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Abstract. A highlight of this paper states that there is an absolute constant
c1 > 0 such that every polynomial P of the form P(z) =

∑n
j =0 a j z j , a j ∈ C with

|a0| = 1, |a j | ≤ M−1

(
n
j

)
, j = 1, 2, . . . , n,

for some 2 ≤ M ≤ en has at most n − �c1
√

n log M� zeros at 1. This is compared
with some earlier similar results reviewed in the introduction and closely related to
some interesting Diophantine problems. Our most important tool is an essentially
sharp result due to Coppersmith and Rivlin asserting that if Fn = {1, 2, . . . , n},
there exists an absolute constant c > 0 such that

|P(0)| ≤ exp(cL) max
x∈Fn

|P(x)|

for every polynomial P of degree at most m ≤ √
nL/16 with 1 ≤ L < 16n. A new

proof of this inequality is included in our discussion.

1 Number of zeros at 1 of polynomials with restricted
coefficients

In [B-99] and [B-13], we examined a number of problems concerning polynomials
with coefficients restricted in various ways. We were particularly interested in how
small such polynomials can be on the interval [0, 1]. For example, we proved that
there exist absolute constants c1 > 0 and c2 > 0 such that

exp
(−c1

√
n
) ≤ min

0�=p∈Fn

{
max

x∈[0,1]
|p(x)|

}
≤ exp

(−c2
√

n
)

for every n ≥ 2, where Fn denotes the set of all polynomials of degree at most n
with coefficients in {−1, 0, 1}. Littlewood considered minimization problems of
this variety on the unit disk. His most famous (now solved) conjecture was that the
L1 norm of an element f ∈ Fn on the unit circle grows at least as fast as c log N ,
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where N is the number of non-zero coefficients in f and c > 0 is an absolute
constant.

These questions with coefficients restricted to integers have a Diophantine na-
ture and have been studied from several points of view; see [A-79, B-98, B-95,
B-94, F-80, O-93].

One key to the analysis is the study of the related problem of giving an upper
bound for the multiplicity of zeros these restricted polynomials can have at 1. In
[B-99] and [B-13], we found essentially sharp bounds for the classes of polyno-
mials of the form

p(x) =
n∑

j =0

a j x
j , |a j | ≤ 1, a j ∈ C, j = 1, 2, . . . , n,

with fixed |a0| �= 0.
Variants of these questions have attracted considerable study, though rarely

have precise answers been given; see, in particular, [A-90, B-32, B-87, E-50,
Sch-33, Sz-34]. Indeed, the classical, much studied, and presumably very difficult
problem of Prouhet, Tarry, and Escott can be rephrased as this type of question:
specifically, “What is the highest possible order of a zero at 1 of a polynomial
with l1 norm 2n having integer coefficients?” It is conjectured to be n; see [H-82],
[B-94], or [B-02].

For n ∈ N, L > 0, and p ≥ 1, let κp(n, L) be the largest possible value of k for
which there exists a polynomial P �= 0 of the form

P(x) =
n∑

j =0

a j x
j , |a0| ≥ L

( n∑
j =1

|a j |p
)1/p

, a j ∈ C,

such that (x − 1)k divides P(x). Also, let κ∞(n, L) be the largest possible value of
k for which there exists a polynomial P �= 0 of the form

P(x) =
n∑

j =0

a j x
j , |a0| ≥ L max

1≤ j≤n
|a j |, a j ∈ C,

such that (x − 1)k divides P(x). In [B-99], we proved that there exists an absolute
constant c3 > 0 such that

min
{

1
6

√
(n(1 − log L) − 1, n

}
≤ κ∞(n, L) ≤ min

{
c3

√
n(1 − log L), n

}
for every n ∈ N and L ∈ (0, 1]. Recently, in [B-13], we found the correct order of
magnitude of κ∞(n, L) in the case L ≥ 1; there exist absolute constants c1 > 0 and
c2 > 0 such that

