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Abstract. We characterize functions of finite energy in the plane in terms of
their traces on the lines that make up “graph paper” with squares of side length mn

for all n and certain 1/2-order Sobolev norms on the graph paper lines. We also
obtain analogous results for functions of finite energy on two classical fractals: the
Sierpinski gasket and the Sierpinski carpet.

1 Introduction

Functions of finite energy play an important role in analysis and probability. On
euclidean space or a domain in euclidean space, these are just the functions whose
gradient in the distribution sense belongs to L2, with the energy given by

(1.1)
∫

|∇F |2 dx.

As such, they make up a homogeneous Sobolev space that we denote here as H 1.
The more usual inhomogeneous Sobolev space is smaller, requiring that F ∈ L2

as well [11, 15]. There are many ways to generalize the notion of finite energy to
other contexts, for example, as the functions in the domain of a Dirichlet form [6].
In this paper, we consider only functions of finite energy in regions in the plane
and on two classical fractals: the Sierpinski gasket [10, 17] and the Sierpinski
carpet [2, 3].

It is well known that functions of finite energy in the plane (or in higher di-
mensions) do not have to be continuous, so the value F (x, y) at a point is not
meaningful. Nevertheless, the trace on a line, say TF (x) = F (x, 0), is well defined
and belongs to a certain 1/2-order homogeneous Sobolev space that we denote
here by H 1/2(R), defined by the finiteness of

(1.2)
∫ ∞

−∞

∫ ∞

−∞
| f (x) − f (y)|2

|x − y|2 dxdy,
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with a corresponding norm estimate. Of course, it is the norm estimate that is im-
portant, since it implies the existence of the trace by routine arguments. The result
is sharp, meaning that there is an extension operator from H 1/2(R) to H 1(R2).

There are, in fact, two rather natural 1/2-order Sobolev spaces on R. The other
one, which we denote by H̃ 1/2(R) is larger, and only requires the finiteness of an
integral like (1.2) in which integration is restricted to the region |x − y| ≤ 1. We
show that the trace of a function F of finite energy in the strip {(x, y) : 0 < y < 1}
only belongs to H̃ (R). In particular, this implies that there does not exist a Sobolev
extension theorem from H 1 of the strip to H 1(R2), even though such a result for
inhomogeneous Sobolev spaces is well known and essentially trivial.

The trace of a function of finite energy on a single line does not, of course,
determine the function. What about the trace of an infinite collection of lines that
together form a dense subset of the plane? A simple example is the set of lines
of “graph paper,” where we take the graph paper squares to have side length mn,
where m is an integer (m ≥ 2) and n varies over Z, so the graph papers GPmn are
nested. The main results of this paper are first a trace theorem that characterizes
the traces of H 1(R2) functions on GPmn in terms of a Sobolev space H 1/2(GPmn)
with a given norm, and then the characterization of H 1(R2) in terms of a uniform
bound on the norms of the traces on GPmn as n → −∞.

The trace theorem is discussed in Section 3 in the context of Sobolev spaces
H 1/2 on metric graphs (graphs whose edges have specified length, [4]), as dis-
cussed in Section 2. Because the functions in these spaces need not be continuous,
the key issue is to understand a kind of “gluing” condition at the vertices of the
graph. It turns out that this condition was given in [16]. For the convenience of
the reader, we give all the proofs in Section 2, although many of the results are
already known, because they are usually treated in the context of inhomogeneous
Sobolev spaces. In Section 4, we discuss the trace characterizations of H 1(R2). In
Section 5, we discuss the analogous results on the two fractals. It turns out that
the trace theorems are already known [7, 8, 9], and the Sobolev spaces are H β

for values satisfying 1/2 < β < 1. The spaces of functions of finite energy on
these fractals consist of continuous functions, as do the trace spaces; so there is
no difficulty defining the traces, and the “gluing” condition at vertices is simply
continuity. Thus the fractal analog of the trace characterization is perhaps simpler
than the theorem in the plane. We also characterize the traces on Julia sets of func-
tions of finite energy in the unbounded component of the complement of the Julia
set. We believe strongly that there is a great benefit to thinking about problems
in both the smooth and the fractal contexts, and to looking for interactions in the
ideas that emerge. We hope this paper gives some support to this point of view.
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2 Metric graphs

Definition 2.1. A metric graph G = (V,E,Le) consists of a graph (V,E)
with vertices V and edges E and a function that assigns a length Le in (0,∞] to
each edge e ∈ E .

For a metric graph G = (V,E,Le), define the homogeneous Sobolev norm

‖ f ‖2
H1/2(G) =

∑
e∈E

∫ Le

0

∫ Le

0

| f (e(x)) − f (e(y))|2
|x − y|2 dxdy

+
∑
e∼e′

∫ L

0

∣∣ f (e(x)) − f (e′(x))
∣∣2

x
dx,

(2.1)

where in the second sum L = min(Le,Le′) and the parameterizations of e and e′ are
chosen so that e(0) and e′(0) correspond to the intersection point. We define the
Sobolev space H 1/2(G) to be the equivalence classes (modulo constants) of locally
L2 functions for which the norm is finite. It is easy to see that H 1/2(G) is a Hilbert
space.

Example 1. Let G = R, so G has no vertices and a single edge of infinite
length. We need to modify (2.1) in this case to read

(2.2) ‖ f ‖2
H1/2(R) =

∫ ∞

−∞

∫ ∞

−∞
| f (x) − f (y)|2

|x − y|2 dxdy.

For this example, we also want to consider the smaller norm

(2.3) ‖ f ‖2
H̃1/2(R) =

∫∫
|x−y|≤1

| f (x) − f (y)|2
|x − y|2 dxdy

and the corresponding larger Sobolev space H̃ 1/2(R).

We note that the space H 1/2(R) is Möbius invariant, which means that
f ∈ H 1/2(R) if and only if f ◦ M ∈ H 1/2(R) with equal norms, for M (x) =
(ax + b)/(cx + d ) with

(
a b
c d

) ∈ SL(2,R). Indeed, it suffices to verify this for trans-
lations M (x) = x + b, dilations M (x) = ax, and the inversion M (x) = 1/x, where it
follows by a simple change of variable in the integral defining the norm. We note
that the same statement is false for H̃ 1/2(R).

