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Abstract. Let (X, μ) be a probability space, G a countable amenable group,
and (Fn)n a left Følner sequence in G. This paper analyzes the non-conventional
ergodic averages

1
|Fn|

∑

g∈Fn

d∏

i =1

( fi ◦ T g
1 · · ·T g

i )

associated to a commuting tuple of μ-preserving actions T1, . . . , Td : G � X and
f1, . . . , fd ∈ L∞(μ). We prove that these averages always converge in ‖ · ‖2, and
that they witness a multiple recurrence phenomenon when f1 = . . . = fd = 1A for
a non-negligible set A ⊆ X . This proves a conjecture of Bergelson, McCutcheon
and Zhang. The proof relies on an adaptation from earlier works of the machinery
of sated extensions.

1 Introduction

Let (X, μ) be a probability space, G a countable amenable group, and T1, . . . ,
Td : G � (X, μ) a tuple of μ-preserving actions of G which commute, meaning
that i �= j implies T g

i T h
j = T h

j T
g
i for all g, h ∈ G. Also, let (Fn)n be a left Følner

sequence of subsets of G; this is fixed for the rest of the paper.
In this context, Bergelson, McCutcheon and Zhang have proposed in [BMZ97]

the study of the non-conventional ergodic averages

(1.1) �n( f1, . . . , fd ) :=
1

|Fn|
∑
g∈Fn

d∏
i =1

( fi ◦ T g
1 · · ·T g

i )

for functions f1, . . . , fd ∈ L∞(μ). These are an analog for commuting G-actions
of the non-conventional averages for a commuting tuple of transformations, as
introduced by Furstenberg and Katznelson [FK78] for their proof of the multi-
dimensional generalization of Szemerédi’s Theorem. Other analogs are possible,
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but the averages above seem to show the most promise for building a theory: this
is discussed in [BMZ97] and, for topological dynamics, in [BH92], where some
relevant counterexamples are presented.

The main results of [BMZ97] are that these averages converge and that one has
an associated multiple recurrence phenomenon, when d = 2. The first of these
conclusions can be extended to arbitrary d along the lines of Walsh’s recent proof
of convergence for polynomial nilpotent non-conventional averages ([Wal12]).

Theorem A. In the setting above, the functional averages �n( f1, . . . , fd )
converge in the norm of L2(μ) for all f1, . . . , fd ∈ L∞(μ).

Zorin-Kranich has made the necessary extensions to Walsh’s argument in [ZK].
However, his proof gives essentially no information about the limiting function,
and in particular does not seem to enable a proof of multiple recurrence. The
present paper gives both a new proof of Theorem A, and a proof of the following.

Theorem B. If μ(A) > 0, then

lim
n→∞

∫
X
�n(1A, . . . , 1A)dμ = lim

n→∞
1

|Fn|
∑
g∈Fn

μ
(
T g−1

1 A∩· · ·∩ (T g−1

1 · · ·T g−1

d )A
)
> 0.

In particular, the set
{
g ∈ G : μ

(
T g−1

1 A∩ · · ·∩ (T g−1

1 · · ·T g−1

d )A
)
> 0

}
has positive

upper Banach density relative to (Fn)n≥1.

As in the classical case of [FK78], this implies the following Szemerédi-type
result for amenable groups.

Corollary. Let Gd be the direct sum of d copies of G. If E ⊆ Gd has positive
upper Banach density relative to (Fd

n )n≥1, then the set

{
g ∈ G : ∃(x1, . . . , xd ) ∈ Gds. t. {(g−1x1, x2, . . . , xd ), . . . , (g

−1x1, . . . , g
−1xd )} ⊆ E

}

has positive upper Banach density relative to (Fn)n≥1.

This deduction is quite standard, and can be found in [BMZ97].

Our proofs of Theorems A and B are descended from some work for commut-
ing tuples of transformations: the proof of non-conventional-average convergence
in [Aus09], and that of multiple recurrence in [Aus10a]. Both of those papers of-
fered alternatives to earlier proofs, using new machinery for extending an initially-
given probability-preserving action to another action under which the averages be-
have more simply. The present paper adapts to commuting tuples of G-actions the
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notion of a “sated extension”, which forms the heart of the streamlined presen-
tation of that machinery in [Aus10b]. Further discussion of this method may be
found in that reference.

The generalization of the notion of satedness is nontrivial, but fairly straight-
forward: see Section 3 below. However, more serious difficulties appear in how it
is applied. Heuristically, if a given system satisfies a satedness assumption, then,
in any extension of that system, this constrains how some canonical σ-subalgebra
“sits” relative to the σ-algebra lifted from the original system. An appeal to sated-
ness always relies on constructing a particular extension for which this constraint
implies some other desired consequence. The specific constructions of system ex-
tensions used in [Aus09, Aus10a, Aus10b] do not generalize to commuting actions
of a non-abelian group G. This is because they rely on the commutativity of the
diagonal actions Ti ×· · ·×Ti of G on Xd with the “off-diagonal” action generated
by T g

1 × · · · × (T g
1 · · ·T g

d ), g ∈ G.
Thus, a key part of this paper is a new method of extending probability-

preserving Gd -systems. It is based on a version of the Host-Kra self-joinings
from [HK05] and [Hos09]. It also relies on a quite general result about probability-
preserving systems, which may be of independent interest: Theorem 2.1 asserts
that, given a probability-preserving action of a countable group and an extension
of that action restricted to a subgroup, a compatible further extension may be found
for the action of the whole group.

Developing ideas from [HK05], we find that the asymptotic behaviour of our
non-conventional averages can be estimated by certain integrals over these Host-
Kra-like extensions (Theorem 4.5). On the other hand, a suitable satedness as-
sumption on a system gives extra information on the structure of those exten-
sions, and combining these facts then implies simplified behaviour for the non-
conventional averages for that system. Finally, the existence of sated extensions
for all systems (Theorem 3.5) then enables proofs of convergence and multiple
recurrence similar to those in [Aus09] and [Aus10a], respectively.

Bergelson and McCutcheon in [BM07] have suggested an interesting direc-
tion for further research. They studied multiple recurrence phenomena similar to
Theorem B when d = 3, but without assuming that the group G is amenable, and
proved that the set

{
g ∈ G : μ

(
T g−1

1 A ∩ (T g−1

1 T g−1

2 )A ∩ (T g−1

1 T g−1

2 T g−1

3 )A
)
> 0

}
is “large” in a sense adapted to non-amenable groups, in terms of certain special
ultrafilters in the Stone-Čech compactification of G. In particular, their result im-
plies that this set is syndetic in G. Can their methods be combined with those
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below to extend this result to larger values of d?

2 Generalities on actions and extensions

2.1 Preliminaries. If d ∈ N then [d] := {1, 2, . . . , d}; more generally, if
a, b ∈ Z with a ≤ b, then

(a; b] = [a + 1; b] = [a + 1; b + 1) = (a; b + 1) := {a + 1, . . . , b}.
The power set of [d] is denoted P[d], and we let

([d]
≥p

)
:= {e ∈ P[d] : |e| ≥ p}.

Next, we call A ⊆ P[d] an up-set if a, b ∈ A implies a ∪ b ∈ A. The set
〈e〉 := {a ⊆ [d] : a ⊇ e} is an up-set for every e ⊆ [d], and every up-set is a
union of such examples. On the other hand, we call B ⊆ P[d] an antichain if
a, b ∈ B and a ⊆ b implies a = b. Every up-set contains a unique anti-chain of
inclusion-minimal elements.

Standard notions from probability theory are assumed throughout this paper.
If (X, μ) is a probability space with σ-algebra �, and if �,�1,�2 ⊆ � are σ-
subalgebras with � ⊆ �1 ∩ �2, then �1 and �2 are relatively independent
over � under μ if ∫

X
fg dμ =

∫
X

Eμ( f |�)Eμ(g |�) dμ

whenever f, g ∈ L∞(μ) are �1- and �2-measurable, respectively. Relatedly, if
(X, μ) is standard Borel, then on X2 we may form the relative product measure
μ ⊗� μ over � by letting x �→ μx be a disintegration of μ over the σ-subalgebra
� and then setting μ⊗� μ :=

∫
X μx ⊗ μx μ(dx).

Let G be a countable group. Then a G-space is a triple (X, μ,T ) consisting of
a probability space (X, μ) and an action T : G � X by measurable, μ-preserving
transformations. Passing to an isomorphic model if necessary, we henceforth as-
sume that (X, μ) is standard Borel. Often, a G-space is also denoted by a boldface
letter such as X.

If X = (X, μ,T ) is a G-space, then �X or �X denotes its σ-algebra of μ-
measurable sets. A factor of such a G-space is a σ-subalgebra � ≤ �X which
is globally T -invariant, meaning that A ∈ � implies T g(A) ∈ � for all g ∈ G.
Relatedly, a factor map from one G-space X = (X, μ,T ) to another Y = (Y, ν, S)
is a measurable map π : X → Y such that π∗μ = ν and Sg ◦ π = π ◦ T g for all
g ∈ G, μ-a.e. In this case, π−1(�Y) is a factor of X. Such a factor map is also
referred to as a G-extension, and X may be referred to as an extension of Y.

On the other hand, if X = (X, μ,T ) is a G-space and H ≤ G, then the H -
subaction of X, denoted X�H = (X, μ,T�H ), is the H -space with probability space
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(X, μ) and action given by the transformations (T h)h∈H . The associated σ-algebra
of H -almost-invariant sets, {A ∈ �X : μ(T h(A)�A) = 0 for all h ∈ H }, is denoted
by either �H

X or �T�H

X , as seems appropriate.
In the sequel, we often consider a space (X, μ) endowed with a commuting

tuple T1, . . . , Td of G-actions. Slightly abusively, we simply refer to this as a
“Gd -action” or “Gd -space” (leaving the distinguished G-subactions to the reader’s
understanding) and denote it by (X, μ,T1, . . . ,Td ). Also, for a Gd -space
(X, μ,T1, . . . ,Td ) and a, b ∈ [d] with a ≤ b, we frequently write

T g
[a;b] = T g

(a−1;b] = T g
[a,;b+1) := T g

a T g
a+1 · · ·T g

b for all g ∈ G.

Because the actions Ti commute, this defines another G-action for each a, b.

2.2 Actions of groups and their subgroups. Our approach to proving
Theorems A and B descends from the notions of “pleasant” and “isotropized” ex-
tensions. These were introduced in [Aus09] and [Aus10a] respectively, where they
were used to give new proofs of the analogs of Theorems A and B for commuting
tuples of single transformations.