c1

√
n/L − 1 ≤ κ∞(n, L) ≤ c2

√
n/L
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for every n ∈ N and L ≥ 1. Proving this (in particular, the lower bound) required
some subtle new ideas. An interesting connection to number theory was explored.
The fact that the density of square-free integers is positive (in fact, π2/6) appears
in our proof. In [B-13], we also proved that there exist absolute constants c 1 > 0
and c2 > 0 such that

c1
√

n/L − 1 ≤ κ2(n, L) ≤ c2
√

n/L

for every n ∈ N and L > 2−1/2, and

min
{

c1

√
n(− log L) − 1, n

}
≤ κ2(n, L) ≤ min

{
c2

√
n(− log L), n

}
for every n ∈ N and L ∈ (0, 2−1/2].

Our results in [B-99] and [B-13] sharpen and generalize results of Schur
[Sch-33], Amoroso [A-90], Bombieri and Vaaler [B-87], and Hua [H-82] who
all gave versions of this result for polynomials with integer coefficients. Our re-
sults in [B-99] and [B-13] have turned out to be related to a number of recent
papers from a rather wide range of research areas; see, e.g., [A-02, B-98, B-95,
B-96, B-97b, B-97a, B-97, B-00, B-07, B-08a, B-08b, C-02, C-13, C-10, D-99,
D-01, D-03, E-08b, E-08a, F-00, G-05, K-04, K-09, M-03, M-68, N-94, O-93,
P-12, P-13, S-99, T-07, T-84].

More on the zeros of polynomials with Littlewood-type coefficient constraints
may be found in [E-02]. Markov and Bernstein type inequalities under Erd ős type
coefficient constraints are surveyed in [E-01].

Our goal in this paper is to explore a variety of new ideas essentially different
from those used in [B-99] and [B-13] in order to obtain sharp bounds for the mul-
tiplicity of the zero at 1 of polynomials belonging to various classes of constrained
polynomials.

2 Pseudo-Boolean functions

Throughout this paper, n is an integer greater than 1, Dn = {0, 1, . . . , n}, and
Fn = {1, 2, . . . , n}.

A function f : {−1, 1}n → R is called an n-bit pseudo-Boolean function.
We say that an n-bit pseudo-Boolean function f : {−1, 1}n → R is symmet-
ric if f (x) = f (xσ) for every permutation σ in the group �n of permutations of
{1, 2, . . . , n}, and x ∈ {−1, 1}n, where xσ := (xσ(1), xσ(2), . . . , xσ(n)) denotes a σ

permuted version of x. Note that if p : {−1, 1}n → R is a polynomial in variables
x1, x2, . . . , xn then, since x2

j = 1, we can view p as a multi-linear polynomial in
which each variable appears with degree at most 1. We say that a multi-linear
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polynomial p has degree at most d1 and pure high degree at least d2 if each term
in p is a product of at most d1 and at least d2 variables.

To each symmetric function f : {−1, 1}n → R is associated a function
F : Dn → R such that

f (x) = F (|x|), x = (x1, x2, . . . , xn) ∈ {−1, 1}n,

where |x| :=
(
n − (x1 + x2 + · · · + xn)

)
/2 is the Hamming weight of x, i.e., x is

the number of −1 components of x. Using the fundamental theorem of symmetric
polynomials, it can be easily proved (see, e.g., [M-68]) that corresponding to each
symmetric multi-linear polynomial p : {−1, 1}n → R is a polynomial P : Dn → R

of the same degree such that

p(x) = P(|x|), x = (x1, x2, . . . , xn) ∈ {−1, 1}n.

Observe that the pure high degree of p does not correspond to the degree of the
term with the lowest degree in P. By the pure high degree of a polynomial
P : Dn → R, we mean the pure high degree of its corresponding multi-linear
polynomial p : {−1, 1}n → R.

Let Xn be the vector space of all symmetric multi-linear polynomials
p : {−1, 1}n → R over R. Let Yn be the vector space of all polynomials
p : Dn → R of a single variable over R. We define a scalar product on Xn by

〈p, q〉 :=
∑

x∈{−1,1}n

p(x)q(x).