We may easily characterize these norms and spaces in terms of the Fourier
transform f̂ . The finiteness of the norm easily implies that f is a tempered distri-
bution, so f̂ is well-defined as a tempered distribution; and the equivalence of the
functions that differ by a constant means f̂ is only defined up to the addition of an
arbitrary multiple of the delta function. Note that there is no “canonical” choice
of f and f̂ within each equivalence class.
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Theorem 2.2. a) f ∈ H 1/2(R) if and only if f̂ may be identified with a

function that is locally in L2 in the complement of the origin with

(2.4)
∫ ∞

−∞
| f̂ (ξ )|2|ξ |dξ <∞;

in fact, (2.4) is a constant multiple of (2.2).
b) f ∈ H̃ 1/2(R) if and only if f̂ may be identified with a function that is locally

in L2 in the complement of the origin, with

(2.5)
∫

|ξ |≥1
| f̂ (ξ )|2|ξ | dξ +

∫
|ξ |≤1

| f̂ (ξ )|2|ξ |2dξ <∞;

and (2.5) is bounded above and below by a multiple of (2.3).

Proof. a) is, of course, well known and follows from the formal computation

‖ f ‖2
H1/2(R) =

∫ ∞

−∞

∫ ∞

−∞
| f (x + t) − f (x)|2dx

dt
t2

=
∫ ∞

−∞

∫ ∞

−∞
| f̂ (ξ )|2|e2πiξt − 1|2dξ dt

t2

= c
∫ ∞

−∞
| f̂ (ξ )|2|ξ | dξ

for c =
∫ ∞
−∞ |e2πit − 1|2(dt/t2).

To prove b), we similarly compute

‖ f ‖2
H̃1/2(R) =

∫ 1

−1

∫ ∞

−∞
| f (x + t) − f (x)|2 dx

dt
t2

=
∫ ∞

−∞
| f̂ (ξ )|2

(∫ 1

−1
|e2πiξt − 1|2 dt

t2

)
dξ.

Now ∫ 1

−1
|e2πiξt − 1|2 dt

t2
= |ξ |

∫ |ξ |

−|ξ |
|e2πit − 1|2 dt

t2
;

and for |ξ | ≥ 1, the last integral is bounded above and below by a constant. On the
other hand, for |ξ | ≤ 1, the integrand is bounded above and below by a constant,
so the integral is bounded above and below by the length of the interval. This
shows the equivalence of (2.3) and (2.5).

The formal computation easily implies that any f ∈ H̃ 1/2(R) has a Fourier
transform satisfying (2.5). To complete the proof, we need to show that any locally
L2 function g(ξ ) with

(2.6)
∫

|ξ |≥1
|g(ξ )|2|ξ | dξ +

∫
|ξ |≤1

|g(ξ )|2|ξ |2dξ < ∞
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is, in fact, the Fourier transform of a function in H̃ 1/2(R). Since the only problem
is near the origin, we may assume that g is supported in [−1, 1]. Let h(ξ ) = ξg(ξ ).
Note that h ∈ L2 by (2.6). We define a distribution g̃ associated to g as follows.
Note that 〈g̃, ϕ〉 =

∫
h(ξ )ϕ(ξ )(dξ/ξ ) is well-defined for any ϕ ∈ S with ϕ(0) = 0.

Choose ψ ∈ S with ψ(0) = 1. Then ϕ(ξ ) = (ϕ(ξ ) − ϕ(0)ψ(ξ )) + ϕ(0)ψ(ξ ), with
the first summand vanishing at the origin. We choose to have 〈g̃, ψ〉 = 0, so our
definition of g̃ is

(2.7) 〈g̃, ϕ〉 =
∫

h(ξ ) (ϕ(ξ ) − ϕ(0)ψ(ξ ))
dξ
ξ
.

It follows that h(ξ ) = ξ g̃(ξ ) in the distribution sense. The inverse Fourier transform
of g̃ is the function f . Note that f has a derivative in L2, so it is continuous; and
the formal computation shows that f ∈ H̃ 1/2(R). �

A trivial consequence of the theorem is that the space H̃ 1/2(R) is strictly larger
than H 1/2(R). On the other hand, L2(R) ∩ H̃ 1/2(R) = L2(R) ∩ H 1/2(R).

Example 2. Let G be the graph with one vertex and two edges of infinite
length meeting at the vertex. We may realize G as the real line with edges (−∞, 0]
and [0,∞), and we write it as R− ∪ R+. Then (2.1) can be written explicitly as

‖ f ‖2
H1/2(R−∪R+) =

∫ 0

−∞

∫ 0

−∞
| f (x) − f (y)|2

|x − y|2 dxdy

+
∫ ∞

0

∫ ∞

0

| f (x) − f (y)|2
|x − y|2 dxdy

+
∫ ∞

0

| f (x) − f (−x)|2
x

dx.

(2.8)

Theorem 2.3. The spaces H 1/2(R− ∪ R
+) and H 1/2(R) are identical with

equivalent norms.

Proof. This result is essentially contained in [16, Section III.3]. Let x, y stand
for variables that are always positive. Since

∫ ∞
0 dy/(x + y)2 = 1/x, we have

∫ ∞

0

| f (x) − f (−x)|2
x

dx =
∫ ∞

0

∫ ∞

0

| f (x) − f (−x)|2
(x + y)2

dydx.

Writing f (x) − f (−x) = ( f (x) − f (y)) + ( f (y) − f (−x)), we have by the triangle
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inequality
(∫ ∞

0

| f (x) − f (−x)|2
x

dx
)1/2

≤
(∫ ∞

0

∫ ∞

0

| f (x) − f (y)|2
(x + y)2

dydx
)1/2

+
(∫ ∞

0

∫ ∞

0

| f (y) − f (−x)|2
|x + y|2 dydx

)1/2

≤ 2‖ f ‖H1/2(R),

since 1/(x + y)2 ≤ 1/(x − y)2. This yields the bound of (2.8) by a multiple of
‖ f ‖H1/2(R). A similar argument gives

(∫ ∞

0

∫ ∞

0

| f (y) − f (−x)|2
|x + y|2 dydx

)1/2

≤
(∫ ∞

0

∫ ∞

0

| f (x) − f (y)|2
|x + y|2 dydx

)1/2

+
(∫ ∞

0

| f (x) − f (−x)|2
x

dx
)1/2

for the bound in the other direction. �

Example 3. Let G be the graph Z; in other words, the vertices are the integers
and the edges are [k, k + 1] for k ∈ Z of length 1. Then (2.1) is explicitly

(2.9) ‖ f ‖2
H1/2(Z) =

∑
k∈Z

∫ k+1

k

∫ k+1

k

| f (x) − f (y)|2
|x − y|2 dxdy

+
∑
k∈Z

∫ 1

0

| f (k + t) − f (k − t)|2
t

dt.

