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Abstract. Using our results in [11], we provide existence theorems for gen-
eral classes of nonlinear evolutions. Then we give examples of applications of
our results to parabolic, hyperbolic, Schrödinger, Navier-Stokes and other time-
dependent systems of equations.

1 Introduction

Let X be a reflexive Banach space. Consider the following evolutional initial value
problem:

(1.1)

⎧⎨⎩ d
dt

{
I · u(t)
}

+�t
(
u(t)
)

= 0 in (0,T0),

I · u(0) = v0.

Here, I : X → X∗ (X∗ is the space dual to X) is a fixed bounded linear inclusion
operator, assumed to be self-adjoint and strictly positive, u(t) ∈ Lq

(
(0,T0);X

)
is

an unknown function such that I · u(t) ∈ W 1,p
(
(0,T0);X∗) (where I · h ∈ X∗ is the

value of the operator I at the point h ∈ X), �t(x) : X → X∗ is a fixed nonlinear
mapping, considered for every fixed t ∈ (0,T0), and v0 ∈ X∗ is a fixed initial
value. The most trivial variational principle related to (1.1) is the following one.
Consider some convex function �(y) : X∗ → [0,+∞) satisfying �(y) = 0 if and
only if y = 0. Next define the energy functional

E0
(
u(·)) := ∫ T0

0
�

(
d
dt

{
I · u(t)
}

+�t
(
u(t)
))

dt for all u(t) ∈ Lq((0,T0);X
)

(1.2)

such that I · u(t) ∈ W 1,p((0,T0);X
∗) and I · u(0) = v0.

Then it is obvious that u(t) is a solution of (1.1) if and only if E0
(
u(·)) = 0.

Moreover, the solution of (1.1) exists if and only if there exists a minimizer u0(t)
of the energy E0(·), which satisfies E0

(
u0(·)
)

= 0.
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We have the following generalization of this variational principle. Let
�t(x) : X → [0,+∞) be some convex Gâteaux differentiable function, considered
for every fixed t ∈ (0,T0) and satisfying �t(0) = 0. Next define the Legendre
transform of �t by

(1.3) �∗
t (y) := sup

{〈z, y〉X×X∗ −�t(z) : z ∈ X
}

for all y ∈ X∗.

It is well known that �∗
t (y) : X∗ → R is a convex function and that

(1.4) �t(x) +�∗
t (y) ≥ 〈x, y〉X×X∗ for all x ∈ X, y ∈ X∗,

with equality if and only if y = D�t(x). Next, for λ ∈ {0, 1}, define the energy
functional

Eλ
(
u
)

:=
∫ T0

0

{
�t

(
λu(t)
)

+�∗
t

(
− d

dt

{
I · u(t)
}−�t

(
u(t)
))

(1.5)

+ λ
〈

u(t),
d
dt

{
I · u(t)
}

+�t
(
u(t)
)〉

X×X∗

}
dt

for all u(t) ∈ Lq((0,T0);X
)

such that I · u(t) ∈ W 1,p((0,T0);X
∗)

and I · u(0) = v0.

Then, by (1.4), we have Eλ
( · ) ≥ 0; and, moreover, Eλ

(
u(·)) = 0 if and only if u(t)

is a solution of

(1.6)

⎧⎨⎩ d
dt

{
I · u(t)
}

+�t
(
u(t)
)
+ D�t
(
λu(t)
)

= 0 in (0,T0),

I · u(0) = v0.

(Note here that since �t(0) = 0, in the case λ = 0, (1.6) coincides with (1.1).
Moreover, if λ = 0, then the energy defined in (1.2) is a particular case of the
energy in (1.5), where we take �(x) := �∗(−x)). So, as before, a solution of (1.6)
exists if and only if there exists a minimizer u0(t) of the energy Eλ(·) that satisfies
Eλ
(
u0(·)
)

= 0. Consequently, in order to establish the existence of a solution of
(1.6), we need to answer the following questions.

Does a minimizer to the energy in (1.5) exist?(a)

Does the minimizer u0(t) of the corresponding energy Eλ(·) satisfy(b)

Eλ
(
u0(·)
)

= 0?

To the best of our knowledge, the energy in (1.5) with λ = 1, related to (1.6),
was first considered for the heat equation and other types of evolutions by Brezis
and Ekeland in [1]. In that work, they also first asked question (b): how, without a
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priori knowledge of the existence of a solution of (1.6), to prove that the minimum
of the corresponding energy is 0. This question was asked even for very simple
PDE’s like the heat equation. A detailed investigation of the energy of type (1.5)
with λ = 1 was done in a series of works by N. Ghoussoub and his coauthors; see
[4] and also [5], [6], [7], [8]. In those works, they considered a similar variational
principle, not only for evolutions, but also for some other classes of equations.
They proved some theoretical results about general self-dual variational principles
which, in many cases, can provide the existence of a zero energy state (answering
questions (a) and (b) together) and, consequently, the existence of solutions of the
related equations; see [4] for details.

In [11], we provided an alternative approach to questions (a) and (b). We
treated them separately; and, in particular, for question (b), we derived the main
information by studying the Euler-Lagrange equations for the corresponding en-
ergy. To our knowledge, such an approach was first considered in [10], where
an alternative proof of existence of solutions for initial value problems for some
parabolic systems is provided. Generalizing these results, we provided in [11] the
answer to questions (a) and (b) for a wide class of evolution equations. In par-
ticular, regarding question (b), we were able to prove that in some general cases,
not only the minimizer, but also any critical point u0(t) (i.e., any solution of the
corresponding Euler-Lagrange equation), satisfies Eλ

(
u0(·)
)

= 0, i.e., is a solution
of (1.6).

The approach of Ghoussoub in [4] is more general than ours, as he considered
a more abstract setting. The main advantages of our method are as follows.

• We are able to prove that under some growth and coercivity conditions every
critical point of the energy (1.5) is actually a minimizer and a solution of
(1.6).

• Our result, giving the answer for question (b), does not require any assump-
tion of compactness or weak continuity of�t (these assumptions are needed
only for the proof of existence of minimizer, i.e., in connection with question
(a)).

• Our method for answering question (b) uses only elementary arguments.

In particular, in order to answer question (b), we get the main information directly
from the Euler-Lagrange equation for energy (1.5). Although the Euler-Lagrange
equation of that energy differs from equation (1.6), we are able to show that the sets
of solutions for these equations coincide in some general cases. We note here that
the above property holds in the case of energy (1.5) related to evolutional equations
and does not hold in many cases of stationary (time independent) problems.
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We can rewrite the definition of Eλ in (1.5) as follows. Since I is a self-
adjoint and strictly positive operator, there exist a Hilbert space H and an injective
bounded linear operator T : X → H whose image is dense in H such that for the
linear operator T̃ : H → X∗ defined by the formula

(1.7) 〈x, T̃ · y〉X×X∗ := 〈T · x, y〉H×H for every y ∈ H and x ∈ X,

T̃ ◦T ≡ I ; see [11, Lemma 2.7] for details. We call {X,H,X∗} an evolution triple
with the corresponding inclusion operators T : X → H and T̃ : H → X∗.
Thus, if v0 = T̃ ·w0 for some w0 ∈ H and p = q∗ := q/(q − 1), where q > 1, then∫ T0

0

〈
u(t),

d
dt

{
I · u(t)
}〉

X×X∗
dt =

1
2

∥∥T · u(T0)
∥∥2

H − 1
2

∥∥w0
∥∥2

H

(see Lemma 2.3 for details), and therefore

(1.8) Eλ
(
u
)

= J
(
u
)

:=∫ T0

0

{
�t

(
λu(t)
)

+�∗
t

(
− d

dt

{
I · u(t)
}−�t

(
u(t)
))

+ λ
〈
u(t),�t

(
u(t)
)〉

X×X∗

}
dt

+
λ

2

∥∥T · u(T0)
∥∥2

H − λ

2

∥∥w0
∥∥2

H

for all u(t) ∈ Lq
(
(0,T0);X

)
such that I · u(t) ∈ W 1,q∗(

(0,T0);X∗) and I · u(0) =
T̃ ·w0.

Our first main result in [11] provides the answer to question (b) under some
coercivity and growth conditions on �t and �t.

Theorem 1.1. Let {X,H,X∗} be an evolution triple with the corresponding
inclusion linear operators T : X → H, assumed to be bounded, injective and to
have dense image in H, T̃ : H → X∗ defined by (1.7). Let I := T̃ ◦ T : X → X∗.
Next, let λ ∈ {0, 1}, q ≥ 2, p = q∗ := q/(q − 1) and w0 ∈ H. Furthermore, for
every t ∈ [0,T0], let �t(x) : X → [0,+∞) be a strictly convex function that is
Gâteaux differentiable at every x ∈ X and satisfies �t(0) = 0 and the condition

(1.9)
1
C0

‖x‖q
X − C0 ≤ �t(x) ≤ C0 ‖x‖q

X + C0 for all x ∈ X for all t ∈ [0,T0]

for some C0 > 0. Also assume that �t(x) is a Borel function of its variables (x, t).
Next, for each t ∈ [0,T0], let �t(x) : X → X∗ be a function that is Gâteaux differ-
entiable at every x ∈ X and such that �t(0) ∈ Lq∗(

(0,T0);X∗) and the derivative
D�t of �t satisfies the growth condition

(1.10) ‖D�t(x)‖L(X ;X∗) ≤ g
(‖T · x‖H

) (‖x‖q−2
X + μ(q−2)/q(t)

)
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for all x ∈ X for all t ∈ [0,T0] and some non-decreasing function g(s) : [0+∞) →
(0,+∞) and some non-negative function μ(t) ∈ L1

(
(0,T0);R

)
. Also assume that

�t(x) is strongly Borel (see Definition 2.1) on the pair of variables (x, t). Assume
also that �t and �t satisfy the monotonicity condition

(1.11)
〈

h, λ
{
D�t
(
λx + h
)− D�t(λx)

}
+ D�t(x) · h

〉
X×X∗

≥ −ĝ
(‖T · x‖H

)(‖x‖q
X + μ̂(t)

)
‖T · h‖2

H

for all x, h ∈ X, and t ∈ [0,T0]

for some non-decreasing function ĝ(s) : [0+∞) → (0,+∞) and some nonnegative
function μ̂(t) ∈ L1

(
(0,T0);R

)
. Consider the set

(1.12) Rq :=
{
u(t) ∈ Lq((0,T0);X

)
: I · u(t) ∈ W 1,q∗(

(0,T0);X
∗)},

and the minimization problem

(1.13) inf
{

J(u) : u(t) ∈ Rq such that I · u(0) = T̃ ·w0

}
,

where J(u) is defined by (1.8). Then for every u ∈ Rq such that I ·u(0) = T̃ ·w0 and
for arbitrary function h(t) ∈ Rq, such that I ·h(0) = 0, lims→0

(
J(u+ sh)− J(u)

)
/s

exists and is finite. Moreover, for every such u, the following four statements are
equivalent:
(1) u is a critical point of (1.13), i.e., for any function h(t) ∈ Rq such that

I · h(0) = 0,

(1.14) lim
s→0

J(u + sh) − J(u)
s

= 0;

(2) u is a minimizer of (1.13);
(3) J(u) = 0;
(4) u is a solution of

(1.15)

⎧⎨⎩ d
dt

{
I · u(t)
}

+�t
(
u(t)
)
+ D�t
(
λu(t)
)

= 0 in (0,T0),

I · u(0) = T̃ ·w0.

Finally, there exists at most one function u ∈ Rq that satisfies (1.15).

Remark 1.1. Assume that, instead of (1.11), one requires that �t and �t

satisfy the inequality〈
h,λ
{
D�t
(
λx + h
)− D�t(λx)

}
+ D�t(x) · h

〉
X×X∗

≥
∣∣ f (h, t)∣∣2

g̃(‖T · x‖H )
− g̃
(‖T · x‖H

)(‖x‖q
X + μ̂(t)

)(2−r)/2∣∣ f (h, t)∣∣r‖T · h‖(2−r)
H(1.16)
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for all x, h ∈ X for all t ∈ [0,T0] for some non-decreasing function
g̃(s) : [0 + ∞) → (0,+∞), some function μ̂(t) ∈ L1

(
(0,T0);R

)
, some function

f (x, t) : X × [0,T0] → R, and some constant r ∈ (0, 2). Then (1.11) follows by
the trivial inequality (r/2) a2 +

(
(2 − r)/2

)
b2 ≥ ar b2−r .

Our first result in [11] about the existence of minimizers for J(u) is the follow-
ing proposition.

Proposition 1.1. Assume that {X,H,X∗}, T, T̃ , I , q, p, �t and �t satisfy all
the conditions of Theorem 1.1 with λ = 1. Moreover, assume that�t and�t satisfy
the positivity condition

(1.17) �t(x) +
〈
x,�t(x)

〉
X×X∗ ≥ 1

C̃
‖x‖q

X − μ̄(t)
(
‖T · x‖2

H + 1
)

for all x ∈ X and t ∈ [0,T0], where C̃ > 0 is some constant and μ̄(t) ∈
L1
(
(0,T0);R

)
is some non-negative function. Furthermore, assume that

(1.18) �t(x) = At
(
S · x) +�t(x) for all x ∈ X for all t ∈ [0,T0],

where Z is a Banach space, S : X → Z is a compact operator and for every
t ∈ [0,T0], At(z) : Z → X∗ is a function which is strongly Borel on the pair of
variables (z, t) and Gâteaux differentiable at every z ∈ Z, �t(x) : X → X∗ is
strongly Borel on the pair of variables (x, t) and Gâteaux differentiable at every
x ∈ X, �t(0),At(0) ∈ Lq∗(

(0,T0);X∗) and the derivative DAt of At and the deriv-
ative D�t of �t satisfy the growth condition

(1.19) ‖D�t(x)‖L(X ;X∗) + ‖DAt(S · x)‖L(Z ;X∗) ≤ g
(‖T · x‖) (‖x‖q−2

X +μ(q−2)/q(t)
)

for all x ∈ X and t ∈ [0,T0] for some nondecreasing function g(s) : [0,+∞) →
(0 + ∞) and some nonnegative function μ(t) ∈ L1

(
(0,T0);R

)
. Next assume that

for every sequence
{
xn(t)
}+∞

n=1 ⊂ Lq
(
(0,T0);X

)
such that the sequence

{
I · xn(t)

}
is bounded in W 1,q∗(

(0,T0);X∗) and xn(t) ⇀ x(t) weakly in Lq
(
(0,T0);X

)
,

• �t
(
xn(t)
)
⇀ �t
(
x(t)
)

weakly in Lq∗(
(0,T0);X∗),

•
lim

n→+∞

∫ T0

0

〈
xn(t),�t

(
xn(t)
)〉

X×X∗dt ≥
∫ T0

0

〈
x(t),�t

(
x(t)
)〉

X×X∗dt.

Finally, let w0 ∈ H be such that w0 = T · u0 for some u0 ∈ X or, more generally,
let w0 ∈ H be such that Aw0 :=

{
u ∈ Rq : I · u(0) = T̃ · w0

} �= ∅. Then there
exists a minimizer of (1.13).

As a consequence of Theorem 1.1 and Proposition 1.1, we have the following
corollary.
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Corollary 1.1. Under the assumptions of Proposition 1.1, there exists a unique
solution u(t) ∈ Rq of

(1.20)

⎧⎨⎩ d
dt

{
I · u(t)
}

+�t
(
u(t)
)
+ D�t
(
u(t)
)

= 0 in (0,T0),

I · u(0) = T̃ ·w0.

As an important particular case of Corollary 1.1, we recover the following
theorem in [11].

Theorem 1.2. Let {X,H,X∗} be an evolution triple with the corresponding
inclusion linear operators T : X → H, assumed bounded, injective and having
dense image in H, and T̃ : H → X∗ defined by (1.7), and I := T̃ ◦ T : X → X∗.
Next, let q ≥ 2. Furthermore, for each t ∈ [0,T0], let �t(x) : X → [0,+∞) be
a strictly convex function that is Gâteaux differentiable at every x ∈ X, satisfies
�t(0) = 0, and satisfies the growth condition

(1.21)
1
C0

‖x‖q
X − C0 ≤ �t(x) ≤ C0 ‖x‖q

X + C0

for all x ∈ X and t ∈ [0,T0] and the uniform convexity condition

(1.22)
〈
h,D�t(x + h) − D�t(x)

〉
X×X∗ ≥ 1

C0

(∥∥x∥∥q−2
X + 1

)
· ‖h‖2

X

for all x, h ∈ X and t ∈ [0,T0] for some C0 > 0. Also assume that�t(x) is Borel on
the pair of variables (x, t) Next let Z be a Banach space, S : X → Z be a compact
operator; and, for every t ∈ [0,T0], let Ft(z) : Z → X∗ be a function such that Ft

is strongly Borel on the pair of variables (z, t) and Gâteaux differentiable at every
z ∈ Z, Ft(0) ∈ Lq∗(

(0,T0);X∗) and the derivative DFt of of Ft satisfies the growth
condition

(1.23)
∥∥DFt(S · x)∥∥

L(Z ;X∗) ≤ g
(‖T · x‖) (‖x‖q−2

X + 1
)

for all x ∈ X and t ∈ [0,T0] for some non-decreasing function g(s) : [0,+∞) →
(0,+∞). Moreover, assume that �t and Ft satisfy the positivity condition

(1.24) �t(x) +
〈
x,Ft(S · x)

〉
X×X∗ ≥ 1

C̄
‖x‖q

X − C̄‖S · x‖2
Z − μ̄(t)

(
‖T · x‖2

H + 1
)

for all x ∈ X and t ∈ [0,T0] for some constant C̄ > 0 and some non-negative
function μ̄(t) ∈ L1

(
(0,T0);R

)
. Furthermore, let w0 ∈ H be such that w0 = T · u0

for some u0 ∈ X, or more generally, w0 ∈ H be such that

Aw0 :=
{
u ∈ Rq : I · u(0) = T̃ ·w0

} �= ∅.
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Then there exists a unique solution u(t) ∈ Rq of the equation

(1.25)

⎧⎨⎩ d
dt

{
I · u(t)
}

+ Ft
(
S · u(t)

)
+ D�t
(
u(t)
)

= 0 for a.e. t ∈ (0,T0),

I · u(0) = T̃ ·w0.

In this paper, using Theorem 1.2 as a basis, by the appropriate approxima-
tion, we obtain further existence theorems under much weaker assumptions on
coercivity and compactness. The first theorem improves the existence part of
Corollary 1.1 (Theorem 3.1 is an equivalent formulation and Theorem 3.2 is an
important particular case).

Theorem 1.3. Let q ≥ 2 and {X,H,X∗} be an evolution triple with the cor-
responding inclusion linear operators T : X → H, assumed injective and having
dense image in H, and T̃ : H → X∗ defined by (1.7), and I := T̃ ◦ T : X →
X∗. Assume also that the Banach space X is separable. Furthermore, for every
t ∈ [0,T0], let �t(x) : X → [0,+∞) be a convex function that is Gâteaux differen-
tiable at every x ∈ X, satisfies �t(0) = 0 and satisfies the growth condition

(1.26) 0 ≤ �t(x) ≤ C ‖x‖q
X + C for all x ∈ X, for all t ∈ [0,T0],

for some C > 0. Assume also that �t(x) is Borel on the pair of variables (x, t).
Furthermore, for each t ∈ [0,T0], let�t(x) : X → X∗ be a function that is Gâteaux
differentiable at every x ∈ X, �t(0) ∈ Lq∗(

(0,T0);X∗) and the derivative D�t of
�t satisfies the growth condition

(1.27) ‖D�t(x)‖L(X ;X∗) ≤ g
(‖T · x‖H

) (‖x‖q−2
X + 1

) ∀x ∈ X for all t ∈ [0,T0]

for some nondecreasing function g(s) : [0,+∞) → (0,+∞). Also assume that
�t(x) is Borel on the pair of variables (x, t). Assume also that �t and �t satisfy
the monotonicity condition

(1.28)
〈
x,D�t(x) +�t(x)

〉
X×X∗ ≥ 1

Ĉ
‖x‖q

X − Ĉ‖L · x‖2
V − μ(t)

(
‖T · x‖2

H + 1
)

for all x ∈ X and t ∈ [0,T0], where V is a given Banach space, L ∈ L(X,V ) is a
given compact operator, μ(t) ∈ L1

(
(0,T0);R

)
is some non-negative function and

Ĉ > 0 is some constant. Finally, assume that for every t ∈ [0,T0],
(
D�t +�t

)
(x) :

X → X∗ satisfies the following compactness property:

• if xn ⇀ x weakly in X, then limn→+∞ 〈xn − x,D�t(xn) +�t(xn)〉X×X∗ ≥ 0;
• if xn ⇀ x weakly in X and limn→+∞ 〈xn − x,D�t(xn) +�t(xn)〉X×X∗ = 0, then

D�t(xn) +�t(xn) ⇀ D�t(x) +�t(x) weakly in X∗.
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Then for each w0 ∈ H and each λ ∈ R, there exists u(t) ∈ Lq
(
(0,T0);X

)
such that

I · (u(t)
) ∈ W 1,q∗(

(0,T0);X∗), where q∗ := q/(q − 1), and u(t) is a solution of

(1.29)

⎧⎨⎩ d
dt

{
I · u(t)
}

+ λI · u(t) +�t
(
u(t)
)
+ D�t
(
u(t)
)

= 0 in (0,T0),

I · u(0) = T̃ ·w0.

The second existence result is useful in the study of parabolic, hyperbolic,
parabolic-hyperbolic, Schrödinger, Navier-Stokes and other types of equations
(Theorem 3.3 is an equivalent formulation and Theorem 3.4 and Corollary 3.2
are important particular cases).