This induces the scalar product

〈P, Q〉 :=
n∑

k =0

(
n
k

)
P(k)Q(k)

on Yn, where

p(x) = P(|x|) and q(x) = Q(|x|), x = (x1, x2, . . . , xn) ∈ {−1, 1}n.

A function f : {−1, 1}n → {−1, 1} is called an n-bit Boolean function.
Such functions are important not only in the theory of error-correcting codes, but
also in cryptography, where they occur in private key systems. Boolean func-
tions are studied in [R-04]; for example, a paper inspired by works of Salem and
Zygmund [S-54], Kahane [K-85], and others about the related problem of real
polynomials with random coefficients.
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3 New results

In October, 2002, Mario Szegedy sent me the following question. “I know that
there must exist a polynomial Q of degree n − �√n� such that

n∑
k =0

(
n
k

)
|Q(k)| ≤ c|Q(0)|

with an absolute constant c > 0, but I cannot give it explicitly. Can you give
it explicitly by any chance?” A year later, Robert Špalek [Š-03] answered this
question. We state his result as Lemma 4.1 and, for the sake of completeness,
reproduce his short and clever proof.

Motivated by this question and answer, in this paper we prove the following
results. Let Sn = { j 2 : j ∈ D�√n�} ∪ {2}.

Theorem 3.1. Every polynomial P of the form

P(z) =
n∑

j =0

a j z
j , a j ∈ C,

satisfying
12|a2|(n

2

) +
∑

j∈Sn\{0,2}

8|a j |
j
(n

j

) < |a0|

has at most n − �√n� − 1 zeros at 1.

Note that in Theorem 3.1 there is no restriction on the coefficient a j ∈ C

whenever j ∈ Dn \ Sn.

Theorem 3.2. There exists an absolute constant c1 > 0 such that every poly-

nomial P of the form

P(z) =
n∑

j =0

a j z
j , a j ∈ C,

satisfying

|a0| = 1, |a j | ≤ M−1

(
n
j

)
, j = 1, 2, . . . , n,

with some 2 ≤ M ≤ en has at most n − �c1
√

n log M� zeros at 1.

Remark 3.3. Theorem 3.1 is essentially sharp in a rather strong sense. Using
the basics of Chebyshev spaces (see [B-95, pp. 92–100], one can easily see that
there exists a polynomial P of the form

P(z) = 1 +
∑

j∈Dn\Sn

a j z
j , a j ∈ C,
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having at least n − �√n� − 1 zeros at 1.

Theorem 3.4. Let 0 < m <
√

n/2. Every polynomial P of the form

P(z) =
n∑

j =0

a j z
j , a j ∈ C,

satisfying

|a0| = 1, |a j | ≤ n − 2m2

n

(
n
j

)
, j = 1, 2, . . . , n,

has at most n − m zeros at 1.

4 Lemmas

In this section, we state some lemmas, which are important in their own right. We
prove them in Section 5 and apply them in Section 6, where we prove the theorems
formulated in Section 3.

We introduce the polynomials

(4.1) Qn(x) := 2(−1)n−�√n�−1 (�√n�!)2

n!

∏
j∈Dn\Sn

(x − j ).

The multiplicative factor in front of the product sign is chosen so that Qn(0) = 1.
The degree of Qn is n − �√n� − 1.

Lemma 4.1 (Špalek, [Š-03]).

Qn(0) = 1,

(
n
2

)
|Qn(2)| ≤ 12,

(
n
k2

)
|Qn(k2)| ≤ 8

k2
, k = 1, 2, . . . , �√n�.

Let Pm denote the set of all polynomials of degree at most m with real coeffi-
cients. The following result is well known and can easily be proved as a simple
exercise. It was observed and used in [B-99].