Theorem 2.4. The spaces H 1/2(Z) and H̃ 1/2(R) are identical with equivalent
norms.

Proof. The first term on the right side of (2.9) is clearly bounded by ‖ f ‖2
H̃1/2(R).

For the second term, we note that an argument as in the proof of Theorem 2.3
gives the estimate

∫ 1

0

| f (k + t) − f (k − t)|2
t

dt ≤ c
∫ k+1

k−1

∫ k+1

k−1

| f (x) − f (y)|2
|x − y|2 dxdy;

and summing over k ∈ Z, we obtain

∑
k∈Z

∫ 1

0

| f (k + t) − f (k − t)|2
t

dt ≤ c
∫∫

|x−y|≤2

| f (x) − f (y)|2
|x − y|2 dxdy.

A straightforward estimate controls the integral over 1 ≤ |x− y| ≤ 2 by a multiple
of the integral over |x − y| ≤ 1, so we have

‖ f ‖2
H1/2(Z) ≤ c‖ f ‖2

H̃1/2(R).
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For the reverse estimate, we use an argument in the proof of Theorem 2.3 to obtain

∫ k

k−1

∫ k+1

k

| f (x) − f (y)|2
|x − y|2 dxdy ≤

∫ k

k−1

∫ k

k−1

| f (x) − f (y)|2
|x − y|2 dxdy

+
∫ k+1

k

∫ k+1

k

| f (x) − f (y)|2
|x − y|2 dxdy

+
∫ t

0

| f (k + t) − f (k − t)|2
t

dt

and then sum over k ∈ Z. �

Example 4. Let G be the square graph SQδ with side length δ . So SQδ has 4
vertices that we identify with the points (0, 0), (δ, 0), (δ, δ ), (0, δ ) in the plane and
4 edges of length δ . Then

‖ f ‖2
H1/2(SQδ ) =

∫ δ

0

∫ δ

0

| f (x, 0) − f (y, 0)|2
|x − y|2 dxdy +

∫ δ

0

∫ δ

0

| f (δ, x) − f (δ, y)|2
|x − y|2 dxdy

+
∫ δ

0

∫ δ

0

| f (x, δ ) − f (y, δ )|2
|x − y|2 dxdy +

∫ δ

0

∫ δ

0

| f (0, x) − f (0, y)|2
|x − y|2 dxdy

+
∫ δ

0
| f (x, 0) − f (0, x)|2 dx

x
+
∫ δ

0
| f (x, 0) − f (δ, δ − x)|2 dx

x
(2.10)

+
∫ δ

0
| f (x, δ ) − f (δ, x)|2 dx

x
+
∫ δ

0
| f (0, x) − f (δ − x, δ )|2 dx

x
.

Although the H 1/2(SQδ ) norm does not involve comparisons between values on
opposite edges, it is not difficult to show bounds

∫ 1

0
| f (x, 0) − f (x, δ )|2 dx ≤ cδ‖ f ‖2

H1/2(SQδ )∫ 1

0
| f (0, y) − f (δ, y)|2 dy ≤ cδ‖ f ‖2

H1/2(SQδ ).

(2.11)

Example 5. Let G be the graph paper graph GPδ with vertices at {( jδ, kδ )},
j, k ∈ Z and horizontal and vertical edges of length δ joining ( jδ, kδ ) with



246 ROBERT S. STRICHARTZ

(( j + 1)δ, kδ ) and ( jδ, kδ ) with ( jδ, (k + 1)δ ). The norm is given by

‖ f ‖2
H1/2(GPδ ) =

∑
j

∑
k

∫ δ

0

∫ δ

0

| f ( jδ + x, kδ ) − f ( jδ + y, kδ )|2
|x − y|2 dxdy

+
∑

j

∑
k

∫ δ

0

∫ δ

0

| f ( jδ, kδ + x) − f ( jδ, kδ + y)|2
|x − y|2 dxdy

+
∑

j

∑
k

∫ δ

−δ
| f ( jδ + x, kδ ) − f ( jδ, kδ + x)|2 dx

|x|

+
∑

j

∑
k

∫ δ

0
| f ( jδ + x, kδ ) − f ( jδ − x, kδ )|2 dx

x

+
∑

j

∑
k

∫ δ

0
| f ( jδ, kδ + x) − f ( jδ, kδ − x)|2 dx

x
.

(2.12)

Of course, we could get an equivalent norm by deleting the last two sums in (2.12),
as they are controlled by the third sum. We may regard GPδ as a countable union
of square graphs SQδ ; indeed, it is easily seen that f ∈ H 1/2(GPδ ) if and only if
the restriction of f to each of the square graphs is in H 1/2(SQδ ) with the sum of
the squares of the norms ‖ f ‖2

H1/2(SQδ )
finite, and this gives an equivalent norm.

3 Traces of functions of finite energy

Consider the homogeneous Sobolev space H 1(R2) of functions with finite energy

(3.1) ‖F‖2
H1(R) =

∫
R2

|∇F (x, y)|2dxdy.

These form a Hilbert space modulo constants. Functions of finite energy do not
have to be continuous, as the example F (x, y) = log | log(x2+y2)| (multiplied by an
appropriate cutoff function) shows. However, it is well known that these functions
have well-defined traces on straight lines that are in H 1/2(R), and H 1/2(R) is the
exact space of traces. Since the usual treatment of traces involves inhomogeneous
Sobolev spaces, we give the proof for the convenience of the reader. We omit the
routine step of actually defining the traces and just prove the norm estimates.