Theorem 1.4. Let q ≥ 2, X and Z be reflexive Banach spaces and X∗ and
Z∗ be the corresponding dual spaces. Let H be a Hilbert space. Suppose that
Q : X → Z is an injective bounded linear operator whose image is dense on Z.
Furthermore, suppose that P : Z → H is an injective bounded linear operator
whose image is dense on H. Let T : X → H be defined by T := P ◦ Q, so
that {X,H,X∗} is an evolution triple with the corresponding inclusion operators
T : X → H, T̃ : H → X∗ defined by (1.7) and I := T̃ ◦ T . Assume also
that the Banach space X is separable. Furthermore, for each t ∈ [0,T0], let
�t(z) : Z → X∗ and At(z) : Z → X∗ be functions that are Gâteaux differentiable at
every z ∈ Z and At(0),�t(0) ∈ Lq∗(

(0,T0);X∗). Assume that for every t ∈ [0,T ],

(1.30)
∥∥D�t(z)

∥∥
L(Z ;X∗) ≤ g

(‖P · z‖H
) · (‖z‖q−2

Z + 1
)

for all z ∈ Z and t ∈ [0,T0],

(1.31)
∥∥�t(z)
∥∥

X∗ ≤ g
(‖P · z‖H

) · (‖L0 · z‖q−1
V0

+ μ̃
q−1
q (t)
)

for all z ∈ Z and t ∈ [0,T0], and

(1.32)
∥∥DAt(z)

∥∥
L(Z ;X∗) ≤ g

(‖P · z‖H
) · (‖L0 · z‖q−2

V0
+ 1
)

for all z ∈ Z and t ∈ [0,T0], where μ̃(t) ∈ L1
(
(0,T0);R

)
is some non-negative

function, g(s) : [0,+∞) → (0,+∞) is some non-decreasing function, V0 is some
Banach space and L0 : Z → V0 is some compact linear operator. Moreover,
assume that �t and At satisfy the monotonicity condition

(1.33)
〈
h,At(Q · h) +�t

(
Q · h)〉

X×X∗

≥ (1/C̄)∥∥Q · h∥∥qZ − C̄
∣∣L · (Q · h)

∣∣2
V − μ(t)

(∥∥T · h∥∥2H + 1
)

for all h ∈ X and t ∈ [0,T0], where V is a given Banach space, L ∈ L(Z,V ) is a
given compact operator, μ(t) ∈ L1

(
(0,T0);R

)
is some non-negative function and
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C̄ > 0 is some constant. Also assume that �t(z) At(z) are Borel on the pair of
variables (z, t). Finally, assume that there exist a family of Banach spaces {Vj }+∞

j =1

and a family of compact bounded linear operators {L j }+∞
j =1, where L j : Z → Vj ,

which satisfy the condition

• if {hn}+∞
n=1 ⊂ Z is a sequence and h0 ∈ Z are such that for every fixed j ,

limn→+∞ L j ·hn = L j ·h0 strongly in V j and P ·hn ⇀ P ·h0 weakly in H, then
for every fixed t ∈ (0,T0), �t(hn) ⇀ �t(h0) weakly in X∗ and DAt(hn) →
DAt(h0) strongly in L(Z,X∗).

Then, for every w0 ∈ H, there exists z(t) ∈ Lq
(
(0,T0);Z

)
such that w(t) :=

P · z(t) ∈ L∞((0,T0);H
)
, v(t) := T̃ · (w(t)

) ∈ W 1,q∗(
(0,T0);X∗), and z(t) sat-

isfies the equation

(1.34)

⎧⎨⎩ dv
dt (t) + At

(
z(t)
)
+�t
(
z(t)
)

= 0 for a.e. t ∈ (0,T0),

v(a) = T̃ ·w0.

In Section 4, we give some applications of Theorems 1.3 and 1.4, providing the
existence results for various classes of time dependent partial differential equations
including parabolic, hyperbolic, Schrödinger and Navier-Stokes systems.

2 Notation and statement of preliminary results

Throughout the paper, by a linear space we mean a real linear space.

• Given a Banach space X , denote by X∗ the corresponding dual space.
• Given a Banach space X , h ∈ X and x∗ ∈ X∗, denote by 〈h, x∗〉X×X∗ the value

in R of the functional x∗ at the vector h.
• Given two Banach spaces X and Y , denote by L(X ;Y ) the linear space of

bounded linear operators from X to Y .
• Given Banach spaces X and Y , A ∈ L(X ;Y ) and h ∈ X , denote by A · h ∈ Y

the value of the operator A at the point h.
• Set ‖A‖L(X ;Y ) = sup{‖A·h‖Y : h ∈ X, ‖h‖X ≤ 1}, making L(X ;Y ) a Banach

space.
• Given two Banach spaces X and Y and a Gâteaux differentiable mapping

F : X → Y , denote by DF (x) ∈ L(X ;Y ) the Gâteaux derivative of F at the
point x ∈ X .

Next we recall some definitions and lemmas from [11]. Many of them are well
known.

Definition 2.1. Let X and Y be Banach spaces, and U ⊂ X be a Borel subset.
We say that the Borel mapping F (x) : U → Y is strongly Borel if for every
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separable subspace X ′ ⊂ X , the set {y ∈ Y : y = F (x), x ∈ U ∩ X ′} is also
contained in some separable subspace of Y .

Definition 2.2. For a Banach space X and an interval (a, b) ⊂ R, we define
Lq(a, b;X) to be the linear space of (equivalence classes of) strongly measurable
(i.e., equivalent to some strongly Borel mapping) functions f : (a, b) → X such
that

(2.1) ‖ f ‖Lq(a,b;X) : =

⎧⎨⎩
(∫ b

a ‖ f (t)‖q
Xdt
)1/q

if 1 ≤ q < ∞,

ess supt∈(a,b)‖ f (t)‖X if q = ∞
is finite. It is known that Lq(a, b;X) with the norm defined by (2.1) is a Banach
space. Moreover, if X is reflexive and 1 < q < ∞, then Lq(a, b;X) is also reflexive
with the corresponding dual space Lq∗

(a, b;X∗), where q∗ = q/(q − 1).

Definition 2.3. Let Z be a Banach space and Z∗ be the corresponding dual
space. We say that a mapping �(z) : Z → Z∗ is monotone if for all y, z ∈ Z ,

〈y − z,�(y) −�(z)〉Z×Z∗ ≥ 0.

Definition 2.4. Let Z be a Banach space and Z∗ be the corresponding dual
space. We say that a mapping �(z) : Z → Z∗ is pseudo-monotone if it satisfies
the following conditions:

(i) for every sequence {zn}+∞
n=1 ⊂ Z such that zn ⇀ z weakly in Z ,

lim
n→+∞

〈zn − z,�(zn)〉Z×Z∗ ≥ 0;

(ii) �(zn) ⇀ �(z) weakly ∗ in Z∗ for every sequence {zn}+∞
n=1 ⊂ Z such that

zn ⇀ z weakly in Z and limn→+∞ 〈zn − z,�(zn)〉Z×Z∗ = 0,

Lemma 2.1. Let Z be a Banach space, Z∗ be the corresponding dual space
and�(z) : Z → Z∗ be a monotone and strong-to-weak continuous mapping. Then
�(z) is a pseudo-monotone mapping.

Definition 2.5. Let X be a reflexive Banach space, and let (a, b) ⊂ R. We
say that v(t) ∈ Lq(a, b;X) belongs to W 1,q(a, b;X) if there exists f (t) ∈ Lq(a, b;X)
such that for every δ (t) ∈ C1

c

(
(a, b);X∗),∫ b

a
〈 f (t), δ (t)〉X×X∗dt = −

∫ b

a
〈v(t), dδ

dt
(t)〉X×X∗dt.

We then denote f (t) by v ′(t) or by dv
dt (t).
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Definition 2.6. Let X be a reflexive Banach space and X∗ be the correspond-
ing dual space. Next, let H be a Hilbert space and T ∈ L(X,H ) be an injective
inclusion operator whose image is dense in H . We call the triple {X,H,X∗} an
evolution triple with the corresponding inclusion operator T . Further-
more, we define the injective operator T̃ ∈ L(H ;X∗) by the formula

(2.2) 〈x, T̃ · y〉X×X∗ := 〈T · x, y〉H×H for every y ∈ H and x ∈ X .

Lemma 2.2. Let {X,H,X∗} be an evolution triple with the corresponding
inclusion operators T ∈ L(X ;H ) and T̃ ∈ L(H ;X∗), and let a < b ∈ R. Let
w(t) ∈ L∞(a, b;H ) be such that the function v : [a, b] → X∗ defined by v(t) :=
T̃ · (w(t)

)
belongs to W 1,q(a, b;X∗) for some q ≥ 1. Then w can be redefined on a

subset of [a, b] of Lebesgue measure zero so that w(t) is H-weakly continuous in t
on [a, b]. Moreover, for every a ≤ α < β ≤ b and for every δ (t) ∈ C1

(
[a, b];X

)
,

we then have∫ β
α

{〈
δ (t),

dv
dt

(t)
〉

X×X∗ +
〈dδ

dt
(t), v(t)

〉
X×X∗

}
dt

= 〈T · δ (β),w(β)〉H×H − 〈T · δ (α),w(α)〉H×H .

Lemma 2.3. Let {X,H,X∗} be an evolution triple with the corresponding
inclusion operators T ∈ L(X ;H ) and T̃ ∈ L(H ;X∗), and let a < b ∈ R. Let
u(t) ∈ Lq(a, b;X) with q > 1 be such that the function v(t) : [a, b] → X∗ defined
by v(t) := (T̃ ◦ T ) · (u(t)

)
belongs to W 1,q∗

(a, b;X∗) with q∗ := q/(q − 1). Then
the function w(t) : [a, b] → H defined by w(t) := T · (u(t)

)
belongs to L∞(a, b;H )

and for every subinterval [α, β] ⊂ [a, b], up to a redefinition of w(t) on a subset
of [a, b] of Lebesgue measure zero making w to be H-weakly continuous (see
Lemma 2.2), ∫ β

α

〈
u(t),

dv
dt

(t)
〉

X×X∗dt =
1
2

(
‖w(β)‖2

H − ‖w(α)‖2
H

)
.

Lemma 2.4. Let X be a reflexive Banach space and Y and Z Banach spaces.
Let T ∈ L(X ;Y ) and S ∈ L(X ;Z) be bounded linear operators. Assume that S
is an injective operator and T is a compact operator. Assume that a < b ∈ R,
1 ≤ q < +∞ and {un(t)}+∞

n=1 ⊂ Lq(a, b;X) is a bounded sequence of functions in
Lq(a, b;X) such that the functions vn(t) : (a, b) → Z, defined by vn(t) := S ·(un(t)

)
,

belong to L∞(a, b;Z), the sequence {vn(t)}+∞
n=1 is bounded in L∞(a, b;Z) and for

a.e. t ∈ (a, b), vn(t) ⇀ v(t) weakly in Z as n → +∞. Then
{
T · (un(t)

)}+∞
n=1

converges strongly in Lq(a, b;Y ).
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3 The existence results

Lemma 3.1. Let X and Z be reflexive Banach spaces and X∗ and Z∗ be the
corresponding dual spaces. Let H be a Hilbert space. Suppose that Q ∈ L(X,Z)
is an injective inclusion operator (i.e., satisfies kerQ = {0}) whose image is dense
on Z. Furthermore, suppose that P ∈ L(Z,H ) is an injective inclusion operator
whose image is dense on H. Let T ∈ L(X,H ) be defined by T := P ◦ Q, so
that {X,H,X∗} is an evolution triple with the corresponding inclusion operator
T ∈ L(X ;H ) as defined in Definition 2.6 together with the corresponding operator
T̃ ∈ L(H ;X∗) defined as in (2.2). Next let a, b ∈ R be such that a < b and q ≥ 2.
For every t ∈ [a, b], let �t(x) : X → [0,+∞) be a convex function that is Gâteaux
differentiable at every x ∈ X, satisfies �t(0) = 0 and satisfies the growth condition

(3.1)
1
C

‖x‖q
X − C ≤ 0 ≤ �t(x) ≤ C ‖x‖q

X + C for all x ∈ X and t ∈ [a, b]

for some C > 0. Also assume that �t(x) is Borel on the pair of variables (x, t).
Next, for every t ∈ [a, b], let �t(z) : Z → X∗ be a function that is Gâteaux
differentiable at every z ∈ Z and that satisfies the bound

(3.2)
∥∥�t(z)
∥∥

X∗ ≤ g
(‖P · z‖H

) · (‖z‖q−1
Z + μ

q−1
q (t)
)

for all z ∈ Z and t ∈ [a, b], where g(s) : [0,+∞) → (0,+∞) is some non-
decreasing function and μ(t) ∈ L1(a, b;R) is some non-negative function. More-
over, assume that �t satisfies the positivity condition

(3.3)
〈
h,�t
(
Q ·h)〉

X×X∗ ≥ (1/C̄)∥∥Q ·h∥∥qZ − C̄
∥∥L · (Q ·h)

∥∥2
V − μ̃(t)

(∥∥T ·h∥∥2H +1
)

for all h ∈ X and t ∈ [a, b], where V is a given Banach space, L ∈ L(Z,V ) is
a given compact linear operator, C̄ > 0 is some constant and μ̃(t) ∈ L1(a, b;R)
is some non-negative function. Also assume that �t(z) is strongly Borel on the
pair of variables (z, t). Furthermore, let {w(0)

n }∞n=1 ⊂ H be such that w(0)
n → w0

strongly in H, and let εn > 0 be such that εn → 0 as n → +∞. Moreover, assume
that un(t) ∈ Lq(a, b;X) is such that vn(t) := (T̃ ◦T ) · un(t) ∈ W 1,q∗

(a, b;X∗), where
q∗ = q/(q − 1), and un(t) is a solution of

(3.4)

⎧⎨⎩
dvn
dt (t) +�t

(
zn(t)
)
+ εnD�t

(
un(t)
)

= 0 for a.e. t ∈ (a, b)

wn(a) = w(0)
n ,

where wn(t) := T · un(t), zn(t) := Q · un(t), and wn(t) is H-weakly continuous on
[a, b]; see Lemma 2.2. Then there exist z(t) ∈ Lq(a, b;Z) and �̄(t) ∈ Lq∗

(a, b;X∗)
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such that w(t) := P · z(t) ∈ L∞(a, b;H ), v(t) := T̃ ·w(t) ∈ W 1,q∗
(a, b;X∗), w(t) is

H-weakly continuous on [a, b], and up to a subsequence, we have

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn(t) ⇀ z(t) weakly in Lq(a, b;Z)
dvn
dt (t) ⇀ dv

dt (t) weakly in Lq∗
(a, b;X∗)

�t
(
zn(t)
)
⇀ �̄(t) weakly in Lq∗

(a, b;X∗)

wn(t) ⇀ w(t) weakly in H for every fixed t ∈ [a, b],{
wn(t)
}+∞

n=1 is bounded in L∞(a, b;H ),

and w(t) satisfies the equation

(3.6)

⎧⎨⎩ dv
dt (t) + �̄(t) = 0 for a.e. t ∈ (a, b),

w(a) = w0.

Moreover,

(3.7)
1
2

∥∥w(t)
∥∥2

H + lim
n→+∞

(∫ t

a

〈
un(s),�s

(
zn(s)
)〉

X×X∗ds
)

≤ 1
2

∥∥w0
∥∥2

H

for all t ∈ [a, b].

Proof. By a well-known embedding result (see [11, Appendix, Lemma A.1]),
there exists a constant K > 0 such that∥∥L · z∥∥2V ≤ 1

2C̄2
‖z‖2

Z + K
∥∥P · z∥∥2H

for all z ∈ Z . Plugging this inequality into (3.3), we obtain

〈
h,�t

(
Q · h)〉

X×X∗ ≥ 1
2C̄

(
2‖Q · h‖q

Z − ‖Q · h‖2
Z

)
− (

μ̃(t) + C̄K
)(‖T · h‖2

H + 1
)

≥ 1
2C̄

‖Q · h‖q
Z − (

μ̃(t) + K̃
)(‖T · h‖2

H + 1
)(3.8)

for all h ∈ X and t ∈ [a, b], where K̃ > 0 is a constant. Thus, setting μ̄(t) :=(
μ̃(t) + K̃

) ∈ L1(a, b;R), we obtain

(3.9)
〈
h,�t
(
Q · h)〉

X×X∗ ≥ (1/2C̄
)∥∥Q · h∥∥qZ − μ̄(t)

(∥∥T · h∥∥2H + 1
)

for all h ∈ X for all t ∈ [a, b]. On the other hand, by (3.4), we deduce

(3.10)
∫ t

a

〈
un(s),

dvn
dt

(s)
〉

X×X∗ds +
∫ t

a

〈
un(s),�s

(
zn(s)
)〉

X×X∗
ds

+ εn

∫ t

a

〈
un(s),D�t

(
un(s)
)〉

X×X∗ds = 0
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for all t ∈ [a, b]. However, since by Lemma 2.3 we have∫ t

a

〈
un(s),

dvn
dt

(s)
〉

X×X∗ds =
1
2

(∥∥wn(t)
∥∥2

H − ∥∥w(0)
n

∥∥2
H

)
,

using (3.10), we obtain

1
2

∥∥wn(t)
∥∥2

H +
∫ t

a

〈
un(s),�s

(
zn(s)
)〉

X×X∗
ds

+ εn

∫ t

a

〈
un(s),D�t

(
un(s)
)〉

X×X∗ds =
1
2

∥∥w(0)
n

∥∥2
H

(3.11)

for all t ∈ [a, b]. However, since �t(·) is convex and since �t(·) ≥ 0, �t(0) = 0,
and then also D�t(0) = 0, we have

(3.12)
〈
un(t),D�t

(
un(t)
)〉

X×X∗ ≥ �t
(
un(t)
) ≥ 0

for all t ∈ (a, b). Therefore, using (3.12), from (3.11) we deduce that

(3.13) εn

∫ t

a
�s

(
un(s)

)
ds +

1
2

∥∥wn(t)
∥∥2

H +
∫ t

a

〈
un(s),�s

(
zn(s)

)〉
X×X∗

ds ≤ 1
2

∥∥w(0)
n

∥∥2
H

for all t ∈ [a, b]; and, in particular,

(3.14)
1
2

∥∥wn(t)
∥∥2

H +
∫ t

a

〈
un(s),�s

(
zn(s)
)〉

X×X∗
ds ≤ 1

2

∥∥w(0)
n

∥∥2
H

for all t ∈ [a, b]. Thus, inserting (3.9) into (3.13), we deduce that

(3.15)
∥∥wn(t)

∥∥2
H + εn

∫ t

a
�s

(
un(s)

)
ds +

∫ t

a

∥∥zn(s)
∥∥q

Zds ≤ C2

∫ t

a
μ̄(s)

∥∥wn(s)
∥∥2

Hds + C2

for all t ∈ [a, b], where C2 > 0 is a constant. In particular,

(3.16)
∥∥wn(t)
∥∥2

H ≤ C2

∫ t

a
μ̄(s)
∥∥wn(s)

∥∥2
Hds + C2

for all t ∈ [a, b]. Thus

(3.17)
d
dt

{
exp
(

− C2

∫ t

a
μ̄(s)ds

)∫ t

a
μ̄(s)‖wn(s)‖2

Hds

}

≤ C2μ̄(t) exp
(

− C2

∫ t

a
μ̄(s)ds

)
≤ C2μ̄(t)

for a.e. t ∈ [a, b] and n ∈ N, and thus∫ t

a
μ̄(s)‖wn(s)‖2

Hds ≤ C2 exp
(

C2

∫ t

a
μ̄(s)ds

)
·
∫ t

a
μ̄(s)ds

≤ C2 exp
(

C2

∫ b

a
μ̄(s)ds

)
·
∫ b

a
μ̄(s)ds

(3.18)
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for all t ∈ [a, b] and n ∈ N. Then, by (3.18), from (3.16) we obtain that the
sequence {wn(t)} is bounded in L∞(a, b;H ). Then, by (3.15), we deduce that
that sequence {zn(t)} is bounded in Lq(a, b;Z). Moreover, by (3.2), we obtain that
�t
(
zn(t)
)
is bounded in Lq∗

(a, b;X∗). Therefore, in particular, up to a subsequence,
we have

(3.19)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zn(t) ⇀ z(t) weakly in Lq(a, b;Z),

wn(t) ⇀ w(t) weakly in Lq(a, b;H ),

vn(t) ⇀ v(t) weakly in Lq(a, b;X∗),

�t
(
zn(t)
)
⇀ �̄(t) weakly in Lq∗

(a, b;X∗),

where w(t) := P · z(t), v(t) := T̃ ·w(t). Next plugging (3.19) into (3.15) and using
the fact that {wn(t)} is bounded in L∞(a, b;H ), we deduce

(3.20) εn

∫ t

a
�s
(
un(s)
)
ds ≤ C4 ,

where C4 is a constant. Then using (3.1) we deduce from (3.20),

(3.21) εn

∫ b

a

∥∥un(s)
∥∥q

Xds ≤ C5 .

Next, since �t is a convex function satisfying (3.1), using [11, Lemma 2.3], we
obtain that

(3.22)
∥∥∥D�t
(
un(t)
)∥∥∥

X∗ ≤ C̄
∥∥un(t)
∥∥q−1

X + C̄

for all t ∈ (a, b), for some constant C̄ > 0. Then

(3.23)
∥∥∥D�t
(
un(t)
)∥∥∥q∗

X∗ ≤ C̄0
∥∥un(t)
∥∥q

X + C̄0 for all t ∈ (a, b).

Thus, plugging (3.23) into (3.21), we deduce

(3.24)
∫ b

a

∥∥∥εnD�t
(
un(s)
)∥∥∥q∗

X∗ds ≤ Ĉε1/(q−1)
n .

So

(3.25) lim
n→+∞

∥∥∥εnD�t
(
un(t)
)∥∥∥

Lq∗ (a,b;X∗)
= 0.
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On the other hand, by (3.4) and Lemma 2.2, for any β ∈ [a, b] and every
δ (t) ∈ C1

(
[a, b];X

)
,

(3.26)
〈
T · δ (β),wn(β)

〉
H×H

−
〈
T · δ (a),w(0)

n

〉
H×H

−
∫ β

a

〈dδ
dt

(t), vn(t)
〉

X×X∗dt+

∫ β

a

〈
δ (t), εnD�t

(
un(t)

)〉
X×X∗dt +

∫ β

a

〈
δ (t),�t

(
zn(t)

)〉
X×X∗dt = 0.

