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Abstract. We prove some new Strichartz estimates for a class of dispersive
equations with radial initial data. In particular, we obtain the full radial Strichartz
estimates up to some endpoints for the Schrödinger equation. Using these esti-
mates, we obtain some new results related to nonlinear problems, including small
data scattering and large data LWP for the nonlinear Schrödinger and wave equa-
tions with radial critical initial data and the well-posedness theory for the fractional
order Schrödinger equation in the radial case.

1 Introduction

In this paper, we study the Cauchy problem for a class of dispersive equations of
the type

(1.1) i∂tu = −φ(
√−�)u + f, u(0, x) = u0(x),

where φ : R+ → R is smooth away from origin, u(t, x) : R × R
n → C, n ≥ 2, is

the unknown function, f (t, x) is a given function (e.g., f = |u|pu in the nonlinear
setting), and φ(

√−�)u = F−1φ(|ξ |)Fu. Here, F denotes the spatial Fourier
transform, and φ(|ξ |) is usually referred to as the dispersion relation of equation
(1.1). Many dispersive equations, for instance, the Schr ödinger equation (φ(r) =
r2), the wave equation (φ(r) = r), the Klein-Gordon equation (φ(r) =

√
1 + r2),

the beam equation (φ(r) =
√

1 + r4), and the fourth-order Schrödinger equation
(φ(r) = r2 + r4) reduce to equations of type (1.1).

1This material is based upon work supported by the National Science Foundation under agreement
No. DMS-0635607 and The S. S. Chern Fund. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect the views of
the National Science Foundation or The S. S. Chern Fund.
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In the pioneering work [30], Strichartz derived a priori estimates in space-time
norm Lq

t Lr
x of solutions of (1.1) by proving a Fourier restriction inequality. Later,

his results were improved via a dispersive estimate and duality argument (cf. [16]
and references therein). The dispersive estimate

(1.2) ‖eitφ(
√−�)u0‖X � |t|−θ‖u0‖X ′,

where X ′ is the dual space of X , plays a crucial role. Applying (1.2) together with
a standard argument (cf. [16]), we can immediately obtain the Strichartz estimates.
For instance, we see from the explicit formula of the free Schr ödinger solution that

‖eit�u0‖L∞
x
�|t|−n/2‖u0‖L1

x
.

In [10], the authors systematically studied the dispersive estimates for (1.1) by
imposing certain asymptotic conditions on φ.

As explained in [16], the full range of the non-retarded Strichartz estimates for
the Schrödinger equation are known completely while that of the retarded esti-
mates remain open. However, it is well known that if the initial data u0 is radial,
generalized Strichartz estimates exist; see, e.g., [25]. Shao [23] showed that the
frequency localized non-retarded Strichartz estimates for the Schr ödinger equa-
tion give a wider range of estimates. For example,

(1.3) ‖eit�Pku0‖Lq
t,x(Rn+1) ≤ C2( n

2 − n+2
q )k‖u0‖2

if q > (4n + 2)/(2n − 1) and u0 is radial. The proof relies deeply on the radial
assumption, which eliminates the bad-type evolution in the non-radial case (e.g.,
the Knapp counter-example). Similar estimates hold for the wave equation; see
[22].

It is easy to see that equation (1.1) is rotationally-invariant. Thus it is natu-
ral to ask whether better Strichartz estimates are obtainable for radial initial data
than those derived from the dispersive estimates. Moreover, for applications, it is
important to have the mixed space-time estimate

(1.4) ‖eitφ(
√−�)Pku0‖Lq

t Lr
x(Rn+1) ≤ Ck‖u0‖2,

where u0 is assumed to be radial.
The first purpose of this paper is to obtain the sharp range of (1.3) for equa-

tion (1.1) in the case q = r. Indeed, we simplify some proofs and overcome
the difficulty caused by the lack of scaling invariance by adapting some ideas in
[10]. Moreover, by dealing carefully with logarithmic divergence, we prove that
(1.3) actually holds for q = (4n + 2)/(2n − 1). Our second purpose is to apply
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the improved Strichartz estimates to the nonlinear equations including the nonlin-
ear Schrödinger equation, nonlinear wave equation, and nonlinear fractional-order
Schrödinger equation.

Using the Christ-Kiselev lemma (Lemma 3.3 below), we derive the retarded
estimates from the non-retarded estimates in order to apply our results to nonlinear
problems. For example, consider the nonlinear Schrödinger equation

iut +�u = μ|u|pu, u(0, x) = u0(x),

the well-posedness theory of which was studied deeply during the past decades.
We remark that even in the case that L2 is subcritical in the sense of scaling, the
threshold of regularity in Ḣ s for strong well-posedness is s ≥ max(0, sc), where
sc is the scaling critical regularity. This can be seen from the Galilean invariance
(see [1, 3])

u(t, x) → e−i|y|2t+iy·xu(t, x − 2ty), y ∈ R
d .

However, it is also easy to see that the radial assumption breaks down the Galilean
invariance. Thus it is natural to expect to be able to go below L2 in the radial case.
This is indeed the case, as discussed in detail in Section 4.

In order to study the non-homogeneous case (e.g. Klein-Gordon equation), we
treat the high frequency and the low frequency in different scales. As in [10], we
assume that φ : R+ → R is smooth and satisfies some of the following conditions.
(H1) There exists m1 > 0 such that

|φ′(r)| ∼ rm1−1 and |φ(α)(r)| � rm1−α, r ≥ 1,

for all integers α ≥ 2.
(H2) There exists m2 > 0 such that

|φ′(r)| ∼ rm2−1 and |φ(α)(r)| � rm2−α, 0 < r < 1,

for all integers α ≥ 2.
(H3) There exists α1 such that

|φ′′(r)| ∼ rα1−2, r ≥ 1.

(H4) There exists α2, such that

|φ′′(r)| ∼ rα2−2, 0 < r < 1.

Remark 1.1. Heuristically, (H1) and (H3) reflect the dispersive effect in high
frequency. If φ satisfies (H1) and (H3), then α1 ≤ m1. Similarly, the dispersive
effect in low frequency is described by (H2) and (H4). If φ satisfies (H2) and (H4),
then α2 ≥ m2. The special case α2 = m2 occurs in most instances.



4 ZIHUA GUO AND YUZHAO WANG

For convenience, given m1,m2, α1, α2 ∈ R as in (H1)-(H4), we define

m(k) =

⎧⎨
⎩m1, for k ≥ 0,

m2, for k < 0;
and α(k) =

⎧⎨
⎩α1 for k ≥ 0,

α2 for k < 0.
(1.5)

Now we are ready to state our first result.