Theorem 3.1. The trace map T : H 1(R2) → H 1/2(R) given formally by
TF (x) = F (x, 0) is continuous; i.e.,

(3.2) ‖TF‖H1/2(R) ≤ c‖F‖H1(R2).

Moreover, there exists a continuous extension map E : H 1/2(R) → H 1(R2) with

TE f = f and

(3.3) ‖E f ‖H1(R2) ≤ c‖ f ‖H1/2(R).
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Proof. We work on the Fourier transform side, where

‖F‖2
H1(R2) =

∫
R2

(ξ 2 + η2)|F̂ (ξ, η)|2dξdη and(3.4)

(T f )∧(ξ ) =
∫ ∞

−∞
F̂(ξ, η)dη.(3.5)

By Theorem 2.2, we have

‖T f ‖2
H1/2(R) =

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
F̂ (ξ, η) dη

∣∣∣∣
2

|ξ |dξ.

By the Cauchy-Schwarz inequality,
∣∣∣∣
∫ ∞

−∞
F̂(ξ, η) dη

∣∣∣∣
2

≤
(∫ ∞

−∞
(ξ 2 + η2)|F̂ (ξ, η)|2 dη

)(∫ ∞

−∞
1

ξ 2 + η2
dη

)

=
π

|ξ |
(∫ ∞

−∞
(ξ 2 + η2)|F̂(ξ, η)|2dη

)
,

so

‖T f ‖2
H1/2(R) ≤ π

∫ ∞

−∞

∫ ∞

−∞
(ξ 2 + η2)|F̂(ξ, η)|2dη

= π‖F‖2
H1(R2),

which proves(3.2).
Conversely, given f ∈ H 1/2(R), define E f = F by the Poisson integral

(3.6) F (x, y) =
|y|
π

∫
f (x − t)
t2 + y2

dt,

so that TF = f . Then

(3.7) F̂ (ξ, η) =
1
π

f̂ (ξ )|ξ |
η2 + |ξ |2 .

By (3.4), we have

‖F‖2
H1(R2) =

1
π2

∫
R2

| f̂ (ξ )|2|ξ |2
η2 + ξ 2

dξdη

=
1
π

∫ ∞

−∞
| f̂ (ξ )|2|ξ |dξ,

so we obtain (3.3) by Theorem 2.2. �
Note that we define the extension E f to be harmonic in each half-plane y > 0

and y < 0. Since harmonic functions minimize energy, our extension achieves the
minimum H 1(R2) norm.
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There is a virtually identical trace theorem for functions of finite energy in the
half-plane, say y > 0, denoted R

2
+. To see this, we have only to observe that an

even reflection

(3.8) RF (x, y) = F (x,−y) for y < 0

maps H 1(R2
+) continuously to H 1(R2).

Theorem 3.2. The trace map T : H 1(R2
+) → H 1/2(R) given formally by

TF (x) = F (x, 0) is well-defined and bounded, and there exists a bounded extension
map E : H 1/2(R) → H 1(R2

+) with TE f = f . Moreover, the analogues of (3.2) and

(3.3) hold.

If we combine this with the well-known observation that energy is conformally
invariant in the plane (not true in other dimensions, however), we obtain a pow-
erful tool for obtaining trace theorems for other domains: find a conformal map
between the domain and the half-space R2

+, and transfer the H 1/2(R) norm from
the boundary of R2

+ to the boundary of the domain, assuming the conformal map
extends continuously to the boundary.

A simple example is the strip S = {(x, y) : 0 < y < π}. In complex variables
notation, ϕ(z) = log z is the conformal map from R

2
+ to S, with ψ(z) = ez its

inverse. So F ∈ H 1(S) if and only if F ◦ ϕ ∈ H 1(R2
+) with equal norms. Then

f (t) = F (ϕ(t)) ∈ H 1/2(R). In light of Theorem 2.2, this means

∫ ∞

0

∫ ∞

0

|F (log t) − F (log s)|2
|t − s|2 dtds +

∫ ∞

0

∫ ∞

0

|F (log t + iπ) − F (log s + iπ)|2
|t − s|2 dtds

+
∫ ∞

0
|F (log t) − F (log t + iπ)|2 dt

t
(3.9)

≤ c‖F‖2
H1(S).

The change of variable x = log t, y = log s transforms the left hand side of (3.9)
into

∫ ∞

−∞

∫ ∞

−∞
|F (x) − F (y)|2 exey

|ex − ey|2 dxdy

+
∫ ∞

−∞

∫ ∞

−∞
|F (x + y) − F (x + iπ)|2 exey

|ex − ey|dxdy

+
∫ ∞

−∞
|F (x) − F (x + iπ)|2dx.

(3.10)

To simplify notation, we split the trace of F on the boundary of S into two pieces
T0F (x) = F (x) and T1F (x) = F (x + iπ), so that T0F and T1F are functions on R.
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Theorem 3.3. If F ∈ H 1(S) then T0F and T1F are in H̃ 1/2(R) and

T0F − T1F ∈ L2(R), with

(3.11) ‖T0F‖2
H̃1/2(R) + ‖T1F‖2

H̃1/2(R) + ‖T0F − T1F‖2
2 ≤ c‖F‖2

H1(S).

Conversely, given f0 and f1 in H̃ 1/2(R) with f0 − f1 ∈ L2(R), there exists F =
E( f0, f1) with T0F = f0, T1F = f1, F ∈ H 1(S) with the reverse estimate of (3.11)
holding.

Proof. In view of (3.10), it suffices to show that

(3.12)
∫ ∞

−∞

∫ ∞

−∞
|F (x) − F (y)|2 exey

|exey| |e
x − ey|2dxdy

is bounded above and below by a constant multiple of

(3.13)
∫∫

|x−y|≤1

|F (x) − F (y)|2
|x − y|2 dxdy = ‖F‖2

H̃1/2(R).

Note that we may rewrite (3.12) as

(3.14)
1
4

∫ ∞

−∞

∫ ∞

−∞
|F (x) − F (y)|2

|sinh ((x − y)/2)|2 dxdy.

