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Abstract. We prove a version of the Gohberg Lemma on compact Lie groups
giving an estimate from below for the distance from a given operator to the set of
compact operators. As a consequence, we obtain several results on bounds for the
essential spectrum and a criterion for an operator to be compact. The conditions
are given in terms of the matrix-valued symbols of operators.

1 Introduction

The original Gohberg Lemma was obtained during Gohberg’s investigation of in-
tegral operators [Goh60], and its version on T1 = {z ∈ C : |z| = 1} was obtained
recently by [MW10], with application to the spectral properties of operators; see
[Mol11, Pir11]. Related questions have been also considered on manifolds; see,
e.g., [See65, Sch88] and related papers.

In this paper, we establish the Gohberg Lemma on general compact Lie groups,
using the matrix quantization of operators developed in [RT10, RT12]. In particu-
lar, we give estimates for the distance from a given operator to the set of compact
operators, as well as for the essential spectrum of the operator in terms of some
quantities associated to the matrix symbols. The results contain the corresponding
results obtained in [Mol11, Pir11] on T1.

Matrix-valued symbols have been quite useful in other studies of compactness
of operators in cases when conditions on the kernel are less effective, for example,
by providing criteria for operators to belong to Schatten classes [DR13b] and for
nuclearity in Lp-spaces [DR13a].

1The first author was supported by the Grace-Chisholm Young Fellowship of the London Mathe-
matical Society.

2The second author was supported by the EPSRC Leadership Fellowship EP/G007233/1 and by EP-
SRC Grant EP/K039407/1. No new data was collected or generated during the course of the research.
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The structure of the paper is as follows. In Section 2, we briefly recall the
necessary notions of Fourier analysis on compact Lie groups and of the matrix
quantization of operators. In Section 3, we state our results. In Section 4, we
prove the Gohberg Lemma (Theorem 3.1); and in Section 5, we give an application
(Theorem 3.2).

2 Fourier analysis and matrix symbols on compact Lie
groups

Let G be a compact Lie group and e its unit element. Let Ĝ be the unitary dual
of G, i.e., the set of equivalence classes [ξ ] of the continuous irreducible unitary
representations ξ : G → Cdξ ×dξ of dimension dξ . We define the Fourier coefficient
at ξ of f ∈ C∞(G) by

f̂ (ξ ) :=
∫

G
f (x)ξ (x)∗dx ∈ Cdξ ×dξ ,

where the integral is (always) taken with respect to the Haar measure on G. The
Fourier series becomes

f (x) =
∑

[ξ ]∈ ̂G

dξ Tr
(
ξ (x) f̂ (ξ )

)
,

and Plancherel’s identity takes the form

(2.1) ‖ f ‖L2(G) =

⎛⎝∑
[ξ ]∈ ̂G

dξ‖ f̂ (ξ )‖2
HS

⎞⎠1/2

=: ‖ f̂ ‖�2( ̂G).

We take (2.1) as the definition of the norm on the Hilbert space �2(Ĝ). Recall that
‖ f̂ (ξ )‖2

HS = Tr( f̂ (ξ ) f̂ (ξ )∗) is the Hilbert–Schmidt norm of the matrix f̂ (ξ ).
We define the matrix symbol of an operator T : C∞(G) → C∞(G) (or even

T : C∞(G) → D′(G)) by

σT (x, ξ ) := ξ (x)∗(Tξ )(x) ∈ Cdξ×dξ ,

where Tξ means T applied to the matrix components of ξ (x). It then follows that

(2.2) T f (x) =
∑

[ξ ]∈ ̂G

dξ Tr
(
ξ (x)σT (x, ξ ) f̂ (ξ )

)
.

The correspondence between operators and symbols is one-to-one, and we write
Tσ for the operator given by (2.2) corresponding to the symbol σ(x, ξ ). The quan-
tization (2.2) has been studied extensively in [RT10, RT12], to which we refer for
properties of the quantization and for the corresponding symbolic calculus.
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Recall that the matrix components of ξ (x) are the eigenfunctions of the
Laplacian (Casimir element) L on G corresponding to one eigenvalue, which
we denote by λ2

ξ , i.e., Lξ (x)i j = −λ2
ξ ξ (x)i j for all 1 ≤ i, j ≤ dξ . We write

〈ξ〉 := (1 + λ2
ξ )

1/2.