Letting n → +∞ in (3.26) and using (3.19), (3.25) and the fact that w(0)
n → w0 in

H , we obtain

(3.27) lim
n→+∞

〈
T · δ (β),wn(β)

〉
H×H

−
〈
T · δ (a),w0

〉
H×H

−
∫ β

a

〈
dδ
dt

(t), v(t)
〉

X×X∗
dt +
∫ β

a

〈
δ (t), �̄(t)

〉
X×X∗dt = 0

for every δ (t) ∈ C1
(
[a, b];X

)
. In particular, for every δ (t) ∈ C1

(
[a, b];X

)
such

that δ (b) = 0 we have

(3.28) −
〈
T · δ (a),w0

〉
H×H

−
∫ b

a

〈
dδ
dt

(t), v(t)
〉

X×X∗
dt +

∫ b

a

〈
δ (t), �̄(t)

〉
X×X∗dt = 0 .

Thus, in particular, dv
dt (t) = −�̄(t) ∈ Lq∗

(a, b;X∗); and so v(t) ∈ W 1,q∗
(a, b;X∗).

Then, since {wn(t)} is bounded in L∞(a, b;H ), we have w(t) ∈ L∞(a, b;H ) and
thus, as before, we can redefine w on a subset of [a, b] of Lebesgue measure zero,
so that w(t) is H -weakly continuous in t on [a, b]; and by (3.28), we then have
w(a) = w0. So w(t) is a solution of the equation

(3.29)

⎧⎨⎩ dv
dt (t) + �̄(t) = 0 for a.e. t ∈ (a, b),

w(a) = w0.

Thus, in particular, for any β ∈ [a, b] and every δ (t) ∈ C1
(
[a, b];X

)
, we have

(3.30)
〈
T · δ (β),w(β)

〉
H×H

−
〈
T · δ (a),w0

〉
H×H

−
∫ β

a

〈
dδ
dt

(t), v(t)
〉

X×X∗
dt +
∫ β

a

〈
δ (t), �̄(t)

〉
X×X∗dt = 0.

Plugging (3.30) into (3.27), we deduce

(3.31) lim
n→+∞

〈
T · x,wn(β)

〉
H×H

=
〈
T · x,w(β)

〉
H×H

X

for all x ∈ X and β ∈ [a, b]. Therefore, since the image of T has dense range in H
and {wn(t)} is bounded in L∞(a, b;H ), we deduce that

(3.32) wn(t) ⇀ w(t) weakly in H for all t ∈ [a, b].
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Next, by (3.19), (3.25), (3.4) and (3.29), we obtain

(3.33)
dvn
dt

(t) ⇀
dv
dt

(t) weakly in Lq∗
(a, b;X∗).

So we have established (3.5) and (3.6). Finally, since w(0)
n → w0 strongly in H ,

plugging (3.32) into (3.14), we obtain (3.7). �
As a consequence of Lemma 3.1 in a particular case we have the following

corollary.

Corollary 3.1. Let X and Z be reflexive Banach spaces and X∗ and Z∗ be
their corresponding dual spaces. Let H be a Hilbert space. Suppose that
Q ∈ L(X,Z) is an injective inclusion operator (i.e. it satisfies kerQ = {0}) whose
image is dense on Z. Furthermore, suppose that P ∈ L(Z,H ) is an injective in-
clusion operator whose image is dense on H. Let T ∈ L(X,H ) be defined by
T := P ◦ Q, and let P̃ ∈ L(H ;Z∗) be defined by

(3.34) 〈z, P̃ · y〉Z×Z∗ := 〈P · z, y〉H×H for every y ∈ H and z ∈ Z,

so that {X,H,X∗} is an evolution triple with the corresponding inclusion operator
T ∈ L(X ;H ) as defined in Definition 2.6 together with the corresponding operator
T̃ ∈ L(H ;X∗) defined as in (2.2). Moreover, {Z,H,Z∗} is another evolution triple
with the corresponding inclusion operator P ∈ L(Z ;H ), together with the corres-
ponding operator P̃ ∈ L(H ;Z∗). Next let a, b ∈ R be such that a < b and q ≥ 2.
Furthermore, for every t ∈ [a, b], let �t(x) : X → [0,+∞) be a convex function
that is Gâteaux differentiable at every x ∈ X, satisfies �t(0) = 0 and satisfies the
growth condition

(3.35)
1
C

‖x‖q
X − C ≤ �t(x) ≤ C ‖x‖q

X + C

for all x ∈ X and t ∈ [a, b] for some C > 0. Also assume that �t(x) is Borel on the
pair of variables (x, t). Furthermore, for each t ∈ [a, b], let �t(z) : Z → Z∗ be a
function that is Gâteaux differentiable at every z ∈ Z and satisfies the bound

(3.36)
∥∥�t(z)
∥∥

Z∗ ≤ g
(‖P · z‖H

) · (‖z‖q−1
Z + μ

q−1
q (t)
)

for all z ∈ Z and t ∈ [a, b], where g(s) : [0,+∞) → (0,+∞) is some non-
decreasing function and μ(t) ∈ L1(a, b;R) is some non-negative function. More-
over, assume that �t satisfies the positivity condition

(3.37)
〈
h,�t
(
h
)〉

Z×Z∗ ≥ (1/C̄)∥∥h∥∥qZ − C̄
∥∥L · h
∥∥2

V − μ̄(t)
(∥∥P · h

∥∥2
H + 1
)
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for all h ∈ Z and t ∈ [a, b], where V is a given Banach space, L ∈ L(Z,V ) is
a given compact linear operator, C̄ > 0 is some constant and μ̄(t) ∈ L1(a, b;R)
is some non-negative function. Also assume that �t(z) is strongly Borel on the
pair of variables (z, t). Moreover, assume the following compactness property: for
every sequence

{
σn(t)
}+∞

n=1 ⊂ Lq(a, b;Z) such that
{
P · σn(t)

}+∞
n=1 ⊂ L∞(a, b;H ),

σn(t) ⇀ σ(t) weakly in Lq(a, b;Z),
{
P · σn(t)

}+∞
n=1 is bounded in L∞(a, b;H ) and

P · σn(t) ⇀ P · σ(t) weakly in H for a.e. t ∈ (a, b), the inequality

(3.38) lim
n→+∞

∫ b

a

〈
σn(t) − σ(t),�t

(
σn(t)
)〉

Z×Z∗dt ≤ 0,

implies that, up to a subsequence, �t
(
σn(t)
)
⇀ �t
(
σ(t)
)

weakly in Lq∗
(a, b;Z∗).

Next, let {w(0)
n }∞n=1 ⊂ H be such that w(0)

n → w0 strongly in H, and let εn > 0 be
such that εn → 0 as n → +∞. Moreover, assume that un(t) ∈ Lq(a, b;X) is such
that vn(t) := (T̃ ◦ T ) · un(t) ∈ W 1,q∗

(a, b;X∗), where q∗ = q/(q − 1), and un(t) is a
solution of

(3.39)

⎧⎨⎩
dvn
dt (t) + Q∗ ·�t

(
zn(t)
)
+ εnD�t

(
un(t)
)

for a.e. t ∈ (a, b)

wn(a) = w(0)
n ,

where Q∗ ∈ L(Z∗;X∗) is the adjoint operator to Q, wn(t) := T · un(t), zn(t) :=
Q · un(t), and wn(t) is H-weakly continuous on [a, b], as stated in Lemma 2.2.
Then there exists z(t) ∈ Lq(a, b;Z) such that w(t) := P · z(t) ∈ L∞(a, b;H ), ζ (t) :=
P̃ · w(t) ∈ W 1,q∗

(a, b;Z∗), v(t) := T̃ · w(t) ∈ W 1,q∗
(a, b;X∗), w(t) is H-weakly

continuous on [a, b], up to a subsequence, we have

(3.40)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn(t) ⇀ z(t) weakly in Lq(a, b;Z)
dvn
dt (t) ⇀ dv

dt (t) weakly in Lq∗
(a, b;X∗)

�t
(
zn(t)
)
⇀ �t
(
z(t)
)
weakly in Lq∗

(a, b;Z∗)

wn(t) ⇀ w(t) weakly in H for every fixed t ∈ [a, b],{
wn(t)
}+∞

n=1 is bounded in L∞(a, b;H ),

and z(t) satisfies the equation

(3.41)

⎧⎨⎩
dζ
dt (t) +�t

(
z(t)
)

= 0 for a.e. t ∈ (a, b),

w(a) = w0.

Moreover,

(3.42)
1
2

∥∥w(t)
∥∥2

H +
∫ t

a

〈
z(s),�s

(
z(s)
)〉

Z×Z∗ds =
1
2

∥∥w0
∥∥2

H

for all t ∈ [a, b].
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Proof. By Lemma 3.1, there exist z(t) ∈ Lq(a, b;Z) and �̄(t) ∈ Lq∗
(a, b;Z∗)

such that w(t) := P · z(t) ∈ L∞(a, b;H ), v(t) := T̃ ·w(t) ∈ W 1,q∗
(a, b;X∗), w(t) is

H -weakly continuous on [a, b], up to a subsequence, we have

(3.43)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn(t) ⇀ z(t) weakly in Lq(a, b;Z),
dvn
dt (t) ⇀ dv

dt (t) weakly in Lq∗
(a, b;X∗),

�t
(
zn(t)
)
⇀ �̄(t) weakly in Lq∗

(a, b;Z∗),

wn(t) ⇀ w(t) weakly in H for every fixed t ∈ [a, b],{
wn(t)
}+∞

n=1 is bounded in L∞(a, b;H ),

and z(t) satisfies the equation

(3.44)

⎧⎨⎩ dv
dt (t) + Q∗ · �̄(t) = 0 for a.e. t ∈ (a, b),

w(a) = w0.

Moreover,

(3.45)
1
2

∥∥w(t)
∥∥2

H + lim
n→+∞

(∫ t

a

〈
zn(s),�s

(
zn(s)
)〉

Z×Z∗ds
)

≤ 1
2

∥∥w0
∥∥2

H

for all t ∈ [a, b]. Next, using (3.44) with [11, Lemma 2.2], we deduce that ζ (t) :=
P̃ ·w(t) ∈ W 1,q∗

(a, b;Z∗). Moreover, by Lemma 2.3, we have

(3.46)
1
2

∥∥w(t)
∥∥2

H +
∫ t

a

〈
z(s), �̄(s)

〉
Z×Z∗ds =

1
2

∥∥w0
∥∥2

H for all t ∈ [a, b].

Thus, plugging (3.46) into (3.45) and using (3.43) gives

lim
n→+∞

(∫ b

a

〈
zn(t),�t

(
zn(t)
)〉

Z×Z∗dt
)

≤
∫ b

a

〈
z(t), �̄(t)

〉
Z×Z∗dt

= lim
n→+∞

(∫ b

a

〈
z(t),�t

(
zn(t)
)〉

Z×Z∗dt
)
.(3.47)

So

lim
n→+∞

∫ b

a

〈
zn(t) − z(t),�t

(
zn(t)
)〉

Z×Z∗dt ≤ 0,

which implies �̄(t) = �t
(
z(t)
)
. This completes the proof. �

Definition 3.1. Let {X,H,X∗} be an evolution triple with the corresponding
inclusion operator T ∈ L(X ;H ) as defined in Definition 2.6. Furthermore, let
(a, b) be a real interval, q > 1 and q∗ := q/(q − 1). We say that the mapping
�(u) :
{
u ∈ Lq(a, b;X) : T ·u ∈ L∞(a, b;H )

}→ Lq∗
(a, b;X∗) ≡ {Lq(a, b;X)}∗ is

weakly pseudo-monotone if for every sequence un(t) ⇀ u(t) weakly in
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Lq(a, b;X) such that
{
T · un(t)

}+∞
n=1 is bounded in L∞(a, b;H ) and such that

T · un(t) ⇀ T · u(t) weakly in H for a.e. t ∈ (a, b) , the following conditions
are satisfied:

•

(3.48) lim
n→+∞

〈
un − u, �(un)

〉
Lq(a,b;X)×Lq∗ (a,b;X∗)

≥ 0;

• if

(3.49) lim
n→+∞

〈
un − u, �(un)

〉
Lq(a,b;X)×Lq∗ (a,b;X∗)

= 0,

then �(un) ⇀ �(u) weakly in Lq∗
(a, b;X∗).

Remark 3.1. It follows immediately from Definition 2.4 that if the mapping
�(u) : Lq(a, b;X) → Lq∗

(a, b;X∗) is pseudo-monotone, then �(u) is weakly
pseudo-monotone.

Remark 3.2. It is trivially follows from the definition of a weakly pseudo-
montone mapping that if

�1(u), �2(u) :
{
u ∈ Lq(a, b;X) : T · u ∈ L∞(a, b;H )

}→ Lq∗
(a, b;X∗)

are weakly pseudo-monotone mappings, then�1(u)+�2(u) is also a weakly pseudo-
monotone mapping.

Lemma 3.2. Let {X,H,X∗} be an evolution triple with the corresponding
inclusion operator T ∈ L(X ;H ) as defined in Definition 2.6 together with the
corresponding operator T̃ ∈ L(H ;X∗) defined as in (2.2). Furthermore, let q ≥ 2
and, for every t ∈ [a, b], let�t(x) : X → X∗ be a function that satisfies the growth
condition

(3.50) ‖�t(x)‖X∗ ≤ g
(‖T · x‖H

) (‖x‖q−1
X + μ

q−1
q (t)
)

for all x ∈ X and t ∈ [a, b], for some non-decreasing function g(s) : [0,+∞) →
(0,+∞) and some non-negative function μ(t) ∈ L1

(
a, b;R
)
. Also assume that

�t(x) is strongly Borel on the pair of variables (x, t) and satisfies the monotonicity
condition

(3.51)
〈
x,�t(x)

〉
X×X∗ ≥ 1

Ĉ
‖x‖q

X −
(
‖x‖p

X + μ̃
p
2 (t)
)

· μ̃ 2−p
2 (t)
(
‖T · x‖(2−p)

H + 1
)

for all x ∈ X and t ∈ [a, b], where p ∈ [0, 2), Ĉ > 0 are some constants and
μ̃(t) ∈ L1

(
a, b;R
)

is some non-negative function. Finally, assume that for a.e.
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fixed t ∈ (a, b), the function �t(x) : X → X∗ is pseudo-monotone; see Definition
2.4. Then, the mapping �(u) :

{
u ∈ Lq(a, b;X) : T · u ∈ L∞(a, b;H )

} →
Lq∗

(a, b;X∗), defined by

(3.52)
〈

h(t), �
(
u(t)
)〉

Lq(a,b;X)×Lq∗ (a,b;X∗)
: =
∫ b

a

〈
h(t),�t

(
u(t)
)〉

X×X∗dt

for all u(t) ∈ {ū(t) ∈ Lq(a, b;X) : T ·ū(t) ∈ L∞(a, b;H )
}

and all h(t) ∈ Lq(a, b;X)
is weakly pseudo-monotone; see Definition 3.1.

Proof. Consider a sequence
{
un(t)
}+∞

n=1 ⊂ Lq(a, b;X) such that un(t) ⇀ u(t)
weakly in Lq(a, b;X),

{
T · un(t)

}+∞
n=1 is bounded in L∞(a, b;H ) and T · un(t) ⇀

T · u(t) weakly in H for a.e. t ∈ (a, b). Then, by (3.50) and (3.51), for every
h(t) ∈ Lq(a, b;X), there exists ηh(t) ∈ L1

(
a, b;R
)

such that

(3.53)
〈
un(t) − h(t),�t

(
un(t)
)〉

X×X∗ ≥ 1

2Ĉ

∥∥un(t)
∥∥q

X + ηh(t)

for all t ∈ [a, b] Therefore, by Fatou’s Lemma,

(3.54) lim
n→+∞

∫ b

a

〈
un(t) − h(t),�t

(
un(t)
)〉

X×X∗dt

≥
∫ b

a

(
lim

n→+∞

〈
un(t) − h(t),�t

(
un(t)
)〉

X×X∗

)
dt

for all h(t) ∈ Lq(a, b;X). Then, assuming

lim
n→+∞

∫ b

a

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗dt < +∞

and taking h(t) = u(t) in (3.54), we deduce

(3.55)
∫ b

a

(
lim

n→+∞

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗

)
dt

≤ lim
n→+∞

∫ b

a

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗dt < +∞.

In particular, for a.e. t ∈ (a, b), there exists a strictly increasing subsequence{
n(t)

k }+∞
k =1 ⊂ N such that

(3.56) lim
k→+∞

〈
un(t)

k
(t)−u(t),�t

(
un(t)

k
(t)

)〉
X×X∗ = lim

n→+∞

〈
un(t)−u(t),�t

(
un(t)

)〉
X×X∗ < +∞.

Therefore, by (3.53), for a.e. fixed t ∈ (a, b), the sequence {un(t)
k
(t)}+∞

k =1 is bounded
in X . On the other hand, T · un(t) ⇀ T · u(t) weakly in H for a.e. t ∈ (a, b).
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Thus, since T is an injective operator, we obtain that for a.e. fixed t ∈ (a, b),
un(t)

k
(t) ⇀ u(t) weakly in X . Therefore, since for a.e. fixed t ∈ (a, b) the function

�t(x) : X → X∗ is pseudo-monotone, using (3.56) and Definition 2.4, for a.e.
t ∈ (a, b), we deduce

(3.57) lim
n→+∞

〈
un(t) − u(t),�t

(
un(t)

)〉
X×X∗ = lim

k→+∞

〈
un(t)

k
(t) − u(t),�t

(
un(t)

k
(t)

)〉
X×X∗ ≥ 0.

Plugging this into (3.55) yields

(3.58) lim
n→+∞

∫ b

a

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗dt

≥
∫ b

a

(
lim

n→+∞

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗

)
dt ≥ 0.

Moreover, obviously in the case that

lim
n→+∞

∫ b

a

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗dt = +∞,

the first inequality in (3.58) still holds. So

(3.59) lim
n→+∞

〈
un − u, �(un)

〉
Lq(a,b;X)×Lq∗ (a,b;X∗)

≥ 0.

Next assume that

lim
n→+∞

〈
un − u, �(un)

〉
Lq(a,b;X)×Lq∗ (a,b;X∗)

= 0 .

Plugging this into (3.58), we deduce

(3.60)
∫ b

a

(
lim

n→+∞

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗

)
dt

= lim
n→+∞

∫ b

a

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗dt = 0.

On the other hand, plugging (3.60) into (3.57), we deduce

(3.61) lim
n→+∞

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗ = 0

for a.e. t ∈ (a, b). Therefore,

(3.62) lim
n→+∞

(
min
{

0 ,
〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗

})
= 0
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for a.e. t ∈ (a, b). Then, using (3.53) and the dominated convergence theorem, by
(3.62) we deduce

(3.63) lim
n→+∞

∫ b

a

(
min
{

0 ,
〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗

})
dt = 0.

Thus plugging (3.63) into (3.60), we obtain

(3.64) lim
n→+∞

∫ b

a

(
max
{

0 ,
〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗

})
dt = 0.

So by (3.64) and (3.63), we deduce

(3.65) lim
n→+∞

∫ b

a

∣∣∣∣〈un(t) − u(t),�t
(
un(t)
)〉

X×X∗

∣∣∣∣dt = 0.

Therefore, up to a subsequence, we have

(3.66) lim
n→+∞

〈
un(t) − u(t),�t

(
un(t)
)〉

X×X∗ = 0 for a.e. t ∈ (a, b).

Furthermore, using the fact that un(t) ⇀ u(t) weakly in Lq(a, b;X) and (3.50), we
obtain that there exists �̃(t) ∈ Lq∗(

a, b;X∗) such that up to a further subsequence,
�t
(
un(t)
)
⇀ �̃(t) weakly in Lq∗(

a, b;X∗). Using this fact and (3.65), we deduce
that for every h(t) ∈ Lq(a, b;X), which we now fix,

(3.67)
∫ b

a

〈
h(t), �̃(t)

〉
X×X∗dt = lim

n→+∞

∫ b

a

〈
un(t) − u(t) + h(t),�t

(
un(t)
)〉

X×X∗dt.

Thus, using (3.53) and Fatou’s Lemma, by (3.67) and (3.66), we infer

∫ b

a

〈
h(t), �̃(t)

〉
X×X∗dt ≥

∫ b

a

(
lim

n→+∞

〈
un(t) − u(t) + h(t),�t

(
un(t)

)〉
X×X∗

)
dt

=
∫ b

a

(
lim

n→+∞

〈
h(t),�t

(
un(t)

)〉
X×X∗

)
dt.

(3.68)

On the other hand, by (3.66), for a.e. t ∈ (a, b), there exists a strictly increasing
subsequence

{
n̄(t)

k }+∞
k =1 ⊂ N such that

(3.69) lim
k→+∞

〈
un̄(t)

k
(t) − u(t) + h(t),�t

(
un̄(t)

k
(t)
)〉

X×X∗

= lim
k→+∞

〈
h(t),�t

(
un̄(t)

k
(t)
)〉

X×X∗ = lim
n→+∞

〈
h(t),�t

(
un(t)
)〉

X×X∗ < +∞.

Therefore, by (3.53), for a.e. fixed t ∈ (a, b) the sequence {un̄(t)
k
(t)}+∞

k =1 is bounded
in X . On the other hand, T · un(t) ⇀ T · u(t) weakly in H for a.e. t ∈ (a, b). Thus,
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since T is injective, we obtain that for a.e. fixed t ∈ (a, b) un̄(t)
k
(t) ⇀ u(t) weakly

in X . Therefore, since for a.e. fixed t ∈ (a, b) the function �t(x) : X → X∗ is
pseudo-monotone, using (3.66) and Definition 2.4, for a.e. t ∈ (a, b), we deduce

(3.70) �t
(
un̄(t)

k
(t)
)
⇀ �t
(
u(t)
)

weakly in X∗.

Plugging this into (3.69), we deduce

(3.71) lim
n→+∞

〈
h(t),�t

(
un(t)
)〉

X×X∗ =
〈
h(t),�t

(
u(t)
)〉

X×X∗ for a.e. t ∈ (a, b).

Thus, plugging (3.71) into (3.68) gives

(3.72)
∫ b

a

〈
h(t), �̃(t)

〉
X×X∗dt ≥

∫ b

a

〈
h(t),�t

(
u(t)
)〉

X×X∗dt.

Thus, since h(t) ∈ Lq(a, b;X) was arbitrary, interchanging the roles of h(t) and
−h(t) gives

(3.73)
∫ b

a

〈
h(t),�t

(
u(t)
)〉

X×X∗dt ≤
∫ b

a

〈
h(t), �̃(t)

〉
X×X∗dt.

