃ have no zeros and the same poles, and f (m) and g(m) have
the same zeros for all m ≥ 1. Moreover, f ′ has no zeros, and f ′′ has only real
zeros; but if m ≥ 3, then f (m) has infinitely many non-real zeros by [33, Lem-
ma 3.1]. We prove the following theorem and use standard terminology from [14].

Theorem 1.2. Let f be a strictly non-real meromorphic function in the plane,
and assume that

(i) f has finitely many zeros,
(ii) f has finitely many non-real poles,
(iii) f (m) has finitely many non-real zeros for some m ≥ 2.

Then the Nevanlinna characteristic of f ′/ f satisfies

(1.1) T (r, f ′/ f ) = O(r log r) as r → ∞.

If, in addition, f has finite order, then one of the following two conclusions
holds:

f = R1e
P1 for some rational function R1 and polynomial P1;(1.2)

m = 2 and f (z) = A(A1z + 1)/[U1(z)e
i(B1z+B2) − 1],(1.3)

where A ∈ C, while U1 is a rational function with |U1(x)| = 1 for all x ∈ R, and
A1,B1,B2 are real numbers with B1 �= 0.

Conversely, if f is as in (1.3), then f satisfies (i), (ii) and (iii) with m = 2.

For example, if g(z) = z/(eiz −1), then all but finitely many zeros of g′′ are real
by Theorem 1.2 (see also Lemma 2.5(II) below), but it is easy to check that g′ has
infinitely many non-real zeros. Obviously, if f is transcendental and is given by
(1.2), then every derivative of f has finitely many zeros. Examples (III), (IV), and
(V) arising from Theorem 1.1 show that (1.1) is not far from being sharp and that,
at least for m = 2, the hypothesis that f has finite order is not redundant in the
second assertion of Theorem 1.2. Note that the analogous problem when f is real
was treated, but again not fully solved, in [20, 35, 37, 46].

The next result deals with strictly non-real meromorphic functions f with only
real zeros and poles and such that f ′′/ f is real. Such functions do exist, but the
following theorem shows that, except in one trivial case, the second derivative has
at least one non-real zero.
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Theorem 1.3. Let f be a strictly non-real transcendental meromorphic func-
tion in the plane with finitely many zeros and poles in C\R, and assume that f ′′/ f
is real. Then

(1.4)
f ′

f
= − β′

2β
+ iβ,

f ′

f
+

g′

g
= −β

′

β
,

where g = f̃ and β is real and meromorphic in the plane, with finitely many poles,
none of them real, and finitely many non-real zeros. Furthermore, f has finitely
many zeros.

If, in addition, f ′′ has finitely many non-real zeros, then f satisfies (1.2): in
particular, if all zeros and poles of f and f ′′ are real, then f (z) = AeiBz, where
A,B ∈ C and B is real.

It follows from (1.4) that a zero of β is a pole of f and hence of f ′′/ f , while
a pole of β is a zero of f or f̃ ; thus, if f has only real zeros and f ′′/ f is en-
tire, then β has neither zeros nor poles, and so Theorem 1.3 contains [19, Theo-
rem 5]. Observe further that if β is a real entire function with real zeros, all of
even multiplicity, then (1.4) defines a strictly non-real meromorphic function f
with real poles and no zeros, such that f ′′/ f is real.

Corollary 1.1. Let H be a non-constant real meromorphic function in the
plane with only real zeros and poles. Then any strictly non-real meromorphic
solution in the plane of the equation w′′ + Hw = 0 has at least one non-real zero.

Corollary 1.1 follows at once from the last part of Theorem 1.3, since any pole
of a meromorphic solution of w′′ + Hw = 0 is automatically a pole of H . The
assertion of Corollary 1.1 is not valid for real solutions, as the example w = tan z,
H (z) = −2 sec2 z immediately shows.

The next two main results of this paper deal with the case of real functions. It is
known [3, 48] that if f is a real transcendental entire function, then f and f ′′ have
only real zeros if and only if f belongs to the Laguerre-Pólya class LP, consisting
of all entire functions which are locally uniform limits of real polynomials with
real zeros, in which case all derivatives of f have only real zeros. For the real
meromorphic case, the following was conjectured in [19].

Conjecture 1.1 ([19]). Let f be a real transcendental meromorphic function
in the plane with at least one pole, and assume that all zeros and poles of f , f ′ and
f ′′ are real, and that all poles of f are simple. Then

(1.5) f (z) = C tan(az + b) + Dz + E, a, b,C,D,E ∈ R.
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Without the condition that f has only simple poles, there are further examples
for which f , f ′ and f ′′ have only real zeros and poles, such as (2 + tan z)2 (see
[42]), as well as a substantial collection whose existence is established by [23,
Theorem 5]. While Conjecture 1.1 appears to be difficult to resolve in general,
results proved in [19, 27], and refined further in [33, 34, 44], show in particular
that the conjecture is true, subject to the additional hypothesis that f ′ omits some
finite value, as is the case for the functions in (1.5).

Theorems 1.4 and 1.5 below will resolve two further special cases of Conjec-
ture 1.1, each of them linked to functions of the form (1.5). Consider first a real
transcendental meromorphic function f in the plane which maps the open upper
half-plane H+ into itself; of course, f maps the open lower half-plane H− into
itself. Such a function f has only real zeros and poles, all necessarily simple, and
by a theorem of Chebotarev [39, Ch. VII, p.310, Theorem 2], has a representation

f (z) = Az + B − d
z

+
∑

Ak

(
1

ak − z
− 1

ak

)
,

B ∈ R, ak ∈ R \ {0}, A, d,Ak ∈ [0,∞),
∑ Ak

a2
k

< ∞.

(1.6)

A well known example is f (z) = tan z. Conversely, any function f given by an
expansion (1.6) is real and maps H+ into itself. This class is closely linked to the
Laguerre-Pólya class because if g ∈ LP, then f = −g′/g either is constant or
satisfies (1.6); see [39, 48].

Theorem 1.4. Let f be a transcendental meromorphic function in the plane
given by a series expansion (1.6). If m ≥ 3, then f (m) has infinitely many non-real
zeros. If f ′′ has only real zeros, then f satisfies (1.5).

If f ′′ has finitely many non-real zeros, then

(1.7) f (z) = Az + B +
R(z)eicz − 1

A1R(z)eicz − A1
,

where A ≥ 0, B ∈ R, c ∈ (0,∞), A1 ∈ H+, and R is a rational function with all its
zeros in H+ and all its poles in H−, and with |R(x)| = 1 for all x ∈ R.

Conversely, if f is given by (1.7) with R and the coefficients as in the last con-
clusion of Theorem 1.4, then f maps H+ into itself, and all but finitely many zeros
of f ′′ are real by [33, Lemma 3.2]. The next result in the direction of Conjec-
ture 1.1 concerns the case where zeros of f ′′ are zeros of f ′, as holds, for example,
when f (z) = z − tan z.
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Theorem 1.5. Let f be a real transcendental meromorphic function in the
plane such that

(a) all but finitely many zeros and poles of f and f ′ are real,
(b) all but finitely many zeros of f ′′ are zeros of f ′,
(c) the poles of f have bounded multiplicities,
(d) either f has finitely many multiple poles or f has finitely many simple poles.

Then f satisfies either (1.2) or (1.5).

It would clearly be preferable to know whether Theorem 1.5 holds without
hypotheses (c) and (d), but the present method does not deliver this; and in par-
ticular, it seems difficult to exclude the possibility that f has simple poles inter-
spersed with double poles. Of course, hypothesis (d) automatically holds if f is
as in Conjecture 1.1, or is itself the derivative of a meromorphic function in the
plane. Note that [23, Theorem 5] gives rise to the example

f (z) =
1
3

tan3 z − tan z, f ′(z) = tan4 z − 1, f ′′(z) = 4 tan3 z sec2 z,

for which f , f ′, and f ′′ have only real zeros and poles. Here zeros of f ′′ are zeros
of f ′ + 1, rather than of f ′, and f does not satisfy (1.5). A key ingredient in the
proof of Theorem 1.5 is showing that f has finite order, so that the following result
from [38] becomes relevant.

Theorem 1.6 ([38, Theorem 3]). Let f be a meromorphic function in the
plane with the following properties:

(i) f has finite lower order;
(ii) the zeros of f ′ have bounded multiplicities;
(iii) all but finitely many zeros of f ′′ are zeros of f ′;
(iv) there exists M ∈ (0,+∞) such that if ζ is a pole of f of multiplicity mζ , then

mζ ≤ M + |ζ |M;
(v) there exist positive real numbers κ and R0 such that if z is a zero of f ′′ with

|z| ≥ R0, then | f (z) − αz| ≥ κ|z| for all finite non-zero asymptotic values α
of f ′.

Then f ′′ = ReP with R a rational function and P a polynomial.

Hypotheses (i) and (v) are not redundant in Theorem 1.6, as shown by f (z) =
z − tan z and examples given in [31]. The proof of Theorem 1.5 also relies heavily
on the next result.

Theorem 1.7. Let n ≥ 2 be an integer, and let f be a meromorphic function
of finite lower order in the plane, with infinitely many poles, such that

(i) all but finitely many zeros and poles of f ′ have multiplicity n,
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(ii) all but finitely many zeros of f ′′ are zeros of f ′.
Then there exist a, b,C, λ ∈ C such that

(1.8) f ′(z) = C
(
λeaz+b − 1
eaz+b − 1

)n

, aC �= 0, λn = 1, λ �= 1.

Furthermore, there does not exist a meromorphic function h in the plane with
h′ = f .

In the converse direction, it follows from Lemma 8.1 below that the function
in (1.8) is indeed the derivative of a meromorphic function of finite order in the
plane.

It is worth noting that Theorem 1.7 fails completely for infinite lower order,
as shown by the following example based on the Mittag-Leffler theorem, which
is similar to Shen’s construction of Bank-Laine functions with prescribed zeros
[49]. Let n ≥ 2 be an integer, let (ak) be any complex sequence which tends to ∞
without repetition, and for each k let bk = ±n. Let G be an entire function with
a simple zero at each ak and no other zeros. Applying the Mittag-Leffler theorem
then gives an entire function H such that, for each k,

G(z)eH (z) =
z − ak

bk
+ O(|z − ak|n+1) as z → ak.

Next, a meromorphic function g in the plane is determined by the formula g/g′ =
GeH . This gives, for each k, as z → ak,

g′(z)
g(z)

=
bk

z − ak
+O(|z−ak|n−1), g(z) =(z−ak)

bk (Ck +O(|z−ak|n)), Ck ∈ C\{0}.

Since g′/g has no zeros by construction, the formula f ′ = g now defines a mer-
omorphic function f in the plane satisfying all the hypotheses of Theorem 1.7
except for that of finite lower order, and each ak is a zero or pole of f ′, depending
on the sign of bk. Moreover, g is in fact the (n− 1)’th derivative of a meromorphic
function in the plane.

2 Preliminaries

We require the following theorem.

Theorem 2.1 ([9, 29]). Let f be a meromorphic function in the plane with
finitely many zeros but not of the form (1.2). Then f (m) has infinitely many zeros
for every m ≥ 2.

Lemma 2.1. Let f be a non-constant meromorphic function in the plane
which satisfies at least one of the following two conditions:
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(a) f and f ′′ have finitely many non-real zeros and poles;
(b) f and f (m) have finitely many non-real zeros, for some m ≥ 3.

Then the Tsuji characteristic T0(r, f ′/ f ) in the upper half-plane satisfies

(2.1) T0(r, f ′/ f ) = O(log r) as r → ∞.

Proof. For details of the Tsuji characteristic, see [12, 52].
Case (a) is proved exactly as in [3, Lemma 2.3], by writing

F =
f
f ′ , F ′ = 1 − f f ′′

( f ′)2
,

so that F and F ′ − 1 have finitely many non-real zeros, and (2.1) follows from the
method of Hayman’s alternative [14, Theorem 3.5, p.60].

In case (b), the result is proved via Frank’s method [4, 9] coupled with the Tsuji
characteristic. �

Lemma 2.2. Let H be a non-constant meromorphic function in the plane,
and let G(z) = H (z̄).

(a) If the Tsuji characteristics of H and G have growth given by

T0(r,H ) + T0 (r,G) = O(log r) as r → ∞,

then the Nevanlinna proximity function m(r,H ) satisfies

(2.2)
∫ ∞

R

m(r,H )
r3

dr = O
(

logR
R

)
as R → ∞.

(b) If H satisfies (2.2) and N (r,H ) = O(r log r) as r → ∞, then T (r,H ) =
O(r log r) as r → ∞.

(c) If H = ek, where k is an entire function, and (2.2) holds, then k is a polyno-
mial of degree 1.