Theorem 1.2. Suppose n ≥ 2, k ∈ Z, φ : R+ → R is smooth away from

origin, and u0 is spherically symmetric. If φ satisfies (H1) and (H2), then for

2n/(n − 1) < q ≤ ∞,

(1.6) ‖Sφ(t)Pku0‖Lq
t,x(Rn+1) � 2( n

2 − n+m(k)
q )k‖u0‖2,

Furthermore, if φ also satisfies (H3) and (H4), then for (4n + 2)/(2n−1) ≤ q ≤ 6,

(1.7) ‖Sφ(t)Pku0‖Lq
t,x(Rn+1)�2( n

2 − n+m(k)
q )k+( 1

4 − 1
2q )(m(k)−α(k))k‖u0‖2,

where m(k), α(k) are given by (1.5), Pk is the Littlewood-Paley projector, and
Sφ(t) = eitφ(

√−�) is the dispersive group, (defined later). The range of q is op-

timal in the sense that (1.6) fails to hold if q ≤ 2n/(n − 1) and (1.7) fails to hold
if q < (4n + 2)/(2n − 1).

For the Schrödinger equation, φ(r) = r 2 and φ satisfies (H1)-(H4) with m(k) =
α(k) = 2. The following corollary is then an immediate consequence of Theorem
1.2.

Corollary 1.3. Assume n ≥ 2, k ∈ Z, (4n + 2)/(2n−1) ≤ q ≤ ∞. Then there
exists C > 0 such that

(1.8) ‖eit�Pku0‖Lq
t,x(Rn+1) ≤ C2( n

2 − n+2
q )k‖u0‖2

for spherically symmetric u0 ∈ L2(Rn). Moreover, the range of q is optimal in the
sense that (1.8) fails to hold if q < (4n + 2)/(2n − 1).

Remark 1.4. Shao [23] proved (1.8) for q > (4n + 2)/(2n − 1). For the wave
equation, φ(r) = r and φ satisfies (H1)-(H2) with m(k) ≡ 1. Equation (1.6) then
reduces to that given in [22]. Of interest is the fact that the range q > 2n/(n−1) is
optimal for the wave equation. It is also worth noting that if q > 2n/(n − 1), (1.6)
gives a better bound than (1.7) since k[m(k) − α(k)] ≥ 0 in view of Remark 1.1.

We apply Theorem 1.2 to some concrete equations. Then, using the Christ-
Kiselev lemma, we get the retarded Strichartz estimates. In view of the classical
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Strichartz estimates, it is natural to want to know the sharp range of the mixed
Strichartz estimates

‖Sφ(t)Pku0‖Lq
t Lr

x(Rn+1) � C(k)‖u0‖2.

For the purpose of finding the sharp range, we restrict ourselves to the simple case
φ(r) = ra, a > 0; namely, we consider the estimate

(1.9) ‖eitDa
Pk f ‖Lq

t Lr
x(R×Rn) ≤ C2k( n

2 − a
q − n

r )‖ f ‖L2
x (Rn),

where D =
√−�, a > 0. In this case, we have scaling invariance, and thus

the proof is less complicated. Nevertheless, the proof can still be adapted to the
general case.

Theorem 1.5. (a) Assume a = 1 and n ≥ 3. Then (1.9) holds for all radial
functions f ∈ L2(Rn) if and only if

(q, r) = (∞, 2) or 2 ≤ q ≤ ∞,
1
q

+
n − 1

r
<

n − 1
2

.

(b) Assume 0 < a �= 1 and n ≥ 2. Then (1.9) holds for all radial functions

f ∈ L2(Rn) if

4n + 2
2n − 1

≤ q ≤ ∞,
2
q

+
2n − 1

r
≤ n − 1

2
or

2 ≤ q <
4n + 2
2n − 1

,
2
q

+
2n − 1

r
< n − 1

2
.

On the other hand, (1.9) fails to hold if

q > 2 or
2
q

+
2n − 1

r
> n − 1

2
.

Remark 1.6. The range of (q, r) is indicated in Figure 1, where

B =
(

n − 3
2n − 2

,
1
2

)
, C =

(
n − 2

2n − 2
,

1
2

)
, D =

(
n − 1

2n
,

n − 1
2n

)
,

B ′ =
(

n − 2
2n

,
1
2

)
, C ′ =

(
2n − 3
4n − 2

,
1
2

)
, D ′ =

(
2n − 1
4n + 2

,
2n − 1
4n + 2

)
.

The results for the wave equation (a = 1) are not new. The positive results appear
in [20, 25, 29, 7]. A counter-example was given in [13].

On the other hand, for the Schrödinger equation, the results seem to be new. We
see that the picture is almost complete, except that the segment C ′D ′ is unknown1.
In view of the positive results on the non-radial endpoint in [16], we conjecture
the following radial endpoint estimates.

1After this paper appeared on arXiv, there was further improvement showing that C′D ′ is also
allowed except the point C′; see [6, 15].
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Figure 1. Range of (q, r) for (1.9).

Conjecture 1.7. Assume n ≥ 2 and 0 < a �= 1. Then there exists a constant
C such that

(1.10) ‖eitDa
P0 f ‖

L2
t L

4n−2
2n−3
x (R×Rn)

≤ C‖ f ‖L2
x (Rn),

for all radial functions f ∈ L2
x(Rn).

This is very similar to the endpoint Strichartz estimates in the non-radial case,
which was studied in [16]. As expected, (1.10) is just “logarithmically far” from
being proved. Indeed, for every j ∈ N,

‖eitDa
P0 f ‖

L2
t L

4n−2
2n−3
x (R×{|x|∼2 j })

≤ C‖ f ‖L2
x (Rn).

However, we cannot adapt the method on D ′E ′ to overcome this logarithmical
divergence; see Remark 2.14 below for further discussion of (1.10).

Using these Strichartz estimates, we study nonlinear problems and prove some
new results, one of which is the following for the nonlinear Schrödinger equation.

Theorem 1.8. Assume

n ≥ 2, 0 < p <
4
n
, ssch =

n
2

− 2
p
,

1 − n
2n + 1

≤ ssch < 0,

and u0 is radial. If ‖u0‖Ḣ ssch ≤ δ for some δ � 1, there exists a unique global

solution u of
iut +�u = μ|u|pu, u(0, x) = u0(x)

(μ = ±1) such that u ∈ C(R : Ḣ ssch ) ∩ L
p(n+2)

2
t,x (R × R

n). Moreover, there exist
u± ∈ Ḣ ssch such that ‖u − S(t)u±‖Ḣ ssch → 0, as t → ±∞.
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Our methods show that the index (1 − n)/(2n − 1) is sharp for the critical
global well-posedness (GWP). For further results in this direction, see Theorem
4.1 below. For the nonlinear wave equation, we prove the following result.