Together, (3.72) and (3.73) give

(3.74)
∫ b

a

〈
h(t),�t

(
u(t)
)〉

X×X∗dt =
∫ b

a

〈
h(t), �̃(t)

〉
X×X∗dt;

and, since h(t) ∈ Lq(a, b;X) was arbitrarily chosen, we deduce�t
(
u(t)
)

= �̃(t) for
a.e. t ∈ (a, b). So �t

(
un(t)
)
⇀ �
(
u(t)
)

weakly in Lq∗(
a, b;X∗). This completes

the proof. �

Theorem 3.1. Let {X,H,X∗} be an evolution triple with the corresponding
inclusion operator T ∈ L(X ;H ) as defined in Definition 2.6 together with the
corresponding operator T̃ ∈ L(H ;X∗) defined in (2.2). Assume also that the
Banach space X is separable. Furthermore, let a, b, q ∈ R be such that a < b and
q ≥ 2. Next, for each t ∈ [a, b], let �t(x) : X → [0,+∞) be a convex function
that is Gâteaux differentiable at every x ∈ X, satisfies �t(0) = 0 and satisfies the
growth condition

(3.75) 0 ≤ �t(x) ≤ C ‖x‖q
X + C

for all x ∈ X and t ∈ [a, b] for some C > 0. Also assume that�t(x) is Borel on the
pair of variables (x, t). Furthermore, for every t ∈ [a, b], let �t(x) : X → X∗ be
a function that is Gâteaux differentiable at every x ∈ X, �t(0) ∈ Lq∗

(a, b;X∗) and
the derivative of D�t of �t satisfies the growth condition

(3.76) ‖D�t(x)‖L(X ;X∗) ≤ g
(‖T · x‖H

) (‖x‖q−2
X + 1

)
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for all x ∈ X and t ∈ [a, b] for some non-decreasing function g(s) : [0,+∞) →
(0,+∞). Also assume that�t(x) is Borel on the pair of variables (x, t) and that�t

and �t satisfy the monotonicity condition

(3.77)
〈
x,D�t(x) +�t(x)

〉
X×X∗

≥ 1

Ĉ
‖x‖q

X −
(
‖x‖p

X + μ
p
2 (t)
)(

Ĉ‖L · x‖(2−p)
V + μ

2−p
2 (t)
(
‖T · x‖(2−p)

H + 1
))

for all x ∈ X for all t ∈ [a, b], where V is a given Banach space, L ∈ L(X,V ) is
a given compact operator, p ∈ [0, 2), μ(t) ∈ L1(a, b;R) is a non-negative function
and Ĉ > 0 is a constant. Finally, assume that for each t ∈ [a, b], the map-
ping
(
D�t +�t

)
(x) : X → X∗ is pseudo-monotone; see Definition 2.4. Then for

every w0 ∈ H and every λ ∈ R, there exists u(t) ∈ Lq(a, b;X), such that w(t) :=
T · (u(t)

) ∈ L∞(a, b;H ), v(t) := T̃ · (w(t)
)

= (T̃ ◦T ) · (u(t)
) ∈ W 1,q∗

(a, b;X∗) and
u(t) is a solution of

(3.78)

⎧⎨⎩ dv
dt (t) + λv(t) +�t

(
u(t)
)
+ D�t
(
u(t)
)

= 0 for a.e. t ∈ (a, b),

w(a) = w0,

where w(t) is H-weakly continuous on [a, b]; see Lemma 2.2. Moreover, if �t and
�t satisfy the monotonicity condition

(3.79)
〈
h,
{
D�t(x + h) − D�t(x)

}
+ D�t(x) · h

〉
X×X∗ ≥

k0
∣∣ f (h, t)∣∣2

ĝ(‖T · x‖H )
− ĝ
(‖T · x‖H

) · (‖x‖q
X + μ(t)

)(2−p)/2 · ∣∣ f (h, t)∣∣p · ‖T · h‖(2−p)
H

for all x, h ∈ X and t ∈ [a, b] for some constant k0 ≥ 0 such that k0 �= 0 if
p > 0, some function f (h, t) : X × [a, b] → R and some non-decreasing function
ĝ(s) : [0,+∞) → (0,+∞), then such a solution of (3.78) is unique.

Proof. Step 1: Existence of the solution. Assume first that λ = 0. Since the
Banach space is X separable, using [11, Lemma A.2], we deduce that there exists
a separable Hilbert space Y and a bounded linear inclusion operator S ∈ L(Y ;X)
such that S is injective, the image of S is dense in X and, moreover, S is a compact
operator. Let S∗ ∈ L(X∗;Y ∗) be the corresponding adjoint operator, which satisfies

(3.80) 〈y, S∗ · x∗〉Y×Y ∗ := 〈S · y, x∗〉X×X∗

for all x∗ ∈ X∗ and y ∈ Y . Define P ∈ L(Y ;H ) by P := T ◦ S and P̃ ∈ L(H ;Y ∗)
by P̃ := S∗ ◦ T̃ . Then it is clear that {Y,H,Y ∗} is another evolution triple with
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the corresponding inclusion operator P ∈ L(Y ;H ) as defined in Definition 2.6
together with the corresponding adjoint operator P̃ ∈ L(H ;Y ∗) defined as in (2.2).

Furthermore, let ψ(t) ∈ Lq(a, b;Y ) be such that the function ϕ(t) : (a, b) → X∗

defined by ϕ(t) := IY · (ψ(t)
)

belongs to W 1,q∗
(a, b;Y ∗), where IY := P̃ ◦ P :

Y → Y ∗. Denote the set of all such functions ψ by RY,q(a, b). As before, by
Lemma 2.3, for each ψ(t) ∈ Rq(a, b) the function w(t) : [a, b] → H defined by
w(t) := P · (ψ(t)

)
belongs to L∞(a, b;H ) and, up to a redefinition of w(t) on a

subset of [a, b] of Lebesgue measure zero, w is H -weakly continuous, as stated in
Lemma 2.2.

Next, for all y ∈ Y , let �(y) : Y → [0,+∞) be a function defined by

(3.81) �(y) := ‖y‖q
Y + ‖y‖2

Y .

Then �(y) is a convex function that is Gâteaux differentiable on every y ∈ Y ,
satisfies �(0) = 0 and satisfies the growth condition

(3.82)
1
C0

‖y‖q
Y − C0 ≤ �(y) ≤ C0 ‖y‖q

Y + C0

for all y ∈ Y and the uniform convexity condition

(3.83)
〈
h,D�(y + h) − D�(y)

〉
Y×Y ∗ ≥ 1

C0

(‖y‖q−2
Y + 1

) · ‖h‖2
Y

for all y, h ∈ Y , for some C0 > 0.
Next let w0 ∈ H . Then, since the image of the operator T ◦ S is dense in H ,

there exists a sequence {ψ(0)
n } ⊂ Y such that w(0)

n := (T ◦ S) · ψ(0)
n → w0 strongly

in H as n → +∞. Furthermore, let εn → 0+ as n → +∞. By Theorem 1.2, for
every n there exists ψn(t) ∈ RY,q(a, b) such that

(3.84)
dϕn

dt
(t) + S∗ ·

(
�t
(
un(t)
)
+ D�t
(
un(t)
))

+ εnD�
(
ψn(t)
)

= 0

for a.e. t ∈ (a, b) and wn(a) = w(0)
n , where un(t) := S · (ψn(t)

)
, wn(t) := P · (ψn(t)

)
,

ϕn(t) := P̃ · (wn(t)
)
and we assume that wn(t) is H -weakly continuous on [a, b], as

stated in Lemma 2.2.
On the other hand, by the trivial inequality

p
2
a2 +

2 − p
2

b2 ≥ apb2−p,

using (3.77), we deduce

(3.85)
〈
x,D�t(x)+�t(x)

〉
X×X∗ ≥ 1

C1
‖x‖q

X −C1‖L ·x‖2
V −C1μ(t)

(
‖T ·x‖2

H +1
)
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for all x ∈ X and t ∈ [a, b] for some constant C1 > 0. Then, as before in (3.9), we
obtain

(3.86)
〈
x,D�t(x) +�t(x)

〉
X×X∗ ≥ 1

K
‖x‖q

X − μ̃(t)
(
‖T · x‖2

H + 1
)

for all x ∈ X and t ∈ [a, b], for some constant K > 0 and μ̃(t) ∈ L1(a, b;R).
Thus, since for every t ∈ [a, b] the mapping

(
D�t +�t

)
(x) : X → X∗ is pseudo-

monotone, Lemma 3.2 implies that the mapping

�
(
x(t)
)

:
{
x̄(t) ∈ Lq(a, b;X) : T · x̄(t) ∈ L∞(a, b;H )

}→ Lq∗
(a, b;X∗)

defined by

(3.87)
〈

h(t), �
(
x(t)

)〉
Lq(a,b;X)×Lq∗ (a,b;X∗)

: =
∫ b

a

〈
h(t),�t

(
x(t)

)
+ D�t

(
x(t)

)〉
X×X∗dt

for all x(t) ∈ {x̄(t) ∈ Lq(a, b;X) : T · x̄(t) ∈ L∞(a, b;H )
}

and h(t) ∈ Lq(a, b;X)
is weakly pseudo-monotone with respect to the evolution triple {X,H,X∗}; see
Definition 3.1.

So all the conditions of Corollary 3.1 satisfied; and therefore, by that corollary,
up to a subsequence, un(t) ⇀ u(t) weakly in Lq(a, b;X), where u(t) ∈ Lq(a, b;X)
is such that

w(t) := T · (u(t)
) ∈ L∞(a, b;H ), v(t) := T̃ · (w(t)

)
= (T̃ ◦ T ) · (u(t)

) ∈ W 1,q∗
(a, b;X∗)

and u(t) is a solution of (3.78) with λ = 0, where w(t) is H -weakly continuous on
[a, b], as stated in Lemma 2.2.

Step 2: Assume that λ �= 0. Then by the above, for every w0 ∈ H and every
λ ∈ R, there exists uλ(t) ∈ Lq(a, b;X), such thatwλ(t) := T ·(uλ(t)) ∈ L∞(a, b;H ),
vλ(t) := T̃ · (wλ(t)) = (T̃ ◦ T ) · (uλ(t)) ∈ W 1,q∗

(a, b;X∗) and uλ(t) is a solution of

(3.88)

⎧⎪⎪⎨⎪⎪⎩
dvλ
dt (t) + eλ(t−a)�t

(
e−λ(t−a)uλ(t)

)
+ eλ(t−a)D�t

(
e−λ(t−a)uλ(t)

)
= 0

for a.e. t ∈ (a, b),

wλ(a) = w0,

where we assume that w(t) is H -weakly continuous on [a, b], as stated in
Lemma 2.2. Then, defining u(t) := e−λ(t−a)uλ(t), we obtain that u(t) ∈ Lq(a, b;X)
is such that w(t) := T · (u(t)

) ∈ L∞(a, b;H ), v(t) := T̃ · (w(t)
)

= (T̃ ◦ T ) · (u(t)
) ∈

W 1,q∗
(a, b;X∗) and u(t) is a solution of (3.78).

Step 3: Uniqueness of the solution. Assume that �t satisfies (3.79). Then
applying Theorem 1.1 completes the proof. �



VARIATIONAL RESOLUTION OF NONLINEAR EVOLUTIONS. PART II 275

Remark 3.3. By Lemma 2.3, the solution of (3.78) from Theorem 3.1 satis-
fies the energy equality

(3.89)
‖w(t)‖2

H

2
+
∫ t

a

(
λ‖w(s)‖2

H +
〈
u(s),�s

(
u(s)
)
+ D�s

(
u(s)
)〉

X×X∗

)
ds

=
‖w0‖2

H

2

for all t ∈ [a, b].

As a particular case of Theorem 3.1 we have the following theorem.

Theorem 3.2. Let {X,H,X∗} be an evolution triple with the corresponding
inclusion operator T ∈ L(X ;H ) as defined in Definition 2.6 together with the
corresponding operator T̃ ∈ L(H ;X∗), defined in (2.2). Assume also that the
Banach space X is separable. Furthermore, let a, b, q ∈ R be such that a < b and
q ≥ 2. Next, for each t ∈ [a, b] let �t(x) : X → [0,+∞) be a convex function
that is Gâteaux differentiable at every x ∈ X, satisfies �t(0) = 0 and satisfies the
growth condition

(3.90) 0 ≤ �t(x) ≤ C ‖x‖q
X + C

for all x ∈ X and t ∈ [a, b], for some C > 0. Also assume that �t(x) is Borel on
the pair of variables (x, t). Furthermore, for every t ∈ [a, b] let �t(x) : X → X∗

be a function which is Gâteaux differentiable at every x ∈ X,�t(0) ∈ Lq∗
(a, b;X∗)

and the derivative of �t satisfies the growth condition

(3.91) ‖D�t(x)‖L(X ;X∗) ≤ g
(‖T · x‖H

) (‖x‖q−2
X + 1

)
for all x ∈ X and t ∈ [a, b], for some non-decreasing function g(s) : [0 + ∞) →
(0 + ∞). Also assume that �t(x) is Borel on the pair of variables (x, t); see Defi-
nition 2.1. Assume also that �t satisfies the monotonicity conditions

(3.92)
〈
h,D�t(x) · h

〉
X×X∗ ≥ 0

for all x, h ∈ X and t ∈ [a, b]. Finally, let Ft(x) : X → X∗ be a function that
is Gâteaux differentiable at every x ∈ X, Ft(0) ∈ Lq∗

(a, b;X∗) and such that the
derivative DFt of Ft satisfies the condition

(3.93) ‖DFt(x)‖L(X ;X∗) ≤ g
(‖T · x‖H

)(‖x‖q−2
X + 1

)
for all x ∈ X and t ∈ [a, b], for some non-decreasing function g(s) : [0 + ∞) →
(0+∞). Also assume that Ft(x) is Borel on the pair of variables (x, t). Next assume
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that

(3.94)
〈
x,D�t(x) +�t(x) + Ft(x)

〉
X×X∗

≥ 1

Ĉ
‖x‖q

X − Ĉ
(‖x‖X + 1

)(‖L · x‖V + ‖T · x‖H + 1
)

− μ(t)

for all x ∈ X and t ∈ [a, b], where V is a given Banach space, L ∈ L(X,V ) is a
given compact operator, Ĉ > 0 is some constant and μ(t) ∈ L1(a, b;R) is some
non-negative function. Finally, assume that Ft(x) is weak-to-strong continuous,
i.e., for every fixed t ∈ [a, b] and every sequence {xn} such that xn ⇀ x weakly
in X, Ft(xn) → Ft(x) strongly in X∗. Then, for every w0 ∈ H and every λ ∈ R,
there exists u(t) ∈ Lq(a, b;X), such that w(t) := T · (u(t)

) ∈ L∞(a, b;H ), v(t) :=
T̃ · (w(t)

)
= (T̃ ◦ T ) · (u(t)

) ∈ W 1,q∗
(a, b;X∗) and u(t) is a solution of

(3.95)

⎧⎨⎩ dv
dt (t) + λv(t) + Ft

(
u(t)
)
+�t
(
u(t)
)
+ D�t
(
u(t)
)

= 0 for a.e. t ∈ (a, b),

w(a) = w0,

where we assume that w(t) is H-weakly continuous on [a, b], as stated in
Lemma 2.2.

Proof. Since Ft(x) : X → X∗ is weak to strong continuous, it is pseudo-
monotone on X . Moreover, for every t ∈ [a, b], the mappings D�t(x) : X → X∗

and �t(x) : X → X∗ are monotone. Therefore, since �t is Gâteaux differentiable
and�t is convex, using Lemma 2.1 and Definition 2.4, we deduce that the mapping
(D�t +�t + Ft)(x) : X → X∗ is pseudo-monotone. Thus, applying Theorem 3.1
with �t + Ft instead of �t, gives the desired result. �

Theorem 3.3. Let X and Z be reflexive Banach spaces and X∗ and Z∗ be
their corresponding dual spaces. Furthermore, let H be a Hilbert space. Suppose
that Q ∈ L(X,Z) is an injective inclusion operator whose image is dense on Z.
Furthermore, suppose that P ∈ L(Z,H ) is an injective inclusion operator whose
image is dense on H. Let T ∈ L(X,H ) be defined by T := P ◦ Q. So {X,H,X∗}
is an evolution triple with the corresponding inclusion operator T ∈ L(X ;H ) as
defined in Definition 2.6 together with the corresponding operator T̃ ∈ L(H ;X∗)
defined as in (2.2). Assume also that the Banach space X is separable. Next let
a, b ∈ R be such that a < b and q ≥ 2. Furthermore, for every t ∈ [a, b], let
�t(z) : Z → X∗ and At(z) : Z → X∗ be functions that are Gâteaux differentiable
at every z ∈ Z and such that �t(0),At(0) ∈ Lq∗(

a, b;X∗). Assume that for every
t ∈ [a, b], �t and At satisfy the bounds

(3.96)
∥∥D�t(z)

∥∥
L(Z ;X∗) ≤ g

(‖P · z‖H
) · (‖z‖q−2

Z + 1
)
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for all z ∈ Z and t ∈ [a, b],

(3.97)
∥∥�t(z)
∥∥

X∗ ≤ g
(‖P · z‖H

) · (‖L0 · z‖q−1
V0

+ μ̃
q−1
q (t)
)

for all z ∈ Z and t ∈ [a, b] and

(3.98)
∥∥DAt(z)

∥∥
L(Z ;X∗) ≤ g

(‖P · z‖H
) · (‖L0 · z‖q−2

V0
+ 1
)

for all z ∈ Z for all t ∈ [a, b], where μ̃(t) ∈ L1(a, b;R) is some non-negative
function, g(s) : [0,+∞) → (0,+∞) is some non-decreasing function, V0 is some
Banach space and L0 ∈ L(Z ;V0) is some compact linear operator. Moreover,
assume that �t and At satisfy the monotonicity condition

(3.99)
〈
h,At(Q · h) +�t

(
Q · h)〉

X×X∗ ≥ (1/C̄)∥∥Q · h∥∥qZ
−
(∥∥Q · h∥∥pZ + μ

p
2 (t)
)(

C̄
∥∥L · (Q · h)

∥∥(2−p)
V + μ

2−p
2 (t)
(∥∥T · h∥∥(2−p)

H + 1
))

for all h ∈ X and t ∈ [a, b], where V is a given Banach space, L ∈ L(Z,V )
is a given compact operator, p ∈ [0, 2), μ(t) ∈ L1(a, b;R) is some non-negative
function and C̄ > 0 is some constant. Also assume that �t(z) At(z) are Borel on
the pair of variables (z, t). Finally, assume that there exist a family of Banach
spaces {Vj }+∞

j =1 and a family of compact bounded linear operators {L j }+∞
j =1, where

L j ∈ L(Z,Vj ), which satisfy the following condition:
• if {hn}+∞

n=1 ⊂ Z is a sequence and h0 ∈ Z, are such that for every fixed
j limn→+∞ L j · hn = L j · h0 strongly in V j and P · hn ⇀ P · h0 weakly
in H, then for every fixed t ∈ (a, b), �t(hn) ⇀ �t(h0) weakly in X∗ and
DAt(hn) → DAt(h0) strongly in L(Z,X∗).

Then for every w0 ∈ H, there exists a function z(t) ∈ Lq(a, b;Z) such that w(t) :=
P · z(t) ∈ L∞(a, b;H ), v(t) := T̃ · (w(t)

) ∈ W 1,q∗
(a, b;X∗) and z(t) satisfies the

following equation:

(3.100)

⎧⎨⎩ dv
dt (t) + At

(
z(t)
)
+�t
(
z(t)
)

= 0 for a.e. t ∈ (a, b) ,

w(a) = w0 ,

where we assume that w(t) is H-weakly continuous on [a, b], as stated in
Lemma 2.2. Moreover, if in addition, there exist a Banach space V , a compact
operator L ∈ L(Z,V ), a non-decreasing function g̃(s) : [0,+∞) → (0,+∞) and
for every t ∈ [a, b] a convex Gâteaux differentiable functions �t : Z → R, Borel
measurable on (z, t), and a Gâteaux differentiable mapping Ft(σ) : V → Z∗, Borel
measurable on (σ, t), satisfying Ft(0) ∈ Lq∗

(a, b;Z∗) and such that

(3.101) 0 ≤ �t(z) ≤ g̃
(‖P · z‖H

) · (‖z‖q
Z + 1
)
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for all z ∈ Z and t ∈ [a, b],

(3.102)
∥∥DFt(L · z)∥∥

L(V ;Z∗) ≤ g̃
(‖P · z‖H

) · (‖L · z‖q−2
V + 1

)
for all z ∈ Z and t ∈ [a, b], and

(3.103)
〈
h,At(Q · h) +�t

(
Q · h)〉

X×X∗ ≥�t
(
Q · h) + 〈Q · h,Ft

(
(L ◦ Q) · h)〉

Z×Z∗

for all h ∈ X and t ∈ [a, b], then the function z(t), as above, satisfies the energy
inequality

(3.104)
1
2

∥∥w(t)
∥∥2

H +
∫ t

a

(
�s
(
z(s)
)
+
〈
z(s),Fs

(
L · z(s))〉

Z×Z∗

)
ds ≤ 1

2

∥∥w0
∥∥2

H

for all t ∈ [a, b].

Proof. Since the Banach space X is separable, as before, by [11, Lemma A.2],
we deduce that there exists a separable Hilbert space Y and a bounded linear in-
clusion operator S ∈ L(Y ;X) such that S is injective, the image of S is dense in X
and S is a compact operator. Moreover, let S∗ ∈ L(X∗;Y ∗) be the corresponding
adjoint operator, which satisfies

(3.105) 〈y, S∗ · x∗〉Y×Y ∗ := 〈S · y, x∗〉X×X∗

for all z∗ ∈ X∗ and y ∈ Y . Define P0 ∈ L(Y ;H ) by P0 := T ◦ S and P̃0 ∈ L(H ;Y ∗)
by P̃0 := S∗ ◦ T̃ . Then it is clear that {Y,H,Y ∗} is another evolution triple with
the corresponding inclusion operator P0 ∈ L(Y ;H ) as defined in Definition 2.6
together with the corresponding adjoint operator P̃0 ∈ L(H ;Y ∗) defined as in
(2.2).