Subsequently, the more general notion of “sated”’ extensions was introduced
in [Aus10b]. It simplifies and clarifies those earlier ideas as special cases. In this
paper, we show how “sated” extensions can be adapted to the non-abelian setting
of Theorems A and B.

An important new difficulty is that we need to consider certain natural σ-
subalgebras of a probability-preserving G-spaces which need not be factors in
case G is not abelian. This subsection focuses on a key tool for handling this sit-
uation, which seems to be of interest in its own right. Given H ≤ G, it enables
one to turn an extension of an H -subaction into an extension of a whole G-action.
Satedness is introduced in the next subsection.

Theorem 2.1. Suppose H ≤ G is an inclusion of countable groups, that
X = (X, μ,T ) is a G-space, and that

Y = (Y, ν, S)
β→ X�H

is an extension of H-spaces. Then there is an extension of G-spaces X̃
π→ X which

admits a commutative diagram of H-spaces

X̃�H π ��

α
���

��
��

��
� X�H

Y
β

����������
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This theorem was proved for abelian G and H in [Aus15, Subsection 3.2]. The
non-abelian case is fairly similar.

Proof. We construct the new G-space X̃ by a kind of “relativized” co-
induction of Y over X and then show that it has the necessary properties.

The construction of a suitable standard Borel dynamical system (X̃, T̃ ), defer-
ring the construction of the measure, is easy. Let

X̃ := {(yg)g ∈ YG : ygh = Sh−1
yg and β(yg) = T g−1

β(ye) for all g ∈ G, h ∈ H },
and let T̃ : G � X̃ be the restriction to X̃ of the left-regular representation:

T̃ k((yg)g∈G) = (yk−1g)g∈G

(it is easily seen that this preserves X̃ ⊆ YG).
Also, let

α : X̃ → Y : (yg)g �→ ye and π := β ◦ α : X̃ → X : (yg)g �→ β(ye).

These maps fit into a commutative diagram of the desired shape by construction.
It remains to specify a suitable measure μ̃ on X̃ . It is be constructed as a measure
on YG for which μ̃(X̃) = 1.

Let X → Pr Y : x �→ νx be a disintegration of ν over the map β : Y → X .
Using this, define new probability measures for each x ∈ X as follows. First, for
each g ∈ G, define ν̃g,x on YgH by ν̃g,x :=

∫
Y δ(Sh−1y)gh∈gH

νx(dy). Now let C ⊆ G

be a cross-section for the space G/H of left-cosets, identify YG =
∏

c∈C Y cH ; and
on this product, define ν̃x :=

⊗
c∈C ν̃c,T c−1x. One may easily write down the finite-

dimensional marginals of ν̃x directly. If c1, . . . , cm ∈ C, and hi,1, . . . , hi,ni ∈ H for
each i ≤ m, and also Ai, j ∈ �Y for all i ≤ m and j ≤ ni , then

ν̃x
{
(yg)g : ycihi, j ∈ Ai, j ∀i ≤ m, j ≤ ni

}
=

m∏
i =1

ν̃
ci ,T

c−1
i x

{
(ycih)h∈H : ycihi, j ∈ Ai, j ∀ j ≤ ni

}

=
m∏

i =1

ν
T c−1

i x

(
Shi,1 (Ai,1) ∩ · · · ∩ Shi,ni (Ai,ni )

)
.

The following basic properties of ν̃x are now easily checked.
(i) If g1H = g2H , say, with g1 = g2h1, and x ∈ X , then

ν̃
g1,T

g−1
1 x

=
∫

Y
δ(Sh−1y)g1h∈g1H

ν
T g−1

1 x
(dy) =

∫
Y
δ(Sh−1y)g2h1h∈g2H

ν
T h−1

1 T g−1
2 x

(dy)

=
∫

Y
δ(Sh−1y)g2h1h∈g2H

(S
h−1

1∗ ν
T g−1

2 x
)(dy) =

∫
Y
δ
(Sh−1Sh−1

1 y)g2h1h∈g2H
ν

T g−1
2 x

(dy)

= ν̃
g2,T

g−1
2 x
.
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It follows that ν̃x does not depend on the choice of cross-section C, and (2.1)
holds with any choice of C.

(ii) For each g ∈ G, say g = ch ∈ cH , the marginal of ν̃x on coordinate g is

Sh−1

∗ νT c−1x = νT h−1T c−1x = νT g−1x.

(iii) If (yg)g is sampled at random from ν̃x and g ∈ cH , then yc a.s. determines the
whole tuple (ych)ch∈cH . Specifically, ych = Sh−1

yc a.s.

Also, if g1, . . . , gm lie in distinct left-cosets of H and (yg)g ∼ ν̃x, then the coordi-
nates yg1 , . . . , ygm are independent, but we do not need this fact.

Finally, let μ̃ :=
∫
X ν̃xμ(dx). Recalling the definition of X̃ , we see that proper-

ties (ii) and (iii) above imply that ν̃x(X̃) = 1 for all x; hence also μ̃(X̃) = 1.

We have seen that the left-regular representation defines an action of G on X̃ ,
and the required triangular diagram commutes by the definition of π, so it remains
to check the following.

• (The new G-space (X̃, μ̃, T̃ ) is probability-preserving.) Suppose that k ∈ G
and x ∈ X , that c1, . . . , cm ∈ C, that hi,1, . . . , hi,ni ∈ H for each i ≤ m, and
that Ai, j ∈ �Y for all i ≤ m and j ≤ ni . Then

T̃ k
∗ ν̃x

{
(yg)g : ycihi, j ∈ Ai, j ∀i ≤ m, j ≤ ni

}
= ν̃x

{
T̃ k−1

(yg)g : ycihi, j ∈ Ai, j ∀i ≤ m, j ≤ ni
}

= ν̃x
{
(yg)g : yk−1cihi, j

∈ Ai, j ∀i ≤ m, j ≤ ni
}

Since C is a cross-section of G/H , so is k−1C. We may therefore apply (2.1)
with the cross-section k−1C to deduce that the above is equal to

m∏
i =1

ν
T c−1

i kx

(
Shi,1 (Ai,1) ∩ · · · ∩ Shi,ni (Ai,ni )

)
.

On the other hand, (2.1) applied with the cross-section C gives that this is
equal to

ν̃T kx

{
(yg)g : ycihi, j ∈ Ai, j ∀i ≤ m, j ≤ ni

}
.

Therefore T̃ k∗ ν̃x = ν̃T kx, and integrating this over x gives T̃ k∗ μ̃ = μ̃.
• (The map α defines a factor map of H -spaces.) If h ∈ H and (yg)g ∈ X̃ , then

α(T̃ h((yg)g)) = α((yh−1g)g) = yh−1 = Shye = Shα((yg)g),

where the penultimate equality is given by property (iii) above. Also, prop-
erty (ii) above gives α∗μ̃ =

∫
X α∗ν̃xμ(dx) =

∫
X νxμ(dx) = ν.
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• (The map π defines a factor map of G-spaces.) If k ∈ G and (yg)g ∈ X̃ , then

π(T̃ k((yg)g)) = β(α((yk−1g)g)) = β(yk−1 ).

If x ∈ X and (yg)g ∼ ν̃x, then property (ii) above gives that yk−1 ∼ νT kx, and
hence β(yk−1 ) = T kx = T kβ(ye) a.s. Since this holds for every x, integrating
over x gives π(T̃ k((yg)g)) = T kπ((yg)g) a.s. Another appeal to property (ii)
above gives

π∗μ̃ =
∫

X
π∗ν̃xμ(dx) =

∫
X
β∗νx μ(dx) =

∫
X
δx μ(dx) = μ. �

3 Functorial σ-subalgebras and subspaces, and sated-
ness

Definition 3.1 (Functorial σ-subalgebras and subspaces). A functorial σ-
subalgebra of G-spaces is a map F which to each G-space X = (X, μ,T ) assigns
a μ-complete σ-subalgebra �F

X ⊆ �X, and such that �F
X ⊇ π−1(�F

Y) for every G-
extension π : X → Y. Similarly, a functorial L2-subspace of G-spaces is
a map V which to each G-space X = (X, μ,T ) assigns a closed subspace VX ≤
L2(μ), and such that VX ≥ VY ◦ π := { f ◦ π : f ∈ VY} for every G-extension
π : X → Y. In this setting, PV

X : L2(μ) → VX denotes the orthogonal projection
onto VX.

The above behaviour relative to factors is called the functoriality of F or V. Its

first consequence is that F and V respect isomorphisms of G-spaces: if α : X
∼=→ Y,

then�F
X = α−1(�F

Y) (where strict equality holds owing to the assumption that these
σ-algebras are both μ-complete) and VX = VY ◦ α.

Example. If H ≤ G is a subgroup, the map X �→ �H
X (the σ-subalgebra of

H -almost-invariant sets) defines a functorial σ-subalgebra of G-spaces. In case
H � G, this actually defines a factor of X, but otherwise it may not: in general,
T g(�H

X ) = �gHg−1

X .
This class of examples provides the building blocks for all of the other functo-

rial σ-subglebras that we encounter later.

If F is a functorial σ-subalgebra of G-spaces, then setting VX := L2(μ|�F
X)

defines a functorial L2-subspace of G-spaces, where this denotes the subspace of
L2(μ) generated by the�F

X-measurable functions. In this case, PV
X is the operator of

conditional expectation onto�F
X. However, not all functorial L2-subspaces arise in
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this way. For instance, given any two functorial L2-subspaces V1, V2 of G-spaces,
a new functorial L2-subspace may be defined by VX := V1,X + V2,X. If H1, H2 ≤ G,
then this gives rise to the example VX := L2(μ|�H1

X ) + L2(μ|�H2
X ). The elements of

this subspace generate the functorial σ-algebra �H1
X ∨�H2

X ; but in general,

L2(μ|�H1
X ) + L2(μ|�H2

X ) � L2(μ|�H1
X ∨�H2

X ).

In fact, the functorial L2-subspaces that appear later in this work all correspond
to functorial σ-subalgebras. However, the theory of satedness depends only on the
subspace structure, so it seems appropriate to develop it in that generality.