Lemma 4.2. Let 0 ≤ m ≤ n be integers. If a polynomial P of the form

P(z) =
∑n

j =0 a j z j , a j ∈ C, has a zero at 1 of multiplicity at least m + 1, then∑n
j =0 a j Q( j ) = 0 for every polynomial Q ∈ Pm.

Lemma 4.3. Let P ∈ Pm and x0 < x1 < · · · < xm and x∗
0 < x∗

1 < · · · < x∗
m be

reals.



PSEUDO-BOOLEAN FUNCTIONS, ZEROS OF POLYNOMIALS 97

(i) P(x) =
∑m

k =0 P(xk)Lk(x) for all real x, where

(4.2) Lk(x) :=
m∏

j =0
i �=k

x − x j

xk − x j
, k = 0, 1, . . . , m.

Observe that Lk(x j ) = δ j,k, where

δ j,k :=

⎧⎨⎩0, j �= k,

1, j = k

for j, k ∈ {0, 1, . . . , m}.
(ii) Let Em := {x0, x1, . . . , xm} and y ≤ x0. Then

(4.3) max
0�=P∈Pm

|P(y)|
maxx∈Em |P(x)| =

m∑
k =0

|Lk(y)| =
m∑

k =0

(−1)kLk(y).

(iii) Let E∗
m = {x∗

0, x∗
1, · · · , x∗

m}. Suppose

y ≤ x∗
0, xk+1 − xk ≤ x∗

k+1 − x∗
k for k = 0, 1, . . . , m − 1, x∗

m ≤ xm.

Then

max
P∈Pm

|P(y)|
maxx∈E∗

m
|P(x)| ≤ max

P∈Pm

|P(y)|
maxx∈Em |P(x)| .

(iv) Suppose

y ≤ x∗
0, xk+1 − xk ≤ x∗

k+1 − x∗
k for k = 0, 1, . . . , m − 1, x∗

m ≤ xm

and that Q ∈ Pm satisfies (−1)kQ(xk) ≥ δ > 0 for some δ > 0 and
k = 0, 1, . . . , m. Then

max
P∈Pm

|P(y)|
maxx∈E∗

m
|P(x)| ≤ δ−1|Q(y)|.

A key to the proof of Theorem 3.2 is the Coppersmith-Rivlin inequality in
[C-92], an equivalent form of which may be formulated as follows.

Lemma 4.4. There exists an absolute constant c > 0 such that

|P(0)| ≤ exp(cL) max
x∈Fn

|P(x)|

for every P ∈ Pm with m ≤ √
nL/16 and 1 ≤ L < 16n. This inequality is sharp up

to the absolute constant c > 0 in the exponent.
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In Section 5, we give a shorter new proof of the Coppersmith-Rivlin inequality.
Our main idea used prove Lemma 4.4 is somewhat similar to the key idea to prove
the bounded Remez-type inequality of [B-97a] for non-dense Müntz spaces. The
proof of Lemma 4.4 in the case n/16 ≤ m2 ≤ n/2 can also be obtained simply
from the Markov inequality for polynomials whereas, in the case m = n − 1,
it follows from the basics of Lagrange interpolation. However, the proof in the
general case is more subtle. The lemma was proved to be essentially sharp in
[C-92] and is used in [Bu-99] in the study of small-error and zero-error quantum
algorithms. An interesting recent closely related result is due to E. A. Rakhmanov
[R-07].

The result below plays a fundamental role in the proof of Theorem 3.2. We
prove it with the help of of Lemma 4.4 in Section 5.

Lemma 4.5. Let c > 0 be as in Lemma 4.4 and c1 := (32c)−1/2. If e2c ≤
M < e32cn, there exists a polynomial Q of degree at most n − ⌊

c1
√

n log M
⌋

such

that
∑n

k =1

(n
k

)|Q(k)| < M |Q(0)|.
The following lemma is quite useful for the case m ≤ √

n/4. We prove it in
Section 5 as a simple consequence of Markov’s inequality.