Furthermore, let ψ(t) ∈ Lq(a, b;Y ) be such that the function ϕ(t) : (a, b) → Y ∗

defined by ϕ(t) := IY · (ψ(t)
)

belongs to W 1,q∗
(a, b;Y ∗), where IY := P̃0 ◦ P0 :

Y → Y ∗. Denote the set of all such functions ψ by RY,q(a, b). As before, by
Lemma 2.3, for every ψ(t) ∈ Rq(a, b), the function w(t) : [a, b] → H defined by
w(t) := P0 · (ψ(t)

)
belongs to L∞(a, b;H ) and, up to a redefinition of w(t) on a

subset of [a, b] of Lebesgue measure zero, w is H -weakly continuous, as stated in
Lemma 2.2.

Next define the function �(y) : Y → [0,+∞) by

(3.106) �(y) := ‖y‖q
Y + ‖y‖2

Y for all y ∈ Y.

Then �(y) is a convex function that is Gâteaux differentiable at every y ∈ Y ,
satisfies �(0) = 0 and satisfies the growth condition

(3.107)
1
C0

‖y‖q
Y − C0 ≤ �(y) ≤ C0 ‖y‖q

Y + C0
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for all y ∈ Y and the uniform convexity condition〈
h,D�(y + h) − D�(y)

〉
Y×Y ∗ ≥ 1

C0

(‖y‖q−2
Y + 1

) · ‖h‖2
Y

for all y, h ∈ Y , for some C0 > 0.
Next let w0 ∈ H . Then, since the image of the operator T ◦ S is dense in H ,

there exists a sequence {ψ(0)
n } ⊂ Y such that w(0)

n := (T ◦ S) · ψ(0)
n → w0 strongly

in H as n → +∞. Furthermore, let εn → 0+ as n → +∞. By Theorem 1.2, for
every n, there exists ψn(t) ∈ RY,q(a, b) such that

(3.108)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dϕn

dt (t) + S∗ ·
(
At
(
zn(t)
)
+�t
(
zn(t)
))

+ εnD�
(
ψn(t)
)

= 0

for t ∈ (a, b),

wn(a) = (T ◦ S) · ψ(0)
n ,

where

un(t) := S · (ψn(t)
)
,

zn(t) := (Q ◦ S) · (ψn(t)
)

= Q · (un(t)
)
,

wn(t) := (T ◦ S) · (ψn(t)
)

= P · (zn(t)
)
,

ϕn(t) := (S∗ ◦ T̃ ◦ T ◦ S) · (ψn(t)
)

= (S∗ ◦ T̃ ) · (wn(t)
)
,

and we assume thatwn(t) is H -weakly continuous on [a, b]. Thus all the conditions
of Lemma 3.1 satisfied; and, by Lemma 3.1, using [11, Lemma 2.2], we deduce
that there exist z(t) ∈ Lq(a, b;Z) and �̄(t), Ā(t) ∈ Lq∗

(a, b;X∗) such that w(t) :=
P · z(t) ∈ L∞(a, b;H ), v(t) := T̃ · w(t) ∈ W 1,q∗

(a, b;X∗), w(t) is H -weakly con-
tinuous on [a, b], up to a subsequence, we have

(3.109)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn(t) ⇀ z(t) weakly in Lq(a, b;Z),
dϕn

dt (t) ⇀ dϕ
dt (t) weakly in Lq∗

(a, b;Y ∗),

�t
(
zn(t)
)
⇀ �̄(t) weakly in Lq∗

(a, b;X∗),

At
(
zn(t)
)
⇀ Ā(t) weakly in Lq∗

(a, b;X∗),

wn(t) ⇀ w(t) weakly in H for every fixed t ∈ [a, b],{
wn(t)
}+∞

n=1 is bounded in L∞(a, b;H ),

where ϕ(t) = S∗ · v(t), and z(t) satisfies the equation

(3.110)

⎧⎨⎩ dv
dt (t) + Ā(t) + �̄(t) = 0 for a.e. t ∈ (a, b),

w(a) = w0.
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Moreover,

(3.111)
1
2

∥∥w(t)
∥∥2

H + lim
n→+∞

(∫ t

a

〈
un(s),As

(
zn(s)
)
+�s
(
zn(s)
)〉

X×X∗ds
)

≤ 1
2

∥∥w0
∥∥2

H

for all t ∈ [a, b]. Next there exists a family of reflexive Banach spaces {Vj }+∞
j =1

and a family of compact bounded linear operators {L j }+∞
j =1, where L j ∈ L(Z,Vj ),

which satisfy the following condition:
• if {hn}+∞

n=1 ⊂ Z is a sequence and h0 ∈ Z , are such that for every fixed
j , limn→+∞ L j · hn = L j · h0 strongly in Vj and P · hn ⇀ P · h0 weakly
in H , then for every fixed t ∈ (a, b), �t(hn) ⇀ �t(h0) weakly in X∗ and
DAt(hn) → DAt(h0) strongly in L(Z,X∗).

On the other hand, using (3.109) and Lemma 2.4, we deduce that for every j ,
L j · zn(t) → L j · z(t) strongly in Lq(a, b;Vj ) as n → +∞. In the same way,
we obtain L0 · zn(t) → L0 · z(t) strongly in Lq(a, b;V0) as n → +∞. Thus, up
to a further subsequence, we have L j · zn(t) → L j · z(t) strongly in Vj for a.e.
t ∈ (a, b) and every j . Therefore, by (3.109) and the above condition, we must
have�t

(
zn(t)
)
⇀ �t
(
z(t)
)

weakly in X∗ and DAt
(
szn(t) + (1 − s)z(t)

)→ DAt
(
z(t)
)

strongly in L(Z,X∗) for a.e. t ∈ (a, b) and for every s ∈ [0, 1]. Therefore, using
(3.97), the facts that {wn(t)} is bounded in L∞(a, b;H ) and that L0 ·zn(t) → L0 ·z(t)
strongly in Lq(a, b;V0), we deduce that∫ b

a

〈
h(t),�t

(
zn(t)
)〉

X×X∗dt →
∫ b

a

〈
h(t),�t

(
z(t)
)〉

X×X∗dt

for all h ∈ Lq(a, b;X). Thus

(3.112) �t
(
zn(t)
)
⇀ �t
(
z(t)
)

weakly in Lq∗
(a, b;X∗).

In a similar way, by (3.98), the fact that {wn(t)} is bounded in L∞(a, b;H ) and the
fact that L0 · zn(t) → L0 · z(t) strongly in Lq(a, b;V0), we deduce that, for q = 2,

DAt
(
szn(t) + (1 − s)z(t)

)→ DAt
(
z(t)
)

strongly in L(Z,X∗)

for a.e. t ∈ (a, b) for all s ∈ [0, 1], and(3.113)

DAt
(
szn(t) + (1 − s)z(t)

)
is bounded in L∞(a, b;L(Z,X∗)

)
uniformly in s;

and, for q > 2,

(3.114) DAt
(
szn(t) + (1− s)z(t)

)→ DAt
(
z(t)
)

strongly in Lq/(q−2)(a, b;L(Z,X∗)
)

for all s ∈ [0, 1]. In both cases,
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(3.115)
{
DAt

(
szn(t) + (1 − s)z(t)

)}∗ · h(t) →
{
DAt

(
z(t)

)}∗ · h(t) strongly in Lq∗
(a, b,Z)

for all h(t) ∈ Lq(a, b;X) and all s ∈ [0, 1], where
{
DAt(·)
}∗ ∈ L(X,Z∗) is the

adjoint operator to DAt(·) ∈ L(Z,X∗). Thus, by (3.98), the fact that {wn(t)} is
bounded in L∞(a, b;H ) and the fact that L0·zn(t) → L0·z(t) strongly in Lq(a, b;V0),
together with (3.115) and (3.109), we obtain∫ b

a

〈
h(t),At

(
zn(t)
)− At
(
z(t)
)〉

X×X∗dt

=
∫ 1

0

∫ b

a

〈
h(t),DAt

(
szn(t) + (1 − s)z(t)

)
·
(
zn(t) − z(t)

)〉
X×X∗

dtds

=
∫ 1

0

∫ b

a

〈(
zn(t) − z(t)

)
,
{
DAt
(
szn(t) + (1 − s)z(t)

)}∗ · h(t)
〉

Z×Z∗
dtds → 0

for all h(t) ∈ Lq(a, b;X). So, by (3.109) and (3.112), we have �̄(t) = �t
(
z(t)
)

and
Ā(t) = At

(
z(t)
)
; and thus using (3.110), we finally deduce that z(t) is a solution of

(3.100).
Finally, assume that there exist a reflexive Banach space V , a compact operator

L ∈ L(Z,V ), and for every t ∈ [a, b] a convex Gâteaux differentiable function
�t : Z → R and a Gâteaux differentiable mapping Ft(σ) : V → Z∗ satisfying
(3.101), (3.102) and (3.103). Then, since, as before, L · zn(t) → L · z(t) strongly
in Lq(a, b;V ), we deduce that, up to a subsequence, Ft

(
L · zn(t)

) → Ft
(
L · z(t)

)
strongly in Lq∗

(a, b;Z∗). On the other hand, by (3.103) and (3.111), we infer

(3.116)
1
2

∥∥w(t)
∥∥2

H + lim
n→+∞

{∫ t

a

(
�s
(
zn(s)
)
+
〈
zn(s),Fs

(
L · zn(s)

)〉
Z×Z∗

)
ds
}

≤ 1
2

∥∥w0
∥∥2

H

for all t ∈ [a, b]. Therefore, letting n → +∞ in (3.116) and using (3.109) and the
convexity of �t, we finally obtain (3.104). �

As a particular case of Theorem 3.3, we have the following theorem.

Theorem 3.4. Let X and Z be reflexive Banach spaces and X∗ and Z∗ be their
corresponding dual spaces. Furthermore, let H be a Hilbert space. Suppose that
Q ∈ L(X,Z) is an injective inclusion operator whose image is dense in Z. Further-
more, suppose that P ∈ L(Z,H ) is an injective inclusion operator whose image is
dense in H. Let T ∈ L(X,H ) be defined by T := P ◦ Q, so that {X,H,X∗} is an
evolution triple with the corresponding inclusion operator T ∈ L(X ;H ) as defined
in Definition 2.6 together with the corresponding operator T̃ ∈ L(H ;X∗) defined
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as in (2.2). Assume also that the Banach space X is separable. Next let a, b ∈ R

be such that a < b. Furthermore, for each t ∈ [a, b], let �t ∈ L∞(a, b;L(Z,X∗)
)
.

Next let Ft(z) : Z → X∗ be a function that is Gâteaux differentiable at every z ∈ Z
for every t ∈ [a, b] and satisfies Ft(0) ∈ L2(a, b;X∗) and the Lipschitz condition

(3.117)
∥∥DFt(z)

∥∥
L(Z ;X∗) ≤ g

(‖P · z‖H
)

for all z ∈ Z and t ∈ [a, b], for some non-decreasing function g(s) : [0,+∞) →
(0,+∞). Also assume that Ft(z) is Borel on the pair of variables (z, t). Moreover,
suppose that �t and Ft satisfy the lower bound condition

(3.118)
〈

h,�t ·
(
Q · h) + Ft

(
Q · h)〉

X×X∗

≥ 1
C̄

∥∥Q ·h∥∥2Z −
(∥∥Q ·h∥∥pZ +μ

p
2 (t)
)(

C̄
∥∥L·(Q ·h)

∥∥(2−p)
V +μ

2−p
2 (t)
(∥∥T ·h∥∥(2−p)

H +1
))

for all h ∈ X and t ∈ [a, b], where V is a given Banach space, L ∈ L(Z,V )
is a given compact operator, p ∈ [0, 2) and C̄ > 0 are some constants and
μ(t) ∈ L1(a, b;R) is a non-negative function. Finally assume that there exist a
family of reflexive Banach spaces {Vj }+∞

j =1 and a family of compact bounded linear
operators {L j }+∞

j =1, where L j ∈ L(Z,Vj ), which satisfy the following condition:
• if {hn}+∞

n=1 ⊂ Z is a sequence such that for all fixed j limn→+∞ L j ·hn = L j ·h0

strongly in V j and P ·hn ⇀ P ·h0 weakly in H, then for every fixed t ∈ (a, b),
Ft(hn) ⇀ Ft(h0) weakly in X∗.

Then, for each w0 ∈ H, there exists z(t) ∈ L2(a, b;Z) such that w(t) := P ·
z(t) belongs to L∞(a, b;H ), v(t) := T̃ · (w(t)

)
belongs to W 1,2(a, b;X∗) and z(t)

satisfies the equation

(3.119)

⎧⎨⎩ dv
dt (t) +�t ·

(
z(t)
)
+ Ft
(
z(t)
)

= 0 for a.e. t ∈ (a, b),

w(a) = w0,

where we assume that w(t) is H-weakly continuous on [a, b], as stated in
Lemma 2.2. Moreover, if, in addition, there exist a reflexive Banach space E, a
compact operator L0 ∈ L(Z,E), and for every t ∈ [a, b] a Gâteaux differentiable
mapping Ht(ζ ) : E → Z∗, measurable on (ζ, t), such that Ht(0) ∈ L2(a, b;Z∗) and
satisfying

(3.120)
∥∥DHt(L0 · z)∥∥

L(E ;Z∗) ≤ g̃
(‖P · z‖H

)
for all z ∈ Z and t ∈ [a, b], for some non-decreasing function g̃(s) : [0,+∞) →
(0,+∞), and satisfying

(3.121)
〈
h,�t · (Q ·h)+Ft(Q ·h)

〉
X×X∗ ≥

〈
Q ·h,At · (Q ·h)+Ht

(
(L0 ◦Q) ·h)〉

Z×Z∗
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for all h ∈ X and all t ∈ [a, b], where At ∈ L∞(a, b;L(Z,Z∗)
)

is such that
〈z,At · z〉Z×Z∗ ≥ 0 for all z ∈ Z, then the function z(t), as above, satisfies the
energy inequality

(3.122)
1
2

∥∥w(t)
∥∥2

H +
∫ t

a

〈
z(s),As · (z(s)) + Hs

(
L0 · z(s))〉

Z×Z∗ds ≤ 1
2

∥∥w0
∥∥2

H

for all t ∈ [a, b].

As a particular case of Theorem 3.4, where Z = H , we have the following
statement, which is useful in the study of hyperbolic systems.

Corollary 3.2. Let {X,H,X∗} be an evolution triple with the corresponding
inclusion operator T ∈ L(X ;H ) as defined in Definition 2.6 together with the
corresponding operator T̃ ∈ L(H ;X∗) defined as in (2.2). Assume also that the
Banach space X is separable. Next let a, b ∈ R be such that a < b. Furthermore,
for every t ∈ [a, b], let �t ∈ L∞(a, b;L(H,X∗)

)
. Next let Ft(w) : H → X∗ be a

function that is Gâteaux differentiable at every w ∈ H for every t ∈ [a, b], and
satisfies Ft(0) ∈ L2(a, b;X∗) and the Lipschitz condition

(3.123)
∥∥DFt(w)

∥∥
L(H ;X∗) ≤ g

(‖w‖H
)

for allw ∈ H and all t ∈ [a, b], for some non-decreasing function g(s) : [0,+∞) →
(0,+∞). Also assume that Ft(w) is Borel on the pair of variables (w, t); see Defi-
nition 2.1. Moreover, assume that Ft is weak to weak continuous from H to X∗ for
every fixed t, i.e., for every sequence {hn}+∞

n=1 ⊂ H such that hn ⇀ h0 weakly in H
and for every t ∈ [a, b], Ft(hn) ⇀ Ft(h0) weakly in X∗. Finally, suppose that �t

and Ft satisfy the lower bound condition

(3.124)
〈
h,�t · (T · h) + Ft(T · h)

〉
X×X∗ ≥ −μ(t)

(∥∥T · h∥∥2H + 1
)

for all h ∈ X for all t ∈ [a, b], for some non-negative function μ(t) ∈ L1(a, b;R).
Then, for each w0 ∈ H, there exists w(t) ∈ L∞(a, b;H ) such that v(t) :=
T̃ · (w(t)

) ∈ W 1,2(a, b;X∗) and w(t) satisfies the equation

(3.125)

⎧⎨⎩ dv
dt (t) +�t ·

(
w(t)
)
+ Ft
(
w(t)
)

= 0 for a.e. t ∈ (a, b),

w(a) = w0,

where w(t) is H-weakly continuous on [a, b], as stated in Lemma 2.2.

4 Applications

4.1 Notation. For a p× q matrix A with i j-th entry ai j , we denote by |A| =(
�p

i =1�
q
j =1a

2
i j

)1/2 the Frobenius norm of A.
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For matrices A,B ∈ R
p×q with i j-th entries ai j and bi j respectively, we write

A : B :=
∑p

i =1

∑q
j =1 ai j bi j .

Given a vector-valued function f (x) =
(
f1(x), . . . , fk(x)

)
: � → R

k (� ⊂ R
N ),

we denote by ∇x f the k × N matrix with i j-th entry ∂ fi
∂x j

.

For a matrix-valued function F (x) := {Fi j (x)} : R
N → R

k×N , we denote
by div F the R

k-valued vector field defined by div F := (l1, . . . , lk), where li =∑N
j =1

∂Fi j

∂x j
.

For u = (u1, . . . , up) ∈ R
p and v = (v1, . . . , vq) ∈ R

q we denote by u ⊗ v
the p × q matrix with i j-th entry uiv j .

4.2 A general parabolic system in divergence form. Suppose that
�(A, x, t) : Rk×N

A × R
N
x × Rt → R is a non-negative measurable function. More-

over, assume that �(A, x, t) is C1 as a function of the first argument A when (x, t)
are fixed, which satisfies �(0, x, t) = 0 and is convex in the first argument A when
(x, t) are fixed, i.e.,

�
(
αA1 + (1 − α)A2, x, t

) ≤ α�(A1, x, t) + (1 − α)�(A2, x, t)

for every α ∈ [0, 1], A1,A2 ∈ R
k×N , x ∈ R

N and t ∈ R. Moreover, assume that �
satisfies the growth condition

(4.1)
1
C

|A|q − |g0(x)| ≤ �(A, x, t) ≤ C|A|q + |g0(x)|

for all A ∈ R
k×N , x ∈ R

N and all t ∈ R, where C > 0 is some constant, g0(x) ∈
L1(RN ,R) and q ∈ [2,+∞). Next let �(A, x, t) : Rk×N

A × R
N
x × Rt → R

k×N be a
measurable function. Moreover, assume that �(A, x, t) is C1 as a function of the
first argument A when (x, t) are fixed, which satisfies

(4.2) �(0, x, t) ∈ Lq∗(
R;L2(RN ,Rk×N )

)
,

the monotonicity condition

(4.3)
∑

1≤ j,n≤N

∑
1≤i,m≤k

Hi jHmn
∂�mn

∂Ai j
(A, x, t) ≥ 0

for all H,A ∈ R
k×N and all x ∈ R

N for all t ∈ R, and the growth condition

(4.4)
∣∣∣∣ ∂�∂Ai j

(A, x, t)
∣∣∣∣ ≤ C |A|q−2 + C

for all A ∈ R
k×N , all x ∈ R

N and all t ∈ R for all i ∈ {1, . . . , k} and all
j ∈ {1, . . . ,N }, where C > 0 is some constant. Finally, suppose that
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�(B, x, t) : R
k
B × R

N
x × Rt → R

k×N and �(B, x, t) : R
k
B × R

N
x × Rt → R

k are
measurable functions. Moreover, assume that �(B, x, t) and �(B, x, t) are C1 as
functions of the first argument B when (x, t) are fixed. Also assume that �(B, x, t)
and �(B, x, t) are globally Lipschitz in the first argument B and satisfy

(4.5) �(0, x, t) ∈ Lq∗(
R;L2(RN ,Rk×N )

)
, �(0, x, t) ∈ Lq∗(

R;L2(RN ,Rk)
)
.

Proposition 4.1. Let �,�,�,� be as above, and let � ⊂ R
N be a bounded

open set, 2 ≤ q < +∞ and T0 > 0. Then, for each w0(x) ∈ L2(�,Rk), there
exists u(x, t) ∈ Lq

(
0,T0;W

1,q
0 (�,Rk)

)
such that u(x, t) ∈ L∞(0,T0;L2(�,Rk)

) ∩
W 1,q∗(

0,T0;W−1,q∗
(�,Rk)

)
, where q∗ := q/(q − 1), u(x, t) is L2(�,Rk)-weakly

continuous on [0,T0], u(x, 0) = w0(x) and u(x, t) is a solution of

(4.6)
du
dt

(x, t) = �
(
u(x, t), x, t

)
+ divx
(
�
(
u(x, t), x, t

))
+

divx
(
�
(∇xu(x, t), x, t

))
+ divx
(
DA�
(∇xu(x, t), x, t

))
in �× (0,T0),

where

DA�(A, x, t) :=
{
∂�

∂Ai j
(A, x, t)

}
1≤i≤k,1≤ j≤N

∈ R
k×N .

Moreover, if �(A, x, t) is a uniformly convex function in the first argument A, then
such a solution u is unique.

Proof. Let X := W 1,q
0 (�,Rk) (a separable reflexive Banach space), H :=

L2(�,Rk) (a Hilbert space) and T ∈ L(X ;H ) be the usual embedding operator
from W 1,q

0 (�,Rk) into L2(�,Rk). Then T is an injective inclusion with dense im-
age. Furthermore, X∗ = W−1,q∗

(�,Rk) where q∗ = q/(q−1), and the correspond-
ing operator T̃ ∈ L(H ;X∗), defined as in (2.2), is the usual inclusion of L2(�,Rk)
into W−1,q∗

(�,Rk). Then {X,H,X∗} is an evolution triple with the corresponding
inclusion operators T ∈ L(X ;H ) and T̃ ∈ L(H ;X∗), as defined in Definition 2.6.
Moreover, by the theorem about the compact embedding in Sobolev spaces, it is
well known that T is a compact operator.