Let �0(G) be the usual class of operators that have symbols in Hörmander’s
class S0

1,0(R
n) in every local coordinate system. Let q1, . . . , qm ∈ C∞(G) satisfy

q j (e) = 0, ∇q j (e) 	= 0 for all 1 ≤ j ≤ m, e is the only common zero of the fam-
ily {q j }m

j =1, and rank{∇q1(e), · · · ,∇qm(e)} = dimG. We call such a collection

of functions strongly admissible. We then define �q j f̂ (ξ ) := q̂ j f (ξ ) and the
difference operators �α

ξ := �α1
q1

· · ·�αm
qm

. We refer to [RT10], and especially to
[RTW10], for the analysis of such difference operators.

It was proved in [RTW10] that T ∈ �0(G) is equivalent to the condition that
the matrix-valued symbol σ of T satisfies

(2.3) ‖∂β
x �α

ξσ(x, ξ )‖op ≤ Cαβ〈ξ〉−|α|

for all x ∈ G and [ξ ] ∈ Ĝ and for all α, β, where ‖ · ‖op stands for the operator
norm of the matrix multiplication. It was also shown in [RTW10] that the operator
T ∈ �0(G) is elliptic if and only if its matrix symbol σ(x, ξ ) is invertible for all
but finitely many [ξ ] ∈ Ĝ and for all such ξ ,

(2.4) ‖σ(x, ξ )−1‖op ≤ C

for all x ∈ G.

3 The Gohberg Lemma and applications

We formulate a version of the Gohberg Lemma first for operators in the Hörmander
class �0 in order to relate it to well-known theory and for application in Theorem
3.2. Later, in Remark 4.2, we note that the result remains valid for a much more
general class of operators.

Let λ1(x, ξ ), λ2(x, ξ ), . . . , λdξ
(x, ξ ) ≥ 0 be the eigenvalues of σ(x, ξ )σ(x, ξ )∗

and define ‖σ(x, ξ )σ(x, ξ )∗‖min := min1≤i≤dξ
λi(x, ξ ).

Theorem 3.1 (Gohberg Lemma). Let Tσ ∈ �0(G) and σ(x, ξ ) be the matrix

symbol of Tσ. Then for all compact operators K on L2(G),

(3.1) ‖Tσ − K‖L (L2(G)) ≥ dmin,

where

dmin := lim sup
〈ξ〉→∞

{
sup
x∈G

‖σ(x, ξ )σ(x, ξ )∗‖min

‖σ(x, ξ )‖op

}
.
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Note that dmin is well-defined. Indeed,

‖σ(x, ξ )σ(x, ξ )∗‖min ≤ ‖σ(x, ξ )σ(x, ξ )∗‖op ≤ ‖σ(x, ξ )‖2
op,

which, in view of (2.3) with α = β = 0, implies

(3.2) dmin ≤ lim sup
〈ξ〉→∞

{sup
x∈G

‖σ(x, ξ )‖op} < ∞.

We note again that the condition Tσ ∈ �0(G) in Theorem 3.1 can be substan-
tially relaxed; see Remark 4.2.

Before formulating our application of the Gohberg Lemma, let us first intro-
duce some notation. Let X be a complex Banach space and A : X → X be a closed
linear operator with dense domain D(A). The resolvent �(A) of A is defined by

�(A) = {λ ∈ C : A − λI is bijective}
and the spectrum �(A) of A by �(A) := C\�(A). The essential spectrum
�ess(A) of A is �ess(A) := C\�ess(A), where

�ess(A) = {λ ∈ C : A − λI is Fredholm and i(A − λI ) = 0} .

Theorem 3.2. Let σ be the matrix symbol of a pseudo-differential operator
Tσ ∈ �0(G), and let dmax := lim sup〈ξ〉→∞{supx∈G ‖σ(x, ξ )‖op}. Then for Tσ oper-

ating on L2(G),

(3.3) �ess(Tσ) ⊆ {λ ∈ C : |λ| ≤ dmax} .

Moreover, if dmax = 0, then Tσ is a compact operator on L2(G).