Lemma 4.6. We have

|P(0)| <
n

n − 2m2
max
x∈Fn

|P(x)|

for every P ∈ Pm with 0 < m <
√

n/2.

The following lemma below is used in the proof of Theorem 3.4.

Lemma 4.7. Suppose m ≤ √
n/2. There exists a polynomial Q of degree at

most n − m − 1 such that
n∑

k =1

(
n
k

)
|Q(k)| <

n
n − 2m2

|Q(0)|.

5 Proofs of the lemmas

Proof of Lemma 4.1. We follow Špalek [Š-03]. Let m = �√n�. First observe
that for all integers 0 ≤ k ≤ m,

(m!)2

(m + k)!(m − k)!
=

m(m − 1) · · · (m − k + 1)
(m + k)(m + k − 1) · · · (m + 1)

=
k∏

j =1

(
1 − k

m + j

)
≤ 1.

(5.1)
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Using this with k = 2, we obtain

|Qn(2)| = 2
(m!)2

n!
(n − 2)!

1
2

m∏
j =3

1
|2 − j 2| <

(m!)2

n!
(n − 2)!

m∏
j =3

1
( j 2 − 4)

=
(m!)2

n!
(n − 2)!

m∏
j =3

1
( j + 2)( j − 2)

=
1

n(n − 1)
(m!)2

1
4! (m + 2)!(m − 2)!

≤ 4!
n(n − 1)

=
12(n
2

) .
Observe also that for k ∈ {1, 2, . . . , m},

|Qn(k2)| = 2
(m!)2

n!

∏
j∈Dn

j �=k2

|k2 − j | 1
|k2 − 2|

∏
j∈Dm
j �=k

1
(k + j )|k − j |

= 2
(m!)2

n!
(k2)!(n − k2)!

2k (k − 1)!
(k + m)!k!(m − k)!|k2 − 2|

= 4
(k2)!(n − k2)!

n!
(m!)2

(m + k)!(m − k)!
1

|k2 − 2| .

Hence (5.1) yields

|Qn(k2)| ≤ 4( n
k2

) 1
|k2 − 2| ≤ 4( n

k2

) 1
k2/2

≤ 8
k2
( n

k2

) , k = 1, 2, . . . , m.

�
Note that if we did not include the number 2 in Sn, then the upper bound for

|Qn(k2)| would be much weaker, without the factor 1/k2.

Proof of Lemma 4.3. (i) and (ii) are well-known facts about Lagrange in-
terpolation, hence their proof is omitted.

To prove (iii), let

Lk(x) :=
m∏

j =0
j �=k

x − x j

xk − x j
, L∗

k(x) :=
m∏

j =0
j �=k

x − x∗
j

x∗
k − x∗

j
, k = 0, 1, . . . , m.

By assumption, 0 < (−1)kL∗
k (y) ≤ (−1)kLk(y) for k = 0, 1, . . . , m, and the result

follows from (4.3).

Part (iv) follows easily from part (iii). �

Proof of Lemma 4.4. First consider the case that for given n, L < 16n and
n < 656L. Let m ≤ √

nL/16 < n, P ∈ Pm, x j := j + 1 for j = 0, 1, . . . , m,
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and Em := {x0, x1, . . . , xm} ⊂ Fn. Let Lk be the basic Lagrange interpolating
polynomials defined by (4.2). Observe that

Lk(0) = (−1)k m + 1
k

(
m
k

)
, k = 0, 1, . . . , m;

and hence

max
0�=P∈Pm

|P(0)|
maxx∈Fn |P(x)| = max

0�=P∈Pm

|P(0)|
maxx∈Em |P(x)|

m∑
k =0

|Lk(0)| =
m∑

k =0

(−1)kLk(0)

≤ (m + 1)
m∑

k =0

(
m
k

)
≤ n2n ≤ 656L exp(656L),

completing the proof in this case.
Now assume that n ≥ 328L. Without loss of generality, we may assume that

n = n2
0 and L = L2

0, where n0 and L0 are integers, so that m =
√

(nL)/16 is an
integer. Let Tm be the Chebyshev polynomial of degree m on the interval [−1, 1],
i.e.,

Tm(x) = cos(m arccos x), x ∈ [−1, 1].