Proof. Applying a lemma of Levin-Ostrovskii [3, 12, 40] to H and G gives,
as R → ∞,∫ ∞

R

m(r,H )
r3

dr =
∫ ∞

R

∫ π

0

log+ |H (reiθ )| + log+ |G(reiθ )|
r3

dθdr

≤
∫ ∞

R

T0(r,H ) + T0(r,G)
r2

dr = O
(

logR
R

)
,

which proves (2.2). If H is as in (b) then (2.2) holds with m(r,H ) replaced by
T (r,H ), and the remaining assertions follow from the monotonicity of T (r,H ). �
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Lemma 2.3. Let S be a rational function with |S(x)| = 1 for all real x, and
let a and b be real numbers, with a �= 0. Then all but finitely many solutions of
S(z)ei(az+b) = 1 are real.

Proof. This can be deduced from [44, Lemma 6], but the proof is included for
completeness. Assume that S(∞) = 1 = a and b = 0, and write g(z) = S(z)eiz =
eiz+iφ(z), in which the principal logarithm log S(z) = iφ(z) tends to 0 as z → ∞,
and φ(x) ∈ R for real x with |x| large. Denote by NNR the counting function of
the non-real 1-points of g. If m ∈ Z with |m| large, then the Intermediate Value
Theorem gives a solution of the equation x+φ(x) = 2mπ in ((2m−1)π, (2m+1)π).
Applying Nevanlinna’s first fundamental theorem now yields, as r → ∞,

r
π

− O(log r) + NNR(r) ≤ N (r, 1, g) ≤ T (r, g) + O(1) ≤ r
π

+ O(log r). �

Lemma 2.4. Let f and g be meromorphic functions in the plane such that f ,
g, and W = g/ f are all non-constant. Assume further that

(2.3)
f (m)

f
=

g(m)

g

for some integer m ≥ 2. If m is odd, then every pole of f is a zero or pole of W. If
m is even, then at a pole of f of multiplicity p which is neither a zero nor a pole of
W, the function W ′ has a zero of multiplicity 2p + m − 2, and

(2.4) 2N0(r, f ) + (m − 2)N 0(r, f ) ≤ N (r,W/W ′),

in which N0 and N 0 count only those poles of f which are neither zeros nor poles
of W.

Proof. Take a pole z0 of f of multiplicity p which is neither a zero nor a pole
of W ; it may be assumed without loss of generality that z0 = 0. Then there exist α
and β in C \ {0} and a positive integer q such that, as z → 0,

f (z) ∼ αz−p, V (z) = W (z) − W (0) ∼ βzq.

The coefficient of z−p+q−m in the Laurent series of U = ( fV )(m) − f (m)V near 0 is

αβ [(−p + q) · · · (−p + q − m + 1) − (−p) · · · (−p − m + 1)] .

But (2.3) implies that U vanishes identically, so that

p · · · (p + m − 1) = r · · · (r + m − 1),
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where r = p − q. Now r ≥ 0 is impossible, since r < p, while r < 0 ≤ r + m − 1
makes the right-hand side vanish. Thus s = −(r + m − 1) > 0, and

(−1)ms · · · (s + m − 1) = p · · · (p + m − 1),

which forces m to be even and p = s = −(r + m − 1) = −(p − q + m − 1), so that
q = 2p + m − 1. �

Lemma 2.4 may be applied, in particular, if f is a strictly non-real meromor-
phic function in the plane with finitely many non-real zeros and poles and such
that f (m)/ f is real for some integer m ≥ 2: to see this, take g(z) = f̃ (z) = f (z̄). If
m is odd, it follows that f has finitely many poles, while if m is even, then (2.4)
yields

2N (r, f ) + (m − 2)N (r, f ) ≤ T (r,W ′/W ) + O(log r) ≤ 2m(r, f ′/ f ) + O(log r),

as is the case for m = 2 and the examples mentioned following Theorem 1.3.

Lemma 2.5. Let T be a rational function with |T (x)| = 1 for all real x, let
K �≡ 0 be a polynomial, and let a and b be real numbers with a �= 0. Let

f (z) = K (z)F (z) =
K (z)

T (z)ei(az+b) − 1
.

(I) For each m ≥ 3, the function f (m) has infinitely many non-real zeros.
(II) If, in addition, K has degree at most 1, then all but finitely many zeros of f ′′

are real if and only if L = K ′/K is real.

Proof. It may be assumed that a = 1, b = 0, and T (∞) = 1. For |z| large and
ζ ∈ C, write

U(z) = iz + logT (z), f (z) =
K (z)

eU(z) − 1
, H (ζ ) =

1
eiζ − 1

.

using the principal branch of the logarithm.

Part (I) is similar to [33, Lemma 3.2]. Let m ≥ 3, denote positive constants by
c j , and let w be a non-real zero of H (m), the existence of which is assured by [33,
Lemma 3.1]. Take a small positive t such that |H (m)(z)| ≥ c1 and |H ( j )(z)| ≤ c2

for 0 ≤ j ≤ m and t ≤ |z −w| ≤ 3t. Now let n be a large positive integer, and let
t ≤ |z −w− 2πn| ≤ 3t. Then c3 ≤ |eiz − 1| ≤ c4 and

F (z) =
1

eU(z) − 1
=

1
eiz(1 + o(1)) − 1

=
1

eiz − 1 + o(1)
=

1 + o(1)
eiz − 1

=H (z) + o(1).
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For |z −w− 2πn| = 2t, applying Cauchy’s estimate for derivatives yields

F ( j )(z) = H ( j )(z) + o(1) = O(1) for 0 ≤ j ≤ m,

f (m)(z) = K (z)F (m)(z) + · · · + K (m)(z)F (z)

= K (z)F (m)(z) + o(1)K (z) = K (z)H (m)(z)(1 + o(1)).

Since w + 2πn is a zero of H (m), the assertion of part (I) now follows at once from
Rouché’s theorem.

To prove part (II), assume that K ′ is constant, and write f ′′ = 2K ′F ′ +KF ′′ and

f ′′(eU − 1)3 = e2U (K (U ′)2 − KU ′′ − 2K ′U ′) + eU (K (U ′)2 + KU ′′ + 2K ′U ′)

= eU (K (U ′)2 + KU ′′ + 2K ′U ′)(1 − QeU ),(2.5)

Q =
U ′′ + 2LU ′ − (U ′)2

U ′′ + 2LU ′ + (U ′)2
, L =

K ′

K
.

Here Q is rational but not identically zero, since f ′′ has infinitely many zeros by
Theorem 2.1. Moreover, if x is real with |x| large, then U ′(x) and U ′′(x) have zero
real part, and U ′(x)2 is real. If all but finitely many zeros of f ′′ are real, then there
exist x ∈ R with |x| arbitrarily large such that Q(x)eU(x) = 1; and so |Q(x)| = 1,
which implies that x is a zero of QQ̃ − 1, from which it follows that QQ̃ ≡ 1 and
L ≡ L̃ as asserted. On the other hand, if L is real, then |Q(x)| = 1 on R, so that all
but finitely many zeros of f ′′ are real by (2.5) and Lemma 2.3. �

Lemma 2.6. Let S, M and V be rational functions with S(∞) = 1, M �≡ 0
and V (∞) �= 0, and let a and b be complex numbers with a �= 0. For |z| large,
write U(z) = az+b+log S(z), using the principal branch of the logarithm. Assume
that the function f (z) is meromorphic for |z| large and satisfies

f ′

f
=

M ′

M
+

V
eU − 1

.

Then, for each n ∈ N,

(2.6)
f (n)

f
=

M (n)

M
+

Vn

(eU − 1)n
, Vn =

n−1∑
j =0

Rj,ne
jU ,

in which the coefficients R j,n are rational functions and satisfy, as z → ∞,

(2.7) R0,n(z) ∼ V (z)n and Rn−1,n(z) ∼ V (z)(−U ′(z))n−1.

Proof. Proceeding by induction on n, assume that n ∈ N and that (2.6) and
(2.7) both hold, as is evidently the case for n = 1, with V = V1 = R0,1. Then (2.6)
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yields

f (n+1)

f
=

M (n+1)

M
− M (n)M ′

M 2
+

V ′
n

(eU − 1)n
− nVnU ′eU

(eU − 1)n+1

+
M (n)M ′

M 2
+

VnM ′/M
(eU − 1)n

+
M (n)V/M
eU − 1

+
VnV

(eU − 1)n+1
.

This leads to (2.6), with n replaced by n + 1 and

Vn+1 = V ′
n(e

U − 1) − nVnU
′eU + (VnM

′/M )(eU − 1) + (M (n)V/M )(eU − 1)n + VnV.

Since V ′
n =

∑n−1
j =0(R

′
j,n + jU ′Rj,n)e jU , it follows that

R0,n+1 = −R′
0,n − R0,nM

′/M + (−1)nM (n)V/M + R0,nV

and

Rn,n+1 = R′
n−1,n + (n − 1)U ′Rn−1,n − nU ′Rn−1,n + Rn−1,nM

′/M + M (n)V/M.

In view of (2.7) and the fact that V (∞) �= 0, this gives R0,n+1(z) ∼ R0,n(z)V (z) and

Rn,n+1(z) = −U ′(z)Rn−1,n(z)(1 + o(1)) + o(|V (z)|) ∼ −U ′(z)Rn−1,n(z),

as z → ∞, and the induction is complete. �

Lemma 2.7 ([36], Lemma 4.7). Let f be a transcendental meromorphic func-
tion in the plane, and let k ∈ N. Let E be an unbounded subset of [1,∞) with the
following property. For each r ∈ E there exist real θ1(r) < θ2(r) ≤ θ1(r) + 2π and
an arc 
r = {reiθ : θ1(r) ≤ θ ≤ θ2(r)} such that

lim
r→∞,r∈E

max{|z2k f (k)(z)/ f (z)| : z ∈ 
r} = 0.

Let N = N (r) satisfy 0 ≤ logN (r) ≤ o(log r) as r → ∞ in E. Then f satisfies,
for all sufficiently large r ∈ E, ∣∣∣∣z f ′(z)

f (z)

∣∣∣∣ ≤ kN (r)

for all z ∈ 
r outside a union U(r) of open discs having sum of radii at most
r(k − 1)/N (r).

Lemma 2.8. Let k ≥ 2 and ρ, σ ∈ (0, π/2), and let K0 ∈ (0,∞). Then there
exists K1 ∈ (0,∞), depending only on k, ρ, σ, and K0, with the following property.
If g is an analytic function on the domain

D = {z ∈ C : 1/2 < |z| < 2, 0 < arg z < π}
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such that g and g(k) have no zeros in D, and if

min{|g′(eiθ )/g(eiθ )| : ρ ≤ θ ≤ π− ρ} ≤ K0,

then |g′(eiθ )/g(eiθ )| ≤ K1 for all θ ∈ [σ, π− σ].

Lemma 2.8 is standard, and follows from the fact that if G is the family of ana-
lytic functions on D such that g and g(k) have no zeros in D, then the logarithmic
derivatives g′/g, g ∈ G, form a normal family on D [4, 47, 55]. The next lemma
involves the Laguerre-Pólya class LP already mentioned in the introduction [39].

Lemma 2.9. Let g �≡ 0 belong to LP, let M be a meromorphic function in the
plane, and write

(2.8) Q = 4M 3 + 6MM ′ + M ′′, Q′ = 12M 2M ′ + 6(M ′)2 + 6MM ′′ + M ′′′.

(A) If M = R−g′/g, in which g has infinitely many zeros and R is a real rational
function with R(∞) finite, then Q′(x) is positive or infinite for all x in R with
|x| sufficiently large.

(B) If M = −g′/g is non-constant, then Q′(x) is positive or infinite for all x ∈ R.

Proof. Assume first that M is as in (A) and that x ∈ R with |x| large. Then
the standard representation [39] (see also (1.6)) for the logarithmic derivative of a
function in LP leads to

M ′ =R′ −
(

g′

g

)′
, M ′(x) =R′(x) + C0 +

∑ 1
(ak − x)2

≥ ∑
|ak |≤|x|

1
4|x|2 − O(|x|−2),

in which C0 ≥ 0 and the ak are the zeros of g, repeated according to multiplicity,
as well as

M ′′′(x) =
∑ 6

(ak − x)4
+ O(|x|−4) ≥ ∑

|ak |≤|x|

3
8|x|4 − O(|x|−4).

This gives

(2.9) M ′(x) ∼ C0 +
∑ 1

(ak − x)2
, M ′′′(x) ∼ ∑ 6

(ak − x)4
.

Write

A = |M (x)|, B = M ′(x) > 0, C = |M ′′(x)|, D = M ′′′(x) > 0.