To prepare for the next definition, recall that if K1,K2 ≤ H are two closed sub-
spaces of a real Hilbert space, and L ≤ K1 ∩ K2 is a common further closed sub-
space, then K1 and K2 are relatively orthogonal over L if 〈u, v〉 = 〈PLu,PLv〉
for all u ∈ K1, v ∈ K2, where PL is the orthogonal projection onto L. This requires
that L = K1 ∩K2, and is equivalent to asserting that PK2u = PLu for all u ∈ K1 and
PK1u = PLu for all u ∈ K2. Clearly, it suffices to verify this for elements drawn
from any dense subsets of K1 and K2.

Definition 3.2 (Satedness). Let V be a functorial L2-subspace of G-spaces.
We say that a G-space X = (X, μ,T ) is V-sated if for every G-extension

Y = (Y, ν, S)
ξ→ (X, μ,T ), the subspaces L2(μ) ◦ ξ and VY are relatively orthog-

onal over their common further subspace VX ◦ ξ . More generally, a G-extension

X̃
π→ X is relatively V-sated if for any further G-extension Y

ξ→ X̃, the sub-
spaces L2(μ) ◦ (π ◦ ξ ) and VY are relatively orthogonal over V

˜X ◦ π.

Clearly, a G-space X is V-sated if and only if X
id→ X is relatively V-sated.

In case VX = L2(μ|�F
X) for some functorial σ-algebra F, we say that a G-space

or G-extension is F-sated, rather than V-sated. For a G-space X = (X, μ,T ),
this asserts that for each G-extension ξ : Y = (Y, ν, S) → X, the σ-subalgebras
ξ−1(�X ) and �F

Y are relatively independent over ξ−1(�F
X).

The key feature of satedness is that all G-spaces have sated extensions. This
generalizes the corresponding result for satedness relative to idempotent classes
([Aus10b, Theorem 2.3.2]). The proof here is a nearly a verbatim copy of that
one, given the following auxiliary lemmas.

Lemma 3.3. Suppose that X̃
π→ X is a relatively V-sated G-extension, and

Z = (Z, θ,R)
α→ X̃ is a further G-extension. Then Z

α◦π→ X is also relatively
V-sated.

Proof. Suppose that Y = (Y, ν, S)
ξ→ Z is another G-extension, and that

f ∈ L2(μ) and g ∈ VY. Then applying the definition of relative satedness to
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the composed extension Y
α◦ξ→ X̃ gives∫

Y
( f ◦ π ◦ α ◦ ξ ) · g dν =

∫
Y
(PV

˜X
( f ◦ π) ◦ α ◦ ξ ) · gdν.

This turns into the required equality of inner products, once we show that

(PV
˜X
( f ◦ π)) ◦ α = PV

Z( f ◦ π ◦ α).

However, in light of the inclusion V
˜X ◦ α ⊆ VZ and standard properties of orthog-

onal projection, this is equivalent to the equality∫
Z
(PV

˜X
( f ◦ π) ◦ α) · h dθ =

∫
Z
( f ◦ π ◦ α) · h dθ ∀h ∈ VZ,

and this is precisely the relative V-satedness of π applied to α. �

Lemma 3.4. If · · · π2→ X2
π1→ X1

π0→ X0 is an inverse sequence of G-spaces
in which each πi is relatively V-sated, and if X∞, (ψm)m is the inverse limit of this
sequence, then X∞ is V-sated.

Proof. All the resulting G-extensions X∞
ψm→ Xm are relatively V-sated, since

we may factorize ψm = πm ◦ψm+1 and then apply Lemma 3.3. However, this now

implies that for any further G-extension Y
ξ→ X∞ and for π := id

˜X ,

∫
Y
( f ◦ ξ ) · g dν =

∫
Y
((PV

X∞ f ) ◦ ξ ) · gdν

for all g ∈ VY and all f ∈ ⋃
m≥1(L

2(μm) ◦ ψm). Since this last union is dense in
L2(μ∞), the result follows. �

Theorem 3.5. If V is a functorial L2-subspace of G-spaces, then every G-
space has a V-sated extension.

Proof. Let X = (X, μ,T ) be a G-space.

Step 1. We first show that X has a relatively V-sated extension. This uses the
same “energy increment” argument used in [Aus10b].

Let { fr : r ≥ 1} be a countable dense subset of the unit ball of L2(μ), and let
(ri)i≥1 be a member of NN in which every non-negative integer appears infinitely
often.

We now construct an inverse sequence (Xm)m≥0, (ψm
k )m≥k≥0 by the following

recursion. Set X0 := X. Then, supposing that for some m1 ≥ 0 we have already
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obtained (Xm)m1
m =0, (ψm

k )m1≥m≥k≥0, let ψm1+1
m1

: Xm1+1 → Xm1 be an extension such
that the difference

‖PV
Xm1+1

( frm1
◦ ψm1+1

0 )‖2 − ‖PV
Xm1

( frm1
◦ ψm1

0 )‖2

is at least half its supremal possible value over all extensions of Xm1 , where of
course we let ψm1+1

0 := ψm1
0 ◦ ψm1+1

m1
.

Let X∞, (ψm)m≥0 be the inverse limit of this sequence. We show that X∞
ψ0→ X

is relatively V-sated. Letting π : Y → X∞ be an arbitrary further extension, we
see that this is equivalent to showing that

PV
Y( f ◦ ψ0 ◦ π) = PV

X∞( f ◦ ψ0) ◦ π ∀ f ∈ L2(μ).

It suffices to prove this for every fr in our previously chosen dense subset.
Also, since VY ⊇ VX∞ ◦ π, the result follows from

‖PV
Y( fr ◦ ψ0 ◦ π)‖2 ≤ ‖PV

X∞( fr ◦ ψ0)‖2.

To prove this inequality, suppose, towards a contradiction, that the left-hand side
is strictly larger than the right hand side. The sequence of norms ‖PV

Xm
( fr ◦ψm

0 )‖2

is non-decreasing as m → ∞, and bounded above by ‖ fr‖2. Therefore, for some
sufficiently large m, rm = r, since each integer appears infinitely often as some rm .
But also

‖PV
Xm+1

( fr ◦ ψm+1
0 )‖2 − ‖PV

Xm
( fr ◦ ψm

0 )‖2

<
1
2

(
‖PV

Y( fr ◦ ψ0 ◦ π)‖2 − ‖PV
X∞( f ◦ ψ0)‖2

)
≤ 1

2

(
‖PV

Y( fr ◦ ψ0 ◦ π)‖2 − ‖PV
Xm

( f ◦ ψm
0 )‖2

)
.

This contradicts the choice of Xm+1 → Xm in our construction above. Thus we
must actually have equality of L2-norms, as required.

Step 2. Iterating the construction of Step 1, we may let · · · π2→ X2
π1→ X1

π0→ X
be an inverse seqeuence in which each extension πi is relatively V-sated. Letting
X∞, (πm)m≥0 be its inverse limit, and applying Lemma 3.4 complete the proof. �

Corollary 3.6. Let V1, V2, . . . be a countable family of functorial L2-
subspaces of G-spaces. Then every G-space has an extension which is simulta-
neously Vr -sated for every r.

Proof. Let (ri)i be an element of NN in which every positive integer appears
infinitely often. Applying Theorem 3.5 repeatedly, we obtain an inverse sequence
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· · · π2→ X2
π1→ X1

π0→ X in which each Xi is Vri -sated. Also, let πn
m := πm ◦· · ·◦πn−1

whenever m < n. Finally, let X∞ be the inverse limit of this sequence. Then for
each r ≥ 1, there exists an infinite subsequence i1(r) < i2(r) < . . . in N such that
ri1(r) = ri2(r) = · · · = r, and X∞ may be identified with the inverse limit of the

thinned-out inverse sequence · · ·
π

i3(r)
i2(r)→ Xi2(r)

π
i2(r)
i1(r)→ Xi1(r)

π
i1(r)
0→ X. Lemma 3.4 implies

that X∞ is Vr-sated. Since r is arbitrary, this completes the proof. �

4 Characteristic subspaces and proof of convergence

4.1 Subgroups associated to commuting tuples of actions. We now
begin to work with commuting tuples of G-actions. We need to call on several
different subgroups of Gd in the sequel, so the next step is to set up some bespoke
notation for handling them. We sometimes use a boldface g to denote a tuple
(gi)di =1 in Gd , and denote the identity element of G by 1G .

Fix G and d , and let e = {i1 < . . . < ir} ⊆ [d] with r ≥ 2 and {i < j} ⊆ [d].
Define

He := {g ∈ Gd : gis+1 = gis+2 = . . . = gis+1 for each s = 1, . . . , r − 1},
K{i, j} := {g ∈ H{i, j} : g� = 1G for all � ∈ (i; j]},

and

Le := {g ∈ He : gi = 1G for all i ∈ [d] \ (i1; ir]}.
Routine calculations give the following basic properties.

Lemma 4.1. (1) The subgroups Le and K{i1,ir } commute and generate He.
(2) If a ⊆ e ⊆ [k] with |a| ≥ 2, then La ≤ Le.
(3) If a ⊆ e ⊆ [k] with |a| ≥ 2 and e ∩ [min a; max a] = a, then La � He. In

particular, Le � He.

Part (3) of this lemma has the following immediate consequence.

Corollary 4.2. If a ⊆ e ⊆ [k] with |a| ≥ 2, and e ∩ [min a; max a] = a, then
�La

X is globally He-invariant.

4.2 The Host-Kra inequality. In order to show that a suitably-sated G-
space has some other desirable property, one must find an extension of it for which
the relative independence given by satedness implies that other property. The key
to such a proof is usually constructing the right extension.
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Where satedness was used in the previous works [Aus09] and [Aus10a], that
extension could be constructed directly from the Furstenberg self-joining arising
from some non-conventional averages. However, this seems to be more problem-
atic in the present setting, and we take a different approach. The construction
below is a close analog of the construction by Host and Kra of certain “cubical”
extensions of a Z-space in [HK05]. That machinery has also been extended by
Host to commuting tuples of Z-actions in [Hos09].

Fix now a Gd -space X = (X, μ,T1, . . . ,Td ), and let Y(0) := X. Our next step
is to construct recursively a height-(d + 1) tower of new probability-preserving
Gd -spaces, which we denote by

(4.1) Y(d) ξ
(d)

→ Y(d−1) ξ
(d−1)

→ · · · ξ
(2)

→ Y(1) ξ
(1)

→ Y(0) = X.

The construction also gives some other auxiliary Gd -spaces Z( j ), and they too are
used later.