Let T̃m be the Chebyshev polynomial Tm transformed linearly from [−1, 1] to the
interval [164L, n], viz.,

T̃m(x) := Tm

(
2x

n − 164L
− n + 164L

n − 164L

)
, x ∈ [164L, n].

Using the explicit form

Tm(x) =
1
2

((
x +

√
x2 − 1

)m +
(
x −

√
x2 − 1

)m
)

, x ∈ R \ [−1, 1],

setting s := 328L/(n − 164L) and noticing that s ≤ 656L/n ≤ 2, we check easily
that

|T̃m(0)| =|Tm(−1 − s)| = Tm(1 + s) ≤
(

1 + s +
√

2s + s2
)m

≤
(

1 + 4
√

s
)m ≤ exp

(
4m26

√
L/n

)
≤ exp

(
26

√
Ln
√

L/n
)

≤ exp(26L).

(5.2)

Let ξ0 < ξ1 < · · · < ξm denote the extreme points of T̃m on [164L, n], viz.,

ξ0 = 164L,

ξ j =
1
2

(n − 164L) cos
(m − j )π

m
+

1
2

(n + 164L), j = 1, 2, . . . , m − 1,

ξm = n.
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Then

(5.3) T̃m(ξ j ) = (−1)m− j , j = 0, 1, . . . , m.

Let η j = ξ j�. Observe that since n ≥ 328L,

m =
1
4

√
nL ≥ 1

4

√
328L2 ≥ 4L,

and hence

1 − cos
Lπ

m
= 2 sin2 Lπ

2m
≥ 2L2

m2 .

Thus

164L + (n − 164L)
L2

m2
≤ ξ j ≤ n − (n − 164L)

L2

m2
, j ∈ [L, m − L].

Now, since m2 = (nL)/16 and n ≥ 328L, we deduce that

164L + (n − 164L)
L2

m2
≤ ξL < ηm−L−1 ≤ n − (n − 164L)

(L + 1)2

m2
+ 1

≤ n − (n − 164L)
L2

m2 .

(5.4)

Using the mean value theorem, Bernstein’s inequality (see, e.g., [B-95, p. 233]),
and (5.4), we have

|T̃m(ξ j ) − T̃m(x)| ≤ (x − ξ j ) max
ξ∈[η j ,ξ j ]

|T̃ ′
m(ξ )|

≤ 2m2

(n − 164L)L
≤ 4m2

nL
≤ 1

4

(5.5)

for all x ∈ [ξ j , η j ] and j ∈ [L, m − L − 1]. Also,

ξ j+1 − ξ j =
1
2

(n − 164L)
(

cos
(m − ( j + 1))π

m
− cos

(m − j )π
m

)
≤1

2
(n − 164L)

π

m
sin

Lπ

m
≤ 1

2
π2nL
m2 ≤ 80

(5.6)

for all j ∈ [0, L − 1] ∪ [m − L, m − 1]. Combining (5.3) and (5.5), we get

(−1)m− j T̃m(x) ≥ 3
4
, x ∈ [ξ j , η j ], j ∈ [L, m − L − 1];

hence

(−1)m− j T̃m(η j ) ≥ 3
4
, j ∈ [L, m − L − 1],(5.7)
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and

ξ j < η j < ξ j+1, j ∈ [L, m − L − 1].(5.8)

Define

x j := ξ j , j ∈ [0, L − 1] ∪ [m − L, m],

x j := η j , j ∈ [L, m − L − 1],

and let Em = {x0, x1, · · · , xm}. Recalling (5.7) and (5.8), we have

Em = {x0 < x1 < · · · < xm}.