Then the Cauchy-Schwarz inequality and (2.9) deliver

C ≤ O(|x|−3) + 2
∑(

1
|ak − x| · 1

|ak − x|2
)

≤ o(
√

BD) + 2

√∑ 1
|ak − x|2

∑ 1
|ak − x|4 ≤ (1 + o(1))

√
2
3
BD.
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Assuming that the assertion of the lemma fails at x gives, by (2.8),

12A2B + 6B2 + D ≤ 6AC,

and squaring both sides produces

E = 144A4B2 + 36B4 + D2 + 144A2B3 + 12B2D + 24A2BD

≤ 36A2C2 ≤ (24 + o(1))A2BD,

which implies at once that

(2.10) 144A4B2 + 36B4 + D2 + 144A2B3 + 12B2D ≤ o(A2BD).

But (2.10) yields A4B2 = o(A2BD) and hence A2B = o(D), as well as

0 < D2 = o(A2BD) = o(D2),

a contradiction which completes the proof of part (A).
Assume now that M is as in part (B), and let x ∈ R. If g has at least one zero,

then
M ′(x) = C0 +

∑ 1
(ak − x)2

> 0, M ′′′(x) =
∑ 6

(ak − x)4
> 0,

in which C0 ≥ 0 and ak ∈ R; this time the Cauchy-Schwarz inequality gives
C2 ≤ 2BD/3. If the assertion of the lemma fails at x, then the left-hand side of
(2.10) is non-positive, which is impossible since D > 0.

Suppose finally that M is as in (B) but g has no zeros. Since M is assumed
non-constant, this forces M ′ = C0 > 0 and M ′′ = M ′′′ = 0, and the conclusion of
the lemma follows trivially. �

Lemma 2.10. Let L be a real transcendental meromorphic function in the
plane with upper half-plane Tsuji characteristic satisfying T0(r,L) = O(log r) as
r → ∞, such that at least one of L and 1/L has finitely many poles in H+. Assume
further that F (z) = z − 1/L(z) has no asymptotic values w ∈ H+, and that F ′ has
finitely many zeros in H+. Then there exists a positive integer N with the following
property: if w ∈ H+ and C is a component of the set W + = {z ∈ H+ : F (z) ∈ H+},
then each of L and F takes the valuew at most N times in C, counting multiplicity.

Proof. Let C be a component of W +. The assertion concerning the valency
of F on C is fairly standard [3, Lemma 4.2]: choose a Jordan arc γ+ which, apart
from its initial point, lies in H+, and is such that every critical value w ∈ H+ of
F lies on γ+. Suppose that D ⊆ C is a component of Y + = F−1(H+ \ γ+) with
no non-real zero of F ′ in ∂D: then the branch of F−1 mapping H+ \ γ+ to D may
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be analytically continued along γ+ ∩ H+, giving a domain D1 with D ⊆ D1 ⊆ C,
mapped univalently onto H+ by F , which forces D1 = C. Thus the number of
components of Y + which lie in C is bounded, independent of C, as is the valency
of F on C.

Controlling the number of w-points of L in C, for w ∈ H+, requires a refine-
ment of arguments from [36, 37]. By [37, Lemma 2.2], there exist at most finitely
many α ∈ C such that F (z) or L(z) tends to α as z → ∞ along a path in H+. This
makes it possible to choose θ ∈ (0, π) such that the two rays P±, given respec-
tively by w = te±iθ , 0 < t < ∞, contain no critical values of L and no values α
such that L(z) tends to α as z → ∞ along a path in H+.

Let � ⊆ H+ be a component of ∂C. If � is bounded, then F has a pole on �. On
the other hand, if � is unbounded, then � contains a level curve of F tending to ∞
in H+, on which F (z) must tend to some asymptotic value belonging to R ∪ {∞},
because F is finite-valent on C. It follows that the number of components � ⊆ H+

of ∂C is bounded, independent of C.

Now take w∗ = t∗eiθ ∈ P+, and distinct z1, . . . , zn ∈ C with L(z j ) = w∗. For
each j , continue the branch of L−1 mapping w∗ to z j along P+ in the direction
of decreasing t. This gives pairwise disjoint paths σ j , which remain in C since
θ ∈ (0, π). Each σ j must tend either to ∞ or to a pole of F on ∂C, of which only
finitely many are available. Assume, after re-labelling if necessary, that σ j tends
to ∞ for j = 1, . . . ,m.

Each σ j , for j = 1, . . . ,m, may be extended to a simple path τ j = σ j ∪ μ j in
C, where μ j is bounded, so that the τ j are pairwise disjoint apart from a common
starting point z∗ ∈ C. After re-labelling if necessary, this gives m − 1 pairwise
disjoint domains 
 j ⊆ H+, each bounded by τ j and τ j+1. Because of the bound
on the number of components � ⊆ H+ of ∂C, the number of
 j for which
 j �⊆ C
is also bounded, independent of C.

Suppose now that 1 ≤ k < k′ ≤ m − 1 and that 
k and 
k′ are contained in
C: then so are their closures. Because F has no poles in C, the function |L(z)|
has a positive lower bound on the union of the μ j . Choose q small and positive
such that the circle |w| = q contains no critical values of L and no α such that
L(z) → α as z → ∞ along a path in H+. Take uk ∈ σk with L(uk) = qeiθ , and
continue z = L−1(w), starting from qeiθ and along the circle |w| = q, so that the
continuation takes z into 
k. Since q is small and because of the choice of θ , this
gives vk ∈ 
k with L(vk) = qe−iθ and a simple path νk in 
k which is mapped by
L onto the set {w = te−iθ : 0 < t ≤ q}. The fact that L has no zeros in C implies
that νk must tend to ∞, and so there exists an unbounded component Vk of the set
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{z ∈ C : Im (1/L(z)) > 2/q}, such that Vk ∪ ∂Vk ⊆ 
k. Furthermore, the function

Uk(z) = Im
1

L(z)
(z ∈ Vk), Uk(z) =

2
q

(z �∈ Vk),

is non-constant and subharmonic in C. But the same argument applied to 
k′

gives a corresponding component Vk′ and subharmonic function Uk′ . A standard
application of the Phragmén-Lindelöf principle [17] yields z in Vk or Vk′ , with |z|
large and Im (1/L(z)) ≥ |z|3/2, so that ImF (z) < 0, which contradicts the fact that
z ∈ C.

Therefore, at most one of the 
 j is contained in C, and this gives an upper
bound, independent of C, for the number n of pre-images z j in C of w∗ ∈ P+

under L. The open mapping theorem and analytic continuation of L−1 extend this
same upper bound to the number of w-points of L in C, counting multiplicities,
for any w ∈ H+. �

Lemma 2.11. Let Q be a transcendental meromorphic function in the plane
such that the Nevanlinna deficiency δ (∞,Q) is positive. Let C > 1 and let
EC ⊆ [1,∞) be unbounded, such that T (2r,Q) ≤ CT (r,Q) for r ∈ EC. Let
Hr = {θ ∈ [0, 2π] : 2 log |Q(reiθ )| > δ (∞,Q)T (r,Q)}. Then, for large r ∈ EC,
the linear measure mr of Hr satisfies mr ≥ d > 0, where d depends only on C and
δ (∞,Q).

Proof. This is standard. An inequality of Edrei and Fuchs [6, p.322] yields,
for large r ∈ EC ,

3δ (∞,Q)
4

T (r,Q) ≤ m(r,Q) ≤ δ (∞,Q)
2

T (r,Q) +
1
2π

∫
Hr

log+ |Q(reiθ )|dθ

≤ δ (∞,Q)
2

T (r,Q) + 11
(

2r
2r − r

)
mr

(
1 + log+ 1

mr

)
T (2r,Q)

≤ δ (∞,Q)
2

T (r,Q) + 22Cmr

(
1 + log+ 1

mr

)
T (r,Q). �

3 An auxiliary result

The following proposition plays a fundamental role in the proof of Theorem 1.2
and, in particular, proves the first assertion (1.1).

Proposition 3.1. Let f be a function satisfying hypotheses (i), (ii) and (iii) of
Theorem 1.2. Then

(3.1) g = f̃ = Reih f = Wf,
g(m)

g
= Seik f (m)

f
,
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in which f̃ (z) = f (z̄), while R and S are rational functions, h is an entire function
with

(3.2) T (r, h′) = O(r log r) as r → ∞,

and k is a polynomial of degree at most 1. Furthermore, f ′/ f satisfies (1.1). If, in
addition, k is constant in (3.1), then

(3.3) N (r, f ) = O(T (r, h′) + log r) as r → ∞.

Proof. It is clear that f and g = f̃ satisfy (3.1) with R and S rational functions
and h and k entire. Now Lemma 2.1 implies that, with T0 the Tsuji characteristic,

(3.4) T0(r, f ′/ f ) + T0(r, g
′/g) = O(log r) as r → ∞.

Hence h′ and eik satisfy the hypotheses of Lemma 2.2, from which it follows that
(3.2) holds, and that k is a polynomial of degree at most 1.

Now (3.4) also implies that (2.2) holds with H = f ′/ f . But f has finitely many
zeros, and so (1.1) follows, provided it can be shown that

(3.5) N (r, f ) = O(r log r) as r → ∞.

If k is non-constant, then (3.5) clearly holds, since all but finitely many poles of
f are real 1-points of Seik by (3.1). In view of (3.2), it therefore remains only to
prove that (3.3) holds when k is constant: if Seik �≡ 1, this follows again from (3.1).
Suppose finally that Seik ≡ 1: then Lemma 2.4 may be applied, and (2.4) yields

N (r, f ) ≤ O(N (r,W/W ′) + log r) ≤ O(T (r, h′) + log r) as r → ∞.
�

4 Proof of Theorem 1.2

Let f be as in the hypotheses. Since (1.1) has already been proved in Proposi-
tion 3.1, it suffices to consider the case where f has finite order but (1.2) does not
hold. Then (i) and Theorem 2.1 imply that f has infinitely many poles and f (m)

has infinitely many zeros, all but finitely many of which are real, by (ii) and (iii).
Moreover, f satisfies (3.1), in which R and S are rational functions, while h and k
are polynomials.

Lemma 4.1. It may be assumed that h and k are real, and that |R(x)| =
|S(x)| = 1 for all x ∈ R.
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Proof. Write h(x) = a(x) + ib(x) with a and b real polynomials. If x is real but
not a zero or pole of f , then | f (x)| = |g(x)| and, by (3.1),

1 = |R(x)eih(x)|2 = R(x)R(x) exp
(
ih(x) − ih(x)

)
= |R(x)|2 exp(−2b(x)).

Therefore, b(x) = O(log |x|) as |x| → ∞ with x real. Thus b is constant, and it
may be assumed that b = 0.

A similar argument may be applied to Seik. �
If k is constant in (3.1), then (3.3) shows that f has finitely many poles, giving

an immediate contradiction. Assume henceforth that k is non-constant in (3.1),
and observe that if x is a real pole of f , then S(x)eik(x) = 1. Since k has degree
at most 1 by Proposition 3.1, it may be assumed by employing a linear change of
variables that S(∞) = 1 and k(z) = 2πz which, on combination with (1.1), gives
the following lemma.

Lemma 4.2. The function

(4.1) H (z) =
f ′(z)
f (z)

(
S(z)eπiz − e−πiz)

is meromorphic of order at most 1 in the plane, and has finitely many poles.

Lemma 4.3. Let ε and M be positive real numbers, with ε small and M large.
For j = 1, 2, let S j be the sector given by |z| ≥ M, ε ≤ (−1) j+1 arg z ≤ π − ε.
Then g and f satisfy, on S1,

g′(z)
g(z)

= T1(z)+E(z)e2πiz,
f ′(z)
f (z)

= W1(z) + E(z)e2πiz,

W1(z) = −R′(z)
R(z)

− ih′(z) + T1(z).
(4.2)

Moreover, f satisfies, on S2,

(4.3)
f ′(z)
f (z)

= T2(z) + E(z)e−2πiz.

Here each T j is k′
j/k j for some polynomial k j �≡ 0 of degree at most m − 1, and

χ(z) = E(z) on S j means that log+ |χ(z)| = o(|z|) as z → ∞ in S j .

Proof. It suffices to give the proof of (4.2), that of (4.3) requiring only trivial
modifications. The function f has finitely many zeros and non-real poles, and
k(z) = 2πz. Hence (3.1) and standard estimates for logarithmic derivatives [13]
show that

f (m)(z)
f (z)

= E(z), g(m)(z) = δ (z)g(z), δ (z) = E(z)e2πiz
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on the sector S1. Fix a large positive A and, for z �= 0 let Lz be the path consisting
of the shorter circular arc from iA to z∗ = Az/|z|, followed by the straight line
segment from z∗ to z. If A is large enough, then

(4.4) 2m
∫

Lz

|δ (t)tm−1||dt| ≤ 1

for all z ∈ S1 with |z| ≥ A. Now there exist constants a j , independent of z for
z ∈ S1, such that

g(z) = am−1z
m−1 + · · · + a0 +

∫ z

iA

(z − t)m−1

(m − 1)!
δ (t)g(t)dt,

which can be written in the form

q(z) =
g(z)
zm−1

= am−1 + · · · + a0

zm−1
+
∫ z

iA

(1 − t/z)m−1

(m − 1)!
δ (t)tm−1q(t)dt.