Supposing the tower has already been constructed up to some level j ≤ d − 1,
the next extension is constructed in the following steps.

(i) From Y( j ) = (Y ( j ), ν( j ), S( j )), define a new H{d− j−1,d}-action S̃( j ) on the same
space by setting

(S̃( j )
i )g := (S( j )

i )g ∀g ∈ G, i < d − j − 1,(4.2a)

(S̃( j )
d− j−1)

g := (S( j )
[d− j−1;d])

g for all g ∈ G,(4.2b)

and

(S̃( j )
(d− j−1;d])

g := id for all g ∈ G(4.2c)

(with the understanding that (4.2a) and (4.2b) are vacuous in case j = d −1).
(ii) Now consider the H{d− j−1,d}-space

Z( j+1) = (Z ( j+1), θ ( j+1),R( j+1))

:=
(
Y ( j ) × Y ( j ), ν( j ) ⊗

�
L{d− j−1,d}
Y( j )

ν( j ), (S( j ))�H{d− j−1,d} × S̃( j )).
Let ξ ( j+1)

0 , ξ ( j+1)
1 : Z ( j+1) → Y ( j ) be the two coordinate projections. They are

both factor maps of H{d− j−1,d}-spaces. Notice that θ ( j+1) is R( j+1)-invariant
because both of the actions (S( j ))�H{d− j−1,d} and S̃( j ) preserve the σ-subalgebra
�

L{d− j−1,d}
Y( j ) , by Corollary 4.2.

(iii) Finally, let Y( j+1) ξ ( j+1)

→ Y( j ) be an extension of Gd -spaces for which there
exists a commutative diagram
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(Y( j+1))�H{d− j−1,d}

α( j+1) ����
���

���
���

ξ ( j+1)
�� (Y( j ))�H{d− j−1,d}

Z( j+1),
ξ

( j+1)
0

�������������

as provided by Theorem 2.1.
Having made this construction, for each j ∈ {1, 2, . . . , d} we also define a

family of maps π( j )
η : Y ( j ) → X indexed by η ∈ {0, 1} j , by setting

π( j )
(η1,...,η j ) : = ξ (1)

η1
◦ α(1) ◦ ξ (2)

η2
◦ α(2) ◦ · · · ◦ ξ ( j )

η j
◦ α( j ).

Clearly, (π( j )
η )∗ν( j ) = μ for every η. Also, π( j )

0 j = ξ (1) ◦ · · · ◦ ξ ( j ) : Y( j ) → X is a
factor map of Gd -spaces, where 0 j := (0, 0, . . . , 0) ∈ {0, 1} j .

Lemma 4.3. Let r ∈ [d], let η ∈ {0, 1}r \ {0r}, and let � ∈ [r] be maximal
such that η� = 1. Then π(r)

η satisfies the intertwining relations

π(r)
η ◦ S(r)

i = Ti ◦ π(r)
η ∀i < d − �,(4.3a)

π(r)
η ◦ S(r)

d−� = T[d−�;d] ◦ π(r)
η(4.3b)

and

π(r)
η ◦ S(r)

(d−�;d] = π(r)
η .(4.3c)

Remark. There are no such simple relations for the compositions π(r)
η ◦ S(r)

i

when i ≥ d − � + 1, but we do not need these.

Proof. By the definition of �, for this η we may write π(r)
η = π′ ◦ π′′, where

π′ := π(�)
(η1,...,η�) = ξ (1)

η1
◦ α(1) ◦ ξ (2)

η2
◦ α(2) ◦ · · · ◦ ξ (�)

1 ◦ α(�)(4.4a)

and

π′′ := ξ (�+1) ◦ · · · ◦ ξ (r).(4.4b)

All three of the desired relations concern the actions of subgroups of H{d−�,d}, and
all the maps in the compositions in (4.4) are factor maps of H{d−�,d}-spaces. We
read off the desired results from the simpler relations (4.2a), (4.2b), and (4.2c).

First, observe that by construction. each ξ ( j ) appearing in the definition of π′′

actually intertwines the whole Gd -actions, so π′′ ◦ S(r)
i = S(�)

i ◦ π′′ for all i ∈ [d].
It therefore suffices to prove that π′ ◦ S(�)

i = Ti ◦ π′ for all i < d − �, and similarly
for the other two desired relations.
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Step 1. Suppose that i ≤ d − � and j ≤ �. Then the definitions of α( j ), ξ ( j )
0 ,

and ξ ( j )
1 give

ξ ( j )
η ◦ α( j ) ◦ S( j )

i = ξ ( j )
η ◦ R( j )

i ◦ α( j ) =

⎧⎨
⎩S( j−1)

i ◦ ξ ( j )
η ◦ α( j ) if η = 0,

S̃( j−1)
i ◦ ξ ( j )

η ◦ α( j ) if η = 1.

In case i < d − � ≤ d − j , this equals S( j )
i ◦ ξ ( j )

η ◦ α( j ) for either value of η,
by (4.2a). Applying this repeatedly for j = �, �− 1, . . . , 1 in the composition that
defines π′, we obtain π′ ◦ S(�)

i = Ti ◦ π′. As explained above, this proves (4.3a).
Step 2. The same calculation as above gives

ξ (�)
1 ◦ α(�) ◦ S(�)

d−� = ξ (�)
1 ◦ R(�)

d−� ◦ α(�) = S̃(�−1)
d−� ◦ ξ (�)

1 ◦ α(�),

and now this is equal to S(�−1)
[d−�,d] ◦ ξ (�)

1 ◦ α(�), by (4.2b).
On the other hand, if j ≤ �− 1, then another call to the definitions of α( j ), ξ ( j )

0

and ξ ( j )
1 gives

ξ ( j )
η ◦ α( j ) ◦ S( j )

[d−�,d] = ξ ( j )
η ◦ R( j )

[d−�,d] ◦ α( j ) =

⎧⎨
⎩S( j−1)

[d−�;d] ◦ ξ ( j )
η ◦ α( j ) if η = 0,

S̃( j−1)
[d−�;d] ◦ ξ ( j )

η ◦ α( j ) if η = 1.

This time, since j ≤ �− 1, (4.2a) and (4.2b) give

S̃( j−1)
[d−�;d] = S̃( j−1)

d−� ◦ S̃( j−1)
d−�+1 ◦ · · · ◦ S̃( j−1)

d− j ◦ S̃( j−1)
(d− j ;d]

= S( j−1)
d−� ◦ S( j−1)

d−�+1 ◦ · · · ◦ S( j−1)
[d− j ;d] ◦ id = S( j−1)

[d−�;d].

Therefore, ξ ( j )
η ◦ α( j ) ◦ S( j )

[d−�,d] = S( j−1)
[d−�,d] ◦ ξ ( j )

η ◦ α( j ) for all j ≤ �− 1 and either
value of η. Combining these two calculations gives

π′ ◦ S(�)
d−� = (ξ (1)

η1
◦ α(1) ◦ · · · ◦ ξ (�−1)

η�−1
◦ α(�−1)) ◦ S(�−1)

[d−�;d] = T[d−�;d] ◦ π′,

and hence (4.3b).
Step 3. Finally, (4.2c) gives

ξ (�)
1 ◦ α(1) ◦ S(�)

(d−�;d] = S̃(�−1)
(d−�;d] ◦ ξ (�)

1 ◦ α(1) = ξ (�)
1 ◦ α(1),

from which (4.3c) follows immediately. �

Corollary 4.4. If r ∈ [d], η ∈ {0, 1}r , and if j ∈ [r] is such that ηi = 0 for
all i ≥ j + 1, then π(r)

η satisfies the intertwining relations

(4.5) π(r)
η ◦ S(r)

[d− j ;d] = T[d− j ;d] ◦ π(r)
η .
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We next prove an estimate relating the multi-linear forms�n in (1.1) to certain
integrals over these new Gd -spaces Y( j ). This is the key estimate which enables
an appeal to satedness. The following theorem relies on an iterated application
of the van der Corput estimate, and follows essentially the same lines as [HK05,
Theorem 12.1].

Theorem 4.5. Let X = (X, μ,T1, . . . ,Td ) be a Gd-space, let 1 ≤ j ≤ d, and
let the tower (4.1) and the maps π( j )

η : Y ( j ) → X for η ∈ {0, 1} j be constructed as
above. For fd− j+1, . . . , fd ∈ L∞(μ), let

�( j )
n ( fd− j+1, . . . , fd ) :=

1
|Fn|

∑
g∈Fn

d∏
i =d− j+1

( fi ◦ T g
[d− j+1;i]).

If fd− j+1, . . . , fd are all uniformly bounded by 1, then

lim sup
n→∞

‖�( j )
n ( fd− j+1, . . . , fd )‖2 ≤

( ∫
Y ( j )

∏
η∈{0,1} j

(C|η| fd ◦ π( j )
η ) dν( j )

)2− j

,

where |η| :=
∑

i ηi mod 1 and C is the operator of complex conjugation.

Note that �(d)
n = �n, the averages in (1.1). The integral appearing on the

right-hand side of the last inequality actually defines a seminorm of the function
fd : these are the adaptations of the Host-Kra seminorms to the present setting.
However, our approach does not emphasize the seminorm axioms.