Now define

x∗
j := n − 80(m − j ) j ∈ [m − L, m],

x∗
j := η j − 80L, j ∈ [L, m − L − 1],

x∗
j := ηL − 1 − 80L − 80(L − j ), j ∈ [0, L − 1],

and let E∗
m = {x∗

0, x∗
1, . . . , x∗

m}. Observe that x∗
0 < x∗

1 < · · · < x∗
m and E∗

m ⊂ Fn.
Also (5.6) implies that the assumptions of Lemma 4.3(iv) on Em and E∗

m with
Q = T̃m are satisfied. The inequality of the lemma now follows from Lem-
ma 4.3(iv) and (5.2).

We now prove that the inequality of the lemma is sharp up to the constant
c > 0 in the exponent. Without loss of generality, we may assume that n = n2

0

and L = l6L2
0, where n0 and L0 are integers, so that m =

√
(nL)/16 is an integer.

Let T̂m be the Chebyshev polynomial Tm transformed linearly from [−1, 1] to the
interval [0, n], i.e.,

T̂m(x) := Tm

(
2x
n

− 1
)

=
2
nn

m∏
k =1

(x − xk), x ∈ [0, n],

where

0 < xk =
n
2

(
1 + cos

2k − 1
2m

π

)
= n sin2 2k − 1

4m
π

≤ nk2π2

4m2 ≤ 4nk2π2

nL
≤ 40k2

L
≤ k

2
, 1 ≤ k ≤ L′ :=

⌊
L
80

⌋
.

Now, defining

Pm(x) := T̂m(x)
L′∏

k =1

x − k
x − xk

,
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we have

|Pm( j )| ≤ |T̂m( j )| ≤ 1, j ∈ [L′ + 1, n] ∩ Fn,

and

|Pm( j )| = 0 <1, j ∈ [1, L′] ∩ Fn.

Hence, for j ∈ Fn, |Pm( j )| ≤ 1. This, together with the fact that

|Pm(0)| ≥ |T̂m(0)|
L′∏

k =1

∣∣∣∣ k
xk

∣∣∣∣ ≥ L′∏
k =1

k
k/2

≥ 2L′ ≥ 2L/80−1

completes the proof. �

Proof of Lemma 4.5. We use the notation introduced in Section 2.
Let F and P be the polynomials Dn → R associated to f ∈ Xn and p ∈ Xn,

respectively, as described in Section 2. Let M = exp(2cL), where the constant
c > 0 is as in Lemma 4.4. Let m = �√nL/16�,

U = { f ∈ Xn : F (0) ≥ exp(2cL), |F ( j )| ≤ 1, j = 1, 2, . . . , n},
and Vm = {p ∈ Xn : P ∈ Pm} where, as before, Pm denotes the set of all polyno-
mials of degree at most m with real coefficients. Lemma 4.4 implies U ∩ Vm = ∅.
Since two disjoint convex sets in a finite dimensional vector space can be separated
by a hyper-plane, there exists a symmetric polynomial g ∈ Xn such that

〈g, p〉 = 〈G, P〉 = 0, P ∈ Pm,(5.9)

and

〈g, f 〉 = 〈G, F〉 ≥ α > 0, f ∈ U,(5.10)

where G is the polynomial Dn → R associated to g ∈ Xn. From (5.9), we easily
deduce that the pure high degree of g ∈ Xn is at least m + 1. It follows from
(5.10) that

∑n
k =0 εk

(n
k

)
G(k) ≥ α > 0 whenever ε0 = exp(2cL) and εk ∈ {−1, 1},

k = 1, 2, . . . , n. Hence

exp(2cL)G(0) −
n∑

k =1

(
n
k

)
|G(k)| > 0, i.e., G(0) > exp(−2cL)

n∑
k =1

(
n
k

)
|G(k)|.