The first step is to show that q is bounded for z ∈ S1 with |z| ≥ A. If this is not the
case, then it is possible to choose z ∈ S1 with |z| ≥ A and q(z) = N large such that
|q(t)| ≤ |N | on Lz. Since |t| ≤ |z| on Lz, this gives, with use of (4.4),

|N | ≤ |am−1| + · · · + |a0| + 2m−1|N |
∫

Lz

|δ (t)tm−1| |dt| ≤ |am−1| + · · · + |a0| +
|N |
2
,

which is obviously a contradiction if N is large enough. It follows that, for z in S1,

g(z) = k1(z) +
∫ z

i∞
(z − t)m−1

(m − 1)!
δ (t)g(t)dt = k1(z) +

∫ z

i∞
(z − t)m−1

(m − 1)!
E(t)e2πitdt,

g′(z) = k′
1(z) +

∫ z

i∞
(z − t)m−2

(m − 2)!
δ (t)g(t)dt,

in which the path of integration �z is along the positive imaginary axis from i∞
to i|z| followed by the shorter arc of the circle |t| = |z| from i|z| to z, while k1 is a
polynomial of degree at most m − 1. Since |z| ≤ |t| on �z, this implies that

|g(z) − k1(z)| ≤ 2m−1
∫
�z

|tm−1δ (t)g(t)| |dt| ≤
∫
�z

|E(t)|e−2π Im t|dt| on S1.

The next step is to show that k1 �≡ 0. If k1 vanishes identically, then obviously
g(z) tends to 0 on the positive imaginary axis. So take a large positive y such that
|g(is)| ≤ |g(iy)| for all real s ≥ y, which gives

|g(iy) ≤ |g(iy)| 2m−1
∫ ∞

y
sm−1|δ (is)|ds,

an evident contradiction if y is large enough.
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Splitting the path �z into the part from i∞ to 4i|z| and the part �∗
z from 4i|z|

to z now yields, for large z in S1,∫
�z

|E(t)|e−2π Im t|dt| ≤ |e2πiz|
∫
�∗

z

|E(t)||dt| + e−4π|z|
∫ ∞

4|z|
|E(is)|e−πsds,

and hence
g(z) = k1(z) + E(z)e2πiz, g′(z) = k′

1(z) + E(z)e2πiz,

which leads to (4.2) with T1 = k′
1/k1 and completes the proof of the lemma. �

It now follows from (4.1) and (4.2) that

(4.5) H (z) =
f ′(z)
f (z)

(
S(z)eπiz − e−πiz) = −W1(z)e

−πiz + E(z)eπiz on S1,

and from (4.1) and (4.3) that

(4.6) H (z) = T2(z)S(z)eπiz + E(z)e−πiz on S2.

Since H has finite order and finitely many poles, and ε may be chosen arbitrarily
small, the Phragmén-Lindelöf principle gives

H (z) = T2(z)S(z)eπiz − W1(z)e
−πiz = T2(z)

(
S(z)eπiz − e−πiz) + V (z)e−πiz,

in which V = T2 − W1 = T2 − T1 + R′
R + ih′ is a rational function. With (4.1) again,

this leads to

(4.7)
f ′(z)
f (z)

= T2(z) +
V (z)

S(z)e2πiz − 1
.

Recalling that S(∞) = 1 and using the principal logarithm, we write, for |z|
large,

(4.8) U(z) = 2πiz + log S(z),
f ′

f
= T2 +

V
eU − 1

.

Lemma 4.4. V = −U ′.

Proof. Observe first that (4.8) shows that f has infinitely many real poles x
with multiplicity

(4.9) mx = − V (x)
U ′(x)

∼ −V (x)
2πi

,

and so V (∞) �= 0. Furthermore, T2 = k′
2/k2, where k2 �≡ 0 has degree at most

m − 1. Thus f satisfies the hypotheses of Lemma 2.6, with M = k2, by (4.8). It
follows from (2.6) and (2.7) that, as z → ∞ in the sector S2, on which eU is large,

(4.10)
f (m)(z)
f (z)

=
Vm(z)

(eU(z) − 1)m
∼ Rm−1,m(z)e−U(z) ∼ V (z)(−U ′(z))m−1e−U(z).
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On the other hand, since |S| = 1 on R, which implies that Ũ ′ = −U ′, formula
(4.7) leads to

(4.11)
g′

g
= T̃2 +

Ṽ
e−U − 1

,

in which T̃2 = k̃′
2/k̃2. Since x and mx are real in (4.9), it must be the case that

Ṽ = −V . Combining Lemma 2.6 with (4.11) now yields, as z → ∞ in S2,

g′

g
= T̃2 − V

e−U − 1
, eU(z) f (m)(z)

f (z)
=

g(m)(z)
g(z)

∼ V (z)m,

in light of (3.1) and the fact that e−U is small on S2. On comparison with (4.10),
this shows that V (∞)/U ′(∞) has modulus 1, so that mx has to be 1 in (4.9), and
the rational function V/U ′ must be identically −1. �

It now follows from (4.8), Lemma 4.4, and the fact that T2 = k′
2/k2 for some

polynomial k2 �≡ 0, that f satisfies the hypotheses of Lemma 2.5, with
T (z)ei(az+b) = e−U(z) and K/k2 constant. Applying Lemma 2.5, part (I) shows that
m must be 2. Furthermore, when m = 2, the degree of k2 is at most m − 1 = 1,
and part (II) of the same lemma implies that k′

2/k2 is real, so that any zero of k2

must also be real. Conversely, if f is as in conclusion (1.3) of the theorem, then
all but finitely many zeros of f ′′ are real, again by Lemma 2.5(II). This completes
the proof of Theorem 1.2.

5 Proof of Theorem 1.3

To prove Theorem 1.3, assume that f is a strictly non-real transcendental mero-
morphic function in the plane, with finitely many zeros and poles in C \ R, such
that f ′′/ f is real. Write

(5.1) g = f̃ ,
f ′

f
= L = α + iβ,

g′

g
= L̃ = α− iβ, L − L̃ = 2iβ,

where α and β are real meromorphic functions, and β �≡ 0, since g/ f is non-
constant. Then

f ′′

f
= α′ + iβ′ + α2 − β2 + 2iαβ =

g′′

g
= α′ − iβ′ + α2 − β2 − 2iαβ,

from which it follows that

β′ + 2αβ = 0, L =
f ′

f
= − β′

2β
+ iβ, L̃ =

g′

g
= − β′

2β
− iβ,
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and so f ′/ f and β are related as in (1.4).
Now the last equation of (5.1) implies that all poles of β are simple and that β

has finitely many non-real poles. Moreover, a real pole of β would give rise to real
residues for β, β′/β and f ′/ f , which is impossible by the first equation of (1.4).
Thus β has finitely many poles, all non-real. It is also evident from (1.4) that all
zeros of β have even multiplicity and are poles of f , and that β has finitely many
non-real zeros, and finally that f has finitely many zeros, as asserted. Obviously,
if β is constant, then f (z) = Aeiβz, with A constant.

Assume henceforth that β is non-constant and that all but finitely many zeros
of f ′′ are real. Then it is convenient to write, using (1.4),

(5.2) β = Sγ2, P = β−1/2,
f ′

f
=

P′

P
+

i
P2
, M =

P′

P
= − S′

2S
− γ′

γ
,

where S is a real rational function and γ is a real entire function with only real
zeros. Here M is single-valued in the plane, and P(z) is single-valued for |z| large,
since the zeros of β have even multiplicity and the finitely many poles occur in
non-real conjugate pairs.

Lemma 5.1. The function γ belongs to the Laguerre-Pólya class LP.

Proof. Formula (1.4) and Lemma 2.1 give as r → ∞, using Tsuji functionals
as before,

m0(r, f ′/ f ) ≤ T0(r, f ′/ f ) = O(log r), T0(r, β) ≤ O(log r) + m0(r, β
′/β),

and hence T0(r, β) = O(log r), by the lemma of the logarithmic derivative for the
Tsuji characteristic [12]. Now β has order of growth at most 1, by Lemma 2.2.
Thus γ is a real entire function of order at most 1 with only real zeros, and so
belongs to LP [39]. �

Lemma 5.2. (a) Assume that γ has infinitely many zeros and x0 is a large
positive real number. If I ⊆ R \ [−x0, x0] is an open interval containing no
poles of P, then f ′′/ f has at most two zeros, counting multiplicity, in I .

(b) Assume that S = 1 in (5.2) and that M is non-constant. Then f ′′/ f has
at most two zeros, counting multiplicity, in any open real interval I which
contains no poles of P.

Proof. Observe that (5.2) gives

(5.3)
f ′′

f
=

P′′

P
− 1

P4
=

P′′

P
− β2 =

P′′

P
− S2γ4 =

P3P′′ − 1
P4

.
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Here P′′/P and P3P′′ are singled-valued in C, since P2 and P′/P are.
Suppose first that γ and I are as in (a). Then M = P′/P satisfies the hypotheses

of part (A) of Lemma 2.9, by (5.2), and so the function Q in (2.8) has at most one
zero in I , counting multiplicity. Hence the same is true of

(P3P′′)′ = P4
(

P′′′

P
+ 3

P′

P
P′′

P

)
= P4

(
M 3 + 3MM ′ + M ′′ + 3M (M 2 + M ′)

)
= P4Q.

This implies that P3P′′ − 1 has at most two zeros in I , counting multiplicity, and
so has f ′′/ f , by (5.3).

Part (b) is proved the same way, since if S = 1 and M is non-constant, then M
satisfies the hypotheses of Lemma 2.9(B). �

Lemma 5.3. The function β is rational, and f satisfies (1.2).

Proof. Assume that β is transcendental. If β has finitely many zeros, then
β(z) = R1(z)eb1z, with R1 a rational function and b1 ∈ R\{0}; and (5.3) shows that
f ′′/ f has infinitely many non-real zeros, which is a contradiction.

Assume henceforth that β has infinitely many zeros; then so has γ. Since f ′′/ f
has a double pole at each real pole x of P with |x| large, and has finitely many non-
real zeros, Lemma 5.2(a) implies that the following estimates hold as r → ∞.
First,

n(r, f/ f ′′) ≤ n(r, f ′′/ f ) + O(1), N (r, f/ f ′′) ≤ N (r, f ′′/ f ) + O(log r),

from which applying Jensen’s formula yields, in view of (5.2), (5.3), and the fact
that β has finite order,

2m(r, β) ≤ m(r, f ′′/ f ) + O(log r) ≤ m(r, f/ f ′′) + O(log r)

≤ T (r, f ′′/ f ) + O(log r) = O(T (r, β)).

Thus the zeros of f ′′/ f have positive Nevanlinna deficiency δ (0, f ′′/ f ).
A contradiction can now be obtained using a method similar to the proof of [36,

Lemma 5.4]. Since β and f ′′/ f have finite order, a well known result of Hayman
[15, Lemma 4] gives C1 > 0 and a set E1 ⊆ [1,∞), of positive lower logarithmic
density, such that

(5.4) T (4s, β) ≤ C1T (s, β) and T (4s, f ′′/ f ) ≤ C1T (s, f ′′/ f )

for s ∈ E1. By estimates from [13], the function β also satisfies

(5.5)
∣∣∣∣β′(z)
β(z)

∣∣∣∣ ≤ rM0 for |z| = r �∈ F2,
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where M0 is a positive constant and F2 has finite logarithmic measure.

Now let σ, K0, K1, and K2 be positive constants, with K0, K1/K0 and K2/K1

large, and σ small. Let s ∈ E1 be large. Since f ′′/ f is transcendental and
δ (0, f ′′/ f ) > 0, a standard application of (5.4) and Fuchs’ small arcs lemma [17,
p.721] give r ∈ [s, 2s] \ F2 and an arc of the circle |z| = r, of angular measure
6σ, on which | f ′′(z)/ f (z)| ≤ r−5. The fact that f ′′/ f is real then implies that
| f ′′(z)/ f (z)| ≤ r−5 on a subarc Ir of {z ∈ C : |z| = r, σ ≤ arg z ≤ π−σ} of angular
measure at least σ. Next, applying Lemma 2.7 with k = 2 and N (r) = K0 shows
that there exists z ∈ Ir with |z f ′(z)/ f (z)| ≤ K1. Now Lemma 2.8, applied to the
function f (rz), delivers |z f ′(z)/ f (z)| ≤ K2 for all z with |z| = r, σ ≤ arg z ≤ π−σ.
Because β is real, combining this estimate with (1.4), (5.4), and (5.5) yields an un-
bounded set of positive r such that T (2r, β) ≤ T (4s, β) ≤ C1T (s, β) ≤ C1T (r, β)
and such that |β(z)| ≤ rM0 for all z with |z| = r, apart from a set Jr of angular
measure at most 4σ, where σ may be chosen arbitrarily small, independent of C1.
Since β has finitely many poles, this contradicts Lemma 2.11.