Theorem 1.9. Assume

n ≥ 2, 0 < p <
4

n − 1
, sw =

n
2

− 2
p
,

1
2n
< sw < 1/2,

and u0 is radial. If ‖u0‖Ḣ sw + ‖u1‖Ḣ sw−1 ≤ δ for some δ � 1, there exists a unique
global solution u of

∂ttu −�u = μ|u|pu, (t, x) ∈ R
n+1, u(0) = u0(x), ut(0) = u1(x)

(μ = ±1) such that u ∈ C(R : Ḣ sw) ∩ C1(R : Ḣ sw−1) ∩ L
2n+2

n−2sw
t,x (R × R

n), and there
exists (u±, v±) ∈ Ḣ sw × Ḣ sw−1 such that

‖u − W ′(t)u±‖Ḣ sw + ‖ut − W (t)v±‖Ḣ sw−1 → 0 as t → ±∞.

Our results also hold for more general nonlinearity, e.g., F (u) with F satisfying
conditions such as (4.3). In [21], Lindblad and Sogge studied the semi-linear wave
equation with the same nonlinearity but with general non-radial initial data. For
example, for the nonlinearity |u|p, they proved small data scattering in Ḣ s × Ḣ s−1

with s = n
2 − 2

p−1 if p ≥ n+3
n−1 and local well-posedness if s ≥ s(p, n) for some

s(p, n). Thus their results cover the case sw ≥ 1/2 in Theorem 1.9, which is the
main reason why we restrict ourselves to the case sw < 1/2. In the same paper
[21], the authors actually showed that their results are sharp by constructing some
counter-examples. However, the counter-examples for sw < 1/2 don’t work for
the radial case. Our Theorem 1.9 improves their results in the radial case. Actually,
we find a critical regularity in the radial case s0(n) < 1/2n, which we discuss in
detail in Theorem 4.4. In Section 4, we also study the nonlinear fractional order
Schrödinger equation and establish the well-posedness theory in the radial case;
cf. Theorem 4.7 below.

The fact that better well-posedness results hold in the radial case has been ob-
served before; see [25, 8], [11, 12]. Our results generalize these results. In the
non-radial case, with additional angular regularity, one can also go below L2; see
[8, 14] and the references therein. Actually, the results in [8] for the Schr ödinger
equation are more general than ours but with different resolution space. Our re-
sults for local well-posedness hold without change for the inhomogeneous data
u0 ∈ H s; see Remark 4.3. It is then natural to ask whether (1.8) and (1.9) hold for
non-radial functions with certain angular regularity.
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Throughout this paper, C > 1 and c < 1 denote universal positive constants,
which might be different at different places. We write A � B to mean that there
exists C such that A ≤ CB , and A ∼ B to mean that A � B and B � A. We use
f̂ (ξ ) and F ( f ) to denote the spatial Fourier transform of f on R

n defined by

f̂ (ξ ) =
∫
Rn

f (x)e−ix·ξdx.

We denote by p′ the Hölder dual of p ∈ [1,∞], i.e., 1/p + 1/p ′ = 1. Unless
stated otherwise, 	 : R → [0, 1] is a non-negative, smooth, even function such
that supp	 ⊆ {x : |x| ≤ 2}. and	(x) = 1 for |x| ≤ 1, We set ψ(x) = 	(x)−	(2x)
and let Pk be the Littlewood-Paley projector for k ∈ Z, namely,

Pk f = F−1ψ(2−k|ξ |)F f, P≤0 f = F−1	(|ξ |)F f.

We denote by Sφ(t) the evolution group related to (1.1), defined as

Sφ(t)u0(x) = eitφ(
√−�)u0(x) = cn

∫
Rn

eix·ξeitφ(|ξ |)û0(ξ ) dξ.

We use the Lebesgue spaces Lp := Lp(Rn), ‖·‖p := ‖·‖Lp and the space-time norm
Lq

t Lr
x of f on R ×� defined by

‖ f (t, x)‖Lq
t Lr

x(R×�) =
∥∥∥‖ f (t, x)‖Lr

x(�)

∥∥∥
Lq

t (R)
,

where� ⊂ Rn. When q = r, we abbreviate Lq
t Lr

x(R ×�) by Lq
t,x(R ×�).

The rest of this paper is organized as follows. In Section 2, we prove Theorem
1.2. In Section 3, we apply Theorem 1.2 to some concrete equations. In Section
4, we apply the improved Strichartz estimates to nonlinear problems.

2 Proofs of Theorem 1.2 and Theorem 1.5

First we prove Theorem 1.2 by adapting some ideas in [10] and [23]. However,
there is a new difficulty for the endpoint case q = (4n + 2)/(2n − 1) in (1.7)
due to a logarithmic divergence. Fortunately, this logarithmic divergence can be
overcome by using the double weight Hardy-Littlewood-Sobolev inequality. On
the other hand, the logarithmic divergence for the endpoint q = 2n/(n−1) in (1.6)
is essential. We present the proof in the following three steps.

Step 1. Non-endpoint: q > 2n/(n− 1) in (1.6), q > (4n + 2)/(2n− 1) in (1.7).

For j ∈ Z, let A j := {x ∈ Rn : 2 j−1 ≤ |x| < 2 j }, I j = [2 j−1, 2 j ). Fixing k ∈ Z,
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we decompose ‖Sφ(t)�ku0(x)‖Lq
t,x(R×Rn) and get

‖Sφ(t)Pku0‖Lq
t,x(Rn+1) ≤∑

j∈Z
‖Sφ(t)Pku0‖Lq

t,x(R×A j )

=
∑

j+k≤1

‖Sφ(t)Pku0‖Lq
t,x(R×A j ) +

∑
j+k≥2

‖Sφ(t)Pku0‖Lq
t,x(R×A j ).(2.1)

The main task reduces to estimating ‖Sφ(t)Pku0‖Lq
t,x(R×A j ). It is easy to see that

Sφ(t)Pku0 is spherically symmetric in space if u0 is radial. Thus we can rewrite it
in an integral form related to the Bessel function. The two parts j + k ≤ 1 and
j + k ≥ 2 exploit different properties of Bessel functions. We give the estimates of
the two parts in the following two propositions.

Proposition 2.1. Assume u0 ∈ L2(Rn), u0 is radial, and φ satisfies (H1) and
(H2). If k, j ∈ Z with j + k ≤ 1 and 2 ≤ q ≤ ∞, then

(2.2) ‖Sφ(t)Pku0(x)‖Lq
t,x(R×A j ) � 2

n j
q 2( n

2 − m(k)
q )k‖Pku0‖L2,

where m(k) is given by (1.5).