It is clear that (3.14) is bounded below by a multiple of (3.13). For the upper
bound, we need

∫∫
|x−y|≥1 | f (x) − f (y)|2/ |sinh ((x − y)/2)|2 dx dy to be bounded

above by a multiple of (3.13). However, proving this is a routine exercise because
of the exponential decay of |sinh ((x − y)/2)|−2. �

It might seem perplexing that the trace space on each of the lines is larger than
H 1/2(R), since in particular this implies that there are functions in H 1(S) that do
not extend to H 1(R2). However, it is easy to give an example of such a function:
just take F (x, y) = g(x), where g(0) = 0 for x ≤ 0, g(x) = 1 for x ≥ 1, and
g is smooth in [0, 1]. Then ∇F has compact support in S; so F ∈ H 1/2(S), but
g /∈ H 1/2(R).

Another simple example is the first quadrant Q = {(x, y) : x > 0 and y > 0}.
Then ϕ(z) =

√
z is the conformal map of R

2
+ to Q, with inverse ψ(z) = z2.

Again it is convenient to split the trace into two parts mapping to functions on R+,
namely T0F (x) = F (x, 0) and T1F (x) = F (0, x). Since F ∈ H 1(Q) if and only if
F ◦ ϕ ∈ H 1(R2

+), again by Theorem 2.2, we have the expression
∫ ∞

0

∫ ∞

0

|T0F (
√

t) − T0F (
√

s)|2
|t − s|2 dsdt +

∫ ∞

0

∫ ∞

0

|T1F (
√

t) − T1F (
√

s)|2
|t − s|2 dsdt

+
∫ ∞

0
|T0F (

√
t) − T1F (

√
t)|2 dt

t
(3.15)
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for the trace norm. With the substitutions t = x2, s = y2, this becomes

4
∫ ∞

0

∫ ∞

0

|T0F (x) − T0F (y)|2
|x − y|2

xy
|x + y|2 dxdy

+ 4
∫ ∞

0

∫ ∞

0

|T1F (x) − T1F (y)|2
|x − y|2

xy
|x + y|2 dxdy

+ 2
∫ ∞

0
|T1F (x) − T1F (x)|2 dx

x
.

(3.16)

It is easy to see that if f0, f1 ∈ H 1/2(R+) and

(3.17)
∫ ∞

0
| f0(x) − f1(x)|2 dx

x
< ∞,

then there exists F ∈ H 1(Q) with T0F = f0 and T1F = f1, because xy/|x + y|2 is
bounded. In other words, the function

f (x) =

⎧⎨
⎩

f0(x) if x > 0,

f1(x) if x < 0

is in H 1/2(R), and ‖F‖H1(Q) ≤ c‖ f ‖H1/2(R). It is possible to show the converse
statement as well, but this involves some technicalities, since xy/|x + y|2 is not
bounded below. It is easier to observe that F ∈ H 1(Q) may be extended by even
reflection across the axes to a function in H 1(R2). Thus the even reflections of
T0F and T1F must be in H 1/2(R2), so T0F and T1F must be in H 1/2(R+); and we
already have (3.17) for f0 = T0F , f1 = T1F .

A direct proof of (3.17) is possible, but involves technicalities.
Another simple example is the unit disk D, with the conformal mapping ϕ(z) =

(1 − z)/(1 + z) of R2
+ to D. The trace space of H 1(D) is H 1/2(C) for C the unit

circle with norm

(3.18) ‖ f ‖2
H1/2(C) =

∫ 2π

0

∫ 2π

0

| f (eiθ ) − f (eiθ ′
)|2

4
∣∣sin 1

2 (θ − θ ′)
∣∣2 dθdθ ′.

Of course, 2
∣∣sin 1

2 (θ − θ ′)
∣∣ is exactly the chordal distance |eiθ − eiθ ′ |. It is inter-

esting to observe that exactly the same trace space arises from the exterior of the
circle {|z| > 1}, as z �→ 1/z̄ is an anticonformal map of D to this exterior domain
that agrees with ϕ(z) on the circle. Similarly, for a circle Cr of radius r, the analog
of (3.18) is

(3.19) ‖ f ‖2
H1/2(Cr ) =

∫ 2π

0

∫ 2π

0

| f (reiθ) − f (reiθ ′
)|2

4
∣∣r sin 1

2 (θ − θ ′)
∣∣2 rdθrdθ ′.
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Of course, it is not necessary to use a conformal map ϕ. A Lipschitz map or
even a quasiconformal map changes the H 1 norm by a bounded amount. So for
the interior SQ◦

δ of the square SQδ , the trace space of H 1(SQ◦
δ ) is H 1/2(SQδ ) with

norm given by (2.10), since one can “square the circle” with a Lipschitz map.
Next we consider traces on infinite collections of lines. First consider the hori-

zontal line collection HLC = {(x, nπ) : x ∈ R, n ∈ Z}. For a function F in H 1(R2),
define the traces TnF (x) = F (x, πn).

Theorem 3.4. A set of functions { fn} on R consists of the traces fn = TnF of
a function F ∈ H 1(R2) if and only if fn ∈ H̃ 1/2(R) and fn − fn+1 ∈ L2(R) with

(3.20)
∑

n

‖ fn‖2
H̃1/2(R) +

∑
n

‖ fn − fn+1‖2
L2(R) < ∞

and the corresponding norm equivalence holds.

Proof. Basically, we just have to apply Theorem 3.3 to each of the strips
{nπ < y < (n + 1)π} and sum (3.11) over all the strips. To do this, we simply
observe that a function belongs to H 1(R2) if and only if its restriction to each strip
is in H 1 of that strip, the traces agree on neighboring strips, and the sum of the
energies is finite. �

There is something a bit unsettling about this result. We know that fn = TnF

actually belongs to the smaller space H 1/2(R) for F ∈ H 1(R2), yet this space
plays no role in the characterization (3.20). An indirect consequence of the theo-
rem is that if { fn} is a family of functions satisfying (3.20), then each fn is in-
deed in H 1/2(R). It should be possible to prove this directly, but again this seems
rather technical. Note that we only get a uniform bound for ‖ fn‖2

H1/2(R). The fol-
lowing example shows that we cannot do too much better than this (most likely
‖ fn‖2

H1/2(R) = o(1)).
Consider the function F (x, y) = (1+ x2 + y2)−α for α > 0. A direct computation

shows that |∇F (x, y)| ≤ 2α(1 + x2 + xy)−α−1/2, so F ∈ H 1(R2). Now

TnF (x) = (1 + π2n2 + x2)−α = (1 + π2n2)−αg
(

x√
1 + π2n2

)

for g(x) = (1 + x2)−α. It is easy to see that g ∈ H 1/2(R); so by dilation invari-
ance of the H 1/2(R) norm, we see that ‖TnF‖2

H1/2(R) = c(1 + π2n2)−2α. Thus∑ ‖TnF‖2
H1/2(R) = ∞ for α ≤ 1/4.