Thus β is rational, as asserted, and so is f ′/ f by (1.4), which implies (1.2) and
completes the proof of the lemma. �

To finish the proof of the theorem, assume henceforth that all zeros and poles
of f and f ′′ are real. Then β has no poles, by (5.1), and so it may be assumed
that S = 1 in (5.2). Since zeros of β have even multiplicity, and the case where
β is constant has already been disposed of, it can now be assumed that β is a
polynomial with real zeros, of even positive degree, and M is non-constant in
(5.2). Thus (1.4) and (5.3) show that f ′′/ f is a rational function with double poles
at the zeros of β, which are real poles of P. Moreover f ′′/ f has only real zeros,
and by Lemma 5.2(b), the number of zeros of f ′′/ f exceeds the number of poles
by at most 2. Hence f ′′/ f has at most a double pole at ∞, and so β has degree at
most 1, by (5.3) again, which is a contradiction.

6 Some applications of harmonic measure

Lemma 6.1 ([7, 43]). Let G be a domain bounded by a Jordan curve C con-
sisting of a Jordan arc B and its complement A = C \ B. Let L be a rectifiable
curve in G joining a ∈ A to b ∈ B, and for z ∈ L, let ρ(z) be the distance from z to
A. Then the harmonic measure ω(z) of B with respect to G satisfies, for z on L,

ω(z) ≥ 1
2π

exp
(

−4
∫ b

z

|du|
ρ(u)

)
,

in which the integration is from z to b along L.
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Lemma 6.2. Let Q be a transcendental meromorphic function of finite order
in the plane such that the zeros of Q have positive Nevanlinna deficiency δ (0,Q).
Assume that for each δ > 0, there exists N (δ ) > 0 such that

(6.1) log |Q(z)| ≤ N (δ ) log |z|

for all z with |z| large and δ ≤ | arg z| ≤ π− δ .

Let η and ε be positive. Then, for all sufficiently large r, the function Q satisfies

(6.2) log |Q(z)| ≤ 2N (ε/2) log r − r−ηT (r,Q)

for all z in at least one of the arcs

I+(r, ε) = {reiθ : ε ≤ θ ≤ π− ε}, I−(r, ε) = {re−iθ : ε ≤ θ ≤ π− ε}.

Proof. The initial steps are standard. Choose δ > 0 small compared to η.
By the same result of Hayman [15, Lemma 4] as used in the proof of Lemma
5.3, there exists C1 > 0, depending on δ and the order of Q, as well as a set
Eδ ⊆ [1,∞), of lower logarithmic density at least 1 − δ/2, such that if s ∈ Eδ ,
then T (4s,Q) ≤ C1T (s,Q). Let s ∈ Eδ be large,

Hs = {θ ∈ [0, 2π] : 2 log |Q(2seiθ )| < −δ (0,Q)T (2s,Q)},

and ms be the linear measure of Hs. Then Lemma 2.11 yields ms ≥ 16δ1 > 0,
where δ1 is small but independent of s.

Now let r be large and positive: then there exists s ∈ Eδ with

(6.3) 2r ≤ s ≤ r1+δ ≤ r2.

Since Hs has measure ms ≥ 16δ1, it may be assumed without loss of generality that
Q satisfies 2 log |Q(z)| < −δ (0,Q)T (2s,Q) for all z in a subset Is of I+(2s, 2δ1),
of angular measure at least 4δ1. Let Ds be the domain

{z ∈ C : s/2 < |z| < 2s, δ1 < arg z < π− δ1},

and let w ∈ I+(s, π/4). Then the harmonic measure ω(w, Is,Ds) of Is with respect
to Ds is bounded below by a positive constant δ2 which is independent of s and r.
Thus (6.1) and the two constants theorem [43] yield, since Q is transcendental and
r and s are large,

(6.4) log |Q(w)| ≤ N (δ1) log 2s − δ2δ (0,Q)
2

T (2s,Q) ≤ −δ2δ (0,Q)
4

T (2s,Q)
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for all w ∈ I+(s, π/4). Next, let 
 be the domain

{z ∈ C : r/2 < |z| < s, ε/2 < arg z < π− ε/2},
and let z0 ∈ I+(r, ε). Join z0 to is by the simple path γ consisting of the shorter arc
of the circle |z| = r from z0 to ir, followed by the radial segment z = ix, r ≤ x ≤ s.
Let B = I+(s, π/4) and A = ∂
 \ B. Denoting by ρ(u) the distance from u to A
then gives, on integrating with respect to arc length and using (6.3),∫

γ

|du|
ρ(u)

≤ d1

(
1
ε

+
∫ s

r

dt
t

)
≤ d1

(
1
ε

+ δ log r
)
,

where d1 > 0 is independent of ε, δ and r. This time the two constants theorem
delivers, in view of (6.1), (6.4), and Lemma 6.1,

log |Q(z0)| ≤ 2N (ε/2) log r − δ2δ (0,Q)
8π

T (2s,Q) exp
(

−4d1

(
1
ε

+ δ log r
))

.

Since r is large and δ/η is small, (6.2) follows for z = z0, and the proof is complete.
�

Lemma 6.3. Let u be a non-constant continuous subharmonic function in the
plane of finite order ρ, and let ε > 0. Let F be the set of r ∈ [1,∞) for which
there exists an arc of the circle |z| = r of length at least εr, on which u(z) > 0.
Then F has lower logarithmic density at least 1 − ερ/π.

Proof. This is a standard application of a well-known estimate for harmonic
measure [53]. For r > 0, let B(r, u) = max{u(z) : |z| = r}, and let r θ(r) be the
length of the longest open arc of the circle |z| = r on which u(z) > 0, except that
θ(r) = ∞ if u(z) > 0 on the whole circle. Then, as r → ∞, by [53, p.116],∫

[1,r]\F
dt
t

≤ ε

π

∫ r

1

πdt
tθ(t)

≤ ε

π
logB(2r, u) + O(1) ≤ ε

π
(ρ + o(1)) log r.

�

Lemma 6.4. Let G be a transcendental meromorphic function of finite order
in the plane, and assume that there exist α1, α2 ∈ C, not necessarily distinct, with
the following property: for each ε > 0, the function G satisfies G(z) → α j as
z → ∞ with ε < (−1) j arg z < π−ε. If β ∈ (C∪{∞})\{α1, α2}, then the inverse
function of G cannot have a direct transcendental singularity over β.

Proof. This is again standard: for the terminology, see [1, 43]. Assuming
without loss of generality that G−1 has a direct transcendental singularity over
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β ∈ C\{α1, α2} gives a small δ > 0, a component of U of {z ∈ C : |G(z)−β| < δ},
and a non-constant continuous subharmonic function u of finite order in the plane
which satisfies u(z) = log(δ/|G(z)−β|) on U and vanishes outside U . Here δ may
be chosen arbitrarily small, as may ε. But then the intersection of U with the set
{z ∈ C : ε < | arg z| < π− ε} is bounded, which contradicts Lemma 6.3. �

7 Proof of Theorem 1.4

Let f be a transcendental meromorphic function given by (1.6).

Lemma 7.1. Let n be a non-negative integer, and let NR(r, 1/ f (n)) count the
real zeros of f (n), with respect to multiplicity. If n is odd, then NR(r, 1/ f (n)) = 0.
If n is even, then f (n) has at most one zero in any open interval of the real axis
which contains no poles of f , and NR(r, 1/ f (n)) ≤ N (r, f ) + O(log r) as r → ∞.
Furthermore, if ak and ak+1 are poles of f , with ak < ak+1 and no poles of f in Ik =
(ak, ak+1), then Ik contains precisely one zero of f ′′. Finally, m(r, f ) = O(log r) as
r → ∞.

Proof. The first three assertions follow from differentiating (1.6), which
shows that if m is an odd positive integer, then f (m)(x) is positive or infinite for
every real x. Next, the fact that all residues of f are negative while all poles of
f ′′ have multiplicity 3 forces f ′′ to change sign on Ik. Hence f ′′ has precisely one
zero in Ik, since f ′′′ has none there. The bound on m(r, f ) holds, since f is real
and maps the upper half-plane H+ into itself, so that [39, Ch. I.6, Thm. 8′]

(7.1)
1
5
| f (i)|sin θ

r
< | f (reiθ )| < 5| f (i)| r

sin θ
for r ≥ 1, θ ∈ (0, π). �

Lemma 7.2. Let m ≥ 3, let ε be small and positive, and let NNR(r, 1/ f m))
count the non-real zeros of f (m). Then f satisfies (m−2−ε)T (r, f )≤NNR(r, 1/ f (m))
as r → ∞ outside a set of finite measure. In particular, f (m) has infinitely many
non-real zeros.

Proof. Since f is transcendental with only real poles, all of which are simple,
Lemma 7.1 and an inequality of Frank, Steinmetz and Weissenborn [8] (see also
[10, 11, 50]) yield, for large r outside a set of finite measure,

(m + 1)T (r, f ) = (m + 1)N (r, f ) + O(log r) = N (r, f (m)) + o(T (r, f ))

≤ N (r, 1/ f (m)) + (2 + ε/2)N (r, f ) + o(T (r, f ))

≤ NNR(r, 1/ f (m)) + (3 + ε/2)N (r, f ) + o(T (r, f )). �
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Lemma 7.2 proves the first assertion of Theorem 1.4. Assume henceforth
that f ′′ has finitely many non-real zeros. Clearly all zeros of f ′ are non-real by
Lemma 7.1. Let
(7.2)

F (z) = z − f (z)
f ′(z)

, W + = {z ∈ H+ : F (z) ∈ H+}, W− = {z ∈ H+ : F (z) ∈ H−}.

It may be assumed that A = B = 0 in (1.6), since f (z) − Az − B has the same
second derivative as f .

Lemma 7.3. Let ε > 0. Then f (z)/z → 0 as z → ∞ with ε < | arg z| < π−ε.

Proof. This is standard. Fix δ > 0 and let R ≥ 1. Then (1.6) gives a rational
function TR, with TR(∞) = 0, such that, for ε < | arg z| < π− ε,

f (z)
z

= TR(z) +
∑

|ak |>R

Ak

ak(ak − z)
,

∣∣∣∣ f (z)
z

∣∣∣∣ ≤ |TR(z)| +
∑

|ak |>R

Ak

a2
k sin ε

= |TR(z)| + S.

Now choose R so large that (1.6) gives S < δ , and |z| so large that |TR(z)| < δ . �

Lemma 7.4. All poles of F are non-real, while all but finitely many zeros of
F ′ are real. In any open interval of the real axis which contains no poles of f , the
function F ′ has at most two zeros, counting multiplicity.

Proof. These assertions all follow from Lemma 7.1 and the formula F ′ =
( f f ′′)/( f ′)2. �

Lemma 7.5. The Tsuji characteristic of f ′/ f satisfies (2.1), and f has order
of growth at most 1 in the plane.

Proof. The first assertion follows from Lemma 2.1. Alternatively, it may be
observed that the function ( f − i)/( f + i) has modulus less than 1 on H+.

To prove that f has order at most 1, write f ′′/ f as follows. Assume that the ak

in (1.6) are ordered so that ak < ak+1 for each k. If |k| ≥ k0, where k0 is large, then
ak and ak+1 have the same sign and, by Lemma 7.1, there is precisely one zero bk

of f ′′ in (ak, ak+1), counting multiplicity. For z ∈ H+, write

ψ(z) =
∏

|k|≥k0

1 − z/bk

1 − z/ak
, 0 <

∑
|k|≥k0

arg
1 − z/bk

1 − z/ak
=

∑
|k|≥k0

arg
bk − z
ak − z

< π.

The product ψ converges by the alternating series test, and ψ(H+) ⊆ H+. Next,
write f ′′/ f = ψ/g, where g = ψ f/ f ′′ has finitely many poles, using Lemma 7.1,
and all but finitely many poles of f are simple zeros of g. It follows from (2.1) and
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standard properties of the Tsuji characteristic that the hypotheses of Lemma 2.2(a)
are satisfied with H = f/ f ′′ (and so H̃ = H ). This gives (2.2) with H = f/ f ′′.

Now m(r, f ) = O(log r) by Lemma 7.1, and the same is true with f replaced
by ψ, because ψ(H+) ⊆ H+. Therefore, (2.2) also holds with H = g. Thus
Lemma 2.2(b) shows that T (r, g) has order of growth at most 1, and hence so have
N (r, f ) and T (r, f ). �

Lemma 7.6. There does not exist β ∈ C \ {0} such that f (z)/z → β as z
tends to ∞ on a path in C \ R.