Proposition 2.2. Assume u0 ∈ L2(Rn), u0 is radial, and φ satisfies (H1) and

(H2). If k, j ∈ Z with j + k ≥ 2 and 2 ≤ q ≤ ∞, then

(2.3) ‖Sφ(t)Pku0(x)‖Lq
t,x(R×A j ) � 2( n

q − n−1
2 ) j 2( 1

2 − m(k)
q )k‖Pku0‖L2 .

Furthermore, if φ also satisfies (H3) and (H4), then for 2 ≤ q ≤ 6,

(2.4) ‖Sφ(t)Pku0(x)‖Lq
t,x(R×A j ) � 2( 2n+1

2q − 2n−1
4 ) j 2( −3m(k)+α(k)+1

2q + m(k)−α(k)+1
4 )k‖Pku0‖L2,

where m(k), α(k) is given by (1.5).

Postponing momentarily the proofs of Propositions 2.1 and 2.2, we show how
these results can be used to complete the proof of Theorem 1.2 in the non-endpoint
case.

Proof of Theorem 1.2 (non-endpoint). We may assume q <∞. Assume
first that φ satisfies (H1) and (H2). From (2.1), Proposition 2.1, and Proposition
2.2, we get

‖Sφ(t)Pku0(x)‖Lq
t,x(Rn+1)�

∑
j+k≤1

2
n j
q 2( n

2 − m(k)
q )k‖Pku0‖L2

+
∑

j+k≥2

2( n
q − n−1

2 ) j 2( 1
2 − m(k)

q )k‖Pku0‖L2

�2( n
2 − m(k)

q − n
q )k‖Pku0‖L2,
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since q > 2n/(n − 1), and thus n
q − n−1

2 < 0. Thus (1.6) is proved.

Now assume φ also satisfies (H3) and (H4). Then

‖Sφ(t)Pku0(x)‖Lq
t,x(Rn+1)�

∑
j+k≤1

2
n j
q 2( n

2 − m(k)
q )k‖Pku0‖L2

+
∑

j+k≥2

2( 2n+1
2q − 2n−1

4 ) j 2( −3m(k)+α(k)+1
2q − m(k)−α(k)+1

4 )k‖Pku0‖L2.

Note that if q > (4n + 2)/(2n − 1), then 2n+1
2q − 2n−1

4 < 0. Thus we can sum over j
and bound the quantity above by

C
[
2( n

2 − n+m(k)
q )k+( 1

4 − 1
2q )[m(k)−α(k)]k + 2( n

2 − n+m(k)
q ))k

]
‖Pku0‖L2,

which is sufficient for (1.7) since ( 1
4 − 1

2q )[m(k) − α(k)]k ≥ 0 in view of Remark
1.1. �

It remains to prove Propositions 2.1 and 2.2. The proofs rely heavily on the
radial properties, in particular, the Fourier-Bessel function

Jm(r) =
(r/2)m

�(m + 1/2)π1/2

∫ 1

−1
eirt(1 − t2)m−1/2dt, m > −1/2.

We first recall two properties of Jm(r).

Lemma 2.3 (Properties of Bessel functions). For 0 < r < ∞ and m > −1/2,

(i) Jm(r) ≤ Crm,

(ii) Jm(r) ≤ Cr−1/2.

For the proof of Lemma 2.3, we refer the reader to [27, p. 338].

It is well known that if f (x) = g(|x|) is radial, the Fourier transform of f is also
radial (cf. [26]) and

(2.5) f̂ (ξ ) = 2π
∫ ∞

0
g(s)sn−1(s|ξ |)−1/(n−2)J(n−2)/2(s|ξ |)ds.

Thus, if û0(ξ ) = h(|ξ |) is radial, Sφ(t)Pku0 = F (t, |x|) and

(2.6) F (t, |x|) = 2π
∫ ∞

0
eitφ(s)ψk(s)h(s)sn−1(s|x|)−1/(n−2)J(n−2)/2(s|x|)ds,

where ψk(x) = ψ(x/2k). Proving Propositions 2.1 and 2.2 reduces to a one-
dimensional problem involving Bessel functions. We use the following local
smoothing effect type estimate.
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Lemma 2.4. Suppose k ∈ Z, ϕ ∈ L2(R), and φ satisfies (H1) and (H2). Then

for 2 ≤ q ≤ ∞, ∥∥∥∥
∫
R

ψk(s)ϕ(s)e−itφ(s)ds

∥∥∥∥
Lq

t

�2( 1
2 − m(k)

q )k‖ψkϕ‖L2,

where m(k) is defined in (1.5).

Proof. It is easy to see that φ is invertible in the support of ψk. We denote the
inverse of φ by φ−1. By the change of variable a = φ(s), we obtain∥∥∥∥

∫
R

ψk(s)ϕ(s)e−itφ(s) ds

∥∥∥∥
Lq

t

=
∥∥∥∥
∫
R

ψk(φ−1(a))e−ita ϕ(φ−1(a))
|φ′(φ−1(a))|da

∥∥∥∥
Lq

t

.

Then, from the Hausdorff-Young inequality and change of variable s = φ(a), we
see that this is bounded by

C

∥∥∥∥ψk(φ−1(a))
ϕ(φ−1(a))

|φ′(φ−1(a))|
∥∥∥∥

Lq′
a

= C

∥∥∥∥ψk(s)
ϕ(s)

|φ′(s)| 1
q

∥∥∥∥
Lq′

s

,

From the condition, we have φ ′(s) ∼ 2(m(k)−1)k in the support of ψk . By Hölder’s
inequality, we can then bound this by

C2
−m(k)+1

q k2( 1
q′ − 1

2 )k‖ψk(s)ϕ(s)‖L2
s

= C2( 1
2 − m(k)

q )k‖ψkϕ‖L2. �

Lemma 2.5 (Strichartz estimate). Suppose ϕ ∈ L2(R) and φ satisfies either
(H3) or (H4). Then, for k ∈ Z,∥∥∥∥

∫
R

ψk(s)ϕ(s)eirs−itφ(s) ds

∥∥∥∥
L6

t L6
r

�2( 1
3 − α(k)

6 )k‖ψkϕ‖L2,

where α(k) is defined in (1.5).

Proof. Since φ satisfies (H3) and (H4), [10, Theorem 1] gives the decay esti-
mate ∥∥∥∥

∫
R

ψk(s)ϕ(s)eirs−itφ(s)ds

∥∥∥∥
L∞

r

�|t|− 1
2 2(1− α(k)

2 )‖F−1[ψkϕ]‖L1.