Next we consider the trace on the graph paper graph GPδ .

Theorem 3.5. The trace space of H 1(R2) on GPδ is exactly H 1/2(GPδ ) with
norm given by (2.12).
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Proof. We simply use the trace theorem of H 1 on each δ -square that makes
up GPδ and add. �

In place of square graph paper, we could consider the triangular graph
paper TGPδ consisting of the tiling of the plane by equilateral triangles of side
length δ . The analog of Theorem 3.5 holds with essentially the same proof.

4 The graph paper trace characterization

In this section, we fix an integer m ≥ 2 and consider the sequence of graph paper
graphs GPmn , thought of as the unions of the edges, or equivalently, the countable
union of horizontal and vertical lines in the plane with mn separation. These are
nested subsets of the plane, GPmn ⊂ GPmn′ if n′ < n, and we are interested in the
limit as n → −∞, so the graph paper gets increasingly finer.

We let Tn denote the trace map from functions defined on R
2 to GPmn . By the

nesting property, we may also consider Tn to be defined on functions on GPmn′

with n′ < n. Our goal is to characterize functions in H 1(R2) by their traces TnF .

Theorem 4.1. a) Let F ∈ H 1(R2). Then TnF ∈ H 1/2(GPmn) for all n with
uniformly bounded norms, and

(4.1) sup
n∈Z

‖TnF‖2
H1/2(GPmn ) ≤ c‖F‖2

H1(R2).

b) Let { fn} ⊂ H 1/2(GPmn) be a sequence of functions with uniformly bounded

norms satisfying the consistency condition Tn fn′ = fn for n′ < n. Then there
exists F ∈ H 1(R2) such that TnF = fn and

(4.2) ‖F‖2
H1(R2) ≤ c sup

n∈Z
‖ fn‖2

H1/2(GPmn ).

Proof. Part a) is an immediate consequence of Theorem 3.5.
To prove b), we define Fn to be the harmonic extension of fn into each of the

graph paper spaces. Since these harmonic extensions minimize energy, we have
Fn ∈ H 1(R2) and

‖Fn‖H1(R2) ≤ c‖ fn‖H1/2(GPmn ),

again by Theorem 3.5. Thus there exists a subsequence n j → −∞ such that
Fnj converges in the weak topology of H 1(R2) to a function F satisfying (4.2). It
remains to show that the weak convergence respects traces, so that TnFn j = fn for
all n j implies TnF = fn.

But the equality of traces on GPmn is the same as equality of traces on each
of the lines that make up GPmn ; and since all lines are essentially equivalent, it
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suffices to show that Fnj (x, 0) converges weakly in H 1/2(R) to F (x, 0). This is
most easily seen on the Fourier transform side, where both H 1(R2) and H 1/2(R)
are just weighted L2 spaces.

The weak convergence Fnj → F in H 1(R2) says

(4.3)
∫∫

F̂n j (ξ, η)G(ξ, η)(ξ 2 + η2) dξdη→
∫∫

F̂(ξ, η)G(ξ, η)(ξ 2 + η2)dξdη

for every G ∈ L2
(
(ξ 2 + η2)dξdη

)
. The weak convergence Fnj (x, 0) → F (x, 0)

requires that we show

(4.4)
∫ (∫

F̂n j (ξ, η) dη
)

H (ξ )|ξ | dξ →
∫ (∫

F̂(ξ, η) dη
)

H (ξ )|ξ |dξ

for every H ∈ L2 (|ξ | dξ ). So given H , choose

(4.5) G(ξ, η) =
|ξ |H (ξ )
ξ 2 + η2 .

Since
∫∫

|G(ξ, η)|2(ξ 2 + η2) dξdη =
∫ (∫ |ξ |2

ξ 2 + η2
dη

)
|H (ξ )|2dξ

= π
∫

|H (ξ )|2|ξ |dξ,

we may use the choice of G in (4.2). But then (4.3) and (4.4) are identical. �
This result localizes in several ways. For example, if F ∈ H 1(R2) and we wish

to estimate the amount of energy that is contained in an open set�, i.e.,

(4.6)
∫
�

|∇F |2dxdy,

we just have to take the sum of the terms in (2.12) that correspond to edges con-
tained in �. Denote this sum by ‖TnF‖2

H1/2(�∩GPmn ). Then (4.6) is bounded above
and below by a constant times

(4.7) sup
n∈Z

‖TnF‖2
H1/2(�∩GPmn ).

We obtain the same norm equivalence if we only assume F ∈ H 1(�), meaning
(4.6) is finite. (Note that this does not say anything about the trace of F on the
boundary of �.) Also, we may start by assuming that F ∈ H 1

loc(R
2), meaning that

(4.6) is finite whenever � is bounded, and obtain the norm equivalence of (4.6)
and (4.7).

The same result holds with GPmn replaced with TGPmn .
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It is clear that we may replace the sup in (4.2) and (4.7) by the lim sup as
n → −∞. It is not clear that a limit has to exist however, since we only have
estimates above and below, rather than identity, for our norms.

We can also characterize functions of finite energy by their traces on pencils
of parallel lines of equal separation, i.e., the horizontal lines in GPmn . Denote this
by PPmn . We use Theorem 3.4, but the norms defined by (3.20) are not dilation
invariant. That means we want to define H̃ 1/2(PPmn) by the finiteness of

∑
k∈Z

∫∫
|x−y|≤mn

| f (x, kmn) − f (y, kmn)|2
|x − y|2 dxdy

+
∑
k∈Z

m−n
∫ ∞

−∞
| f (x, (k + 1)mn) − f (x, kmn)|2dx,

(4.8)

and we define this to be ‖ f ‖2
H̃1/2(PPmn ). Then the analog of Theorem 4.1 holds with

TnF equal to the trace on PPmn and H 1/2(GPmn) replaced by H̃ 1/2(PPmn). The proof
is essentially the same, using the scaled version of Theorem 3.4 with (4.8) in place
of (3.20).