Proof. This is proved by induction on j .
Step 1: base case. When j = 1, the Norm Ergodic Theorem for amenable

groups gives

�(1)
n ( fd ) → Eμ( fd |�Td

X ) = Eμ( fd |�L{d−1,d}
X ) in ‖ · ‖2,

and the square of the norm of this limit equals∫
X×X

( fd ⊗ fd )d
(
μ⊗

�
L{d−1,d}
X

μ
)

=
∫

Z (1)
fd ◦ ξ (1)

0 · fd ◦ ξ (1)
1 dθ (1)

=
∫

Y (1)
fd ◦ π(1)

0 · fd ◦ π(1)
1 dν(1),

by the definition of Y (1) and ν(1).
Step 2: Van der Corput estimate. Now suppose the result is known up to some

j − 1 ∈ {1, 2, . . . , d − 1}.
By the amenable-groups version of the van der Corput estimate ([BMZ97,

Lemma 4.2]),
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(4.6) lim sup
n→∞

‖�( j )
n ( fd− j+1, . . . , fd )‖2

2

≤ lim sup
m→∞

1
|Fm|2

∑
h,k∈Fm

lim sup
n→∞

∣∣∣ 1
|Fn|

∑
g∈Fn

∫
X

d∏
i =d− j+1

( fi ◦ T hg
[d− j+1;i])( fi ◦ T kg

[d− j+1;i])dμ
∣∣∣

For fixed h and k, we may use the T g
d− j+1-invariance of μ to re-arrange the above

integral as follows:

∣∣∣ 1
|Fn|

∑
g∈Fn

∫
X

d∏
i =d− j+1

( fi ◦ T hg
[d− j+1;i])( fi ◦ T kg

[d− j+1;i])dμ
∣∣∣

=
∣∣∣ 1
|Fn|

∑
g∈Fn

∫
X
( fd− j+1 ◦ T h

d− j+1) · ( fd− j+1 ◦ T k
d− j+1)

·
( d∏

i =d− j+2

(( fi ◦ T h
[d− j+1;i]) · ( fi ◦ T k

[d− j+1;i])) ◦ T g
(d− j+1;i]

)
dμ

∣∣∣.
(At this point we have made crucial use of the commutativity of the different
actions Ti .) By the Cauchy-Bunyakowski-Schwartz Inequality, this, in turn, is
bounded above by

‖( fd− j+1 ◦ T h
d− j+1) · ( fd− j+1 ◦ T k

d− j+1)‖2

·
∥∥∥ 1
|Fn|

∑
g∈Fn

d∏
i =d− j+2

(( fi ◦ T h
[d− j+1;i]) · ( fi ◦ T k

[d− j+1;i])) ◦ T g
(d− j+1;i]

∥∥∥
2

≤ ∥∥�( j−1)
n

(
( fd− j+2 ◦ T h

[d− j+1;d− j+2]) · ( fd− j+2 ◦ T k
[d− j+1;d− j+2]),

. . . , ( fd ◦ T h
[d− j+1;d]) · ( fd ◦ T k

[d− j+1;d])
)∥∥

2

(since ‖ fd− j+1‖∞ ≤ 1).

Step 3: use of inductive hypothesis. Combining these inequalities and using
the inductive hypothesis, we obtain

(4.7) lim sup
n→∞

∣∣∣ 1
|Fn|

∑
g∈Fn

∫
X

d∏
i =d− j+1

( fi ◦ T hg
[d− j+1;i])( fi ◦ T kg

[d− j+1;i]) dμ
∣∣∣

≤
( ∫

Y ( j−1)

∏
η∈{0,1} j−1

(
C|η|(( fd◦T h

[d− j+1;d])·( fd ◦ T k
[d− j+1;d]))◦π( j−1)

η

)
dν( j−1)

)2−( j−1)

for each h and k.
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To simplify notation, now let F :=
∏
η∈{0,1} j−1 (C|η| fd ◦ π( j−1)

η ). In terms of this
function, Corollary 4.4 with r := j − 1 allows us to write∏

η∈{0,1} j−1

(C|η|( fd ◦ T h
[d− j+1;d]) ◦ π( j−1)

η )

=
∏

η∈{0,1} j−1

(C|η| fd ◦ π( j−1)
η ◦ (S( j−1)

[d− j+1;d])
h) = F ◦ (S( j+1)

[d− j+1;d])
h;

and similarly, ∏
η∈{0,1} j−1

(C|η|( fd ◦ T k
[d− j+1;d]) ◦ π( j−1)

η ) = F ◦ (S( j−1)
[d− j+1;d])

k.

Step 4: completion of the proof. Substituting the formulas obtained in Step 3
into the right-hand side of (4.7), one obtains

lim sup
n→∞

∣∣∣ 1
|Fn|

∑
g∈Fn

∫
X

d∏
i =d− j+1

( fi ◦ T hg
[d− j+1;i])( fi ◦ T kg

[d− j+1;i]) dμ
∣∣∣

≤
( ∫

Y ( j−1)
(F ◦ (S( j+1)

[d− j+1;d])
h) · (F ◦ (S( j−1)

[d− j+1;d])
k) dν( j−1)

)2−( j−1)

.

Inserting this back into (4.6) and using Hölder’s inequality for the average over
(h, k) yield

lim sup
n→∞

‖�( j )
n ( fd− j+1, . . . , fd )‖2

2

≤ lim sup
m→∞

1
|Fm|2

∑
h,k∈Fm

(∫
Y ( j−1)

(F ◦ (S( j+1)
[d− j+1;d])

h) · (F ◦ (S( j−1)
[d− j+1;d])

k) dν( j−1)
)2−( j−1)

≤ lim sup
m→∞

( 1
|Fm|2

∑
h,k∈Fm

∫
Y ( j−1)

(F ◦ (S( j+1)
[d− j+1;d])

h) · (F ◦ (S( j−1)
[d− j+1;d])

k) dν( j−1)
)2−( j−1)

.

Finally, by the Norm Ergodic Theorem for amenable groups, the averages on
the last line here converge as m → ∞, giving

lim sup
n→∞

‖�( j )
n ( fd− j+1, . . . , fd )‖2

2

≤
( ∫

Y ( j−1)
Eν( j−1)

(
F
∣∣�L{d− j,d}

Y( j−1)

) · Eν( j−1)

(
F
∣∣�L{d− j,d}

Y( j−1)

)
dν( j−1)

)2−( j−1)

=
( ∫

Z ( j )
F ◦ ξ ( j )

0 · F ◦ ξ ( j )
1 dθ ( j )

)2−( j−1)

=
( ∫

Y ( j )

( ∏
η∈{0,1} j

C|η| fd ◦ π( j )
η

)
dν( j )

)2−( j−1)

,

where Z( j ) is the auxiliary H{d− j,d}-space constructed along with Y( j ). Taking
square-roots, continues the induction. �
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4.3 Partially characteristic subspaces and the proof of convergence.

Definition 4.6. Consider a probability space (X, μ), and a sequence �n of
multi-linear forms on L∞(μ) which are separately continuous for the norm ‖ · ‖2

in each entry. A closed subspace V ≤ L2(μ) is partially characteristic in
position i for the sequence �n if

∥∥�n( f1, . . . , fd ) −�n( f1, . . . , fi−1,P
V fi, fi+1, . . . , fd )

∥∥
2 → 0

as n → ∞ for all f1, . . . , fd ∈ L∞(μ), where PV is the orthogonal projection onto
V .

The following proposition quickly leads to a proof of Theorem A. In fact,
it gives rather more than one needs for the proof of Theorem A, but that extra
strength is used during the proof of Theorem B.

Proposition 4.7. For 1 ≤ i ≤ j ≤ d, let Fi, j be the functorial σ-algebra

�
Fi, j

X :=
i−1∨
�=0

�
T(�;i]

X ∨
j∨

�=i+1

�
T(i;�]

X ,

and let Vi, j,X := L2(μ|�Fi, j

X ) be the associated functorial L2-subspace. Let

�̂( j )
n ( f1, . . . , f j ) :=

1
|Fn|

∑
g∈Fn

j∏
i =1

( fi ◦ T g
[1;i]).

If X is Vi, j -sated whenever 1 ≤ i ≤ j ≤ d, then, for each j ∈ [d], the subspaces

V1, j,X, . . . , V j, j,X

are partially characteristic in positions 1, . . . , j for the averages �̂( j )
n .

Notice that we still have �̂(d)
n = �n (the averages in (1.1)), but otherwise these

averages differ from the averages �( j )
n considered in Theorem 4.5.

Proof. This is proved by induction on j . When j = 1, also i = 1, and
�

Fi, j

X = �T1
X . This is always partially characteristic because the Norm Ergodic

Theorem gives
�̂(1)

n ( f1) → Eμ( f1 |�T1
X ) in ‖ · ‖2

for any G-space. So now we focus on the recursion clause. For this it clearly
suffices to assume j = d − 1, and prove the result for the averages �̂(d)

n , which
simplifies the notation.

Step 1. We first show that Vd,d is partially characteristic in position d .
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Let fd ∈ L∞(μ). Decomposing it as PVd,d

X fd + ( fd − PVd,d

X fd ) and using the
multi-linearity of �̂(d)

n , we see that it suffices to show that PVd,d

X fd = 0 implies
‖�̂(d)

n ( f1, . . . , fd )‖2 → 0 for all f1, . . . , fd−1 ∈ L∞(μ); equivalently, if there exist
f1, . . . fd ∈ L∞(μ) such that ‖�̂(d)

n ( f1, . . . , fd )‖2 �→ 0, then PVd,d

X fd �= 0.
So suppose that lim supn→∞ ‖�̂(d)

n ( f1, . . . , fd )‖2 > 0 for some f1, . . . , fd−1.

Then Theorem 4.5 gives
∫
Y (d)

(∏
η∈{0,1}d C|η| fd ◦ π(d)

η

)
dν(d) �= 0. However, recall-

ing relation (4.3c) from Lemma 4.3, we see that if η ∈ {0, 1}d \ {0d } and � ∈ [d]
is maximal such that η� �= 0, then C|η| fd ◦ π(d)

η ◦ Sg
(d−�;d] = C|η| fd ◦ π(d)

η for all
g ∈ G, and so the function

∏
η∈{0,1}d\{0d } C|η| fd ◦π(d)

η is measurable with respect to∨d
�=1�

S(d)
(d−�;d]

Y(d) = �Fd,d

Y(d) .
Therefore the non-vanishing of the above integral implies that PVd,d

Y(d) ( fd ◦π(d)
0d ) �=

0. Since X is Vd,d -sated, this implies that also PVd,d

X fd �= 0, as required. This proves
that the required subspace is partially characteristic for i = j = d .

Step 2. By Step 1, �̂(d)
n ( f1, . . . , fd ) − �̂(d)

n ( f1, . . . , fd−1,P
Vd,d

X fd ) → 0 for all
f1, . . . , fd ∈ L∞(μ). Also, PVd,d

X fd still lies in L∞(μ), because PVd,d

X is actually
a conditional expectation operator. It therefore suffices to check that the required
factors are partially characteristic in the other positions under the additional as-
sumption that fd is �Fd,d

X -measurable.
This assumption implies that fd may be approximated in ‖ · ‖2 by a finite sum

of products of the form

(4.8) h0 · · · · · hd−1,

where hi is �T(i;d]

X -measurable for each i. By multi-linearity, it therefore suffices
to prove that the required factors are partially characteristic in the other positions
when fd is just one such product function. However, at this point, a simple re-
arrangement and the partial invariances of each of the his give

�̂(d)
n ( f1, . . . , fd−1, h0 · · · hd−1) =

1
|Fn|

∑
g∈Fn

( d−1∏
i =1

( fi ◦ T g
[1;i])

)
·((h0 · · · hd−1) ◦ T g

[1;d])

= h0 · 1
|Fn|

∑
g∈Fn

d−1∏
i =1

(( fihi) ◦ T g
[1;i])

= h0 · �̂(d−1)
n ( f1h1, . . . , fd−1hd−1).