The result now follows immediately from [10, Proposition 1]; also see [16]. �
Proof of Proposition 2.1. It follows from (2.6), Lemma 2.3(i), and Lemma

2.4 that

‖Sφ(t)Pku0(x)‖Lq
t,x(R×A j )�‖F (t, r)r

n−1
q ‖Lq

t Lq
I j

�2( 1
2 − m(k)

q )k‖ψk(s)h(s)sn−1r
n−1

q ‖Lq
r∈I j

L2
s

�2
n j
q 2( n

2 − m(k)
q )k‖ψk(s)h(s)s

n−1
2 ‖L2

s
,
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completing the proof of Proposition 2.1, since ‖ψk(s)h(s)s
n−1

2 ‖L2
s

= ‖Pku0‖L2 . �
It remains to prove Proposition 2.2. We use the decay properties of the Bessel

function at ∞, more precisely,

(2.7) Jn−2
2

(r) =
ei(r−(n−1)π/4) + e−i(r−(n−1)π/4)

2r1/2
+ dnr

n−2
2 e−irE+(r) − enr

n−2
2 eirE−(r),

where E±(r)�r−(n+1)/2 if r ≥ 1 and dn, en are constants; see [27]. We insert (2.7)
into (2.6) and then divide F (t, |x|) into two parts: a main term and an error term,
namely,

(2.8) F (t, |x|) = M (t, |x|) + E(t, |x|),
where

M (t, r) = cnr−(n−1)/2
∫
R

ψk(s)h(s)s(n−1)/2ei(rs−tφ(s))ds

+ c̄nr−(n−1)/2
∫
R

ψk(s)h(s)s
n−1

2 e−i(rs+tφ(s))ds,

E(t, r) = c1

∫
R

ψk(s)h(s)sn−1e−itφ(s)−irsE+(rs)ds

− c2

∫
R

ψk(s)h(s)sn−1e−itφ(s)+irsE−(rs)ds.

First we estimate the error term E(t, |x|).
Lemma 2.6. Assume φ satisfies (H1) and (H2). If j + k ≥ 2 and 2 ≤ q ≤ ∞,

then

(2.9) ‖E(t, |x|)‖Lq
t,x(R×A j ) � 2(− n+1

2 + n
q ) j 2−( 1

2 + m(k)
q )k‖Pku0‖L2.

Proof. As in the proof of Proposition 2.1, we have

‖E(t, |x|)‖Lq
t,x(R×A j )�‖E(t, r)r

n−1
q ‖Lq

t Lq
I j

�2( 1
2 − m(k)

q )k‖ψk(s)F (s)sn−1r
n−1

q E±(rs)‖Lq
r∈I j

L2
s

�2−( 1
2 + m(k)

q )k2 j ( n
q − n+1

2 )‖ψk(s)F (s)s
n−1

2 ‖L2
s
,

where we have used the fact that |E±(r)|�r−(n+1)/2. �
Next we estimate the main term M (t, |x|).
Lemma 2.7. (a) Assume φ satisfies (H1) and (H2). If j + k ≥ 2, then

‖M (t, |x|)‖L2
t,x(R×A j ) � 2 j/22

1−m(k)
2 k‖Pku0‖L2,(2.10)

‖M (t, |x|)‖L∞
t,x(R×A j ) � 2− j (n−1)/22k/2‖Pku0‖L2 .(2.11)
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(b) Assume φ satisfies (H3) and (H4). If j + k ≥ 2, then

(2.12) ‖M (t, |x|)‖L6
t,x(R×A j ) � 2− n−1

3 j 2( 1
3 − α(k)

6 )k‖Pku0‖L2.

Proof. From symmetry, it suffices to estimate the first term in M (t, |x|). From
Lemma 2.4 with q = 2, we obtain

‖M (t, |x|)‖L2
t,x(R×A j )�‖M (t, r)r

n−1
2 ‖L2

t L2
I j

�
∥∥∥∥
∫
R

ψk(s)h(s)s
n−1

2 ei(rs−tφ(s))ds

∥∥∥∥
L2

I j
L2

t

�2 j/22− m(k)−1
2 k‖ψk(s)h(s)s

n−1
2 ‖L2

s
,

which gives the first inequality, as desired. Similarly,

‖M (t, |x|)‖L∞
t,x(R×A j )�‖M (t, r)‖L∞

t L∞
I j

�2− j (n−1)/2

∥∥∥∥
∫
R

ψk(s)h(s)s
n−1

2 ei(rs−tφ(s))ds

∥∥∥∥
L∞

I j
L∞

t

�2− j (n−1)/22k/2‖ψk(s)h(s)s
n−1

2 ‖L2
s
,

To prove (b), observe that Lemma 2.5 gives

‖M (t, |x|)‖L6
t,x(R×A j )�‖M (t, r)r

n−1
6 ‖L6

t L6
I j

�2−(n−1) j/3

∥∥∥∥
∫
R

ψk(s)h(s)s
n−1

2 ei(rs−tφ(s))ds

∥∥∥∥
L6

t L6
I j

�2−(n−1) j/32( 1
3 − α(k)

6 )k‖ψk(s)h(s)s
n−1

2 ‖L2
s
. �

Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. Since φ satisfies (H1) and (H2), interpolating
(2.10) and (2.11), we get

(2.13) ‖M (t, |x|)‖Lq
t,x(R×A j )�2( n

q − n−1
2 ) j 2( 1

2 − m(k)
q )k‖Pku0‖L2

for 2 ≤ q ≤ ∞. From Lemma 2.6, we then obtain

‖Sφ(t)Pku0(x)‖Lq
t,x(R×A j )�‖E(t, |x|)‖Lq

t,x(R×A j ) + ‖M (t, |x|)‖Lq
t,x(R×A j )

�2( n
q − n−1

2 ) j 2( 1
2 − m(k)

q )k‖Pku0‖L2

for 2 ≤ q ≤ ∞. Moreover, interpolating (2.10) and (2.12) yields

(2.14) ‖M (t, |x|)‖Lq
t,x(R×A j )�2( 2n+1

2q − 2n−1
4 ) j 2( −3m(k)+α(k)+1

2q + m(k)−α(k)+1
4 )k‖Pku0‖L2
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for 2 ≤ q ≤ 6 if φ also satisfies (H3) and (H4). Thus, in view of Lemma 2.6 and
(2.14), the left-hand side of (2.4) is bounded by

‖Sφ(t)Pku0(x)‖Lq
t,x(R×A j )�‖E(t, |x|)‖Lq

t,x(R×A j ) + ‖M (t, |x|)‖Lq
t,x(R×A j )

�(C1(k, j ) + C2(k, j ))‖Pku0‖L2,

where

C1(k, j ) = 2(− n+1
2 + n

q ) j 2−( 1
2 + m(k)

q )k,

C2(k, j ) = 2( 2n+1
2q − 2n−1

4 ) j 2( −3m(k)+α(k)+1
2q + m(k)−α(k)+1

4 )k.