5 Fractals

The Sierpinski gasket (SG) is the self-similar fractal defined by the identity

(5.1) SG =
2⋃

i =0

�i (SG),

where �i are the homothety maps of the plane �i (x) = (x + qi )/2 and {q0, q1, q2}
are the vertices of an equilateral triangle with side length 1. SG is the unique
nonempty compact subset of the plane satisfying (5.1). The mappings {�i} com-
prise what is called an iterated function system, and the iterates of the map-
pings are denoted �w = �w1 ◦ · · · ◦ �wm where w = (w1, . . . , wm) is a word of
length |w| = m and w j ∈ {0, 1, 2} for each j . Then, iterating (5.1), we obtain

(5.2) SG =
⋃

|w|=m

�w(SG),

which expresses SG as a union of 3m miniature gaskets (called m-cells) that are
similar to SG with similarity ratio 2−m . Note that SG has the post-critically
finite (PCF) property that distinct m-cells can intersect only at the vertices�wqi .
For this reason, we refer to {qi} as the boundary of SG, and {�wqi} as the
boundary of the m-cell �m(SG), although these are not boundaries in the topo-
logical sense.
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We may approximate SG by the metric graphs SGm = SG ∩ TG2−m . Here,
the vertices are {�wqi}, for |w| = m and i = 0, 1, 2, the edges are {�wei j } for
|w| = m, where ei j is the edge of the original triangle joining qi and q j , and�wei j

has length 2−m . Denote by

(5.3) Em( f ) =
∑
i �= j

∑
|w|=m

| f (�wqi ) − f (�wq j )|2

the unrenormalized graph energy on SGm. Kigami (see [10, 17]) defines an energy
on SG by

(5.4) E( f ) = lim
m→∞

(
5
3

)m

Em( f ).

The renormalization factor (5/3)m may be explained as follows. The sequence
{(5/3)mEm( f )} is always nondecreasing, and there exists a 3-dimensional space
of harmonic functions for which it is constant. We can then define domE, the
space of functions of finite energy, as those functions for which (5.4) is finite.
This is a space of continuous functions on SG that forms an infinite dimensional
Hilbert space (after modding out by the constants) with norm E( f )1/2. This energy
satisfies the self-similar identity

(5.5) E( f ) =
2∑

i =0

(
5
3

)
E( f ◦�i)

as well as the axioms for a local regular Dirichlet form [6]. Up to a constant
multiple, it is the only Dirichlet form with these properties. It is also symmetric
with respect to the D3 symmetry group of the triangle. This energy forms the
basic building block for a whole theory of analysis on SG, including a theory of
Laplacians. We do not use this wider theory here, but direct the curious reader to
[10, 17] for details.

Since the functions in domE are continuous, there is no problem defining traces
Tm on SGm. The problem of characterizing the trace space Tn(SG) on the boundary
of the triangle has been solved by Jonsson [8, 9] (see [7] for a different proof) in
terms of Sobolev spaces of order β, with β = 1

2 + log 5/3
log 4 . Note that 1/2 < β < 1.

For any metric graph G, we define H β(G) (for any β in the above range) to be the
space of continuous functions such that

(5.6) ‖F‖2
Hβ(G) =

∑
e∈E

∫ Le

0

∫ Le

0

|F (e(x)) − F (e(y))|2
|x − y|1+2β

dxdy <∞.

Note that in contrast to (2.1), there is no term comparing values on intersecting
edges, since the continuity condition takes care of the comparison (this idea is
also used in [16]). We then have the following result, analogous to Theorem 3.1.
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Proposition 5.1 ([7, 8, 9]). The trace map T0 is continuous from domE to

H β(SG0), β = 1
2 + log 5/3

log 4 , and

(5.7) ‖T0F‖2
Hβ(SG0

≤ cE(F ).

Moreover, there exists a continuous linear extension map E0 : H β(SG0) → domE

such that T0E0 f = f and

(5.8) E(E0 f ) ≤ c‖ f ‖2
Hβ (SG0)

.

We note that [7, 8, 9] use a slightly different, but equivalent, norm for H β(SG0).
Next, we need to obtain the analogous statement for the trace map Tm to SGm .

We note that energy is additive for continuous functions, and in view of the self-
similarity (5.5) iterated,

(5.9) E(F ) =
∑

|w|=m

(
5
3

)m

E(F ◦�w).

Applying (5.8) to F ◦�w, we have

(5.10)
∑

|w|=m

(
5
3

)m

‖T0F ◦�w‖2
Hβ (SG0)

≤ c
∑

|w|=m

(
5
3

)m

E(F ◦�w) = cE(F ),

by (5.9). Now we observe that SGm =
⋃

|w|=m �w(SG0), and this is a disjoint
union of edges, since each edge is just a side of a triangle �w(SG0) for some w
with |w| = m.

Consider one of these edges, �w(ei j ). It is parameterized by x in the interval
[0, 2−m], and the contribution (5.6) is

∫ 2−m

0

∫ 2−m

0

|F (e(x)) − F (e(y))|2
|x − y|1+2β dxdy

=
4m

21+2β

∫ 1

0

∫ 1

0

|F (�w(ei j (x))) − F (�w(ei j (y)))|2
|x − y|1+2β

dxdy

(5.11)

after a change of variables. Summing all the contributions over all the edges in
SGm yields

(5.12) ‖TmF‖2
Hβ (SGm) =

∑
|w|=m

4m

2(1+2β)m
‖T0F ◦�w‖2

Hβ (SG0)
,

by (5.11). But the choice of β makes 4/21+2β = 5/3, so (5.12) combined with
(5.10) yields

(5.13) ‖TmF‖2
Hβ (SGm) ≤ cE(F ).