In fact, Tσ is compact if and only if dmax = 0. Indeed, taking K = Tσ in
Theorem 3.1 shows that if dmin 	= 0, then Tσ is not compact.

In view of (3.2), dmin ≤ dmax. In case G = Tn is the torus, dmin = dmax.

4 Proof of Theorem 3.1

First observe that by (3.2), dmin is well-defined; and hence, for every [ξ ] ∈ Ĝ,
there exists xξ ∈ G such that

‖σ(xξn, ξn)σ(xξn, ξn)∗‖min

‖σ(xξn, ξn)‖op
= sup

x∈G

‖σ(x, ξn)σ(x, ξn)∗‖min

‖σ(x, ξn)‖op
.

The definition of dmin gives a sequence {xξn, ξn}∞n=1 such that

lim
n→∞ 〈ξn〉 = ∞ and lim

n→∞
‖σ(xξn, ξn)σ(xξn, ξn)∗‖min

‖σ(xξn, ξn)‖op
= dmin.
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Define the L2-matrix norm of a matrix-valued function w = w(x) ∈ Cdξ ×dξ by

‖w‖L2(G) :=
(∫

G
‖w(x)‖2

HSdx
)1/2

.

For sufficiently smooth u ∈ L2(G), define uξn(x) := d−1/2
ξn

ξn(x)u(x · x−1
ξn

). Then

‖uξn‖2
L2(G) =

∫
G

‖uξn(x)‖2
HSdx =

∫
G

d−1
ξn

‖ξn(x)u(x · x−1
ξn

)‖2
HSdx

= d−1
ξn

‖ξn‖2
HS‖u‖2

L2(G) = ‖u‖2
L2(G).

Therefore,

(4.1) ‖uξn‖L2(G) = ‖u‖L2(G) = ‖û‖�2( ̂G).

Now let φ ∈ C∞(G). Then, with y = x · x−1
ξn

, we have∫
G

uξn(x)φ(x)dx = d−1/2
ξn

∫
G

ξn(y)u(y)φ(y · xξn)ξn(xξn)dy

= d−1/2
ξn

̂uφ(·xξn)(ξ
∗
n )ξn(xξn),

where ξ∗
n (x) = ξn(x)∗. Since ‖uφ(·xξn)‖L2 ≤ C‖u‖L2 with a constant C independent

of xξn , ̂uφ(·xξn) ∈ �2(Ĝ) uniformly in xξn . Hence it follows from (4.1) and (2.1) that
dξn‖ ̂uφ(·xξn)(ξ

∗
n )‖2

HS → 0 as 〈ξ∗
n 〉 → ∞. This implies∥∥∥∥ ∫

G
uξn(x)φ(x)dx

∥∥∥∥
HS

= ‖d−1/2
ξn

̂uφ(·xξn)(ξ
∗
n )ξn(xξn)‖HS ≤ ‖ ̂uφ(·xξn)(ξ

∗
n )‖HS,

so that uξn → 0 as 〈ξn〉 → ∞ weakly. Hence, for a compact operator K ,

‖Kuξn‖L2(G) → 0 as 〈ξn〉 → ∞.

Then, by compactness, for ε > 0 and sufficiently large n,

‖Kuξn‖L2(G) ≤ ε‖uξn‖L2(G) = ε‖u‖L2(G),

where u is fixed and ‖Kuξn‖L2(G) =
(∫

G ‖Kuξn(x)‖2
HSdx

)1/2
.

Lemma 4.1. ‖uξnσ(·, ξn) − Tσuξn‖L2(G) → 0 as 〈ξn〉 → ∞, where Tσuξn :=(
Tσ(uξn)i j

)
1≤i, j≤dξn

∈ Cdξn ×dξn .

We postpone the proof of Lemma 4.1 and continue with the proof of Theo-
rem 3.1.

Let us fix nonzero u ∈ C∞(G). Then for each ε > 0, there exists N (u) such
that for all n ≥ N (u),

(4.2) ‖uξnσ(·, ξn)‖L2(G) − ‖Tσuξn‖L2(G) ≤ ε‖u‖L2(G)
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for sufficiently large 〈ξn〉. Now, since σ satisfies (2.3) with α = 0, the derivatives
of σ in x of are uniformly bounded; hence, for each ε > 0, there exists an open
neighborhood V ⊆ G of e such that ‖σ(x, ξn)−σ(xξn, ξn)‖op < ε for all x ·x−1

ξn
∈ V .