Proof. If such an asymptotic value β exists, the inverse function of f (z)/z has
a direct transcendental singularity over ∞, by Lemma 7.3. But this is impossible,
by Lemmas 6.4 and 7.3 and the fact that f has finite order of growth. �

Lemma 7.7. Let α ∈ C \ R. Then the inverse function F−1 has no direct
transcendental singularities over α.

Proof. Assume that F−1 has a direct transcendental singularity over α ∈ C\R.
Then, without loss of generality, there exist δ > 0 and a component U ⊆ H+ of
the set {z ∈ C : |F (z) − α| < δ}, such that the function

(7.3) u(z) = log
δ

|F (z) − α| (z ∈ U), u(z) = 0 (z ∈ C \ U),

is subharmonic and non-constant in the plane. By a result of Lewis, Rossi, and
Weitsman [41], there exists a path � tending to ∞ in U on which u(z) → +∞ with

(7.4)
∫
�
e−u(z) |dz| < ∞.

For z ∈ � with |z| large, write

z − f (z)
f ′(z)

= F (z) = α + p(z),
f ′(z)
f (z)

=
1

z − α
+ q(z), |q(z)| ≤ |p(z)| = δe−u(z).

Hence (7.4) shows that there exists a non-zero complex number β such that
f (z) ∼ β(z − α) as z → ∞ on �, contradicting Lemma 7.6. �

Lemma 7.8. The function F has finitely many critical values, and no asymp-
totic values, in C \ R.

Proof. The fact that all but finitely many critical values of F are real is an
immediate consequence of Lemma 7.4. Since all poles of f ′/ f are real, it follows
from Lemma 7.5 and [37, Lemma 2.2] that F has finitely many asymptotic values
in C \ R. Because F has finite order, any non-real finite asymptotic value of F
must give rise to a direct singularity of F−1, by [1], contradicting Lemma 7.7. �
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Lemma 7.9. There exists a positive integer M such that if C is a component
of W + or W−, then F takes each value at most M times in C, counting multiplicity.
Furthermore, a component of W + (respectively, W−) which contains no zeros of
f ′′ is simply connected and conformally equivalent to H+ (respectively, H−) under
F, and this is true for all but finitely many components of W + (respectively, W−).

Proof. The first assertion is proved as in Lemma 2.10, using 7.8, and the
second is standard. �

Lemma 7.10. Let C be a component of W + or W− which contains no zeros
of f ′′, and let α ∈ R. Then there exists z in the finite boundary ∂C with F (z) = α.

Proof. Let C and α be as in the hypotheses, and assume that α �∈ F (∂C). Let
G(z) = 1/(α − F (z)), so that G is univalent on C and G(C) is H+ or H−. Let
g : G(C) → C be the inverse function of G, and let � be the path in G(C) given
by

w = it, t ∈ R, 1 ≤ |t| < ∞.

Then γ = g(�) is a curve in C on which iG is real, and γ tends either to ∞ or to an
α-point of F on ∂C. Hence γ must tend to ∞ in C. For z ∈ γ with |z| large, write

z − f (z)
f ′(z)

= F (z) = α− 1
G(z)

= α + o(1),

which leads to

f ′(z)
f (z)

=
1

z − α + 1/G(z)
=

1
z − α

+ h(z), where h(z) = O
(

1
|z|2|G(z)|

)
.

But Koebe’s 1/4 theorem applied to log g gives g′(w)/g(w) = O(1/|w|) on �, and
so ∫

γ
|h(z)||dz| =

∫
�
O
( |g′(w)|

|g(w)|2|w|
)

|dw| =
∫
�
O
(

1
|w|2|g(w)|

)
|dw| < ∞.

It follows that there exists a non-zero complex number β such that f (z) ∼ β(z−α)
as z → ∞ on γ, and this contradicts Lemma 7.6. �

Lemma 7.11. Let a ∈ R be a zero of f ′′. Then f has at least one pole in each
of (−∞, a) and (a,∞).

Proof. Suppose that f has no poles in (−∞, a). Then (X − a)3 > 0 for every
pole X of f , and the series expansion for f ′′ obtained from (1.6) shows that a
cannot be a zero of f ′′. �
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Lemma 7.12. Every pole of f lies on the boundary of a component of W +,
but not in the closure of W−.

Proof. This holds because every pole X of f is a real fixed point of F with
F ′(X) > 1. �

Lemma 7.13. Let a ∈ R be a multiple zero of F ′. Then F ′′′(a) > 0.

Proof. Lemma 7.1 shows that a must be a common zero of f and f ′′, and a
triple zero of F − F (a). Assume that F ′′′(a) is negative, and let δ be small and
positive: then a−δ and a+δ both lie in ∂W−. Let A and B be the nearest poles of f
to a in (−∞, a) and (a,∞) respectively; these exist by Lemma 7.11, and Lemma
7.12 ensures that each lies on the boundary of a component of W +. It follows that
F must have critical points in (A, a) and (a,B), contradicting Lemma 7.1. �

Lemma 7.14. The function f ′ has finitely many zeros, and none at all if f ′′

has only real zeros.

Proof. Let w be a zero of f ′. Then w is non-real by Lemma 7.1, and it may
be assumed that w ∈ H+. Thus w is a pole of F : with finitely many exceptions,
and none if f ′′ has only real zeros, the pole of F at w is simple.

Assume henceforth that w ∈ H+ is a zero of f ′ and a simple pole of F : then
w lies on the boundary of a uniquely determined component Cw of W−. Consider
those w for which the component Cw either is multiply connected, or has a non-
real zero of f ′′ in its closure. There are finitely many of these, by Lemma 7.9, and
none if f ′′ has only real zeros.

Attention may thus be restricted to those w for which C = Cw is simply con-
nected, with no non-real zero of f ′′ in its closure. Then F maps C univalently
onto H−, and F (∂C) = R ∪ {∞}, by Lemmas 7.9 and 7.10 and the fact that
F (w) = ∞. Thus C is bounded; otherwise, there exist ζn ∈ C with ζn → ∞ and
F (ζn) → ζ ∗ ∈ F (C ∪ ∂C), contradicting the univalence of F on C.

Suppose that ∂C has a component � ⊆ H+. Then � is a Jordan curve, and
� = ∂C, because C is simply connected. Moreover, � forms part of the boundary
of a multiply connected component E of W +. But F has a pole on ∂C, and F is
finite-valent on each such E , and so there are finitely many components C of this
type, and none at all if f ′′ has only real zeros.

Assume henceforth that every component of ∂C meets R, and take z0 ∈ ∂C
with the property that Im z0 = max{Im z : z ∈ C ∪ ∂C}. Follow ∂C in each
direction, starting from z0, until the first encounter with R. This gives a Jordan arc
or curve γ in ∂C ∩ (H+ ∪R) such that γ∩R = {a, b}, where a and b are real zeros
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of F ′ with a ≤ b. Here it is necessary to allow for the possibility that a = b, in
which case a is a multiple zero of F ′ and so of f f ′′. Now λ = γ∪ [a, b] is a Jordan
curve, and since F ′(z0) �= 0, local considerations show that there are points in C
which lie in the interior domain of λ, and hence so does all of C.

Let c = sup{x ∈ R : [a, x] ⊆ ∂C}. Then [a, c] ⊆ ∂C, and a and c are zeros of
f f ′′ (again, in principle, a and c might coincide, and so might b and c). Lemmas
7.1 and 7.12 show that f has no poles in ∂C, each of f and f ′′ has one simple zero
in the set {a, c}, and c ≤ b.

Now f has at least one pole in (−∞, a), since otherwise neither a nor c can
be a zero of f ′′, by Lemma 7.11. Let A be the nearest pole of f to a in (−∞, a).
Then A lies on the boundary of a component D of W +. Because F has no multiple
points in [A, a) by Lemma 7.1, the interval [A, a] is a subset of ∂D. Furthermore,
γ meets ∂D: if a is a simple zero of F ′, then this is clear, while if a is a multiple
zero of F ′, then F ′′′(a) > 0 by Lemma 7.13, in which case γ meets ∂D because C
lies in the interior domain of λ = γ ∪ [a, b]. Since f ′′ has no non-real zeros in the
closure of C, it follows that γ ⊆ ∂D. A similar argument shows that there exists
a pole B of f with B > b such that the interval [b,B] lies in the boundary of a
component D ′ of W +, and so does γ, from which it follows that D = D ′ = Dw.

In the case where f ′′ has only real zeros, F must be univalent on D, and the
branch g of the inverse function F−1 which maps H+ to D has at least two attract-
ing fixed points on the boundary of H+, at A and B, contradicting the Denjoy-Wolff
theorem [51, Chapter 2]. Indeed, the iterates gn form a normal family on H+, since
g(H+) = D ⊆ H+, but g extends to be analytic on a neighbourhood UA of A such
that g(UA) ⊆ UA and the gn converge to A on UA, and in the same way they con-
verge to B on a neighbourhood of B.

In the general case where f ′′ has finitely many non-real zeros, suppose that
there exist infinitely many zeros w ∈ H+ of f ′. This gives infinitely many distinct
components Cw of W− as above, each with a corresponding component Dw of
W +. The Dw need not be distinct, but Lemma 2.10 implies that L has finitely many
poles on the boundary of any component of W +, and therefore so has f . Hence
there must exist at least one Dw which is mapped univalently onto H+ by F , and
the Denjoy-Wolff theorem supplies a contradiction as before. �

To complete the proof of Theorem 1.4, observe that it now follows from Lem-
ma 7.14 and the fact that all but finitely many zeros of f and f ′′ are real that f
satisfies the hypotheses of [34, Theorem 6.4] (see also [33, Theorem 1.5]), subject
to the assumption made earlier that A = B = 0 in (1.6). Then

f (z) =
R(z)eicz − 1

A1R(z)eicz − A1
,
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with c ∈ (0,∞), A1 ∈ C \R, and R a rational function satisfying |R(x)| = 1 for all
x ∈ R, by [34, Theorem 6.4]. Since all residues of f have to be negative, it follows
easily that A1 ∈ H+, and the fact that f (H+) ⊆ H+ shows that all zeros of R lie in
H+, and all poles in H−.

Finally, suppose that all zeros of f ′′ are real. Then the Schwarzian derivative
Sf is entire, because f ′ has no zeros and all poles of f are simple [21, 22]. Since
f is transcendental of order at most 1, it must be the case that Sf is a non-zero
constant, so there exist a ∈ C and a Möbius transformation T such that f (z) =
T (ei2az). Because f is real with only real zeros and poles, a must be real, and
f (z) = C tan(az + b) + E , with b, C and E also real.

8 A special case of Theorem 1.7

The following special case illustrates Theorem 1.7 and plays a key role in its proof.

Lemma 8.1. Let a, b,D,E ∈ C with a �= 0 and D �= E, and let 2 ≤ n ∈ Z.
Let

(8.1) F (z) =
(

Deaz+b − E
eaz+b − 1

)n

.

(i) There exists a meromorphic function G in the plane with G′ = F if and only
if D = λE where λn = 1, λ �= 1.

(ii) There does not exist a meromorphic function H in the plane with H ′′ = F.

Proof. It may be assumed that a = 1 and b = 0. By periodicity, there exists a
meromorphic function G with G′ = F if and only if Res (F, 0) = 0. The function
w = ez − 1 is univalent on a neighbourhood of the origin and has local inverse

(8.2) z = φ(w) = log(1 +w) = w− w2

2
+
w3

3
− · · · .

Let ε be small and positive, and let γ describe the circle |z| = ε once counter-
clockwise. Let � be the image of γ under w = ez − 1. Then Res (F, 0) = 0 if and
only if

(8.3) 0 =
∫
γ
F (z) dz =

∫
�
ψ(w)dw, ψ(w) =

(
D +

D − E
w

)n

φ′(w).

Now (8.2) and (8.3) give, as w → 0,

ψ(w) =
(

Dn + nDn−1
(

D − E
w

)
+ · · · +

(
D − E
w

)n)
×

(
1 −w + · · · + (−1)n−1wn−1 + · · ·

)
,
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and so (i) follows from the fact that

Res (ψ, 0) = nDn−1(D − E) − n!
2!(n − 2)!

Dn−2(D − E)2 + · · · + (−1)n−1(D − E)n

= −
(

nDn−1(E − D) +
n!

2!(n − 2)!
Dn−2(E − D)2 + · · · + (E − D)n

)
= − ((D + E − D)n − Dn) = Dn − En.