Next, for each t ∈ [0,T0], define �t(x) : X → [0,+∞) by

�t(u) :=
∫
�
�
(∇u(x), x, t

)
dx +

k�
2

∫
�

|u(x)|2dx ∀u ∈ W 1,q(�,Rk) ≡ X,

where

(4.7) k� :=

⎧⎨⎩0 if � is bounded,

1 if � is unbounded.
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Then �t(x) is Gâteaux differentiable at every x ∈ X , satisfies �t(0) = 0 and by
(4.1) satisfies the growth condition

1
C

‖x‖q
X − C ≤ �t(x) ≤ C ‖x‖q

X + C

for all x ∈ X and all t ∈ [0,T ]. Furthermore, for each t ∈ [0,T0], define the
mapping �t(x) : X → X∗ by〈

δ,�t(u)
〉

X×X∗ :=
∫
�
�
(∇u(x), x, t

)
: ∇δ (x) dx

for all u, δ ∈ W 1,q(�,Rk) ≡ X . Then �t(x) : X → X∗ is Gâteaux differentiable at
every x ∈ X ; and, by (4.4), its derivative D�t satisfies the growth condition

‖D�t(x)‖L(X ;X∗) ≤ C ‖x‖q−2
X + C

for all x ∈ X and all t ∈ [0,T ], for some C > 0. Moreover, by (4.3), �t satisfies
the monotonicity conditions〈

h,D�t(x) · h
〉

X×X∗ ≥ 0

for all x, h ∈ X and all t ∈ [0,T0]. Finally, for each t ∈ [0,T0], define the mapping
Ft(w) : H → X∗ by

(4.8)
〈
δ,Ft(w)

〉
X×X∗ :=

∫
�

{
�
(
w(x), x, t

)
: ∇δ (x) −

(
k�w(x) +�

(
w(x), x, t

)) · δ (x)
}

dx

for all w ∈ L2(�,Rk) ≡ H for all δ ∈ W 1,q(�,Rk) ≡ X . Then Ft(w) is Gâteaux
differentiable at every w ∈ H ; and, since � and � are Lipschitz functions, the
derivative DFt of Ft satisfies the Lipschitz condition

(4.9) ‖DFt(w)‖L(H ;X∗) ≤ C

for all w ∈ H and all t ∈ [0,T0], for some C > 0. Thus all the conditions of
Theorem 3.2 are satisfied. Applying this theorem completes the proof. �

Remark 4.1. If, in the framework of Proposition 4.1, we suppose that q = 2
and that DA�(A, x, t) and �(A, x, t) are linear in their first argument A, but assume
that � is unbounded, we obtain an existence result similar to Proposition 4.1 as a
consequence of Theorem 3.4 with Z = X .

Indeed, in the case of unbounded �, let Vj = L2(� ∩ BRj (0),Rk) for some
sequence Rj → +∞ and define L j ∈ L(H,Vj ) by

L j · (h(x)
)

:= h(x)�
(
� ∩ BRj (0)

) ∈ L2(� ∩ BRj (0),Rk) = Vj
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for all h(x) ∈ L2(�,Rk) = H . Then, by standard embedding theorems on Sobolev
spaces, the operator L j ◦ T ∈ L(X,Vj ) is compact for every j . Moreover, if
{hn} ⊂ H is a sequence such that hn ⇀ h0 weakly in H and L j · hn → L j · h0

strongly in Vj as n → +∞ for every j , then hn → h0 strongly in L2
loc(�,R

k); and
thus, by (4.8) and (4.9), we must have Ft(hn) ⇀ Ft(h0) weakly in X∗.

4.3 Parabolic systems in non-divergence form. Suppose that
�(L, x, t) : R

k
L × R

N
x × Rt → R is a non-negative measurable function. More-

over, assume that �(L, x, t) is C1 as a function of the first argument L when (x, t)
are fixed, which satisfies �(0, x, t) = 0 and is convex in the first argument L when
(x, t) are fixed, i.e.,

�
(
αL1 + (1 − α)L2, x, t

) ≤ α�(L1, x, t) + (1 − α)�(L2, x, t)

for every α ∈ [0, 1], L1,L2 ∈ R
k, x ∈ R

N and t ∈ R. Moreover, we assume that �
satisfies the growth condition

(4.10)
1
C

|L|q − C ≤ �(L, x, t) ≤ C|L|q + C

for all L ∈ R
k and all x ∈ R

N for all t ∈ R, where C > 0 is some constant and
q ∈ [2,+∞). Next let �(L, x, t) : Rk

L × R
N
x × Rt → R

k be a measurable function.
Moreover, assume that �(L, x, t) is C1 as a function of the first argument L when
(x, t) are fixed, which satisfies

(4.11) �(0, x, t) ∈ Lq∗(
R;L2(RN ,Rk)

)
,

the monotonicity condition

(4.12)
∑

1≤i, j≤k

hih j
∂�i

∂L j
(L, x, t) ≥ 0

for all h,L ∈ R
k, all x ∈ R

N and all t ∈ R, and the growth condition

(4.13)
∣∣∣∣ ∂�∂L j

(L, x, t)
∣∣∣∣ ≤ C |L|q−2 + C

for all L ∈ R
k, all x ∈ R

N and all t ∈ R for all j ∈ {1, . . . , k}. Finally let
�(A,L, x, t) : Rk×N

A × R
k
L × R

N
x × Rt → R

k be a measurable function. Moreover,
assume that �(A,L, x, t) is C1 as a function of the first two arguments A and L
when (x, t) are fixed. We also assume that �(A,L, x, t) is globally Lipschitz in the
first two arguments A and L and

(4.14) �(0, 0, x, t) ∈ Lq∗(
R;L2(RN ,Rk)

)
.
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Proposition 4.2. Let �,�,� be as above, and let � ⊂ R
N be a bounded

open set, 2 ≤ q < +∞ and T0 > 0. Then, for every w0(x) ∈ W 1,2
0 (�,Rk), there

exists u(x, t) ∈ Lq
(
0,T0;W

2,q
loc (�,Rk)

)
such that �xu(x, t) ∈ Lq

(
0,T0;Lq(�,Rk)

)
,

u(x, t) ∈ L∞(0,T0;W
1,2
0 (�,Rk)

)∩W 1,q∗(
0,T0;Lq∗

(�,Rk)
)
, where q∗ := q/(q−1),

u(x, t) is W 1,2
0 (�,Rk)-weakly continuous on [0,T0], u(x, 0) = w0(x) and u(x, t) is

a solution of

(4.15)
du
dt

(x, t) = �
(∇xu(x, t), u(x, t), x, t

)
+ �
(
�xu(x, t), x, t

)
+ ∇L�

(
�xu(x, t), x, t

)
in �× (0,T0),

where ∇L�(L, x, t) is the partial gradient in the first variable L. Moreover, if
�(L, x, t) is uniformly convex in the first argument L, then such a solution u is
unique.

Proof. Let

(4.16) X :=
{
u(x) ∈ W 1,2

0 (�,Rk) : �u(x) ∈ Lq(�,Rk)
}

for 2 ≤ q < +∞, endowed with the norm

(4.17) ‖u‖X := ‖�u‖Lq(�,Rk) + ‖∇u‖L2(�,Rk×N )

for all u ∈ X ⊂ W 1,2
0 (�,Rk). Then X is a separable reflexive Banach space. Next

let H := W 1,2
0 (�,Rk), endowed with the standard scalar product

< φ1, φ2 >H×H =
∫
�
∇φ1(x) : ∇φ2(x) dx

(a Hilbert space), and T ∈ L(X ;H ) be the trivial embedding operator from X ⊂
W 1,2

0 (�,Rk) into H = W 1,2
0 (�,Rk). Then T is an injective inclusion with dense

image. Moreover, T is a compact operator. In order to follow the definitions above,
we identify the dual space H ∗ with H . So in our notation,

{
W 1,2

0 (�,Rk)
}∗ =

W 1,2
0 (�,Rk) (although, in the usual notation,

{
W 1,2

0 (�,Rk)
}∗ is identified with

the isomorphic space W−1,2(�,Rk)). Next define S ∈ L
(
Lq∗(�,Rk),X∗) by the

formula

(4.18)
〈
δ, S · h

〉
X×X∗ = −

∫
�

h(x) ·�δ (x) dx

for all δ ∈ X and all h ∈ Lq∗
(�,Rk). Then, since for every φ ∈ Lq(�,Rk) there

exists unique δφ ∈ X such that�δφ = φ, we deduce that S is an injective inclusion,
i.e., ker S = 0.
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For the corresponding operator T̃ ∈ L(H ;X∗), by (2.2) and (4.18), we must
have

〈u, T̃ ·w〉X×X∗ := 〈T · u,w〉H×H =
∫
�
∇u(x) : ∇w(x) dx

= −
∫
�
w(x) ·�u(x) dx =

〈
u, S · (L ·w)

〉
X×X∗

(4.19)

for all w ∈ H and u ∈ X , where L is the trivial inclusion of W 1,2
0 (�,Rk) into

Lq∗
(�,Rk) (q∗ ≤ 2). So

(4.20) T̃ = S ◦ L .

Then {X,H,X∗} is an evolution triple with the corresponding inclusion operators
T ∈ L(X ;H ) and T̃ ∈ L(H ;X∗) as defined in Definition 2.6.

Next, for each t ∈ [0,T0], define �t(x) : X → [0,+∞) by

�t(u) :=
∫
�

(
�
(
�u(x), x, t

)
+

1
2

∣∣∇u(x)
∣∣2)dx

for all u ∈ X . Then �t(x) is Gâteaux differentiable at every x ∈ X , satisfies
�t(0) = 0 and satisfies the growth condition

1
C

‖x‖q
X − C ≤ �t(x) ≤ C ‖x‖q

X + C

for all x ∈ X and all t ∈ [0,T0] Furthermore, for each t ∈ [0,T0], define the
mapping �t(x) : X → X∗ by〈

δ,�t(u)
〉

X×X∗ :=
∫
�
�
(
�u(x), x, t

) ·�δ (x) dx

for all u, δ ∈ X , i.e.,

(4.21) �t(u) = −S ·
(
�
(
�u(x), x, t

))
for all u ∈ X . Then �t(x) : X → X∗ is Gâteaux differentiable at every x ∈ X ; and,
by (4.4), its derivative D�t satisfies the growth condition

‖D�t(x)‖L(X ;X∗) ≤ C ‖x‖q−2
X + C

for all x ∈ X and all t ∈ [0,T0], for some C > 0. Moreover, by (4.3), �t satisfies
the monotonicity condition 〈

h,D�t(x) · h
〉

X×X∗ ≥ 0
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for all x, h ∈ X and all t ∈ [0,T0]. Finally, for each t ∈ [0,T0], define the mapping
Ft(w) : H → X∗ by〈

δ,Ft(w)
〉

X×X∗ :=
∫
�

(
�
(∇w(x),w(x), x, t

)
+w(x)

)
·�δ (x)dx

for all w ∈ W 1,2
0 (�,Rk) ≡ H and all δ ∈ X , i.e.,

(4.22) Ft(w) = −S ·
(
�
(∇w(x),w(x), x, t

)
+w(x)

)
for all w ∈ H . Then Ft(w) is Gâteaux differentiable at every w ∈ H ; and, since �
is a Lipschitz function, the derivative DFt of Ft satisfies a Lipschitz condition

(4.23) ‖DFt(w)‖L(H ;X∗) ≤ C

for all w ∈ H and all t ∈ [0,T0].
Thus all the conditions of Theorem 3.2 are satisfied. Applying this theorem,

together with (4.18), we obtain that for each w0(x) ∈ W 1,2
0 (�,Rk), there exists

u(x, t) ∈ Lq
(
0,T0;W

2,q
loc (�,Rk)

)
such that u(x, t) ∈ L∞(0,T0;W

1,2
0 (�,Rk)

)
, where

q∗ := q/(q − 1), u(x, t) is W 1,2
0 (�,Rk)-weakly continuous on [0,T0], u(x, 0) =

w0(x) and u(x, t) is a solution of

(4.24)
dv
dt

(t) +�t
(
u(t)
)
+ Ft
(
u(t)
)
+ D�t
(
u(t)
)

= 0 for a.e. t ∈ (0,T0) .

Thus, by (4.24), (4.18), (4.20), (4.21), (4.22) and [11, Lemma 2.2], we infer that
u(x, t) ∈ W 1,q∗(

0,T0;Lq∗
(�,Rk)

)
and

(4.25)
∫
�

{
− du

dt
(x, t) +�

(∇xu(x, t), u(x, t), x, t
)
+ �
(
�xu(x, t), x, t

)
+ ∇L�

(
�xu(x, t), x, t

)} ·�δ (x) dx = 0

for all t ∈ (0,T0) for all δ ∈ X . Therefore,

(4.26)
du
dt

(x, t) = �
(∇xu(x, t), u(x, t), x, t

)
+ �

(
�xu(x, t), x, t

)
+ ∇L�

(
�xu(x, t), x, t

)
for all (x, t) ∈ �× (0,T0), and the result follows. �

4.4 Hyperbolic systems of second order.

Proposition 4.3. Let � ⊂ R
N be an open set and T0 > 0. Furthermore,

let �(L, x, t) : R
k
L × R

N
x × Rt → R

k×N , ϒ(L, x, t) : R
k
L × R

N
x × Rt → R

k and
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�(L, x, t) : Rk
L × R

N
x × Rt → R

k be measurable functions. Moreover, assume that
�(L, x, t), ϒ(L, x, t) and �(L, x, t) are C1 as a functions of the first argument L
when (x, t) are fixed. Also assume that ϒ(L, x, t) ∇xϒ(L, x, t), �(L, x, t), �(L, x, t)
and ∇x�(L, x, t) are globally Lipschitz in the first argument L, ϒ(L, x, t) is glob-
ally Lipschitz in the last argument t, and that �(0, x, t) ∈ L2

(
R;L2(RN ,Rk)

)
,

�(0, x, t) ∈ L2
(
R;W 1,2(RN ,Rk×N )

)
and that ϒ(0, x, t) ∈ L2

(
R;W 1,2

0 (�,Rk)
)
.

Then, for every w0(x) ∈ W 1,2
0 (�,Rk) and h0(x) ∈ L2(�,Rk), there exists

u(x, t) ∈ L∞(0,T0;W
1,2
0 (�,Rk)

)
such that du

dt (x, t) ∈ L∞(0,T0;L2(�,Rk)
) ∩

W 1,2
(
0,T0;W−1,2(�,Rk)

)
, u(x, t) is W 1,2

0 (�,Rk)-weakly continuous on [0,T0],
du
dt (x, t) is L2(�,Rk)-weakly continuous on [0,T0], u(x, 0) = w0(x), du

dt (x, 0) =
h0(x) and u(x, t) is a solution of

(4.27)
d2u
dt2

(x, t) −�xu(x, t) + ∂t
{
ϒ
(
u(x, t), x, t

)}
+ divx
{
�
(
u(x, t), x, t

)}
+�
(
u(x, t), x, t

)
= 0 in �× (0,T0) .

Proof. Let X0 :=
{
ϕ ∈ W 1,2

0 (�,Rk) ∩ W 2,2
loc (�,Rk) : �ϕ ∈ L2(�,Rk)

}
en-

dowed with the norm

(4.28) ‖ϕ‖X0 :=
(‖�ϕ‖2

L2(�,Rk) + ‖∇ϕ‖2
L2(�,Rk×N ) + ‖ϕ‖2

L2(�,Rk)

)1/2
for all ϕ ∈ X0 ⊂ W 2,2

loc (�,Rk) ∩ W 1,2
0 (�,Rk). Then X0 is a separable reflexive

Banach space. Next endow H0 := W 1,2
0 (�,Rk) with the standard scalar product

〈φ1, φ2〉H×H =
∫
�

(∇φ1(x) : ∇φ2(x) + φ1(x) · φ2(x)
)
dx

(a Hilbert space) and let T0 ∈ L(X0;H0) be the trivial embedding operator from
X0 ⊂ W 1,2

0 (�,Rk) into H0 = W 1,2
0 (�,Rk). Then T0 is an injective inclusion

with dense image. As before, in our notation,
{
W 1,2

0 (�,Rk)
}∗ = W 1,2

0 (�,Rk)
(although, in the usual notation,

{
W 1,2

0 (�,Rk)
}∗ identified with the isomorphic

space W−1,2(�,Rk) ). Next, define S0 ∈ L
(
L2(�,Rk),X∗

0

)
by

(4.29) 〈δ, S0 · h〉X0×X∗
0

=
∫
�

(
δ (x) −�δ (x)

)
· h(x) dx

for all δ ∈ X0 and all h ∈ L2(�,Rk). Then, since for every φ ∈ L2(�,Rk) there
exists unique δφ ∈ X0 such that (�δφ − δφ) = φ, we deduce that S0 is an injective
inclusion (i.e., ker S0 = 0). As before, {X0,H0,X∗

0 } is an evolution triple with the
corresponding inclusion operators T0 ∈ L(X0;H0) and T̃0 ∈ L(H0;X∗

0 ) as defined
in Definition 2.6 by

(4.30) 〈δ, T̃0 · ϕ〉X0×X∗
0

:= 〈T0 · δ, ϕ〉H0×H0
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for all ϕ ∈ H0 and δ ∈ X0. However,

〈T0 · δ, ϕ〉H0×H0
=
∫
�

(
∇δ (x) : ∇ϕ(x) + δ (x) · ϕ(x)

)
dx

=
∫
�

(
δ (x) −�δ (x)

)
· ϕ(x)dx = 〈δ, (S0 ◦ L) · ϕ〉X0×X∗

0

(4.31)

for all ϕ ∈ H0 and δ ∈ X0, where L ∈ L
(
W 1,2

0 (�,Rk),L2(�,Rk)
)

is a trivial
inclusion of W 1,2

0 (�,Rk) into L2(�,Rk). Thus plugging (4.31) into (4.30), we
obtain

(4.32) T̃0 · ϕ = S0 · (L · ϕ)

for all ϕ ∈ H0.

Next, as in the proof of Proposition 4.1, let X1 := W 1,2
0 (�,Rk), H1 := L2(�,Rk)

and T1 ∈ L(X1;H1) be the usual embedding operator from W 1,2
0 (�,Rk) into

L2(�,Rk). Then T1 is an injective inclusion with dense image. Furthermore,
X∗

1 = W−1,2(�,Rk), and the corresponding operator T̃1 ∈ L(H1;X∗
1 ), defined as in

(2.2), is the usual inclusion of L2(�,Rk) into W−1,2(�,Rk). Thus {X1,H1,X∗
1 } is

another evolution triple with the corresponding inclusion operators T1 ∈ L(X1;H1)
and T̃1 ∈ L(H1;X∗

1 ), as defined in Definition 2.6. Finally set

(4.33) X :=
{(

u(x), v(x)
)

: u(x) : � → R
k, v(x) : � → R

k

u(x) ∈ X0 ⊂ W 2,2
loc (�,Rk) ∩ W 1,2

0 (�,Rk), v(x) ∈ X1 ≡ W 1,2
0 (�,Rk)

}
.

On X , we consider the norm

‖z‖X∗ :=
(‖u‖2

X0
+ ‖v‖2

X1

)1/2
=
(‖�u‖2

L2(�,Rk) + ‖u‖2
W 1,2

0 (�,Rk)
+ ‖v‖2

W 1,2
0 (�,Rk)

)1/2(4.34)

for all z = (u, v) ∈ X . Thus X is a separable reflexive Banach space. Next set

(4.35) H :=
{(

u(x), v(x)
)

: u(x) : � → R
k, v(x) : � → R

k

u(x) ∈ H0 ≡ W 1,2
0 (�,Rk), v(x) ∈ H1 ≡ L2(�,Rk)

}
.

On H , we consider the scalar product

〈z1, z2〉H×H := 〈u1, u2〉H0×H0+ < v1, v2 >H1×H1

=
∫
�

{∇u1(x) : ∇u2(x) + u1(x) · u2(x) + v1(x) · v2(x)
}
dx

(4.36)
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for all z1 = (u1, v1), z2 = (u2, v2) ∈ H . Then H is a Hilbert space. Furthermore,
consider T ∈ L(X,H ) defined by

(4.37) T · z =
(
T0 · u,T1 · v)

for all z = (u, v) ∈ X . Thus T is an injective inclusion with dense image. Further-
more,

(4.38) X∗ :=
{(

u, v
)

: u ∈ X∗
0 , v ∈ X∗

1 ≡ W−1,2(�,Rk)
}
,

where

(4.39) 〈δ, h〉X×X∗ = 〈δ0, h0〉X0×X∗
0
+ 〈δ1, h1〉X1×X∗

1

for all δ = (δ0, δ1) ∈ X and all h = (h0, h1) ∈ X∗, and

(4.40) ‖z‖X∗ :=
(
‖u‖2

X∗
0
+ ‖v‖2

X∗
1

)1/2
for all z = (u, v) ∈ X∗. Moreover, the corresponding operator T̃ ∈ L(H ;X∗),
defined as in (2.2), is defined by

(4.41) T̃ · z =
(
T̃0 · u, T̃1 · v)

for all z = (u, v) ∈ H . Thus {X,H,X∗} is an evolution triple with the cor-
responding inclusion operators T ∈ L(X ;H ) and T̃ ∈ L(H ;X∗) as defined in
Definition 2.6.

Next let � ∈ L(H,X∗) be defined by

(4.42) � · z := (S0 · v,�u − u)

for all z = (u, v) ∈ H , i.e., u ∈ W 1,2
0 (�,Rk), v ∈ L2(�,Rk). Then, using (4.39)

and (4.29), we deduce

〈h,� · (T · h)〉X×X∗ = 〈u, S0 · (T1 · v)〉X0×X∗
0
+ 〈v,�(T0 · u) − T0 · u〉X1×X∗

1

=
∫
�
v(x) · (u(x) −�u(x)

)
dx −
∫
�

(∇v(x) : ∇u(x) + v(x) · u(x)
)
dx

= 0

(4.43)

for all h = (u, v) ∈ X .