Let now u ∈ C∞(G) be such that u(x) = 0 for all x /∈ V . Then uξn(x) = 0 for all
x 	∈ xξnV , i.e., for all x such that x · x−1

ξn
/∈ V . Hence

‖uξnσ(xξn, ξn)σ(xξn, ξn)∗‖L2(G)

‖σ(xξn, ξn)‖op
− ‖uξnσ(·, ξn)‖L2(G)

≤ ‖uξnσ(xξn, ξn)‖L2(G) − ‖uξnσ(·, ξn)‖L2(G)

≤ ‖uξnσ(xξn, ξn) − uξnσ(·, ξn)‖L2(G)

≤
(∫

xξn V
‖σ(x, ξn) − σ(xξn, ξn)‖2

op‖uξn(x)‖2
HSdx

)1/2

≤ ε

(∫
xξn V

‖uξn(x)‖2
HS

)1/2

= ε‖uξn‖L2(G) = ε‖u‖L2(G),

(4.3)

the last inequality following from (4.1). Therefore,

‖u‖L2(G)‖Tσ − K‖L (L2(G)) = ‖uξn‖L2(G)‖Tσ − K‖L (L2(G))

≥ ‖(Tσ − K )uξn‖L2(G)

≥ ‖Tσuξn‖L2(G) − ‖Kuξn‖L2(G)

≥ ‖uξnσ(·, ξn)‖L2(G) − 2ε‖u‖L2(G)

≥ ‖uξnσ(xξn, ξn)σ(xξn, ξn)∗‖L2(G)

‖σ(xξn, ξn)‖op
− 3ε‖u‖L2(G),

(4.4)

the last inequalities following from (4.2) and (4.3), respectively. Moreover, since
σ(xξn, ξn)σ(xξn, ξn)∗ is normal, there exist a unitary matrix U such that

σ(xξn, ξn)σ(xξn, ξn)
∗ = U�U∗,

where

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ11 0 . . . 0

0 λ22 . . . 0
...

...
. . .

...

0 0 . . . λdξn dξn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here, λii (xξn, ξn) are the eigenvalues of σ(xξn, ξn)σ(xξn, ξn)∗.
Let λmm(xξn, ξn) = min1≤i≤dξ

λii(xξn, ξn). Now U�U∗ is symmetric, and
λ−1

mm(xξn, ξn) is the maximum eigenvalue of U�−1U∗, i.e.,

‖U�−1U∗‖op = λ−1
mm(xξn, ξn).
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Hence ‖uξn(x)U�U∗‖HS ≥ λmm(xξn, ξn)‖uξn(x)U�U∗(U�U∗)−1‖HS, from which
it follows that

(4.5) ‖uξn(x)U�U∗‖2
HS ≥ λ2

mm‖uξn(x)‖2
HS.

Using (4.4) and (4.5), we obtain

‖u‖L2(G)‖Tσ − K‖L (L2(G)) ≥
(∫

G ‖uξnσ(xξn, ξn)σ(xξn, ξn)∗‖2
HSdx

)1/2

‖σ(xξn, ξn)‖op
− 3ε‖u‖L2(G)

≥
(
λ2

mm

∫
G ‖uξn(x)‖2

HSdx
)1/2

‖σ(xξn, ξn)‖op
− 3ε‖u‖L2(G)

=
λmm‖uξn‖L2(G)

‖σ(xξn, ξn)‖op
− 3ε‖u‖L2(G)(4.6)

=
λmm

‖σ(xξn, ξn)‖op
‖u‖L2(G) − 3ε‖u‖L2(G)

=
(

λmm(xξn, ξn)
‖σ(xξn, ξn)‖op

− 3ε

)
‖u‖L2(G).

Now, for sufficiently large 〈ξn〉 →, ‖u‖L2(G)‖Tσ − K‖∗ ≥ (dmin − 3ε) ‖u‖L2(G),
i.e.,

‖Tσ − K‖∗ ≥ dmin − 3ε for all ε > 0,

from which it follows that ‖Tσ − K‖∗ ≥ dmin. This completes the proof of Theo-
rem 3.1.