To establish (ii), suppose that there exists a meromorphic function H in the
plane with H ′′ = F . Then D = λE , with λn = 1 by (i), and it may be assumed that
E = 1 and D = λ �= 1. This time write

(8.4) w = q(z) =
ez − 1
λez − 1

, z = q−1(w) = σ(w) = log
(

1 −w

1 − λw

)
,

each of these being univalent near the origin. This forces, with γ as before and �
the image of γ under w = q(z),

(8.5) 0 =
∫
γ
zF (z) dz =

∫
γ

z
wn

dz =
∫
�

τ(w)
wn

dw, τ(w) = σ(w)σ′(w).

Now, as w → 0, expanding (8.4) yields

τ(w) =
(
w(λ− 1) + . . . +

wn−1

n − 1
(λn−1 − 1) + · · ·

)
×

(
λ− 1 + · · · +wn−2(λn−1 − 1) + · · ·

)
= a1w + · · · + an−1w

n−1 + · · · .

Here the coefficient an−1 of wn−1 must vanish by (8.5), which delivers

0 =
1

n − 1
(λn−1 − 1)(λ− 1) + · · · + (λ− 1)(λn−1 − 1)

=
n−1∑
j =1

1
n − j

(λn− j − 1)(λ j − 1).
(8.6)

But λn = 1, and so λ = exp(2πik/n) for some k ∈ {1, . . . , n − 1}. It follows that,
for 1 ≤ j ≤ n − 1,

μ j = (λn− j − 1)(λ j − 1) = 2 − (λ j + λ− j ) = 2 − 2 cos(2π jk/n) ≥ 0.

Since μ1 > 0, the sum in (8.6) is real and positive, and this contradiction com-
pletes the proof. �



216 J. K. LANGLEY

9 Proof of Theorem 1.7

Let f be as in the hypotheses, let R be a large positive real number, and define g
formally by

(9.1) f ′ = gn.

Then g admits unrestricted analytic continuation in R < |z| < ∞, these continu-
ations having only simple poles and no critical points. Since g′/g is single-valued
in the plane, so is the function A defined by

(9.2) 2A = Sg =
g′′′

g′ − 3
2

(
g′′

g′

)2

,

where Sg denotes the Schwarzian derivative [21, 22]. Moreover, A has finitely
many poles, and none in R < |z| < ∞, because the continuations of g are free of
multiple points there.

Lemma 9.1. The function A is rational, but does not satisfy A(z) = O(|z|−2)
as z → ∞.

Proof. The first assertion follows from the lemma of the logarithmic derivat-
ive and the fact that f has finite lower order. Now suppose that A(z) = O(|z|−2) as
z → ∞. Take z0 ∈ C with |z0| > R such that z0 is neither a pole nor a zero of f ′,
and define the functions W and V in a simply connected open neighbourhood U
of z0 by

(9.3) W 2 =
1
g′ =

ngn−1

f ′′ , V = W 2n =
nn( f ′)n−1

( f ′′)n
.

It follows from (9.3), hypothesis (ii), and the fact that R is large that V extends to
be analytic in R < |z| < ∞, with a zero of multiplicity 2n at each pole of f , and
no other zeros. In particular, V has an essential singularity at ∞. By a result of
Valiron [54, p.15], the function V may be written in the form

(9.4) V (z) = zqY (z)(1 + o(1)) as z → ∞,

in which q is an integer and Y is a transcendental entire function.

A standard calculation starting from (9.2) and (9.3) shows that W is a solution
on U of

(9.5) w′′ + A(z)w = 0.
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On the other hand, (9.3) and (9.5) now yield, again on U ,

(9.6) W = V 1/2n, −A =
W ′′

W
, −A =

1
2n

(
1
2n

− 1
)(

V ′

V

)2

+
1
2n

V ′′

V
.

The last equation of (9.6) then holds by analytic continuation throughout the region
R < |z| < ∞.

Now let ν(r) denote the central index of the transcendental entire function Y .
By (9.4) and the Wiman-Valiron theory [16], if r is large and lies outside a set of
finite logarithmic measure, and if |z1| = r and |Y (z1)| = M (r,Y ), then ν(r) is large,
and

V ′(z1)2

V (z1)2
∼ V ′′(z1)

V (z1)
∼ ν(r)2

z2
1

and
1

4n2

ν(r)2

z2
1

∼ −A(z1) = O(r−2),

which is a contradiction. �
Lemma 9.1 makes it possible to write, as z → ∞,

(9.7) A(z) ∼ czm, c ∈ C \ {0}, m ∈ Z, m ≥ −1,

and so Hille’s asymptotic method [21, 22] may now be applied to (9.5). The m + 2
critical rays arg z = θ0 for the equation (9.5) are determined by the formula

(9.8) arg c + (m + 2)θ0 = 0 ( mod 2π).

Let ε and 1/R1 be small and positive: then (9.5) has linearly independent solutions
u1, u2 satisfying

u1(z) ∼ A(z)−1/4e−iZ , u2(z) ∼ A(z)−1/4eiZ ,

Z =
∫ z

2R1

A(t)1/2dt ∼ 2c1/2

m + 2
z(m+2)/2,

(9.9)

as z → ∞ in the sectorial region

S(R1, ε) =
{

z ∈ C : |z| > R1, | arg z − θ0| < 2π
m + 2

− ε

}
.

If m = −1, there is only one critical ray given by (9.8), and S(R1, ε) should be
understood as lying on the Riemann surface of log z. It follows from (9.1), (9.2),
and (9.5) that there exist complex numbers Aj and Bj such that f ′ satisfies, on
S(R1, ε),

(9.10) f ′ = gn, g =
A1u1 − A2u2

B1u1 − B2u2
,
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and A1B2 − A2B1 �= 0, since f ′ is non-constant.
It may be assumed that θ0 is chosen so that f has infinitely many poles in the

narrower sectorial region S(R1, 4ε), which forces B1B2 �= 0 in (9.10) and makes it
possible to write

(9.11) f ′ =
(

De2πiL − E
e2πiL − 1

)n

, D,E ∈ C, D �= E,

where

(9.12) L(z) =
1

2πi
log

(
B2u2(z)
B1u1(z)

)
∼ Z
π

∼ 2c1/2

π(m + 2)
z(m+2)/2

as z → ∞ in S(R1, 2ε). In view of (9.8), it may be assumed that the branch of
the square root in (9.9) is chosen so as to make ReL(z) positive as z → ∞ on the
critical ray, and the poles ζ j of f in S(R1, 4ε) must have arg ζ j → θ0 as ζ j → ∞.

The asymptotics (9.12) show that w = L(z) maps a subdomain S∗ of S(R1, 3ε)
univalently onto a a sectorial region 
 = {w ∈ C : |w| > R2, | argw| < π− δ},
where R2 is large and δ may be made arbitrarily small by choosing ε small enough.
In particular, 
 contains a half-plane H given by Rew > q0 > 0. Let z = φ(w)
be the inverse mapping from 
 to S∗, choose a large positive integer q, and let the
contour γ in H describe once counter-clockwise the circle of centre q and radius
1/4. Then f has no poles on φ(γ), and (9.11) gives

(9.13) 0 =
∫
φ(γ)

f ′(z) dz =
∫
γ
ψ(w) dw, ψ(w) =

(
De2πiw − E
e2πiw − 1

)n

φ′(w).

As w → q, periodicity yields

Q(w) =
(

De2πiw − E
e2πiw − 1

)n

=
(

De2πi(w−q) − E
e2πi(w−q) − 1

)n

=
Dn

(w− q)n
+ · · · + D1

w− q
+ O(1),

in which the Dj depend on n, D and E , but not on q. Moreover, Lemma 8.1 implies
that the function Q(w) is not the second derivative of a meromorphic function in
the plane; and so, by periodicity again, at least one of D1 and D2 is non-zero. Now
(9.13) delivers

0 = Res (ψ, q) = σ(q), σ(w) = D1φ
′(w) + D2φ

′′(w) + · · · + Dn
φ(n)(w)
(n − 1)!

,

|D1| + |D2| > 0.

Since m + 2 ≥ 1 in (9.12), the function σ(w) has at most polynomial growth
in the half-plane Rew > q0 + 1. Now the fact that σ(q) = 0 for all suffi-
ciently large positive integers q forces σ to vanish identically (apply, for example,
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[30, Lemma 5]). This implies that φ satisfies, in the domain
, a linear differential
equation with constant coefficients, and so φ is an entire function of exponential
type. Because φ has polynomial growth in
, by (9.12), while δ is small, applying
the Phragmén-Lindelöf principle shows that φ is a polynomial. But then the con-
dition |D1|+ |D2| > 0 and the vanishing of σ together ensure that φ is a polynomial
of degree 1, and so is its inverse function L. Thus (9.11) implies that Lemma 8.1
may be applied to f ′, which completes the proof.

10 Proof of Theorem 1.5

Let f be a real transcendental meromorphic function in the plane satisfying hypo-
theses (a), (b) and (c) of Theorem 1.5. It is not assumed at this stage that hypothesis
(d) holds. The function

(10.1) h =
f ′

f ′′

has finitely many poles and non-real zeros. If h is a rational function, then f ′ =
R0eP0 with R0 a real rational function and P0 a real polynomial. Because f has
finitely many non-real zeros, this forces (1.2). Assume for the remainder of the
proof that h is transcendental.

Lemma 10.1. The function L = f ′/ f is transcendental and its Tsuji charac-
teristic satisfies T0(r,L) = O(log r) as r → ∞.

Proof. L must be transcendental, because 1/h = L + L′/L. The second asser-
tion holds by Lemma 2.1 and the fact that all but finitely many zeros and poles of
f and f ′′ are real. �

Lemma 10.2. The Nevanlinna characteristic of h satisfies T (r, h) = O(r log r)
as r → ∞, while

(10.2) N (r, f ) + N (r, 1/ f ) + N (r, 1/ f ′) = O(r log r) as r → ∞.

Furthermore, T (r,L) = O(r log r) as r → ∞.

Proof. Lemma 10.1 and standard properties of the Tsuji characteristic give
T0(r, h) = O(log r) as r → ∞, so that T (r, h) = O(r log r) as r → ∞ by
Lemma 2.2. It then follows from this and (10.1) that

n(r, f ) + n(r, 1/ f ′) ≤ n(r, 1/h) = O(r log r) as r → ∞.
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The corresponding result for n(r, 1/ f ) now follows from Rolle’s theorem. This
gives (10.2), which, with Lemmas 2.2 and 10.1, implies the estimate for T (r,L).

�

Lemma 10.3. The function f admits a representation

(10.3) f =
G
H
,

G′

G
= φψ,

in which

(i) G and H are real entire functions, and H has order at most 1;
(ii) φ and ψ are real meromorphic functions, and φ has finitely many poles and

order at most 1;
(iii) either ψ ≡ 1 or ψ maps the upper half-plane H+ into itself.

Proof. Here H is the canonical product formed using the poles of f , all but
finitely many of which are real, the rest occurring in conjugate pairs because f
is real. Since the poles of f have bounded multiplicities, it follows from (10.2)
that H has order at most 1. Now G is a real entire function with finitely many
non-real zeros, and the formula G′/G = φψ is just the standard Levin-Ostrovskii
factorisation [3, 32], in which ψ is formed as in the proof of Lemma 7.5, using
real zeros ak of G and bk of G′. Finally, φ has order at most 1 because (7.1) holds
with f replaced by ψ so that, as r → ∞,

m(r, φ) ≤ m(r,G′/G) + m(r, 1/ψ) ≤ m(r,G′/G) + O(log r) ≤ m(r,L) + O(log r).
�

Lemma 10.4. The function φ in (10.3) is rational, and G and f have finite
order.

Proof. Assume that φ is transcendental. Fix a small positive real number ε
and a large positive integer N , and set

(10.4) W1(z) =
h(z)
zN

=
f ′(z)

zN f ′′(z)
, W2(z) =

φ(z)
zN

.

Each Wj has finite order and finitely many poles, and so Lemma 6.3 gives an
unbounded set E1 ⊆ [1,∞) such that for r ∈ E1 and j = 1, 2 there exists θ j ∈ R

with

(10.5) |Wj (re
iθ )| ≥ 1 for |θ − θ j | ≤ 8ε.
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For r ∈ E1, integration gives cr ∈ C \ {0} and dr ∈ C such that

f ′(reiθ ) = cr

(
1 + O

(
r1−N

))
, f (reiθ ) = cr

(
reiθ + O

(
r2−N

))
+ dr

for |θ − θ1| ≤ 8ε. This in turn gives, for θ in an interval of length 4ε,

(10.6) P(reiθ ) = reiθ f ′(reiθ )
f (reiθ )

=
reiθ (1 + o(1))

reiθ + dr/cr + o(1)
= O(1).