It remains to prove C1(k, j ) ≤ C2(k, j ). A simple calculation yields

C2(k, j )
C1(k, j )

= 2( 2n+1
2q − 2n−1

4 + n+1
2 − n

q ) j+( −3m(k)+α(k)+1
2q + m(k)−α(k)+1

4 + 1
2 + m(k)

q )k

= 2( j+k)( 1
2q + 3

4 )+( 1
4 − 1

2q )(m(k)−α(k))k.

It is easy to see that

( j + k)
( 1

2q
+

3
4

)
+
(1

4
− 1

2q

)
(m(k) − α(k))k ≥ 1,

since j + k ≥ 2 and (m(k) − α(k))k ≥ 0 in view of Remark 1.1. �
Step 2. Endpoint: q = (4n + 2)/(2n − 1) in (1.7).
From Step 1, we see that in this case the sum over j ≥ 2−k does not converge.

To overcome this, we do not decompose for large j . The main tools are the van der
Corput Lemma [27] and the double weight Hardy-Littlewood-Sobolev inequalities
[28].

Lemma 2.8 (van der Corput [27]). Assume ψ ∈ C ∞
0 (R) and P ∈ C2(R) is a

real-valued function satisfying |P′′(ξ )| ≥ λ in the support of ψ. Then∣∣∣∣
∫

eiP(ξ )ψ(ξ )dξ
∣∣∣∣ ≤ Cλ−1/2(‖ψ‖∞ + ‖ψ′‖1).

Lemma 2.9 (double weight Hardy-Littlewood-Sobolev inequalities [28]). If

1 < r, s < ∞, 1/r + 1/s ≥ 1, 0 < λ < d, α + β ≥ 0 and

1 − 1
r

− λ

d
<
α

d
< 1 − 1

r
,

1
r

+
1
s

+
λ + α + β

d
= 2,

then ∣∣∣∣
∫
Rd

∫
Rd

f (x)g(y)
|x|α|x − y|λ|y|β dxdy

∣∣∣∣ ≤ Cα,β,s,λ,d‖ f ‖r‖g‖s.
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Now we proceed to prove (1.7) for q = (4n + 2)/(2n − 1). Obviously,

‖Sφ(t)Pku0‖Lq
t,x(Rn+1) ≤ ∑

j≤1−k

‖Sφ(t)Pku0‖Lq
t,x(R×A j ) + ‖Sφ(t)Pku0‖Lq

t,x(R×{|x|≥21−k })

:=I + II.

From Step 1, we see that the term I is bounded, as desired. It remains to bound
the term II . Using (2.25), we get

II ≤ ‖M (t, |x|)‖Lq
t,x(R×{|x|≥21−k}) + ‖E(t, |x|)‖Lq

t,x(R×{|x|≥21−k })
:= II1 + II2.

From Step 1, we see that the term II2 is bounded as desired. Thus, it remains to
bound the term II1. From symmetry, it suffices to prove

∥∥∥∥1[21−k,∞)(r)r ( 1
q − 1

2 )(n−1)
∫
R

ψk(s)h(s)s
n−1

2 ei(rs−tφ(s))ds

∥∥∥∥
Lq

t,r

�2( n
2 − n+m(k)

q )k+( 1
4 − 1

2q )(m(k)−α(k))k‖h(s)s
n−1

2 ‖2,

which follows from the estimate

(2.15)
∥∥∥∥|r|( 1

q − 1
2 )(n−1)

∫
R

ψ0(s)h(s)ei(rs−t2−km(k)φ(2ks))ds

∥∥∥∥
Lq

t,r

�2( 1
4 − 1

2q )(m(k)−α(k))k‖h‖2.

It remains to prove (2.15). Since ψ0(s) is supported in {s ∼ 1}, from (H1)-
(H4), we see that φk(s) = 2−km(k)φ(2ks) has an inverse, which we denote by ηk =
φ−1

k : range(φk) → {s ∼ 1}. Moreover,

(2.16) |η′
k| ∼ 1, |η′′

k | ∼ 2k(α(k)−m(k)).

By a change of variable s = ηk(μ), we conclude that (2.15) is equivalent to

(2.17)

∥∥∥∥|r|( 1
q − 1

2 )(n−1)
∫
R

ψ0(ηk(μ))h(μ)ei(rηk(μ)−tμ)dμ

∥∥∥∥
Lq

t,r

�2( 1
4 − 1

2q )(m(k)−α(k))k‖h‖2

For f ∈ L2(R), define the operator

T f (x, t) = |x|( 1
q − 1

2 )(n−1)
∫
R

ψ0(ηk(μ)) f (μ)ei(xηk(μ)−tμ)dμ.

It suffices to prove ‖T ‖L2→Lq
t,x
�2( 1

4 − 1
2q )(m(k)−α(k))k. By duality, we have

T ∗g(μ) = ψ0(ηk(μ))
∫
R×R

e−i(xηk(μ)−tμ)|x|( 1
q − 1

2 )(n−1)g(x, t)dxdt.
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By the TT ∗ arguments, it suffices to prove

‖TT ∗g‖Lq�2( 1
2 − 1

q )(m(k)−α(k))k‖g‖Lq′ .

By definition,

TT ∗g(x, t) = |x|( 1
q − 1

2 )(n−1)
∫
ψ2

0(ηk(μ))e−i(yηk(μ)−τμ)|y|( 1
q − 1

2 )(n−1)

× g(y, τ)ei(xηk(μ)−tμ)dμdydτ

= |x|( 1
q − 1

2 )(n−1)
∫
R2

K (x − y, t − τ)|y|( 1
q − 1

2 )(n−1)g(y, τ)dydτ,

where

K (x − y, t − τ) =
∫
ψ2

0(ηk(μ))ei[(x−y)ηk(μ)−(t−τ)μ]dμ.

Using Plancherel’s equality, we get∥∥∥∥
∫

K (x − y, t − τ)g(y, τ)dτ
∥∥∥∥

L2
t

�‖g(y, ·)‖L2.

On the other hand, it follows from the van der Corput Lemma and (2.16) that

|K (x − y, t − τ)|�2
k(m(k)−α(k))

2 |x − y|−1/2.

Thus, by interpolation, we have∥∥∥∥
∫

K (x − y, t − τ)g(y, τ)dτ
∥∥∥∥

Lq
t

�2k(m(k)−α(k))(1
2 − 1

q )|x − y|−( 1
2 − 1

q )‖g(u, ·)‖Lq′ .

Minkowski’s inequality then gives

‖TT ∗g‖Lq
x,t
�2k(m(k)−α(k))(1

2 − 1
q )∥∥∥∥|x|( 1

q − 1
2 )(n−1)

∫
|y|( 1

q − 1
2 )(n−1)‖g(y, ·)‖Lq′ |x − y|−( 1

2 − 1
q )dy

∥∥∥∥
Lq

x

.