Proof of Lemma 4.1. For x, z ∈ G, let R(x, z) :=
∑

[ξ ]∈ ̂G dξ Tr (σ(x, ξ )ξ (z)).
Thus

Tσu(x) =
∑

[ξ ]∈ ̂G

dξ Tr (ξ (x)σ(x, ξ )û(ξ ))

=
∫

G

∑
[ξ ]∈ ̂G

dξ Tr
(
ξ (x)σ(x, ξ )ξ∗(y)

)
u(y)dy

=
∫

G

∑
[ξ ]∈ ̂G

dξ Tr
(
σ(x, ξ )ξ (y−1x)

)
u(y)dy

=
∫

G
R(x, y−1x) u(y)dy

=
∫

G
R(x, z) u(xz−1)dz,

(4.7)

where z = y−1x. From the definition of uξn(x) = d−1/2
ξn

ξn(x)u(xx−1
ξn

) and (4.7), we
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obtain

Tσuξn(x) = d−1/2
ξn

∫
G

R(x, z)ξn(xz
−1)u(xz−1x−1

ξn
)dz

= d−1/2
ξn

∫
G

R(x, z)ξn(x)u(xz−1x−1
ξn

)ξ∗
n (z)dz.

(4.8)

Letting

(4.9) vx
ξn
(z−1) := vξn(xz

−1) := d−1/2
ξn

ξn(x)u(xz−1x−1
ξn

),

we have

(4.10) Tσuξn(x) =
∫

G
R(x, z)vx

ξn
(z−1)ξ∗

n (z)dz.

For a given collection �1, . . . ,�m of strongly admissible difference operators with
corresponding functions q1, . . . , qm ∈ C∞(G) satisfying � j f̂ (ξ ) = q̂ j f (ξ ), we
have the Taylor expansion formula (see [RT10, RTW10])

u(x) = u(e) +
N−1∑
|α|=1

1
α!

qα(x−1)∂(α)u(e) + O(h(x)N ),

where h(x) is the geodesic distance from x and e, ∂(α)
x are left-invariant differential

operators on G, and qα(x) = q1(x)α1 · · · qm(x)αm . For u sufficiently smooth, the
Taylor expansion formula gives

vx
ξn
(z−1) = vx

ξn
(e) +

N−1∑
|α|=1

1
α!

qα(z)∂(α)vx
ξn
(e) + O(h(z)N ).

By the left-invariance of ∂(α)
x , we obtain

(4.11) vξn(xz
−1) = vξn(x) +

N−1∑
|α|=1

1
α!

qα(z)∂(α)vξn(x) + O(h(z)N ).

Using (4.10) and (4.11), we can now write

Tσuξn(x) =
∫

G
R(x, z)vξn(x)ξ

∗
n (z)dz +

∫
G

R(x, z)
N−1∑
|α|=1

1
α!

qα(z)∂(α)vξn(x)ξ
∗
n (z)dz

+
∫

G
R(x, z)O(h(z)N)ξ∗

n (z)dz.

Defining

I1 :=
∫

G
R(x, z)vξn(x)ξ

∗
n (z)dz,

I2 :=
∫

G
R(x, z)

N−1∑
|α|=1

1
α!

qα(z)∂(α)vξn(x)ξ
∗
n (z)dz,
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and

I3 :=
∫

G
R(x, z)O(h(z)N)ξ∗

n (z)dz,

we have

I1 =
∫

G
R(x, z)vξn(x)ξ

∗
n (z)dz = vξn(x)σ(x, ξn)

= d−1/2
ξn

ξn(x)u(xx−1
ξn

)σ(x, ξn) = uξn(x)σ(x, ξn),(4.12)

I2 =
∫

G
R(x, z)∂(α)vξn(x)ξ

∗
n (z)

N−1∑
|α|=1

1
α!

qα(z)dz

=
N−1∑
|α|=1

1
α!

∂(α)vξn(x)
∫

G
R(x, z)ξ∗

n (z)qα(z)dz

=
N−1∑
|α|=1

1
α!

∂(α)vξn(x)
(
FqαF−1σ

)
(ξn)(4.13)

=
N−1∑
|α|=1

1
α!

