A NOTE ON THE SCHRODINGER MAXIMAL FUNCTION

By

J. BOURGAIN™

Abstract. It is shown that control of the Schrédinger maximal function
SUPg<;<1 |e*A £| for f € HS(R") requires s > n/2(n + 1).

1 Introduction

Recall that the solution of the linear Schrodinger equation

i, — Au=0
(1.1)
u(x, 0) = f(x)
with (x, 1) € R” x R is given by
(12) ¢ () = Qm) / I P2V

Assuming f belongs to the space H*(R") for suitable s, when does the almost
convergence property

(1.3) lime™ f = f ae.

t—0

hold? This problem was brought up in Carleson’s paper [C], where convergence
was proved for s > 1/4 when n = 1. Dahlberg and Kenig [D-K] showed that
this result is sharp. In higher dimension, the question of identifying the optimal
exponent s has been studied by several authors, and our state of knowledge may
be summarized as follows. For n = 2, the strongest result to date appears in [L]
and asserts (1.3) for f € H*(R?), s > 3/8. More generally, for n > 2, (1.3) was
shown to hold for f € H*(R"), s > (2n — 1)/4n; see [B].

In the opposite direction, for n > 2, the condition s > n/2(n +2) was proven to
be necessary; see [L-R] and also [D-G] for a different approach based on pseudo-
conformal transformation. Here we show the following stronger statement.
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Proposition 1. Letn > 2 and s < n/2(n+ 1). Then there exist sequences
R, — oo and fi € L*(R") with fi supported in the annulus |&| ~ Ry, such that
I fell2 =1 and

(1.4) lim R;*
k— 00

it A
sup (¢ £l 10,1y = 00
O<r<1

There is some evidence that the exponent n/2(n + 1) could be the optimal one,
though limited to multi-linear considerations appearing in [B]. Of course, the
n = 1 case coincides with the [D-K] result, while for n = 2, the above proposition
leaves a gap between 1/3 and 3/8. It may be also worth pointing out that forn = 2,
in some sense, our example fits a scenario where the arguments from [B] require
the s > 3/8 condition.

2 Proof of Proposition 1

Letx = (x1,...,x,) = (x,X) € B(0O,1) ¢ R", and let p : R — R,, and
® : R*! — R, satisfy supp ¢ < [—1,1], supp & c B(0, 1), ¢, ® smooth,
and p(0) = ®(0) = 1. Set D = R"*2/2*D) "and define

21 F) = e@®ep®R @O [T (3 &P,

i=2 B<ei<&
where £ = (€2, ..., ¢,) € Z''. Hence
./ RN=D2

(22) 1£l ~ R7V4(5)

— and supp f c [I€] ~ R].
Clearly,

D

e = [ [ o)
x { 3 (R + AR'P)x; + (& + DO + (R + ARVt +|& + D) }d/ldf’,
t

where e(z) = €. Taking |t| < ¢/R, |x| < c, for suitable constant ¢ > 0, one gets

e £ ()| ~ ‘/gﬁ(i){Z@(iRl/le +D€.x’+2/1R3/2t+D2|€|2t)}d/1‘
€

(2.3)
~ o(RV2(x, + 2Rt))‘ S eDex + D2|t’|2t)‘.
€

Specify, further, ¢t = —(x;/2R) + = with |7] < R~*?/10 in order to ensure that
the first factor in (2.3) is ~ 1. For this choice of #, the second factor becomes

n

-1

j=2

> ety + G0 +9)

R _p.
ap <Cj<

D2
2.4) ‘ - e(Dex' = SlPx + D7)
¢

R
D
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with
D2
(2.5) y =Dx'(mod2rx), y; = —ﬁxl(mod 27),
and where s = D’ is subject to the condition
(26) |S| < D2R—3/2 — R—(n—l)/2(n+l)‘

We view y = (y1, y’) as a point in the n-torus T". Next, define the following subset
Qc T

__h— ! D
en o= | {(yl,y/): ‘yl —2nﬂ‘ < cR™%#0 and ‘y’—zn“— <cE}
q q

n—1
q~R 2(n+1) a

with a = (a;, a’) (mod g) and (a;, g) = 1. Hence
o 1= n— —1
19] NRZ(TJ”R"Z(TJI)R—Z(TJ])(%)” ~1,

and we take x € B(0, 1) for which y given by (2.5) belongs to Q. Clearly, this
gives a set of measure at least ¢; > 0.

We evaluate (2.4) for y € Q. Let g ~ R"=D/20*D and (a,, a’) (mod g) satisfy
the approximations stated in (2.7), and set s = 2za;/q — y; for which (2.6) holds.
Clearly, for j =2, ..., n, by the quadratic Gauss sum evaluation,

D>

eltpr+ o)~ ¥ e(ane;42:28)|

ZR}) <t <% i<€‘<g 4
q—
~ R Z (Zn—ff +27 —€2>
~ RTMg? ~ RS
and
(2.8) (2.4) ~R'T

Recalling (2.2), we obtain for x € B(0, 1) in a set of measure ¢; > O that

e f Ol o pamt 1 (D5 .
2.9) sup ————— Z R 7 Rz — = R |
o<t<t I fll2 <R)

The claim in the proposition follows.
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