To complete the proof, it suffices to show that∣∣∣∣∣
∫
R

∫
R

g(y) f (x)

|x|( 1
2 − 1

q )(n−1)|y|( 1
2 − 1

q )(n−1)|x − y|( 1
2 − 1

q )
dxdy

∣∣∣∣∣�‖g‖Lq′ ‖ f ‖Lq′ .(2.18)

However, this follows immediately from Lemma 2.9; indeed, it is easy to verify
the hypotheses of that lemma with q = (4n + 2)/(2n − 1), α = β = ( 1

2 − 1
q )(n − 1),

λ = 1
2 − 1

q , r = s = q′, d = 1.
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Step 3. Sharpness.
It remains to prove that the range of q is optimal. We prove that

‖eit
√−�P0u0‖Lq

t,x
�‖u0‖2

fails to hold if q ≤ 2n/(n − 1) and

‖eit�P0u0‖Lq
t,x
�‖u0‖2

fails to hold if q < (4n + 2)/(2n − 1). As for the first claim, we see from the proof
in Step 1, that it suffices to disprove the following statement: for q = 2n/(n − 1),

(2.19)
∥∥∥∥r

n−1
q r− n−1

2

∫
R

ψ0(s)h(s) cos(rs − (n − 1)π/4)eitsds

∥∥∥∥
Lq

t,r≥2

�‖h‖2.

To this end, take h(s) = 1[0,10](s). From the fact that for r � 1∥∥∥∥
∫
R

ψ0(s) cos(rs − (n − 1)π
4

)eitsds

∥∥∥∥
Lq

|t−r|≤1

�‖cψ̂0(t + r) + c̄ψ̂0(t − r)‖Lq
|t−r|≤1

�1,

we obtain∥∥∥∥r
n−1

q r− n−1
2

∫
R

ψ0(s)h(s) cos(rs − (n − 1)π/4)eitsds

∥∥∥∥
Lq

t,r≥2

= ∞.

Thus (2.19) fails to hold if q = 2n/(n − 1).
To prove the second claim, note that similarly, it suffices to disprove the fol-

lowing statement; for q < (4n + 2)/(2n − 1),

(2.20)
∥∥∥∥r

n−1
q r− n−1

2

∫
R

ψ0(s)h(s) cos(rs − (n − 1)π/4)eits2
ds

∥∥∥∥
Lq

t,r≥2

�‖h‖2.

To this end, fix j sufficiently large and take h(s) = 2 j/21|s−1|�2− j . Then ‖h‖2 = 1.

For t > 0, the main contribution of r
n−1

q r− n−1
2
∫
R

h(s) cos(rs − (n − 1)π/4)eits2
ds is

cnr
n−1

q r− n−1
2

∫
R

h(s)e−irseits2
ds = cn2 j/2r

n−1
q r− n−1

2

∫
R

1|s|≤2− j (s)e−irseits2
ei2tsds.

Thus the left-hand side of (2.20) is larger than∥∥∥∥2 j/2r
n−1

q r− n−1
2

∫
R

1|s|≤2− j (s)e−irseits2
ei2tsds

∥∥∥∥
Lq

r∼22 j ,|r−2t|�2 j

�2 j ( 2n+1
q − 2n−1

2 ),

which is unbounded if q < (4n+2)/(2n−1). This completes the proof of Theorem
1.2.

Before proving Theorem 1.5, we give the following maximal function esti-
mates, which generalize the results in [18] for a ≥ 2 to a > 0.
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Lemma 2.10. Assume a > 0 and k ≥ 0. Then

(2.21)
∥∥∥∥
∫
R

eit|ξ |a eixξη0(ξ/2k) f (ξ )dξ
∥∥∥∥

L2
xL∞

|t|�1

�B(a, k)‖ f ‖2,

where

B(a, k) =

⎧⎨
⎩2ak/4 for a �= 1,

2k/2 for a = 1.

Moreover, these bounds are sharp.

Proof. By the change of variables ξ = 2kη, x = 2−ky, we see that (2.21) is
equivalent to

(2.22)

∥∥∥∥
∫
R

eit|ξ |a eixξη0(ξ ) f (ξ )dξ

∥∥∥∥
L2

xL∞
|t|�2ka

�B(a, k)‖ f ‖2.

By TT ∗ methods, (2.22) is equivalent to
(2.23)∥∥∥∥

∫
R2

[∫
R

ei(t−t′)|ξ |a ei(x−x′)ξ η0(ξ )dξ
]

g(t′, x′)dt′dx′
∥∥∥∥

L2
xL∞

|t|�2ka

�B(a, k)2‖g‖L2
xL1

|t|�2ka
.

Set Ka(x−x′, t−t′) =
∫
R

ei(t−t′)|ξ |a ei(x−x′)ξ η0(ξ )dξ . Since |t−t′|�2ka, by the method
of stationary phase and the van der Corput Lemma, it is easy to see that for a �= 1,

|Ka(x − x′, t − t′)|�(1 + |x − x′|)−1/21|x−x′ |�2ka + |x − x′|−41|x−x′ |�2ka

and, for a = 1,

|K1(x − x′, t − t′)|�1 · 1|x−x′ |�2k + |x − x′|−41|x−x′ |�2k .

Using these bounds and Young’s inequality, we get∥∥∥∥
∫
R2

Ka(x − x′, t − t′)g(t′, x′)dt′dx′
∥∥∥∥

L2
xL1

|t|�2ka

�‖Ka‖L1
xL∞

t
‖g‖L2

xL1
|t|�2ka

�B(a, k)2‖g‖L2
xL1

|t|�2ka
.

Thus we obtain the desired bounds.
It remains to show that these bounds are sharp. First we consider a = 1. For f

supported in {ξ > 0}, we have

L.H.S of (2.22) �
∥∥∥∥
∫
R

e−ixξeixξη0(ξ ) f (ξ )dξ

∥∥∥∥
L2

|x|�2k

� 2k/2,



STRICHARTZ ESTIMATES FOR DISPERSIVE EQUATIONS 19

which shows the sharpness of the bound 2k/2. Now consider a �= 1. Take f =
θ−1/21|ξ−1|�θ , θ = 2−ka/2. Then ‖ f ‖2 ∼ 1, and

L.H.S of (2.22) � θ−1/2

∥∥∥∥∥
∫

|ξ |�θ
eit(ξ+1)a

e−iteixξdξ

∥∥∥∥∥
L2

|x|�θ−2 L∞
|t|�2ka

� θ−1/2

∥∥∥∥∥
∫

|ξ |�θ
e−ix(ξ+1)a/aeix/aeixξdξ

∥∥∥∥∥
L2

|x|�θ−2

� θ−1/2 = 2ka/4,

where in the last inequality we have used the fact that |(ξ + 1)a − 1 − aξ |�ξ 2. �
We now present the proof of Theorem 1.5 in the cases a �= 1 and a = 1, n ≥ 3.
Case 1: a �= 1.
Since (1.9) is trivial if (q, r) = (∞, 2), by Bernstein’s inequality, Riesz-Thorin

interpolation, and the classical Strichartz estimates, it suffices to prove (1.9) for
(q, r) = (2, r), where (4n − 2)/(2n − 3) < r < 2n/(n − 2).