Because f is real, it may be assumed that (10.6) holds for at least one θ in the
interval [ε, π − ε], and so Lemma 2.8 yields P(reiθ ) = O(1) for r ∈ E1 and all
θ ∈ [ε, π−ε]. Since H has order at most 1 and finitely many non-real zeros, (7.1),
with f replaced by ψ, and (10.3) yield

G′(reiθ )
G(reiθ )

=
f ′(reiθ )
f (reiθ )

+
H ′(reiθ )
H (reiθ )

= O(r) and φ(reiθ ) =
G′(reiθ )

G(reiθ )ψ(reiθ )
= O(r2)

for r ∈ E1 and |θ| ∈ [ε, π− ε]. By (10.4), this contradicts (10.5) for j = 2.
Thus φ is rational, and the assertion that G has finite order, which in turn

implies that so has f , follows from a standard argument [3, Lemma 5.1]. �

Lemma 10.5. The function f ′ has finitely many asymptotic values, all tran-
scendental singularities of the inverse function of f ′ are logarithmic, and f ′′/ f ′

has lower order at least 1/2.

Proof. Since f ′′/ f ′ has finitely many zeros, f ′ has finitely many critical values.
Thus, because f ′ has finite order, all transcendental singularities of the inverse
function are direct, by the main result of [1], and they are finite in number by the
Denjoy-Carleman-Ahlfors theorem [17]. Hence all such singularities are in fact
logarithmic.

The last assertion is proved as in [38, Lemma 11]. Since f ′′/ f ′ has finitely
many zeros, the same result of Lewis, Rossi and Weitsman [41] as used in Lemma
7.7 gives a path γ tending to ∞ on which f ′ tends to β ∈ C \ {0}. If f ′′/ f ′ has
lower order less than 1/2, the cosπρ theorem [17] implies that f ′′/ f ′ is small,
and f ′ is close to β, on the union of a sequence of circles |z| = rn → ∞. This
contradicts the fact that the singularity over β is logarithmic. �

Lemma 10.6. Let δ1 > 0, and let ρ < ∞ be the order of growth of f . Then∣∣ f ′′(z)/ f ′(z)
∣∣ ≤ |z|ρ as z → ∞ with δ1 ≤ | arg z| ≤ π− δ1.

Proof. This follows from standard estimates based on the differentiated
Poisson-Jensen formula [14] and the fact that f ′ has order ρ and finitely many
non-real zeros and poles. �
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Lemma 10.7. There exists α ∈ C \ {0} with the following property. If ε > 0
then, as z → ∞ with ε ≤ arg z ≤ π− ε,

(10.7)
∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣ ≤ exp
(
−|z|1/4

)
,

and f ′(z) = α + o(1).

Proof. To prove (10.7), apply Lemma 6.2 with Q = f ′′/ f ′ and η = 1/16, in
conjunction with Lemmas 10.5 and 10.6. Integration then gives f ′(z) = α + o(1)
in the same sector, where α ∈ C \ {0}, and it is clear that α is independent of ε. �

Lemma 10.8. The inverse function of f ′ has exactly one of the following:
(I) a logarithmic singularity over each of α and ᾱ, where α ∈ C \ R, and no

other transcendental singularities;
(II) one or two logarithmic singularities over α ∈ R \ {0}, and no other tran-

scendental singularities.

Proof. Lemma 10.7 gives f ′(z) = ᾱ+o(1) as z → ∞ with ε ≤ − arg z ≤ π−ε,
where εmay be chosen arbitrarily small. The result now follows from Lemmas 6.3
and 6.4. �

Following [38], let J be a polygonal Jordan curve in C \ {0}, symmetric with
respect to the real axis, such that every finite non-zero critical or asymptotic value
of f ′ lies on J but is not a vertex of J . Here J can be formed so that its complement
in C∪{∞} consists of two simply connected domains B1 and B2, with 0 ∈ B1 and
∞ ∈ B2. Fix conformal mappings

(10.8) hm : Bm → {w ∈ C : |w| < 1}, m = 1, 2, h1(0) = 0, h2(∞) = 0.

The mapping h1 may then be extended to be quasiconformal on the plane [45,
Ch.5], fixing ∞, and there exist a meromorphic function G1 and a quasiconformal
mapping ψ1 such that

(10.9) h1 ◦ f ′ = G1 ◦ ψ1 on C.

The following lemma is [38, Lemma 4], translated to the present setting in the
light of Lemma 10.8.

Lemma 10.9. For j = 1, 2, all components of ( f ′)−1(Bj ) are simply connec-
ted, and all but finitely many are unbounded. If C0 is a component of ( f ′)−1(B1),
then C0 contains one zero of f ′, of multiplicity m1 ∈ N, and C0 is mapped m1 to 1
onto B1 by f ′. Furthermore, if a zero z1 of f ′′ lies in a component C1 of ( f ′)−1(B1),
then z1 is the only zero of f ′′ in C1. Similarly, each component of ( f ′)−1(B2) con-
tains exactly one pole of f , disregarding multiplicities.
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The next step is to combine [38, Lemma 5] with Lemma 10.8.

Lemma 10.10. Arbitrarily small positive real numbers ε1 and ε2 may be
chosen with the following properties. There exist one or two unbounded simply
connected domains Un, each a component of the set {z ∈ C : | f ′(z) − bn| < ε1},
such that Un contains a path tending to ∞ on which f ′(z) tends to bn. Here each
bn is α or ᾱ, and f ′(z) �= bn on Un, while | f (z) − bnz| < ε2|z| for all z in Un with
|z| large enough. If � is a path tending to ∞ on which f ′ tends to an asymptotic
value β, then there exists n such that β = bn and � \ Un is bounded.

Lemma 10.11. The function f ′ has infinitely many zeros x j , all but finitely
many of which satisfy the following. First, x j is real and lies in a component C j

of ( f ′)−1(B1) which is unbounded, simply connected, and symmetric with respect
to the real axis, and there are no zeros of f ′′ on the boundary ∂Cj . Furthermore,
∂Cj is �−

j ∪ �+
j , where each �±

j is a simple curve tending to ∞ in both directions,
symmetric with respect to R, and meeting the real axis exactly once. Analogous
considerations apply to poles of f ′.

Proof. There exist infinitely many zeros x j of f ′ by Lemma 10.8. For |x j |
large, let
(10.10)
−∞ < y−

j = inf{x ∈ R : [x, x j ] ⊆ Cj } < y+
j = sup{x ∈ R : [x j , x] ⊆ Cj } < ∞.

Each y±
j lies in a component �±

j of ∂Cj which is symmetric with respect to R, and
ψ1(�±

j ) is a level curve of the function G1 in (10.9). Thus �±
j ∩R = {y±

j }, because
Cj is simply connected. Finally, observe that any component of ∂Cj other than the
�±

j would have to lie in C \ R and form part of the boundary of a component of
( f ′)−1(B2), that component having to contain a non-real pole of f . �

Lemma 10.12. The zeros of f ′ have bounded multiplicities, and case (II)
holds in Lemma 10.8.

Proof. Each �±
j in Lemma 10.11 forms part of the boundary of a a component

of ( f ′)−1(B2), and the poles of f have bounded multiplicities. Hence the variation
of arg f ′ on �±

j has an upper bound which is independent of j , thus proving the
first assertion.

Suppose now that case (I) holds in Lemma 10.8. If z0 is large and is a zero of
f ′′, then z0 and f (z0) are real, so that

| f (z0) − αz0| = | f (z0) − ᾱz0| ≥ |z0 Imα|.
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Theorem 1.6 may now be applied, yielding f ′′ = R2eP2 with R2 a real rational func-
tion and P2 a real polynomial. Thus f has finitely many poles, which contradicts
Lemma 10.8. �

It may be assumed henceforth that case (II) holds in Lemma 10.8, with α = 1.

Lemma 10.13. Fix positive real numbers M1 and M2 with M1 large and M1 <

M2. Let v j ∈ R with |v j | large be a pole of f of multiplicity m j , and let D j be the
component of ( f ′)−1(B2) in which x j lies. Then | f (z) − z| ≤ 2ε2|z| for all z ∈ Dj

with M1 < | f ′(z)| < M2, where ε2 is as in Lemma 10.10. Moreover, f has at least
m j real simple zeros in Dj , and m j is 1 or 2.

Proof. The component Dj is simply connected and, as shown in Lemma
10.11, its boundary consists of two disjoint simple curves �±

j . The function
v = (h2 ◦ f ′)1/m j maps Dj conformally onto the unit disc, and as z tends to ∞
in either direction along either of the �±

j , the image f ′(z) tends to the unique
asymptotic value 1 of f ′, since f ′ is finite-valent on Dj . This implies that Dj

meets one of the components Un of Lemma 10.10. It follows that there exist μ j

with μm j

j = h2(1) and a positive ε3 such that if z ∈ Dj and |v(z) − μ j | ≤ ε3, then
z ∈ Un. Here ε3 may be chosen arbitrarily small and independent of j , since the
m j are bounded by hypothesis.

Let u be the inverse function of v , mapping the unit disc onto Dj . Then u′(0) =
o(|v j |), by Koebe’s 1/4 theorem and Lemma 10.7. Koebe’s distortion theorem
then yields u′(w) = o(|v j |) for |w| ≤ 1 − ε3. Now let z1 ∈ Dj be such that
w1 = v(z1) satisfies ε3 ≤ |w1| ≤ 1 − ε3. Then w1 can be joined to a point w2

with |w2| < 1, |w2 − μ j | ≤ ε3 by a path � in ε3 ≤ |w| ≤ 1 − ε3, so that
σ = v(�) is a path in Dj of length o(|v j |) joining z1 to z2 = u(w2) ∈ Un. But then
| f (z2) − z2| ≤ ε2|z2| by Lemma 10.10. Since f ′ is bounded on σ, integration of f ′

gives | f (z1) − z1| ≤ 2ε2|z1|, proving the first assertion.

Next, let τ be the image under u of the circle |w| = ε3. Then τ is a Jordan curve
in Dj enclosing v j , and symmetric with respect to the real axis. Furthermore,
| f (z) − z| < |z| on τ; thus Rouché’s theorem implies that f has m j zeros inside τ,
and these zeros must be real. Since f ′ has no zeros in Dj , these zeros of f are also
simple, and m j ∈ {1, 2} by Rolle’s theorem. �

In view of Lemma 10.13, the hypothesis (d) may now be used for the first time,
to separate the remainder of the proof into two cases.

Case A: assume that all but finitely many poles of f have multiplicity 2.

The first step in this case is the following.
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Lemma 10.14. All but finitely many zeros of f ′ have multiplicity 3.

Proof. It suffices to take successive real zeros x j−1 < x j < x j+1 of f ′ with
|x j−1| and |x j+1| large, and to show that the multiplicity n j of x j is 3. Since all
but finitely many zeros of f ′′ are zeros of f ′, Rolle’s theorem implies that there
exist poles vk, vk+1 of f ′ which satisfy x j−1 < vk < x j < vk+1 < x j+1, and these
may be assumed to be the nearest poles of f ′ to x j and to have multiplicity 3 for
f ′. It then follows from Lemmas 10.11 and 10.12 and the argument principle that
2 ≤ n j ≤ 4. On the other hand, Lemma 10.13 and Rolle’s theorem together show
that vk lies close to, and must lie between, a pair of real simple zeros of f , and the
same is true of vk+1. Thus x j lies between zeros of f which are not separated by
poles of f , and so x j is a zero of f ′ of odd multiplicity, forcing n j = 3. �

Now Theorem 1.7 can be applied with n = 3 and λ3 = 1, λ �= 1 in (1.8), and
the constants a and b must have zero real part. Hence, without loss of generality,
assume that

f ′(z) = C
(
λeiz − 1
eiz − 1

)3

,

and C = 1 since 1 is the only asymptotic value of f ′. If x is a pole of f then, as
z → x,

f ′(z) ∼ μ

(z − x)3
, f (z) ∼ −μ

2(z − x)2
,

μ =
(λ− 1)3

i3
= −6 Imλ ∈ R \ {0}.

(10.11)

Next, let ε4 be small and positive, and let U be the union of the discs of centre
2πn and radius ε4, for n ∈ Z. Let m be an integer with |m| large such that m has the
same sign as −μ. Then 2πm is a pole of f , and the real limit � = limt→2πm f (t)
exists and is infinite, with the same sign as m. Since integration shows that f (z) ∼
z for z with |z| large but z �∈ U , it follows that� has the same sign as f (2πm − ε4)
and f (2πm + ε4). Now Rolle’s theorem and the fact that f ′ has no zeros near to
2πm together imply that f has no real zeros close to 2πm. But Rouché’s theorem
gives, counting multiplicity, two zeros of f close to 2πm, both necessarily real,
and this contradiction excludes Case A.

Case B: assume that all but finitely many poles of f have multiplicity 1. In
this case, all but finitely many zeros of f ′ have multiplicity 2, by the argument
principle. This time, Theorem 1.7 may be applied with n = 2, and hence λ = −1,
in (1.8). This yields f ′(z) = C cot2(Az + B), with A, B, C real, and the conclusion
of the theorem follows easily.
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