Therefore, by the inductive hypothesis for j = d − 1, if these averages do not
vanish as n → ∞, then PVi,d−1

X ( fihi) = Eμ
(
fihi

∣∣�Fi,d−1

X

) �= 0 for each i ∈ [d − 1].
Since hi is �T(i;d]

X -measurable, this implies that

Eμ
(
fi
∣∣�Fi,d−1

X ∨�T(i;d]

X

)
= Eμ( fi |�Fi,d

X ) �= 0.
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By an argument as at the start of Step 1, this implies that for the averages �̂(d)
n , the

subspace Vi,d,X is partially characteristic in position i for each i ≤ d −1. Therefore
the induction continues. �

Proof of Theorem A. The proof is by induction on d , and uses only the
partially characteristic factor in position d . When d = 1, convergence is given
by the Norm Ergodic Theorem for amenable groups. So suppose d ≥ 2 and that
convergence is known for all commuting tuples of fewer than d actions.

By Theorem 3.5, we may ascend from X to an extension which is Vd,d -sated;
and so we simply assume that X is itself Vd,d -sated. This implies that∥∥�n( f1, . . . , fd ) −�n( f1, . . . , fd−1,P

Vd,d

X fd )
∥∥

2 → 0 as n → ∞,

as in the proof of the Proposition 4.7. It therefore suffices to prove convergence
for the right-hand averages inside these norms. However, again as in the proof of
Proposition 4.7, for these, we may approximate Eμ( fd |�Fd,d

X ) by a finite sum of
products of the form in (4.8) and then re-arrange the resulting averages into the
form

h0 · 1
|Fn|

∑
g∈Fn

d−1∏
i =1

(( fihi) ◦ T g
[1;i]).

Without the factor h0, which is uniformly bounded and does not depend on n, this
is now a system of non-conventional averages for a commuting (d − 1)-tuple of
G-actions, so convergence follows by the inductive hypothesis. �

5 Proof of multiple recurrence

Given a Gd -space, the convergence proved in Theorem A implies that the sequence
of measures λn := 1

|Fn|
∑

g∈Fn
δ(T g

1 x,T g
[1;2]x,...,T

g
[1;d]x)

converges in the usual topology
on the convex set of d-fold couplings of μ. (This is the same as the topology
on joinings when one gives all spaces the action of the trivial group; the joining
topology is explained, e.g.,, in [Gla03, Section 6.1].)

Let λ := limn→∞ λn. It follows that

1
|Fn|

∑
g∈Fn

μ(T g
1 A ∩ · · · ∩ T g

[1;d]A) → λ(Ad )

for every measurable A ⊆ X . To complete the proof of Theorem B, we show that

(5.1) λ(A1 × · · · × Ad ) = 0 implies μ(A1 ∩ · · · ∩ Ad ) = 0

for any Gd -space X = (X, μ,T ) and measurable subsets A1, . . . , Ad ⊆ X . This
gives the desired conclusion by setting A1 := . . . := Ad := A.
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First, by replacing X with a suitable extension and lifting each Ai to that ex-
tension, we may reduce this task to the case in which X is sated with respect to
any chosen family of functional σ-subalgebras. After doing this, we prove the re-
sult by making contact with a modification of Tao’s Infinitary Removal Lemma
from [Tao06]. This is the same strategy as in [Aus10a]. The modification of the
Removal Lemma is essentially as in [Aus10a], but we use its more explicit formu-
lation from [Aus10b]:

Proposition 5.1 ([Aus10b, Proposition 4.3.1]). Let (X, μ) be a standard
Borel probability space with σ-algebra �. Let πi : Xd → X be the coordinate
projection for each i ≤ d. Let θ be a d-fold coupling of μ on Xd . Finally, suppose
that (�e)e is a collection of σ-subalgebras of �, indexed by e ∈ ([d]

≥2

)
, such that

(i) if a ⊆ e, then �a ⊇ �e;
(ii) if i, j ∈ e and A ∈ �e, then θ(π−1

i (A)�π−1
j (A)) = 0, so that we may let �̂e

denote the common θ-completion of the lifted σ-algebras π−1
i (�e) for i ∈ e;

(iii) the σ-algebras �̂I and �̂J are relatively independent under θ over �̂I∩J,
where �̂I :=

∨
e∈I �̂e for each up-set I ⊆ ([d]

≥2

)
.

Suppose also that Ii, j for i = 1, 2, . . . , d and j = 1, 2, . . . , ki are up-sets in
([d]
≥2

)
such that [d] ∈ Ii, j ⊆ 〈i〉 for each i, j , and that Ai, j ∈ ∨

e∈Ii, j
�e for each i, j .

Then

θ
( d∏

i =1

( ki⋂
j =1

Ai, j

))
= 0 implies μ

( d⋂
i =1

ki⋂
j =1

Ai, j

)
= 0.

This result is proved by a rather lengthy induction on the up-sets Ii, j , which
requires the full generality above: see [Aus10b, Subsection 4.3] for a proof and
additional discussion. However, as in [Aus10a], we apply it only for ki = 1 and
Ii,1 = 〈i〉 for each i, in which case it asserts that, if Ai ∈ �〈i〉 for each i, then

(5.2) θ(A1 × · · · × Ad ) = 0 implies μ(A1 ∩ · · · ∩ Ad ) = 0.

We apply Proposition 5.1 with θ equal to the limit coupling λ, and with the
following family of σ-subalgebras. Suppose that e = {i1 < . . . < i�} ⊆ [d] is
non-empty, and define a new functorial σ-subalgebra of Gd -spaces X by

�e
X := �Le

X =
{
A ∈ �X : μ(T g

(i1;i2]A�A) = μ(T g
(i2;i3]A�A) =

· · · = μ(T g
(i�−1;i�]A�A) = 0 ∀g ∈ G

}
,

where we interpret this as �X in case |e| = 1. Observe that if a ⊆ e, then La ≤ Le,
and so �a

X ⊇ �e
X. For any up-set I ⊆ ([d]

≥2

)
, let �I

X :=
∨

e∈I�e
X.

Most of our remaining work goes into checking properties (i)-(iii) above for the
joint distribution of the lifted σ-algebras π−1

i (�e
X), subject to a certain satedness

assumption on X.
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Definition 5.2. The Gd -space X = (X, μ,T ) is fully sated if it is sated for
every functorial σ-subalgebra of the form

∨r
s=1�

es
X for some e1, . . . , er ∈ ([d]

≥2

)
.

Theorem 5.3. Let X be fully sated, and let λ be its limit coupling as above.
(1) The coordinates factors πi : Xd → X are relatively independent under λ

over the further σ-subalgebras π−1
i (�〈i〉

X ), i = 1, 2, . . . , d.
(2) The collection (�e

X)e satisfies properties (i)–(iii) of Proposition 5.1.

Proof of Theorem B from Theorem 5.3. Passing to an extension as
given by Corollary 3.6, we see that it suffices to prove Theorem B for fully sated
Gd -spaces. Specifically, we prove the implication (5.1).

Let A1, . . . , Ad ⊆ X be measurable. Theorem 5.3(1) gives

λ(A1 × · · · × Ad ) =
∫

X
f1 ⊗ · · · ⊗ fd dλ,

where fi := Eμ(1Ai |�〈i〉
X ). Let Bi := { fi > 0} for each i. It follows that

λ(A1 × · · · × Ad ) = 0 implies λ{ f1 ⊗ · · · ⊗ fd > 0} = λ(B1 × · · · × Bd ) = 0.

On the other hand, each Bi is �〈i〉
X -measurable. By Theorem 5.3(2), we may

therefore apply Proposition 5.1 in the form of the implication (5.2) to conclude
that λ(B1 × · · · × Bd ) = 0 implies μ(B1 ∩ · · · ∩ Bd ) = 0. Since μ(Ai \ Bi) =∫

1Ai · 1X\Bi dμ =
∫

fi · 1X\Bi dμ = 0 for each i, this completes the proof. �
The rest of this section is devoted to proving Theorem 5.3. Subsection 5.1

establishes various necessary joint-distribution properties of the σ-algebras �e
X in

(X, μ) itself, and then Subsection 5.2 deduces the required properties of the lifts
π−1

i (�e
X) from these.

5.1 Joint distribution of some σ-algebras of invariant sets. The next
proposition is the second major application of satedness in this paper. It shows that
if a Gd -space X is sated relative to a suitable family of functorial σ-subalgebras
constructed out of the collection �e

X, e ⊆ [k], then this forces some relative inde-
pendence among those σ-subalgebras.

Proposition 5.4. Suppose that {i < j} ⊆ [d], suppose that e1, . . . , er ∈ ([d]
≥2

)
,

and let X = (X, μ,T1, . . . ,Td ) be a Gd-space.
(1) If es ∩ [i; j) = {i} for every s ≤ r and X is F-sated for �F

X :=
∨r

s=1�
es∪{ j}
X ,

then �{i, j}
X and

∨r
s=1�

es
X are relatively independent over �F

X.
(2) If es ∩ (i; j] = { j} for every s ≤ r and X is G-sated for �G

X :=
∨r

s=1�
es∪{i}
X ,

then �{i, j}
X and

∨r
s=1�

es
X are relatively independent over �G

X.
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Proof of Part (1). As always, the appeal to satedness depends on construct-
ing the right extension. Let e := e1 ∪ . . . ∪ er ∪ { j}, so that our assumptions give
e ∩ [i; j] = {i, j}.

Step 1. We first construct a suitable extension of the Le-subaction X�Le .

Since e ∩ [i; j] = {i, j}, Corollary 4.2 assures that �{i, j}
X is globally Le-

invariant, so the relative product measure ν := μ ⊗
�

{i, j}
X
μ is invariant under the

diagonal action of Le on Y := X2. We make use of this by constructing a non-
diagonal action of Le on Y which still preserves ν.