Furthermore, for t ∈ [0,T0], define the function Ft(z) : H → H by

(4.44) Ft(z) :=
(
ϒ
(
u(x), x, t

)
, u(x) −�

(
u(x), x, t

)− divx�
(
u(x), x, t

))
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for all z = (u, v) ∈ H , (we have ϒ(u(x), x, t) ∈ W 1,2
0 (�,Rk) for a.e. t), i.e.,

〈Ft(z), z0〉H×H =
∫
�

(
∇x
{
ϒ
(
u(x), x, t

)}
: ∇u0(x) +ϒ

(
u(x), x, t

) · u0(x)
)
dx

+
∫
�

{
u(x) −�

(
u(x), x, t

)− divx�
(
u(x), x, t

)} · v0(x)dx(4.45)

for all z = (u, v) ∈ H and all z0 = (u0, v0) ∈ H . Then Ft satisfies the conditions

(4.46) ‖Ft(z)‖H ≤ C‖z‖H + f (t)

for all z ∈ H and all t ∈ [0,T0], and

(4.47) ‖T̃ ◦ DFt(z)‖L(H ;X∗) ≤ C

for all z ∈ H and all t ∈ [0,T0], for some C > 0 and some f (t) ∈ L2(0,T0;R).
Moreover, for bounded �, since the embedding of W 1,2

0 (�,Rk) into L2(�,Rk) is
compact, we obtain that Ft is weak to weak continuous on H . If we assume �
to be unbounded then, for every �′ ⊂⊂ �, Ft is weak to weak continuous, as a
mapping defined on H with the valued functions, restricted to the smaller set �′.
Therefore, since �′ is arbitrary, using (4.46), we deduce that in all cases, Ft is
weak to weak continuous on H . Then all the conditions of Corollary 3.2 satisfied;
and by that corollary, for every w0 ∈ W 1,2

0 (�,Rk) and every h0 ∈ L2(�,Rk), there
exists ζ (t) ∈ L∞(0,T0;H ) such that ξ (t) := T̃ · (ζ (t)) ∈ W 1,2(0,T0;X∗) and ζ (t)
satisfies the equation

(4.48)

⎧⎨⎩
dξ
dt (t) +� · (ζ (t)) + T̃ · Ft

(
ζ (t)
)

= 0 for a.e. t ∈ (0,T0),

ζ (0) =
(
w0(x), −h0(x) −ϒ

(
w0(x), x, 0

))
,

where we assume that ζ (t) is H -weakly continuous on [0,T0], as stated in
Lemma 2.2. We can rewrite (4.48) as follows. Let

(
u(x, t), v(x, t)

)
= ζ (t). Then,

by (4.48), (4.37), (4.42), (4.45), (4.32) and [11, Lemma 2.2], we have

u(x, t) ∈ L∞(0,T0;W
1,2
0 (�,Rk)

) ∩ W 1,2(0,T0;L
2(�,Rk)

)
,

v(x, t) ∈ L∞(0,T0;L
2(�,Rk)

) ∩ W 1,2(0,T0;W
−1,2(�,Rk)

)
,

u(x, t) is W 1,2
0 (�,Rk)-weakly continuous on [0,T0], v(x, t) is L2(�,Rk)-weakly

continuous on [0,T0], u(x, 0) = w0(x), v(x, 0) = −h0(x) − ϒ
(
w0(x), x, 0

)
and in

�× (0,T0)
(
u(x, t), v(x, t)

)
solves

(4.49)

⎧⎨⎩ du
dt (x, t) + v(x, t) +ϒ

(
u(x, t), x, t) = 0 ,

dv
dt (x, t) +�xu(x, t) −�

(
u(x, t), x, t) − divx�

(
u(x, t), x, t) = 0 .
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In particular, du
dt (x, t) ∈ L∞(0,T0;L2(�,Rk)

) ∩ W 1,2
(
0,T0;W−1,2(�,Rk)

)
and

du
dt (x, 0) = h0(x). Moreover, differentiating the equality

v(x, t) = −du
dt

(x, t) −ϒ
(
u(x, t), x, t)

in the argument t and inserting the result into the second equation in (4.49), we
finally deduce (4.27). �

4.5 Schrödinger type nonlinear systems.

Proposition 4.4. Let � ⊂ R
N be an open set and T0 > 0. Furthermore, let

�(a, b, x, t) : Rk
a×R

k
b×R

N
x ×Rt → R

k and �(a, b, x, t) : Rk
a×R

k
b×R

N
x ×Rt → R

k

be measurable functions. Moreover, assume that �(a, b, x, t) and �(a, b, x, t) are
C1 as a functions of the first two arguments a and b when (x, t) is fixed. Also
assume that�(a, b, x, t), ∇x�(a, b, x, t), �(a, b, x, t) and ∇x�(a, b, x, t) are glob-
ally Lipschitz in the first two arguments a and b, and

�(0, 0, x, t) ∈ L2(
R;W 1,2

0 (�,Rk)
)

and �(0, 0, x, t) ∈ L2(
R;W 1,2

0 (�,Rk)
)
.

Then, for each w0(x) ∈ W 1,2
0 (�,Rk) and h0(x) ∈ W 1,2

0 (�,Rk), there exists

u(x, t) ∈ L∞(0,T0;W
1,2
0 (�,Rk)

) ∩ W 1,2(0,T0;W
−1,2(�,Rk)

)
and

v(x, t) ∈ L∞(0,T0;W
1,2
0 (�,Rk)

) ∩ W 1,2(0,T0;W
−1,2(�,Rk)

)
such that u(x, t) and v(x, t) are W 1,2

0 (�,Rk)-weakly continuous on [0,T0], u(x, 0) =
w0(x), v(x, 0) = h0(x) and

(
u(x, t), v(x, t)

)
is a solution of

(4.50)

⎧⎨⎩ du
dt (x, t) −�xv(x, t) +�

(
u(x, t), v(x, t), x, t

)
= 0 in �× (0,T0),

dv
dt (x, t) +�xu(x, t) +�

(
u(x, t), v(x, t), x, t

)
= 0 in �× (0,T0).

Proof. Let X0 :=
{
ϕ ∈ W 1,2

0 (�,Rk)∩W 3,2
loc (�,Rk) : �ϕ ∈ W 1,2

0 (�,Rk)
}
, and

endow X0 with the norm

(4.51) ‖ϕ‖X0 :=
(‖∇�ϕ‖2

L2(�,Rk×N ) + ‖�ϕ‖2
L2(�,Rk ) + ‖∇ϕ‖2

L2(�,Rk×N ) + ‖ϕ‖2
L2(�,Rk )

)1/2

for all ϕ ∈ X0 ⊂ W 1,2
0 (�,Rk)∩W 3,2

loc (�,Rk). So X0 is a separable reflexive Banach
space (in fact, a Hilbert space). Next let H0 := W 1,2

0 (�,Rk) be endowed with the
standard scalar product

〈φ1, φ2〉H×H =
∫
�

(∇φ1(x) : ∇φ2(x) + φ1(x) · φ2(x)
)
dx
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(a Hilbert space) and T0 ∈ L(X0;H0) be the trivial embedding operator from
X0 ⊂ W 1,2

0 (�,Rk) into H0 = W 1,2
0 (�,Rk). Then T0 is an injective inclusion with

dense image. As before, in out notation,
{
W 1,2

0 (�,Rk)
}∗ = W 1,2

0 (�,Rk).
Next, clearly, for every h ∈ W−1,2(�,Rk), there exists unique Hh ∈ W 1,2

0 (�,Rk)
such that �Hh − Hh = h. Then define S0 ∈ L

(
W−1,2(�,Rk),X∗

0

)
by

(4.52) 〈δ, S0 ·h〈X0×X∗
0

=
∫
�

{(
(∇�)δ (x)−∇δ (x)

)
: ∇Hh(x)+

(
(�δ (x)−δ (x)

)
·Hh(x)

}
dx

for all δ ∈ X0 and all h ∈ W−1,2(�,Rk). Then, since for every φ ∈ W 1,2
0 (�,Rk)

there exists unique δφ ∈ X0 such that �δφ − δφ = φ, we deduce that S0 is injective
inclusion (i.e., ker S0 = 0). As before, {X0,H0,X∗

0 } is an evolution triple with the
corresponding inclusion operators T0 ∈ L(X0;H0) and T̃0 ∈ L(H0;X∗

0 ), as defined
in Definition 2.6, by

(4.53) 〈δ, T̃0 · ϕ〉X0×X∗
0

:= 〈T0 · δ, ϕ〉H0×H0

for all ϕ ∈ H0 and δ ∈ X0. However,

〈T0 · δ,ϕ〉H0×H0
=
∫
�

(
∇δ (x) : ∇ϕ(x) + δ (x) · ϕ(x)

)
dx

=
∫
�

(
δ (x) −�δ (x)

)
· ϕ(x) dx

=
∫
�

(
δ (x) −�δ (x)

)
·
(
�HL·ϕ(x) − HL·ϕ(x)

)
dx(4.54)

=
∫
�

{(
(∇�)δ (x) − ∇δ (x)

)
: ∇HL·ϕ(x) +

(
(�δ (x) − δ (x)

)
· HL·ϕ(x)

}
dx

= 〈δ, (S0 ◦ L) · ϕ〉X0×X∗
0

for every ϕ ∈ H0 and δ ∈ X0, where L ∈ L
(
W 1,2

0 (�,Rk),W−1,2(�,Rk)
)

is
the trivial inclusion of W 1,2

0 (�,Rk) in W−1,2(�,Rk). Thus, plugging (4.59) into
(4.53), we obtain

(4.55) T̃0 · ϕ = S0 · (L · ϕ)
for every ϕ ∈ H0. Next set

(4.56) X :=
{(

u(x), v(x)
)

: u(x) : � → R
k, v(x) : � → R

k, u(x) ∈ X0, v(x) ∈ X0

}
;

and on X , consider the norm

(4.57) ‖z‖X :=
(‖u‖2

X0
+ ‖v‖2

X0

)1/2
for all z = (u, v) ∈ X . Then X is a separable reflexive Banach space. Next set
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(4.58) H :=
{(

u(x), v(x)
)

: u(x) : � → R
k, v(x) : � → R

k, u(x) ∈ H0, v(x) ∈ H0

}
;

and on H , consider the scalar product

〈z1, z2〉H×H := 〈u1, u2〉H0×H0 + 〈v1, v2〉H0×H0(4.59)

=
∫
�

{
∇u1(x) : ∇u2(x) + u1(x) · u2(x) + ∇v1(x) : ∇v2(x) + v1(x) · v2(x)

}
dx

for all z1 = (u1, v1), z2 = (u2, v2) ∈ H . Then H is a Hilbert space. Furthermore,
consider the operator T ∈ L(X,H ) defined by

(4.60) T · z =
(
T0 · u,T0 · v)

for all z = (u, v) ∈ X . Then T is an injective inclusion with dense image. Further-
more,

(4.61) X∗ :=
{(

u, v
)

: u ∈ X∗
0 , v ∈ X∗

0

}
,

where

(4.62) 〈δ, h〉X×X∗ = 〈δ0, h0〉X0×X∗
0
+ 〈δ1, h1〉X0×X∗

0

for all δ = (δ0, δ1) ∈ X and all h = (h0, h1) ∈ X∗, and

(4.63) ‖z‖X∗ :=
(‖u‖2

X∗
0
+ ‖v‖2

X∗
0

)1/2
for all z = (u, v) ∈ X∗. Moreover, the corresponding operator T̃ ∈ L(H ;X∗),
defined as in (2.2), is defined by

(4.64) T̃ · z =
(
T̃0 · u, T̃0 · v) =

(
S0 · (L · u), S0 · (L · v))

for all z = (u, v) ∈ H . Thus {X,H,X∗} is an evolution triple with the corres-
ponding inclusion operators T ∈ L(X ;H ) and T̃ ∈ L(H ;X∗) as defined in Defini-
tion 2.6.

Next define � ∈ L(H,X∗) by

(4.65) � · z :=
(

− S0 · (�v − v), S0 · (�u − u)
)

for all z = (u, v) ∈ H (i.e., (�u − u) ∈ W−1,2(�,Rk), (�v − v) ∈ W−1,2(�,Rk)),
where S0 is defined in (4.52). Then, using (4.62), we deduce

(4.66) 〈h,� · (T · h)〉X×X∗ = −〈u, S0 · (�v − v)〉X0×X∗
0
+ 〈v, S0 · (�u − u)〉X0×X∗

0

= −
∫
�

{(
(∇�u)(x) − ∇u(x)

)
: ∇v(x) +

(
�u(x) − u(x)

)
· v(x)
}

dx

+
∫
�

{(
(∇�v)(x) − ∇v(x)

)
: ∇u(x) +

(
�v(x) − v(x)

)
· u(x)
}

dx = 0
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for all h = (u, v) ∈ X . Furthermore, for each t ∈ [0,T0], define the function
Ft(z) : H → H by

(4.67) Ft(z) :=
(
�
(
u(x, t), v(x, t), x, t

)− v(x),�
(
u(x, t), v(x, t), x, t

)
+ u(x)
)

for all z = (u, v) ∈ H

we have �(u(x, t), v(x, t), x, t),�(u(x, t), v(x, t), x, t) ∈ W 1,2
0 (�,Rk) for a.e. t),

i.e.,

〈Ft(z),z0〉H×H =
∫
�

{(
∇x

{
�
(
u(x, t), v(x, t), x, t

)}− ∇v(x)
)

: ∇u0(x)

+
(
�
(
u(x, t), v(x, t), x, t

)− v(x)
)

· u0(x)

+
(
∇x

{
�
(
u(x, t), v(x, t), x, t

)}
+ ∇u(x)

)
: ∇v0(x)

+
(
�
(
u(x, t), v(x, t), x, t

)
+ u(x)
)

· v0(x)
}

dx

(4.68)

for all z = (u, v) ∈ H for and all z0 = (u0, v0) ∈ H . Then

(4.69) ‖Ft(z)‖H ≤ C‖z‖H + f (t)

for all z ∈ H and all t ∈ [0,T0], for some constant C > 0 and some f (t) ∈
L2(0,T0;R). Furthermore, Ft satisfies the Lipschitz condition

(4.70)
∥∥T̃ ◦ DFt(z)

∥∥
L(H ;X∗) ≤ C

for all z ∈ H and all t ∈ [0,T0]. Moreover, since the embedding of H =W 1,2
0 (�,Rk)

in L2
loc(�,R

k) is compact, we obtain that if zn ⇀ z0 weakly in H , then zn → z0

strongly in L2
loc(�,R

k). Thus, by (4.69), we obtain Ft(zn) ⇀ Ft(z0) weakly in
H . So Ft is weak to weak continuous in H . Then all the conditions of Corol-
lary 3.2 satisfied; and by that corollary, for every w0 ∈ W 1,2

0 (�,Rk) and every
h0 ∈ W 1,2

0 (�,Rk), there exists ζ (t) =
(
u(x, t), v(x, t)

) ∈ L∞(0,T0;H ) such that
ξ (t) := T̃ · (ζ (t)) ∈ W 1,2(0,T0;X∗) and ζ (t) satisfy the equation

(4.71)

⎧⎨⎩
dξ
dt (t) +� · ζ (t) + T̃ · Ft

(
ζ (t)
)

= 0 for a.e. t ∈ (0,T0),

ζ (0) =
(
w0(x), h0(x)

)
,

where we assume that ζ (t) is H -weakly continuous on [0,T0], as stated in
Lemma 2.2. We can rewrite (4.71) as follows. Let

(
u(x, t), v(x, t)

)
= ζ (t). Then

u(x, t) ∈ L∞(0,T0;W
1,2
0 (�,Rk)

)
, v(x, t) ∈ L∞(0,T0;W

1,2
0 (�,Rk)

)
, u(x, t) and
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v(x, t) are W 1,2
0 (�,Rk)-weakly continuous on [0,T0], u(x, 0) = w0(x), v(x, 0) =

h0(x); and by (4.55) and the definitions of � and Ft, we obtain

(4.72) −
〈
∂δ

∂t
(x, t), S0 · u(x, t)

〉
X0×X∗

0

+
〈
δ (x, t), S0 ·

(
−�xv(x, t) +�

(
u(x, t), v(x, t), x, t

))〉
X0×X∗

0

= 0

for all δ (x, t) ∈ C1
c (
(
0,T0;X0

)
, and

(4.73) −
〈
∂δ

∂t
(x, t), S0 · v(x, t)

〉
X0×X∗

0

+
〈
δ (x, t), S0 ·

(
�xu(x, t) +�

(
u(x, t), v(x, t), x, t

))〉
X0×X∗

0

= 0

for all δ (x, t) ∈ C1
c (
(
0,T0;X0

)
. Then, by [11, Lemma 2.2], we obtain

du
dt

(x, t) ∈ L2(0,T0;W
−1,2(�,Rk)

)
and

dv
dt

(x, t) ∈ L2(0,T0;W
−1,2(�,Rk)

)
,

and thus

u(x, t) ∈ L∞(0,T0;W
1,2
0 (�,Rk)

) ∩ W 1,2(0,T0;W
−1,2(�,Rk)

)
and

v(x, t) ∈ L∞(0,T0;W
1,2
0 (�,Rk)

) ∩ W 1,2(0,T0;W
−1,2(�,Rk)

)
.

Moreover,
(
u(x, t), v(x, t)

)
solves (4.50). �

4.6 Incompressible Navier-Stokes equations and magneto-hydro-
dynamics. Let � ⊂ R

N be a domain. The initial-boundary value problem for
the incompressible Navier-Stokes equations is as follows:

(4.74)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i) ∂v
∂t + divx(v ⊗ v) + ∇xp = νh�xv + f for all (x, t) ∈ �× (0,T0),

(ii) divx v = 0 for all (x, t) ∈ �× (0,T0),

(iii) v(x, t) = γ(x, t) for all (x, t) ∈ ∂�× (0,T0),

(iv) v(x, 0) = v0(x) for all x ∈ �.
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Here, v = v(x, t) : � × (0,T0) → R
N is an unknown velocity, p = p(x, t) :

� × (0,T0) → R is an unknown pressure associated with v , νh > 0 is a given
constant hydrodynamical viscosity, f : � × (0,T0) → R

N is a given force field,
γ = γ(x, t) is a given velocity on the boundary (which can be nontrivial for fluid
driven by its boundary) and v0 : � → R

N is a given initial velocity.

The initial-boundary value problem for the incompressible magneto-hydro-
dynamics is as follows:

(4.75)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) ∂v
∂t + divx(v ⊗ v) − divx(b ⊗ b) + ∇xp = νh�xv + f

for all (x, t)∈�×(0,T0),

(ii) ∂b
∂t + divx(b ⊗ v) − divx(v ⊗ b) = νm�xb

for all (x, t) ∈ �× (0,T0),

(iii) divx v = 0 for all (x, t) ∈ �× (0,T0),

(iv) divx b = 0 for all (x, t) ∈ �× (0,T0),

(v) v(x, t) = 0 for all (x, t) ∈ ∂�× (0,T0),

(vi) b · n = 0 for all (x, t) ∈ ∂�× (0,T0),

(vii)
∑N

j =1

(
∂bi
∂x j

− ∂b j

∂xi

)
n j = 0 for all (x, t) ∈ ∂�× (0,T0)

for all i = 1, 2, . . .N,

(viii) v(x, 0) = v0(x) for all x ∈ �,
(ix) b(x, 0) = b0(x) for all x ∈ �.

Here, v = v(x, t) : � × (0,T0) → R
N is an unknown velocity, b = b(x, t) :

� × (0,T0) → R
N is an unknown magnetic field, p = p(x, t) : � × (0,T0) → R

is an unknown total pressure (hydrodynamical+magnetic), νh > 0 and νm > 0 are
given constant hydrodynamical and magnetic viscosities, f : � × (0,T0) → R

N

is a given force field, v0 : � → R
N is a given initial velocity, b0 : � → R

N is a
given initial magnetic field and n is a normal to ∂�.
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Next, for constant λ ∈ {0, 1}, consider the system

(4.76)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t + divx(v ⊗ v) − λ divx(b ⊗ b) + ∇xp = νh�xv + f

for all (x, t) ∈ �× (0,T0),
∂b
∂t + λ divx(b ⊗ v) − λ divx(v ⊗ b) = νm�xb

for all (x, t) ∈ �× (0,T0),

divx v = 0 for all (x, t) ∈ �× (0,T0),

divx b = 0 for all (x, t) ∈ �× (0,T0) ,

v(x, t) = γ(x, t) for all (x, t) ∈ ∂�× (0,T0) ,

b · n = 0 for all (x, t) ∈ ∂�× (0,T0),∑N
j =1

(
∂bi
∂x j

− ∂b j

∂xi

)
n j = (λ/νm)

(
γ · n)b for all (x, t) ∈ ∂�× (0,T0)

for all i = 1, 2, . . .N,

v(x, 0) = v0(x) for all x ∈ �,
b(x, 0) = b0(x) for all x ∈ �.

For λ = 1 and γ ≡ 0, this system coincides with (4.75). On the other hand, if
(v, b, p) is a solution of (4.76) with λ = 0, then (v, p) is a solution of (4.74).

If there exists a sufficiently regular function r = r(x, t) : � × (0,T0) → R
N

such that r(x, t) = γ(x, t) ∀(x, t) ∈ ∂� × (0,T0) and divx r ≡ 0, then choose one
and define the new unknown function u(x, t) := v(x, t)− r(x, t) and its initial value
u0(x) := v0(x) − r(x, 0). Then we can rewrite (4.76) in the terms of (u, b, p) as

(4.77)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + divx

(
u ⊗ u + r ⊗ u + u ⊗ r − λb ⊗ b

)
+ ∇xp = νh�xu + f̂

for all (x, t) ∈ �× (0,T0),
∂b
∂t + λ divx(b ⊗ u − u ⊗ b + b ⊗ r − r ⊗ b) = νm�xb

for all (x, t) ∈ �× (0,T0),

divx u = 0 for all (x, t) ∈ �× (0,T0),

divx b = 0 for all (x, t) ∈ �× (0,T0),

u = 0 for all (x, t) ∈ ∂�× (0,T0),

b · n = 0 for all (x, t) ∈ ∂�× (0,T0),∑N
j =1

(
∂bi
∂x j

− ∂b j

∂xi

)
n j = (λ/νm)

(
r · n)b for all (x, t) ∈ ∂�× (0,T0)

for all i = 1, 2, . . .N,

u(x, 0) = u0(x) for all x ∈ �,
b(x, 0) = b0(x) for all x ∈ �,
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where f̂ := f +�xr − ∂tr − divx (r ⊗ r). We prove the existence of a solution of
the system (4.77) for λ = 0 and λ = 1.

We need some preliminaries.