Now let g̃ ∈ Xn be the symmetric multi-linear polynomial defined by

g̃(x1, x2, . . . , xn) := (x1x2 · · · xn)g(x1, x2, . . . , xn),
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and G̃ ∈ Pn the polynomial Dn → R associated to g̃ ∈ Xn. Since the pure high
degree of g ∈ Xn is at least m + 1, G̃ ∈ Pn is a polynomial of degree at most
n − m − 1. Here

m + 1 ≥ √
nL/16 ≥ 1

4
√

2c

√
n log M = c1

√
n log M .

Also, since |G̃( j )| = |G( j )| for each j = 0, 1, . . . , n,
n∑

k =1

(
n
k

)
|G̃(k)| < exp(2cL)|G̃(0)| = M |G̃(0)|.

�
Proof of Lemma 4.6. Suppose P ∈ Pm and ‖P‖Fn = 1. Choose y ∈ [0, n]

such that |P(y)| = M := ‖P‖[0,n]. Without loss of generality, we may assume that
P(y) > 0. Let k ∈ [1, n] be the integer closest to y. Combining Markov’s polyno-
mial inequality [B-95, p. 233] transformed linearly from [−1, 1] to [0, n] with the
mean value theorem, we obtain

|M − P(k)| = |P(y) − P(k)| = |y − k||P ′(ξ )| <
2m2

n
M.

Hence

1 ≥ |P(k)| ≥ M − |M − P(k)| > M
(

1 − 2m2

n

)
,

and the lemma follows. �
Proof of Lemma 4.7. The proof of this lemma is very similar to that of

Lemma 4.5. However, at one point, an application of Lemma 4.6 rather than
Lemma 4.4 is needed. �

6 Proof of the theorems

Proof of Theorem 3.1. We prove the contrapositive statement. Suppose that a
polynomial P of the form

P(z) =
n∑

j =0

a j z
j , a j ∈ C

has a zero at 1 of multiplicity at least n − �√n�. Then
∑n

j =0 a j Q( j ) = 0 for all
polynomials Q of degree at most n − �√n� − 1, and

|a0| = |a0Qn(0)| ≤
n∑

j =1

|a j ||Qn( j )| ≤ 12|a2|(n
2

) +
∑

j∈Sn\{0,2}

8|a j |
j
(n

j

) ,

where Qn is as defined by (4.1). �
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Proof of Theorem 3.2. Let the absolute constant c > 0 be as in Lemma
4.4. If 2 ≤ e2c, then the theorem follows from Theorem 3.4. Hence we may
assume that e2c ≤ M < e32cn. Let the absolute constant c1 > 0 be as in Lemma
4.5. Suppose that a polynomial P of the form

P(z) =
n∑

j =0

a j z
j , a j ∈ C,

has a zero at 1 of multiplicity at least n − �c1
√

n log M� + 1. Lemma 4.2 then
gives

∑n
j =0 a j Q( j ) = 0 for all polynomials Q of degree at most n−�c1

√
n log M�.

Using the assumptions

|a0| = 1, |a j | ≤ M−1

(
n
j

)
, j = 1, 2, . . . , n,

we can deduce that

|Q(0)| = |a0Q(0)| ≤
n∑

j =1

|a j ||Q( j )| ≤ M−1
n∑

j =1

(
n
j

)
|Q( j )|.

However, this is impossible for the polynomial Q with the properties of Lemma
4.5. �

Proof of Theorem 3.4. The proof of the theorem is very similar to that
of Theorem 3.2 given in the case e2c ≤ M < e32cn. However, at one point, an
application of Lemma 4.7 rather than Lemma 4.5 is needed. �

Acknowledgments. The author thanks Peter Borwein and Mario Szegedy
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[S-54] R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have ran-
dom signs, Acta Math. 91 (1954), 245–301.

[Sch-33] I. Schur, Untersuchungen über algebraische Gleichungen, Sitz. Preuss. Akad. Wiss., Phys.-
Math. Kl. (1933), 403–428.

[S-99] I. E. Shparlinski, Finite Fields, Kluwer Academic Poublishers, Dordrecht, 1999.

[Š-03] R. Špalek, A dual polynomial for OR, arXiv:0803.4516 [cs.CC].
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