Let e be enumerated as {i1 < . . . < im}. Our assumptions imply that {i, j} =
{i�0, i�0+1} for some �0 ≤ m − 1. In these terms, Le is generated by its m − 1
commuting subgroups L{i�,i�+1} = ϕ�(G), � = 1, . . . ,m − 1, where ϕ� : G → Gd is
the injective homomorphism defined by

(
ϕ�(g)

)
i :=

⎧⎨
⎩g if i ∈ (i�; i�+1],

e otherwise.

Specifying an action of Le is equivalent to specifying commuting actions of its
subgroups ϕ�(G). We define our new, non-diagonal action S : Le � (Y, ν) by

Sϕ�(g) : =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T g
(i�;i�+1] × T g

(i�,i�+1] (i.e., diagonal) if � �∈ {�0, �0 + 1},
T g

(i�0 ;i�0+1] × id if � = �0

T g
(i�0+1;i�0+2] × T g

(i�0 ,i�0+2] if � = �0 + 1.

(where the last option here is vacuous in case �0 = m − 1).

Each of these transformations leaves ν invariant. We have already remarked
this for the diagonal transformations; and for the last two possibilities, we need
only observe that ν is a relative product over a σ-algebra on which T g

(i�0 ;i�0+1] = T g
(i; j ]

acts trivially for all g ∈ G.

Now let β1, β2 : Y → X be the two coordinate projections. The above defi-
nition gives β1 ◦ Sϕ�(g) = T ϕ�(g) ◦ β1 for every � and g. So, letting Y denote the
Le-space given by the above transformations S on (Y, ν), we have a factor map

Y
β1→ X�Le . On the other hand, recall that {i�0, i�0+1} = {i, j}. Thus the above

definitions give that the subgroup L{i, j} ≤ Le acts trivially under S on the second
coordinate in Y .

Step 2. Next, applying Theorem 2.1 enlarges this to an extension X1
π→ X of

Gd -spaces which factorizes through some Le-extension X�Le
1

α→ Y.
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Step 3. Now suppose that f ∈ L∞(μ|
�

{i, j}
X

) and that gs ∈ L∞(μ|�es
X
) for each

s ≤ r. From the definition of ν and the fact that f is �{i, j}
X -measurable, we have

(5.3)
∫

X
f ·∏

s≤r

gsdμ =
∫

Y
( f ◦β2) ·

(∏
s≤r

gs ◦β2

)
dν =

∫
Y
( f ◦β1) ·

(∏
s≤r

gs ◦β2

)
dν.

Our next step is to show that for s ≤ r, the function gs◦β2 is invariant under the
whole of S�Les∪{ j} . Enumerating es ∪ { j} =: {p1 < . . . < pn} shows that it suffices
to prove invariance under each subgroup L{pk,pk+1} for k ∈ {1, 2, . . . , n − 1}.

There are three cases to consider: pk �∈ {i, j}, pk = i and pk = j . If pk �∈ {i, j},
then, since e ∩ [i; j) = {i}, it follows that (pk; pk+1] is disjoint from (i�0 ; i�0+2]
(again we are using the notation from Step 1). In this case, the definition of S
gives β2 ◦ S(pk ;pk+1] = T(pk ;pk+1] ◦ β2, so the required invariance follows from the fact
that gs itself is Les-invariant.

If pk = i, then the assumption es ∩ [i; j) = {i} implies that pk+1 = j . Hence the
definition of S implies that β2 ◦ S(pk ;pk+1] = β2, from which the S(pk ;pk+1]-invariance
of gs ◦ β2 is obvious.

Finally, if pk = j , the definition of S gives β2 ◦ S(pk ;pk+1] = T(i;pk+1] ◦ β2. Since
{i, pk+1} ⊆ es (even if j �∈ es), once again the Les-invariance of gs gives

gs ◦ β2 ◦ Sg
(pk ;pk+1] = gs ◦ T g

(i;pk+1] ◦ β2 = gs ◦ β2,

as required.
Step 4. In light of Step 3, the function

∏
s≤r(gs ◦ β2 ◦ α) is measurable with

respect to
∨

s≤r �
es∪{ j}
X1

= �F
X1

. By the assumed F-satedness, it follows that the

right-hand integral in (5.3) equals
∫
Y (Eμ( f | �F

X) ◦ β1) ·
(∏

s≤r gs ◦ β2

)
dν; and by

the same reasoning that gave (5.3) itself, this equals∫
X

Eμ( f | �F
X) · ∏

s≤r

gsdμ =
∫

X
Eμ( f | �F

X) · Eμ
(∏

s≤r

gs

∣∣∣�F
X

)
dμ.

Since f and each gs were arbitrary subject to their measurability assumptions,
this implies that �{i, j}

X and
∨r

s=1�
es
X are relatively independent over �F

X. �
Proof of Part (2). This follows exactly the same steps as Part 1, except that

now the new Le-action S on (Y, ν) := (X2, μ⊗
�

{i, j}
X
μ) is defined as

Sϕ�(g) : =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T g
(i�;i�+1] × T g

(i�,i�+1] (i.e., diagonal) if � �∈ {�0 − 1, �0},
T g

(i�0 ;i�0+1] × id if � = �0,

T g
(i�0−1;i�0 ] × T g

(i�0−1,i�0+1] if � = �0 − 1,

where now e := e1 ∪ · · · ∪ er ∪ {i} = {i1 < . . . < im}, and �0 is such that
{i, j} = {i�0, i�0+1}, as before. �
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The next two propositions contain the consequences of full satedness that we
need. The first modifies the conclusion of Proposition 4.7 in the case of integrated
averages, rather than functional averages.

Proposition 5.5. Suppose that X is fully sated, that {i1 < . . . < ik} ⊆ [d]
and that f1, . . . , fk ∈ L∞(μ). Then

lim
n→∞

∫
X

1
|Fn|

∑
g∈Fn

k∏
j =1

( f j ◦ T g
[1;i j ])dμ = lim

n→∞

∫
X

1
|Fn|

∑
g∈Fn

k∏
j =1

(Eμ( f j |� j ) ◦ T g
[1;i j ])dμ,

where

� j :=
j−1∨
�=1

�
T(i� ;i j ]

X ∨
k∨

�= j+1

�
T(i j ;i�]

X .

Proof. This is proved by induction on k. When k = 1, the result is trivial, by
the T[1;i1]-invariance of μ. So suppose k ≥ 2.

Because μ is T[1;i1]-invariant, the desired conclusion is equivalent to

∫
X

f1 ·
(

lim
n→∞

1
|Fn|

∑
g∈Fn

k∏
j =2

( f j ◦ T g
(i1;i j ])

)
dμ

=
∫

X
Eμ( f1 |�1) ·

(
lim

n→∞
1

|Fn|
∑
g∈Fn

k∏
j =2

(Eμ( f j |� j ) ◦ T g
(i1;i j ])

)
dμ.

However, X being fully sated implies that the Gk−1-space X′ defined by T ′
j :=

T(i j ,i j+1], j = 1, 2, . . . , k − 1, is also fully sated: otherwise, we could turn a Gk−1-
extension witnessing the failure of satedness for X′ back into a Gd -extension of X
using Theorem 2.1. Therefore Proposition 4.7 applied to this Gd -space gives

∫
X

f1 ·
(

lim
n→∞

1
|Fn|

∑
g∈Fn

k∏
j =2

( f j ◦ T g
(i1;i j ])

)
dμ

=
∫

X
f1 ·

(
lim

n→∞
1

|Fn|
∑
g∈Fn

k∏
j =2

(Eμ( f j |� j ) ◦ T g
(i1;i j ])

)
dμ,

since the σ-algebras � j for j ≥ 2 are those that arise by applying the functorial
σ-subalgebras F•,• of that proposition to the Gk−1-space X′.

This almost completes the proof. To finish, observe that, as in the proof of
Theorem A, we may now approximate fk (say) by a finite sum of finite products
of functions measurable with respect to �

T(i�,ik ]

X for � = 1, . . . , k − 1; and having
done so, we may re-arrange the above into an analogous system of averages with
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only k − 1 transformations. At that point, the inductive hypothesis allows us to
replace f1 with Eμ( f1 |�1), completing the proof. �

Proposition 5.6. Suppose that X is fully sated. Let e0, e1, . . . , er ∈ ([d]
≥2

)
be

sets such that
⋂

0≤s≤r es �= ∅. Let g be �e0
X -measurable and fs be �es

X -measurable
for 1 ≤ s ≤ r. Suppose g and every fs are bounded. Then∫

X
g · f1 · · · · · fr dμ =

∫
X

Eμ(g |�) · f1 · · · · · fr dμ,

where � :=
∨r

s=1�
e0∪es
X .

As is standard, this is equivalent to the assertion that

Eμ
(
g
∣∣∣ r∨

s=1

�es
X

)
= Eμ(g |�).

Proof. If e0 = e1 = e2 = · · · = er , then �es
X = � for all s, so the result is

trivial.

The general case is proved by an outer induction on r, and an inner induction
on the cardinality of the up-set Ae0,e1,...,er := 〈e0〉 ∪ · · · ∪ 〈er〉.

The base case corresponds to r = 1 and |Ae0,e1 | = 1; hence e0 = e1 = [k]. This
is among the trivial cases described above.

For the recursion, we may assume that there exist at least two distinct sets
among the es for 0 ≤ s ≤ r, so

⋂
0≤s≤r es �= ⋃

0≤s≤r es (else we would be in the
trivial case treated above). We have also assumed that

⋂
0≤s≤r es �= ∅, so there

must be {i < j} ⊆ [k] such that es ∩ [i + 1; j) = ∅ for all 0 ≤ s ≤ r, and

• either i ∈ es for all 0 ≤ s ≤ r, but j lies in some but not all es;
• or j ∈ es for all 0 ≤ s ≤ r, but i lies in some but not all es.

We complete the induction in the first of these cases, the second case being exactly
analogous. In this first case, es∩[i; j) = {i} for all s. It now breaks into two further
sub-cases: j ∈ e0 and j �∈ e0.

Case 1. First assume that j ∈ e0. Then, since �e0
X ⊆ �{i, j}

X , Proposition 5.4(1)
gives

∫
X

g · ( f1 · · · · · fr)dμ =
∫

X
Eμ

(
g
∣∣∣ r∨

s=1

�es∪{ j}
X

)
· ( f1 · · · · · fr)dμ.