∂(α)vξn(x)�qασ(x, ξn),

and

I3 =
∫

G
R(x, z)O(h(z)N)ξ∗

n (z)dz =
∫

G
R(x, z)qN (z)ξ∗

n (z)dz

= �qN σ(x, ξn),(4.14)

where the matrix-valued function qN := O(h(x)N ) vanishes at e to order N . Hence

(4.15) Tσuξn(x) − uξn(x)σ(x, ξn) =
N−1∑
|α|=1

1
α!

∂(α)vξn(x)�qασ(x, ξn) + �qN σ(x, ξn).

Defining T 1
N :=

∑N−1
|α|=1

1
α!∂

(α)vξn(x)�qασ(x, ξn) and T 2
N := �qN σ(x, ξn), we obtain

‖T 1
N (x)‖HS ≤ ‖�qασ(x, ξn)‖op

∑
0<|α|≤N

1
α!

‖∂(α)
z vx

ξn
(x)‖HS,

where z ∈ G. Using (4.9) and (2.3), we have

‖T 1
N (x)‖HS ≤ C

( ∑
0<|α|≤N

|∂̃(α)
z u(x · xξ−1

n
)|
)

d−1/2
ξn

‖ξn(x)‖HS〈ξn〉−|α|

≤ C
∑

0<|α|≤N

‖u‖H |α|〈ξn〉−|α| ≤ C ′〈ξn〉−1
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for some operator ∂̃(α)
z , where N is fixed, 1 ≤ |α| ≤ N , and ‖ · ‖H |α| is the Sobolev

norm. Similarly, ‖T 2
N‖HS ≤ C〈ξn〉−N .

Therefore, ‖T 1
N (x)‖HS → 0 and ‖T 2

N (x)‖HS → 0 as 〈ξn〉 → ∞ for all
x ∈ G, which gives ‖T 1

N‖2
L2(G) =

∫
G ‖T 1

N (x)‖2
HSdx → 0 as 〈ξn〉 → ∞. Simi-

larly, ‖T 2
N‖L2(G) → 0. This implies ‖Tσuξn − uξnσ(·, ξn)‖L2(G) → 0 as 〈ξn〉 → ∞.

We complete the proof by observing that it suffices to take N = 1 in the above
argument. �

Remark 4.2. With the same proof (and with N = 1), we have the following
extension of the Gohberg Lemma without the assumption that the operator Tσ

belongs to �0(G).

Let Tσ : L2(G) → L2(G) be a bounded operator whose matrix symbol σ(x, ξ )
satisfies

‖σ(x, ξ )‖op ≤ C, ‖∂xσ(x, ξ )‖op ≤ C, ‖�qσ(x, ξ )‖op ≤ C〈ξ〉−ρ

for some ρ > 0 for all q ∈ C∞(G) with q(e) = 0 and all x ∈ G and [ξ ] ∈ Ĝ. Then
the conclusion of the Gohberg Lemma in Theorem 3.1 remains true, namely, the

estimate (3.1) holds for all compact operators K on L2(G).

5 Proof of Theorem 3.2

We first recall the following theorem, which gives another (equivalent) definition
of Fredholm operators.

Theorem 5.1 (Atkinson’s Theorem [Atk51]). Let A be a closed linear op-
erator from a complex Banach space X into a complex Banach space Y with a

dense domain D(A). Then A is Fredholm if and only if there exist a bounded linear
operator B : Y → X, a compact operator K1 : X → X and a compact operator

K2 : Y → Y such that BA = I + K1 on D(A) and AB = I + K2 on Y .

Recall that the Wolf spectrum �w(A) of A is defined by �w(A) := C\�w(A),
where �w(A) = {λ ∈ C : A − λI is Fredholm}. Clearly, �w(A) ⊆ �ess(A) ⊆
�(A).

Proof of Theorem 3.2. Let λ ∈ C be such that |λ| > dmax. Then there exists
ε > 0 such that |λ| > dmax + ε. Now, by the definition of dmax in Theorem 3.2,
there exists R > 0 such that for all 〈ξ〉 ≥ R,

sup
〈ξ〉≥R

{sup
x∈G

‖σ(x, ξ )‖op} ≤ (dmax + ε/2).
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Then for 〈ξ〉 ≥ R,

(5.1) ‖(σ(x, ξ ) − λI )−1‖op ≤
∞∑
k =1

λ−k−1‖σ(x, ξ )k‖op

≤
∞∑
k =1

(dmax + ε/2)k

|λ|k+1
≤

∞∑
k =1

(dmax + ε/2)k

(dmax + ε)k+1 ≤ C
∞∑
k =1

(dmax + ε/2)k

(dmax + ε)k
< ∞.