Definition 4.1. Let � ⊂ R
N be an open set.

• We denote by VN = VN (�) the space {ϕ ∈ C∞
c (�,RN ) : div ϕ = 0} and by

LN = LN (�) the closure of VN in L2(�,RN ). We endow LN with the scalar
product 〈ϕ1, ϕ2〉BN

:=
∫
� ϕ1 · ϕ2 dx and the norm ‖ϕ‖ :=

( ∫
� |ϕ|2dx

)1/2.
• We denote by VN = VN (�) the closure of VN in W 1,2

0 (�,RN ) and endow VN

with the scalar product 〈ϕ1, ϕ2〉VN
:=
∫
�

(∇ϕ1 : ∇ϕ2 + ϕ1 · ϕ2
)
dx and the

norm ‖ϕ‖ :=
( ∫

� |∇ϕ|2dx +
∫
� |ϕ|2dx

)1/2.
• We let

C∞
c (�,RN ) :=

{
ϕ : � → R

N : there exists ϕ̄ ∈ C∞
c (RN ,RN ) such that

ϕ̄(x) = ϕ(x) for all x ∈ �}.
Furthermore, given ϕ ∈ D′(�,RN ), let

(4.78) rotxϕ :=
{
∂ϕi

∂x j
− ∂ϕ j

∂xi

}
1≤i, j≤N

=
(∇x f
)− (∇x f

)T ∈ D′(�,RN×N ),
define the linear space

(4.79) B ′
N = B ′

N (�) :=
{
ϕ ∈ LN : rotxϕ ∈ L2(�,RN×N )},

and endow B ′
N with the scalar product

〈ϕ1, ϕ2〉B ′
N

:=
∫
�

(
ϕ1 · ϕ2 + (1/2)rotxϕ1 · rotxϕ2

)
dx

and the corresponding norm ‖ϕ‖B ′
N

:=
(〈ϕ, ϕ〉B ′

N

)1/2. Then B ′
N is a Hilbert space.

Moreover, clearly B ′
N is continuously embedded in W 1,2

loc (�,RN ) ∩ LN . We also
denote by BN = BN (�) the closure of B ′

N (�) ∩ C∞
c (�,RN ) in B ′

N (�) and endow
BN with the norm of B ′

N (�). (Clearly, BN is a subset of B ′
N , and if the boundary of

the domain � is sufficiently regular, then BN and B ′
N coincide.)

Proposition 4.5. For each r ∈ L2
(
0,T0;W 1,2(�,RN )

) ∩ L∞,
f ∈ L2

(
0,T0;L2(�,RN )

)
, g ∈ L2

(
0,T0;L2(�,RN×N )

)
, νh > 0, νm > 0,

λ ∈ {0, 1}, v0(·) ∈ LN and b0(·) ∈ LN , there exist u(x, t) ∈ L2(0,T0;VN ) ∩
L∞(0,T0;LN ) and b(x, t) ∈ L2(0,T0;BN ) ∩ L∞(0,T0;LN ) such that u(·, t) and
b(·, t) are LN -weakly continuous in t on [0,T0], u(x, 0) = v0(x), b(x, 0) = b0(x),
and u(x, t) and b(x, t) satisfy
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∫ T0

0

∫
�

{(
u(x, t) ⊗ u(x, t) + r(x, t) ⊗ u(x, t) + u(x, t) ⊗ r(x, t) − λb(x, t) ⊗ b(x, t) + g(x, t)

)
:

∇xψ(x, t) − f (x, t) · ψ(x, t) + u(x, t) · ∂tψ(x, t)
}

dxdt(4.80)

=
∫ T0

0

∫
�

νh∇xu(x, t) : ∇xψ(x, t) dxdt −
∫
�

v0(x) · ψ(x, 0) dx

for every ψ(x, t) ∈ C1
c

(
�× [0,T0),RN

) ∩ C1
(
[0,T0];VN

)
and∫ T0

0

∫
�

{
λ
(
b(x, t) ⊗ u(x, t) − u(x, t) ⊗ b(x, t) + b(x, t) ⊗ r(x, t) − r(x, t) ⊗ b(x, t)

)
:

∇xφ(x, t) + b(x, t) · ∂tφ(x, t)
}

dxdt(4.81)

=
∫ T0

0

∫
�

νm

2
rotxb(x, t) : rotxφ(x, t) dxdt −

∫
�

b0(x) · φ(x, 0) dx,

for every φ(x, t) ∈ C1
c

(
R

N × [0,T0),RN
) ∩ C1

(
[0,T0];BN

)
; i.e.,

(4.82)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + divx

(
u ⊗ u + r ⊗ u + u ⊗ r − λb ⊗ b

)
+ ∇xp

= νh�xu − f − divx g for all (x, t) ∈ �× (0,T0),
∂b
∂t + λ divx(b ⊗ u − u ⊗ b + b ⊗ r − r ⊗ b) = νm�xb

for all (x, t) ∈ �× (0,T0),

divx u = 0 for all (x, t) ∈ �× (0,T0),

divx b = 0 for all (x, t) ∈ �× (0,T0),

u = 0 for all (x, t) ∈ ∂�× (0,T0),

b · n = 0 for all (x, t) ∈ ∂�× (0,T0),

rotxb · n = (λ/νm)
(
r · n)b for all (x, t) ∈ ∂�× (0,T0),

u(x, 0) = u0(x) for all x ∈ �,
b(x, 0) = b0(x) for all x ∈ �.

Moreover, if either λ = 0 and � is bounded or r(x, t) ≡ 0, then u(x, t) and b(x, t)
satisfy the energy inequality

1
2

∫
�

∣∣u(x, τ)
∣∣2dx +

1
2

∫
�

∣∣b(x, τ)
∣∣2dx +

∫ τ
0

∫
�
νh

∣∣∇xu(x, t)
∣∣2 dxdt

+
∫ τ

0

∫
�

νm

2

∣∣rotxb(x, t)
∣∣2 dxdt ≤ 1

2

∫
�

∣∣v0(x)∣∣2dx +
1
2

∫
�

∣∣b0(x)
∣∣2dx

+
∫ τ

0

∫
�

({
g(x, t) + r(x, t) ⊗ u(x, t) + u(x, t) ⊗ r(x, t)

}
: ∇xu(x, t)

+ λ
{
b(x, t) ⊗ r(x, t)

}
: rotxb(x, t) − f (x, t) · u(x, t)

)
dxdt

(4.83)
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for all τ ∈ [0,T0].

Proof. Fix νh > 0, νm > 0, λ ∈ {0, 1}, f ∈ L2
(
0,T0;L2(�,RN )

)
g ∈ L2

(
0,T0;L2(�,RN×N )

)
, r ∈ L2

(
0,T0;W 1,2(�,RN )

) ∩ L∞, v0(·) ∈ LN and
b0(·) ∈ LN . Next define the space U ′

N as a closure of VN with respect to the norm

(4.84) ‖ϕ‖U ′
N

:= ‖ϕ‖VN + sup
x∈�

|ϕ(x)| + sup
x∈�

|∇ϕ(x)|

and the space D ′
N as a closure of BN ∩ C∞

c (�,RN ) with respect to the norm

(4.85) ‖ϕ‖D ′
N

:= ‖ϕ‖BN + sup
x∈�

|ϕ(x)| + sup
x∈�

|∇ϕ(x)|.

Then, clearly, U ′
N and D ′

N are separable Banach spaces, which, however, are not
reflexive. On the other hand, by [11, Lemma A.2], there exist separable Hilbert
spaces UN and DN and bounded linear inclusion operators A1 ∈ L(UN ;U ′

N ) and
A2 ∈ L(DN ;D ′

N ) such that A1 and A2 are injective, the image of A1 is dense in
U ′

N and the image of A2 is dense in B ′
N . On the other hand, clearly, U ′

N is trivially
embedded in VN and the trivial embedding operator I1 ∈ L(U ′

N ;VN ) is injective
and has dense range in VN . Similarly, D ′

N is trivially embedded in BN , and the
trivial embedding operator I2 ∈ L(D ′

N ;BN ) is injective and has dense range in BN .
Therefore,

(4.86) Q1 := I1 ◦ A1 ∈ L(UN ;VN ) and Q2 := I2 ◦ A2 ∈ L(DN ;BN ) ,

are injective and have dense ranges in VN and BN respectively. Next define
P1 ∈ L(VN ;LN ) as the trivial inclusion of VN into LN and P2 ∈ L(BN ;LN ) as
the trivial inclusion of BN into LN . Then, clearly, P1 and P2 are injective and have
dense ranges in LN . Finally, define

(4.87) T1 := P1 ◦ Q1 ∈ L(UN ;LN ) and T2 := P2 ◦ Q2 ∈ L(DN ;LN ).

Then T1 and T2 are injective and have dense ranges in LN . Next set

(4.88) X :=
{(
ψ,ϕ
)

: ψ ∈ UN , ϕ ∈ DN

}
,

and on X consider the norm

(4.89) ‖x‖X :=
(‖ψ‖2

UN
+ ‖ϕ‖2

DN

)1/2
for all x = (ψ,ϕ) ∈ X . Thus X is a separable reflexive Banach space. Similarly,
set

(4.90) Z :=
{(
ψ,ϕ

)
: ψ : � → R

N , ϕ : � → R
N , ψ ∈ VN , ϕ ∈ BN

}
,
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and on Z consider the norm

(4.91) ‖z‖Z :=
(‖ψ‖2

VN
+ ‖ϕ‖2

BN

)1/2
for all z = (ψ,ϕ) ∈ Z . Thus Z is also a separable reflexive Banach space. Finally,
set

(4.92) H :=
{(
ψ,ϕ

)
: ψ : � → R

N , ϕ : � → R
N , ψ ∈ LN , ϕ ∈ LN

}
and on H , consider the scalar product

〈h1, h2〉H×H := 〈ψ1, ψ2〉LN ×LN + 〈ϕ1, ϕ2〉LN ×LN

=
∫
�

{
ψ1(x) ·ψ2(x) + ϕ1(x) · ϕ2(x)

}
dx

(4.93)

for all h1 = (ψ1, ϕ1), h2 = (ψ2, ϕ2) ∈ H . Then H is a Hilbert space. Furthermore,
define Q ∈ L(X,Z) by

(4.94) Q · h =
(
Q1 · ψ,Q2 · ϕ)

for all h = (ψ,ϕ) ∈ X . Similarly, define P ∈ L(Z,H ) by

(4.95) P · z =
(
P1 · ψ,P2 · ϕ)

for all z = (ψ,ϕ) ∈ Z , and T ∈ L(X,H ) by

(4.96) T · h =
(
T1 · ψ,T2 · ϕ)

for all h = (ψ,ϕ) ∈ X . Thus, clearly, T = P ◦ Q, and T is an injective inclusion
with dense image. Furthermore,

(4.97) X∗ :=
{(
ψ,ϕ
)

: ψ ∈ (UN )∗, ϕ ∈ (DN )∗
}
,

where

(4.98) 〈δ, h〉X×X∗ = 〈δ0, h0〉UN ×(UN )∗ + 〈δ1, h1〉DN ×(DN )∗

for all δ = (δ0, δ1) ∈ X and all h = (h0, h1) ∈ X∗. Thus {X,H,X∗} is an evolution
triple with the corresponding inclusion operators T ∈ L(X ;H ) and T̃ ∈ L(H ;X∗),
as defined in Definition 2.6.

Next, define �(h) : Z → [0,+∞) by

�(h) :=
1
2

∫
�

(
νh

∣∣∇xψ(x)
∣∣2 +

νm

2

∣∣rotxϕ(x)
∣∣2 +
∣∣ψ(x)
∣∣2 +
∣∣ϕ(x)∣∣2)dx
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for all h = (ψ,ϕ) ∈ Z =
(
VN ,BN

)
. So the mapping D�(h) : Z → Z∗ is linear and

monotone. Furthermore, for each t ∈ [0,T0], define �t(σ) : H → (UN )∗ by

(4.99)
〈
δ,�t(σ)

〉
UN ×(UN )∗

:= −
∫
�

{(
w(x)⊗w(x)+r(x, t)⊗w(x, t)+w(x, t)⊗r(x, t)−λb(x)⊗b(x)

)
+g(x, t)

}
: ∇{A1 · δ}(x) dx

+
∫
�

(
f (x, t) −w(x)

)
· {A1 · δ}(x) dx

for all σ = (w, b) ∈ LN ⊕ LN ≡ H and all δ ∈ UN . Next, for each t ∈ [0,T0],
define �t(σ) : H → (DN )∗ by

(4.100)
〈
δ,�t(σ)

〉
DN ×(DN )∗

:= −
∫
�
λ
(
b(x) ⊗w(x) −w(x) ⊗ b(x) + b(x) ⊗ r(x, t) − r(x, t) ⊗ b(x)

)
: ∇{A2 · δ}(x) dx −

∫
�

b(x) · {A2 · δ}(x) dx

for all σ = (w, b) ∈ LN ⊕ LN ≡ H and all δ ∈ DN . Finally, for each t ∈ [0,T0],
define Ft(σ) : H → X∗ by

(4.101) Ft(σ) :=
(
�t(σ),�t(σ)

)
for all σ ∈ H . Then Ft(σ) is Gâteaux differentiable at every σ ∈ H , and the
derivative DFt of Ft(σ) satisfies the condition

(4.102) ‖DFt(σ)‖L(H ;X∗) ≤ C
(‖σ‖H + 1

)
for all σ ∈ H and all t ∈ [0,T0], for some constant C > 0. Moreover,

(4.103)
〈
δ,Ft(T · δ )

〉
X×X∗ =

〈
ψ,�t(T · δ )

〉
UN ×(UN )∗

+
〈
ϕ,�t(T · δ )

〉
DN ×(DN )∗

= −
∫
�

{(
w(x)⊗w(x)+r(x, t)⊗w(x, t)+w(x, t)⊗r(x, t)−λb(x)⊗b(x)

)
+g(x, t)

}
: ∇w(x) dx

+
∫
�

(
f (x, t)−w(x)

)
·w(x) dx−

∫
�
λ
(
b(x)⊗w(x)−w(x)⊗b(x)+b(x)⊗r(x, t)−r(x, t)⊗b(x)

)
: ∇b(x) dx −

∫
�

b(x) · b(x) dx
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where w = A1 ·ψ, b = A2 · ϕ for all δ = (ψ,ϕ) ∈ UN ⊕ DN = X and all t ∈ [0,T0].
Thus, since w = A1 ·ψ ∈ U ′

N and b = A2 · ϕ ∈ D ′
N , we can rewrite (4.103) as

(4.104)
〈
δ,Ft(T · δ )

〉
X×X∗ =

∫
�

(
f (x, t) ·w(x) − g(x, t) : ∇w(x)

)
dx

−
∫
�

(∣∣w(x)
∣∣2 +
∣∣b(x)
∣∣2) dx

−
∫
�

({
r(x, t) ⊗w(x) +w(x) ⊗ r(x, t)

}
: ∇w(x) + λ

{
b(x) ⊗ r(x, t)

}
: rotxb(x)

)
dx

−
∫
�

1
2

{
w(x) · ∇x

∣∣w(x)
∣∣2 + λw(x) · ∇x

∣∣b(x)
∣∣2 − 2λb(x) · ∇x

(
w(x) · b(x)

)}
dx,

where w = A1 ·ψ, b = A2 · ϕ for all δ = (ψ,ϕ) ∈ UN ⊕ DN = X and all t ∈ [0,T0].
On the other hand ,w(x), b(x) ∈ LN , and thus divx{χ�w} = divx{χ�b} in the sense
of distributions (here, χ� is characteristic function of the set �). Thus the last
integral in (4.104) vanishes; and therefore, since r(x, t) ∈ L∞, we obtain

(4.105)
〈
δ,Ft(T · δ )

〉
X×X∗ =

∫
�

(
f (x, t) ·w(x) − g(x, t) : ∇w(x)

)
dx

−
∫
�

(∣∣w(x)
∣∣2 +
∣∣b(x)
∣∣2) dx

−
∫
�

({
r(x, t) ⊗w(x) +w(x) ⊗ r(x, t)

}
: ∇w(x) + λ

{
b(x) ⊗ r(x, t)

}
: rotxb(x)

)
dx

≥ −C
(∥∥Q · δ∥∥Z + 1

)(∥∥T · δ∥∥H + 1
)

− μ(t),

where w = A1 · ψ, b = A2 · ϕ for all δ = (ψ,ϕ) ∈ X and all t ∈ [0,T0]. Here,
μ(t) ∈ L1(0,T0;R) is some non-negative function.

Next consider a sequence of open sets {� j }∞j =1 such that for every j ∈ N, � j

is compactly embedded in � j+1 and
⋃∞

j =1� j = �. Then set Z j := L2
(
� j ,R

N
)

and define L̄ j ∈ L(LN ,Z j ) by

L̄ j · (h(x)
)

:= h(x)�� j ∈ L2(� j ,R
N ) = Z j

for all h(x) ∈ LN (�). Thus, by the standard embedding theorems for Sobolev
spaces, the operators L̄ j ◦ P1 ∈ L(VN ,Z j ) and L̄ j ◦ P2 ∈ L(BN ,Z j ) are compact
for every j . Moreover, if {σn}∞n=1 ⊂ H is a sequence such that σn = (hn,wn) ⇀

σ0 = (h0,w0) weakly in H and L̄ j · hn → L̄ j · h0 and L̄ j ·wn → L̄ j ·w0 strongly in
Z j as n → +∞ for every j , then hn → h0 and wn → w0 strongly in L2

loc(�,R
N );

and thus, by (4.101) and (4.102), Ft(σn) ⇀ Ft(σ0) weakly in X∗.
Thus all the conditions of Theorem 3.4 are satisfied. Applying that theorem,

we deduce that there exists a function h(t) ∈ L2
(
0,T0;Z

)
such that σ(t) := P · h(t)
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belongs to L∞(0,T0;H ), γ(t) := T̃ · σ(t) belongs to W 1,2(0,T0;X∗) and h(t) is a
solution of

(4.106)

⎧⎨⎩
dγ
dt (t) + Ft

(
σ(t)
)
+ Q∗ · D�(h(t)

)
= 0 for a.e. t ∈ (0,T0),

σ(0) =
(
v0(x), b0(x)

)
,

where we assume that σ(t) is H -weakly continuous on [0,T0] and Q∗ ∈ L(Z∗,X∗)
is the adjoint to Q. Then, by the definitions of � and Ft, we have that h(x, t) :=(
u(x, t), b(x, t)

)
satisfies that u(x, t) ∈ L2(0,T0;VN ) ∩ L∞(0,T0;LN ) and b(x, t) ∈

L2(0,T0;BN ) ∩ L∞(0,T0;LN ), u(·, t) and b(·, t) are LN -weakly continuous in t on
[0,T0], u(x, 0) = v0(x), b(x, 0) = b0(x) and u(x, t) and b(x, t) satisfy

∫ T0

0

∫
�

{(
u(x, t) ⊗ u(x, t) + r(x, t) ⊗ u(x, t) + u(x, t) ⊗ r(x, t)

− λb(x, t) ⊗ b(x, t) + g(x, t)
)

: ∇x
{
A1 · ψ(t)

}
(x)

− f (x, t) · {A1 · ψ(t)
}
(x) + u(x, t) · {A1 · ∂tψ(t)

}
(x)
}

dxdt

=
∫ T0

0

∫
�
νh∇xu(x, t) : ∇x

{
A1 ·ψ(t)

}
(x) dxdt

−
∫
�
v0(x) · {A1 · ψ(0)

}
(x) dx,

(4.107)

for every ψ(t) ∈ C1
(
[0,T0];UN

)
such that ψ(T0) = 0 and

(4.108)
∫ T0

0

∫
�

{
λ
(
b(x, t) ⊗ u(x, t) − u(x, t) ⊗ b(x, t) + b(x, t) ⊗ r(x, t)

− r(x, t) ⊗ b(x, t)
)

: ∇x
{
A2 · φ(t)

}
(x) + b(x, t) · {A2 · ∂tφ(t)

}
(x)
}

dxdt

=
∫ T0

0

∫
�

νm

2
rotxb(x, t) : rotx

{
A2 · φ(t)

}
(x) dxdt

−
∫
�

b0(x) · {A2 · φ(0)
}
(x) dx,

for every φ(t) ∈ C1
(
[0,T0];DN

)
such that φ(T0) = 0. Thus since the image of

A1 is dense in U ′
N and the image of A2 is dense in D ′

N , we deduce that u(x, t) and
b(x, t) are solutions of (4.80) and (4.81).
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Next, by (4.105) and the definition of �, we have

(4.109)
〈
δ,Q∗ · D�(Q · δ ) + Ft(T · δ )

〉
X×X∗

=
∫
�

(
νh

∣∣∇xw(x)
∣∣2 +

νm

2

∣∣rotxb(x)
∣∣2 +
∫
�

(
f (x, t) ·w(x) − g(x, t) : ∇w(x)

)
dx

−
∫
�

({
r(x, t)⊗w(x)+w(x)⊗r(x, t)

}
: ∇w(x)+λ

{
b(x)⊗r(x, t)

}
: rotxb(x)

)
dx,

wherew = A1·ψ, b = A2·ϕ for all δ = (ψ,ϕ) ∈ X and all t ∈ [0,T0]. However, if�
is bounded, the embedding operator P1 is compact. On the other hand, either λ = 0
and � is bounded, or r(x, t) ≡ 0. Thus, by (4.109) together with Theorem 3.4, we
finally deduce (4.83). �
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[9] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasi-linear Equations
of Parabolic Type, Amer. Math. SOc., Providence, RI, 1968.

[10] A. Poliakovsky, On a variational approach to the method of vanishing viscosity for conservation
laws, Adv. Math, Sci. Appl. 18 (2008), 429–451.

[11] A. Poliakovsky, Variational resolution for some general classes of nonlinear evolutions. Part I,
Asymptot. Anal. 85 (2013), 29–74.

[12] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North Holland
Amsterdam-New York-Oxford, 1977.

Arkady Poliakovsky
DEPARTMENT OF MATHEMATICS

BEN GURION UNIVERSITY OF THE NEGEV

P.O.B. 653, BE’ER SHEVA 84105, ISRAEL

email: poliakov@math.bgu.ac.il

(Received March 31, 2014 and in revised form October 5, 2014)