Now observe that Ae0,e1∪{ j},...,er∪{ j} � Ae0,...,er . The inclusion is strict because
the right-hand family contains some set that does not contain j , whereas every
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element of the left-hand family contains j . Therefore we may apply the inductive
hypothesis to e0 and e1 ∪ { j}, e2 ∪ { j}, . . . , er ∪ { j}, to conclude that

Eμ
(
g
∣∣∣ r∨

s=1

�es∪{ j}
X

)
= Eμ

(
g
∣∣∣ r∨

s=1

�e0∪es
X

)
= Eμ(g |�).

Case 2. Now assume that j �∈ e0. Re-labeling the other sets if necessary, we
may assume j ∈ e1. Then the argument used in Case 1 gives∫

X
g · f1 · · · · · fr dμ =

∫
X

g · Eμ( f1 |�1) · f2 · · · · · fr dμ,

where �1 :=
∨

s∈{0}∪[r]\{1}�
e1∪es
X , and similarly,∫

X
Eμ(g |�) · f1 · · · · · fr dμ =

∫
X

Eμ(g |�) · Eμ( f1 |�1) · f2 · · · · · fr dμ.

It therefore suffices to prove the desired equality when f1 is�1-measurable. Since
such an f1 can be approximated in ‖ · ‖2 by finite sums of products of �e1∪es

X -
measurable functions for s ∈ {0} ∪ [r] \ {1}, it suffices furthermore to assume that
f1 = f10 · f12 · · · · · f1r is one such product.

However, now the integral of interest may be written as∫
X
(g f10) · ( f2 f12) · · · · · ( fr f1r)dμ;

and, by the inductive hypothesis on r, this equals∫
X

Eμ(g f10 |�2) · ( f2 f12) · · · · · ( fr f1r)dμ

with �2 :=
∨r

s=2�
e0∪es
X .

Since � ≥ �2 and f10 is �-measurable, the Law of Iterated Conditional
Expectation gives

Eμ(g f10 |�2) = Eμ(Eμ(g |�) f10 |�2).

Substituting this back into the integral completes the desired equality. �

Corollary 5.7. Suppose that X is fully sated and that e1, . . . , er ∈ ([d]
≥2

)
are

such that
⋂

s≤r es �= ∅. Let �s :=
∨

t∈[r]\s�
et∪es
X for s = 1, 2, . . . , r, and let fs be

�es
X -measurable for each s. Then

∫
X

r∏
s=1

fs dμ =
∫

X

r∏
s=1

Eμ( fs |�s)dμ.

Proof. Simply apply Proposition 5.6 to each factor of the integrand. �
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5.2 Structure of the limit couplings. We now turn to the structure of the
limit coupling λ, as discussed at the beginning of this section.

Lemma 5.8 ([Aus10a]). If i, j ∈ e ∈ ([d]
≥2

)
and A ∈ �e

X, then

λ(π−1
i (A)�π−1

j (A)) = 0.

In particular, π−1
i (�e

X) and π−1
j (�e

X) agree up to λ-negligible sets.

Proof. If i = j , the result is trivial; so assume without loss of generality that
i < j . By definition,

λ(π−1
i (A) ∩ π−1

j (A)) = lim
n→∞

1
|Fn|

∑
g∈Fn

μ(T g−1

[1;i]A ∩ T g−1

[1; j ]A)

= lim
n→∞

1
|Fn|

∑
g∈Fn

μ(T g−1

[1;i]A ∩ T g−1

[1;i]T
g−1

(i; j ]A)

= lim
n→∞

1
|Fn|

∑
g∈Fn

μ(T g−1

[1;i]A ∩ T g−1

[1;i]A) = μ(A),

since �e
X ≤ �

{i, j}
X ; so A is T(i; j ]-invariant. Therefore,

λ(π−1
i (A) ∩ π−1

j (A)) = λ(π−1
i (A)) = λ(π−1

j (A)),

and so λ(π−1
i (A)�π−1

j (A)) = 0. �

Definition 5.9. In the setting above, the common λ-completion of the lifted
σ-algebras π−1

i (�e
X) for i ∈ e is called the oblique copy of �e

X and is denoted
by �̂e

X. If I is a non-empty up-set in
([d]
≥2

)
and X is a Gd -space, then �̂I

X :=
∨

e∈I �̂e
X

is called the I-oblique σ-algebra.

The remainder of the proof of Theorem B follows almost exactly the same lines
as [Aus10b, Subsection 4.2]; again we include the following lemma for complete-
ness.

Lemma 5.10 (cf. [Aus10b, Proposition 4.2.6]). If I and J are non-empty up-
sets in

([d]
≥2

)
and X is a fully sated Gd-space, then �̂I

X and �̂J
X are relatively inde-

pendent over �̂I∩J
X under λ.

Proof. Step 1. Suppose first that J = 〈e〉 where e is a maximal member of([d]
≥2

) \ I. Let {a1, a2, . . . , am} be the antichain of minimal elements of I, so that

�̂I
X =

∨
k≤m �̂

ak
X . The maximality assumption on e implies that e ∪ { j} contains

some ak for every j ∈ [d] \ e, and so I ∩ J is precisely the up-set generated by
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these sets e ∪ { j} for j ∈ [d] \ e. We must therefore show that �̂e
X is relatively

independent from
∨

k≤m �̂
ak
X under λ over the σ-subalgebra

∨
j∈[d]\e �̂

e∪{ j}
X .

Since e �∈ I we can find some jk ∈ ak \ e for each k ≤ m. Moreover, each
j ∈ [d] \ e must appear as some jk in this list, since it appears for any k for which
ak ⊆ e ∪ { j}.

Now Lemma 5.8 implies that �̂ak
X agrees with π−1

jk (�ak
X ) up to λ-negligible sets.

On the other hand, we clearly have π−1
jk (�ak

X ) ≤ π−1
jk (�X); so it suffices to show

that �̂e
X is relatively independent from

∨
j∈[d]\e π−1

j (�X) over
∨

j∈[d]\e �̂
e∪{ j}
X .

Choose i ∈ e. Then Lemma 5.8 also implies that �̂e
X agrees with π−1

i (�e
X) up

to λ-negligible sets. On the other hand, for the sets Aj ∈ π−1
j (�X) for j ∈ [d] \ e

and B ∈ �e
X, the definition of λ gives

λ
(( ⋂

j∈[d]\e
π−1

j (Aj )
)

∩ π−1
i (B)

)
= lim

n→∞

∫
X
�n( f1, . . . , fd ) dμ

with

f� :=

⎧⎪⎪⎨
⎪⎪⎩

1A� if � ∈ [d] \ e,

1B if � = i,

1 otherwise.

Proposition 5.5 gives the same limit from limn→∞
∫
X �n( f ′

1, . . . , f ′
d )dμ, where

f ′
� :=

⎧⎪⎪⎨
⎪⎪⎩

1A� if � ∈ [d] \ e,

Eμ(1B |�) if � = i,

1 otherwise,

and

� :=
∨

�∈[d]\e, �<i

�
T(�;i]

X ∨ ∨
�∈[d]\e, �>i

�
T(i;�]

X =
∨

j∈[d]\e
�

{i, j}
X .

This implies that π−1
i (�e

X) is relatively independent from
∨

j∈[d]\e π−1
j (�X) over

π−1
i (�) under λ. On the other hand, Corollary 5.7 gives that �e

X is relatively
independent from� over

∨
j∈[d]\e�

e∪{ j}
X . Combining these conclusions completes

the proof in this case.

Step 2. The general case can now be treated for fixed I by induction on J. If
J ⊆ I, the result is clear; so let e be a minimal member of J \ I of maximal size,
and let K := J \ {e}. It suffices to prove that if F ∈ L∞(λ) is �̂J

X-measurable,
then Eλ(F | �̂I

X) = Eλ(F | �̂I∩J
X ). Furthermore, by an approximation in ‖ · ‖2 by

finite sums of products, it suffices to prove this only for F that are of the form
F1 · F2 with F1 and F2 being bounded and respectively �̂〈e〉

X - and �̂K
X -measurable.
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However, for such a product,

Eλ(F | �̂I
X) = Eλ

(
Eλ(F | �̂I∪K

X )
∣∣ �̂I

X

)
= Eλ

(
Eλ(F1 | �̂I∪K

X ) · F2
∣∣ �̂I

X

)
.

By Step 1,
Eλ(F1 | �̂I∪K

X ) = Eλ(F1 | �̂(I∪K)∩〈e〉
X ),

while on the other hand, (I ∪ K) ∩ 〈e〉 ⊆ K (since K contains every subset of [d]
that strictly includes e, since J is an up-set). Therefore (I ∪ K) ∩ 〈e〉 = K ∩ 〈e〉.
Another appeal to Step 1 gives Eλ(F1 | �̂(I∪K)∩〈e〉

X ) = Eλ(F1 | �̂K
X ), and hence the

above expression for Eλ(F1F2 | �̂I
X) simplifies to

Eλ
(
Eλ(F1 | �̂K

X ) · F2
∣∣ �̂I

X

)
= Eλ

(
Eλ(F1 · F2 | �̂K

X )
∣∣ �̂I

X

)
= Eλ

(
Eλ(F | �̂K

X )
∣∣ �̂I

X

)
= Eλ(F | �̂I∩K

X ) = Eλ(F | �̂I∩J
X ),

where the third equality follows by the inductive hypothesis applied to K and I.�

Proof of Theorem 5.3. Part (1). Since X is fully sated, in particular it is
sated with respect to the functorial σ-subalgebra

i−1∨
�=1

�
T(�;i]

X ∨
d∨

�=i+1

�
T(i;�]

X =
i−1∨
�=1

�{�,i}
X ∨

d∨
�=i+1

�{i,�}
X = �〈i〉

X

for each 1 ≤ i ≤ d . Therefore, Proposition 5.5 gives

∫
Xd

f1 ⊗ · · · ⊗ fd dλ = lim
n→∞

1
|Fn|

∑
g∈Fn

∫
X

d∏
i =1

( fi ◦ T g
[1;i])dμ

= lim
n→∞

1
|Fn|

∑
g∈Fn

∫
X

d∏
i =1

(Eμ( fi |�〈i〉
X ) ◦ T g

[1;i])dμ

=
∫

Xd
Eμ( f1 |�〈1〉

X ) ⊗ · · · ⊗ Eμ( fd |�〈d〉
X ) dλ

for all f1, . . . , fd ∈ L∞(X, μ).
Part (2). Proposition 5.1(i) holds by construction of the σ-algebras �e

X; prop-
erty (ii) is given by Lemma 5.8; and property (iii) is given by Lemma 5.10. �
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