It follows from (2.4) that the operator Tσ − λI : L2(G) → L2(G) is elliptic and
hence a Fredholm operator; see, e.g., [Hör07, Section 19.5]. Thus

{λ ∈ C : |λ| > dmax} ⊆ �w(Tσ),

which implies �w(Tσ) ⊆ {λ ∈ C : |λ| ≤ dmax}. Since {λ ∈ C : |λ| > dmax} is a
connected component of �w(Tσ), i(Tσ − λI ) is constant on {λ ∈ C : |λ| > dmax}.
Now, again �(Tσ) ∩ {λ ∈ C : |λ| > dmax} 	= ∅. Therefore i(Tσ − λI ) = 0 for all
{λ ∈ C : |λ| > dmax}, which implies �ess(Tσ) ⊆ {λ ∈ C : |λ| ≤ dmax}, completing
the proof of (3.3).

We now turn to the proof of the last part of Theorem 3.2. Let L (L2(G)) and
be the C∗ algebra of bounded linear operators on L2(G) and K (L2(G)) the ideal
of compact operators on L2(G). Define multiplication on L (L2(G))/K (L2(G))
by [A][B] := [AB] and involution by [A]∗ := [A∗]. These operations make
L (L2(G))/K (L2(G)) into a ∗-algebra, known as the Calkin algebra. For
[A], [B] ∈ L (L2(G))/K (L2(G)), [A] = [B] if and only if A − B ∈ K (L2(G)).
The norm ‖ · ‖C in L

(
L2(G))/K (L2(G)

)
is given by

‖[A]‖C := inf
K∈K (L2(G))

‖A − K‖L (L2(G)), [A] ∈ L
(
L2(G))/K (L2(G)

)
.

Using the Calkin algebra, we can reformulate (3.1) as ‖[Tσ]‖C ≥ dmin.
Assume now that dmax = 0 and observe that Tσ is compact if and only if [Tσ] =

0 in the Calkin algebra. Observe also that Tσ is essentially normal on L2(G),
i.e., TσT ∗

σ − T ∗
σ Tσ is compact. Indeed, TσT ∗

σ − T ∗
σ Tσ is an operator of order −1,

so its compactness follows from the compactness of the embedding H 1 ↪→ L2.
Consequently, [Tσ] is normal in L (L2(G))/K (L2(G)); and, therefore, r(Tσ) =
‖[Tσ]‖C , where r(Tσ) is the spectral radius of [Tσ]. On the other hand, by (3.3),
�ess(Tσ) ⊂ {0}, which implies that Tσ − λI is Fredholm for λ 	= 0. In light of
Atkinson’s Theorem, this implies that there exists a bounded operator B such that
(Tσ−λI )B = I +K , where K is a compact operator; i.e., [(Tσ−λI )] is invertible for
λ 	= 0, which implies that λ /∈ �([Tσ]) if λ 	= 0. Thus �([Tσ]) ⊆ {0}, from which
it follows that ‖[Tσ]‖C = r(Tσ) = 0; and so [Tσ] = 0. Hence Tσ is compact. �
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on compact Lie groups and global hypoellipticity, J. Fourier Anal. Appl. 20 (2014), 476–
499.

[Sch88] E. Schrohe, Complex powers on noncompact manifolds and manifolds with singularities,
Math. Ann. 281 (1988), 393–409.

[See65] R. T. Seeley, Integro-differential operators on vector bundles, Trans. Amer. Math. Soc. 117
(1965), 167–204.

Aparajita Dasgupta AND Michael Ruzhansky
DEPARTMENT OF MATHEMATICS

IMPERIAL COLLEGE LONDON

180 QUEEN’S GATE, LONDON SW7 2AZ UK
email: a.dasgupta@imperial.ac.uk, m.ruzhansky@imperial.ac.uk

(Received June 1, 2013)