This is the exact analog of (5.7).
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Theorem 5.2. The trace map Tm is continuous from domE to H β(SGm) for

β as in Proposition 5.1, and the estimate (5.13) holds. Moreover, there exists a
continuous linear extension map Em : H β(SGm) → domE with TmEm f = f and

(5.14) E(Em f ) ≤ c‖ f ‖2
Hβ (SGm).

Proof. We have already established (5.13). To define the extension map Em ,
we set

(5.15) Em( f ) = �−1
w E0( f ◦�w) on �w(SG).

Note that Em( f ) is continuous, because at the boundary points of the m-cells that
make up SGm we have Em( f ) = f . The same reasoning that yields (5.13) from
(5.7) also leads from (5.8) to (5.14). �

Next we have the analog of Theorem 4.1.

Theorem 5.3. a) Let F ∈ domE. Then TmF ∈ H β(SGm) for all m with
uniformly bounded norms, and

(5.16) sup
m

‖TmF‖2
Hβ(SGm) ≤ cE(F ).

b) Let { fm} ⊂ H β(SGm) be a sequence of functions with uniformly bounded
norms satisfying the consistency condition Tm fm′ = fm if m ≤ m′. Then

there exists F ∈ domE such that TmF = fm and

(5.17) E(F ) ≤ c sup
m

‖ fm‖2
Hβ (SGm).

Proof. a) is an immediate consequence of (5.13).
To prove b), construct a sequence of functions {Fm} by taking the harmonic

(energy minimizing) extension of fm from SGm to SG. Then, by (5.14), the se-
quence {Fm} is uniformly bounded in domE. A quantitative version of the con-
tinuity of functions in domE implies that the sequence {Fm} is also uniformly
equicontinuous. Thus, by passing to a subsequence twice, if necessary, we can
find a subsequence {Fm j } that converges both weakly in the Hilbert space domE

and uniformly to a function F in domE with the estimate (5.17) holding. Be-
cause the convergence is pointwise and the consistency condition holds, we have
Tm j F = Fm j = fm j on SGm j . Therefore, TmF = fm . �

The second example of a fractal we consider is the Sierpinski carpet (SC),
again defined by the self-similar identity

(5.18) SC =
8⋃

i =1

�i (SC),
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where now �i are the homothety maps of the plane with contraction ratio 1/3
mapping the unit square into 8 of the 9 subsquares of side length 1/3 (all except the
central subsquare). This self-similar fractal is not PCF, so the method of Kigami
cannot be used to construct an energy. Nevertheless, two approaches due to Barlow
and Bass and to Kusuoka and Zhou [2] were given in the late 1980’s. Recently, it
was shown [3] that, up to a constant multiple, there is a unique self-similar energy;
so the two approaches yield the same energy. Once again, all functions in domE

are continuous. The self-similar identity for the energy here is

(5.19) E(F ) =
8∑

i =1

rE(F ◦�i),

where r is a constant (slightly larger than 1.25), whose exact value has not yet
been determined.

Again we may approximate SC by a sequence {SCm} of metric graphs, with
SCm = SC ∩ GP3−m . Thus, the edges of SCm have length 3−m and are of the
form �w(ei) with |w| = m, where e1, e2, e3, e4 are the boundary edges of the unit
square. Again let Tm denote the trace map onto SCm . The trace space for T0

has been identified by Hino and Kumagai [7] as the Sobolev space H β(SC0) with
β = 1/2 + log r/ log 9. Note that again 1/2 < β < 1.

Proposition 5.4 ([7]). The trace map T0 is continuous from domE to

H β(SC0) for β = 1/2 + log r/ log 9 with

(5.20) ‖T0F‖2
Hβ (SC0)

≤ cE(F ).

Moreover, there exists a continuous linear extension map E0 : H β(SC0) → domE

with T0E0 f = f and

(5.21) E(E0 f ) ≤ c‖ f ‖2
Hβ (SC0).

We now claim that the analogs of Theorem 5.2 and 5.3 hold for SC in place
of SG. The proof is essentially the same; the only detail that needs to be checked
is the dilation argument. In this case, the contribution to (5.6) from the edge
e = Fw(e1) is∫ 3−m

0

∫ 3−m

0

|F (ei(x)) − F (ei(y))|2
|x − y|1+2β dxdy

=
9m

31+2β

∫ 1

0

∫ 1

0

|F (�w(ei(x))) − F (�w(ei(y)))|2
|x − y|1+2β dxdy,

(5.22)

after a change of variable, analogous to (5.11). We note that 9/31+2β = r in this
case, so summing (5.22) yields the analog of (5.13) as a consequence of (5.20).
The rest of the arguments are the same.
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For our final fractal example we consider the classical Julia sets of complex
polynomials. Fix a polynomial P(z) (of degree at least 2) and let J denote its Julia
set. We assume J is connected. In many cases (see [12]), it is possible to param-
eterize J by the unit circle as follows. Let � denote the unbounded component
of the complement of J in C, so � ∪ {∞} is simply connected, and let ϕ be a
conformal map from {z : |z| > 1} to �. In many cases, ϕ extends continuously
to the boundary circle, and this maps C onto J (usually not one-to-one). Although
there is usually no useful formula for ϕ, in many cases it is possible to describe
explicitly the points on C that are identified under ϕ. There have been a number of
papers that utilize this parametrization to construct an energy on J [13, 1, 5, 14].

Here we deal with a different problem: how to characterize the traces on J of
functions of finite energy on�. The answer is almost immediate from the methods
of Section 3. We know that F ∈ H 1(�) if and only if F ◦ ϕ ∈ H 1(|z| > 1), and the
space of traces of F ◦ ϕ on C is exactly H 1/2(C). Thus the space of traces of F on
J, which we should denote H 1/2(J), is characterized by the finiteness of

(5.23) ‖F‖2
H1/2(J) =

∫ 2π

0

∫ 2π

0

|F (ϕ(eiθ)) − F (ϕ(eiθ ′
))|2

4 sin2 1
2 (θ − θ ′)

dθdθ ′.

One could perhaps hope for a more direct characterization in terms of an integral
involving |F (z) − F (z′)|2 as z and z′ vary over J. This would involve choosing a
measure on J (there are more than one natural choices) and finding the appropriate
denominator in terms of a distance from z to z′ on J. Good luck!
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