By the scaling transform (t, x) → (λat, λx), we may clearly assume k = 0. By
the classical Strichartz estimates

‖eitDa
P0 f ‖

L2
t L

2n
n−2
x

≤ C‖ f ‖L2
x

(see [16] for n ≥ 3 and [31] for n = 2), we see from H ölder’s inequality that it
suffices to prove

(2.24) ‖eitDa
P0 f ‖L2

t Lr
|x|≥10

≤ C‖ f ‖L2
x
.

As before, we divide ua(t, |x|) = eitDa
P0 f into a main term and an error term, viz.,

(2.25) ua(t, |x|) = Ma(t, |x|) + Ea(t, |x|),
where

Ma(t, r) = cnr− n−1
2

∫
R

ψ0(s)g(s)s
n−1

2 ei(rs−tsa)ds

+ c̄nr− n−1
2

∫
R

ψ0(s)g(s)s
n−1

2 e−i(rs+tsa)ds,

Ea(t, r) = c1

∫
R

ψ0(s)g(s)sn−1e−itsa−irsE+(rs)ds

− c2

∫
R

ψ0(s)g(s)sn−1e−itsa+irsE−(rs)ds.

First we bound the main term Ma.
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Lemma 2.11. Assume a �= 1, a > 0, j ≥ 2, and 2 ≤ r ≤ ∞. Then

(2.26) ‖Ma(t, |x|)‖L2
t Lr

x(R×A j )�2 j ( 2n−1
2r − 2n−3

4 )‖ f ‖L2 .

Proof. This was proved for r = 2 in Lemma 2.7. By Riesz-Thorin interpo-
lation, it suffices to prove for r = ∞. By the definition of Ma and symmetry, it
suffices to show

(2.27) 2− (n−1) j
2

∥∥∥∥
∫
R

η(s)g(s)ei(rs1/a−ts)ds

∥∥∥∥
L2

t L∞
r (R×I j )

�2− (2n−3) j
4 ‖g‖2,

where η(s) is a bump function on {s ∼ 1}. By the change of variables ξ = s2 a j ,
t = 2a j x, we see that it suffices to prove

(2.28) 2− (n−1) j
2

∥∥∥∥
∫
R

η(ξ/2a j )g(ξ )ei(tξ1/a−xξ )dξ

∥∥∥∥
L2

xL∞
|t|≤2

�2− (2n−3) j
4 ‖g‖2,

which reduces to a maximal function estimate associated to the dispersion ξ 1/a.
Since a �= 1, (2.28) follows immediately from Lemma 2.10. �

Next we estimate the error term Ea(t, |x|). Although this term certainly has
better estimates than the main term, the following rough estimates suffice for our
purpose.

Lemma 2.12. Assume a �= 1, j ≥ 2, and 2 ≤ r ≤ 2n/(n − 2). Then

(2.29) ‖Ea(t, |x|)‖L2
t Lr

x(R×A j )�2− j
2 ( n

r − n−2
2 )‖ f ‖L2 .

Proof. Th was proved for r = 2 in Lemma 2.6. For r = 2n/(n − 2), we have

‖Ea(t, |x|)‖
L2

t L
2n

n−2
x (R×A j )

≤ ‖ua(t, |x|)‖
L2

t L
2n

n−2
x

+ ‖Ma(t, |x|)‖
L2

t L
2n

n−2
x (R×A j )

�‖ f ‖2,

where we have used the classical endpoint Strichartz estimates and Lemma 2.7.�
We are ready to prove (2.24). Indeed, since (4n−2)/(2n−3) < r < 2n/(n−2),

by Lemmas 2.7 and 2.6, we can sum over j ≥ 1 to obtain

‖eitDa
P0 f ‖L2

t Lr
|x|≥10

≤
∞∑
j =1

‖Ma(t, |x|)‖L2
t Lr

x(R×A j ) +
∞∑
j =1

‖Ea(t, |x|)‖L2
t Lr

x(R×A j )�‖ f ‖2.

Case 2: a = 1 and n ≥ 3.
As in Case 1, it suffices to prove (1.9) for (q, r) = (2, r), where

2n − 2
n − 2

< r <
2n − 2
n − 3

.

Using the decomposition (2.25) and the following lemma, we immediately obtain
(1.9).
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Lemma 2.13. Assume j ≥ 2 and 2 ≤ r ≤ ∞, 2 ≤ q ≤ (2n − 2)/(n − 3).
Then

‖M1(t, |x|)‖L2
t Lr

x(R×A j )�2 j ( n−1
r − n−2

2 )‖ f ‖L2,

‖E1(t, |x|)‖L2
t Lq

x (R×A j )�2−( n−1
2q − n−3

4 )‖ f ‖L2 .

The proof follows exactly as the proof of two lemmas above; thus we omit it.
Finally, we show sharpness. The condition q ≥ 2 is necessary since (1.9) is

time-translation invariant. The same counter-example used to show the sharpness
of (2.20) shows that the condition

2
q

+
2n − 1

r
≤ n − 1

2

is necessary.

Remark 2.14. From the proof of Theorem 1.5, we see that to prove Conjec-
ture 1.7 for a = 2, it suffices to prove∥∥∥∥r−1/(2n−1)

∫
R

ψ0(s)g(s)ei(rs−ts2)ds

∥∥∥∥
L2

t L
4n−2
2n−3
{r≥1}

�‖g‖2.

However, we have not been able to prove this last inequality.

3 Strichartz estimates in the radial case

In this section, we apply Theorem 1.2 to some dispersive equations. Since we
do not have decay estimates, we use the Christ-Kiselev Lemma to derive retarded
linear estimates. First we prove a duality property for radial function.

Lemma 3.1. Assume 1 ≤ p ≤ ∞, 1 = 1/p + 1/p′, and radial f ∈ Lp(Rn).
Then

(3.1) ‖ f ‖Lp(Rn) =sup
{∣∣∣ ∫

Rn
f (x)g(x)dx

∣∣∣ : g ∈ Lp′
(Rn), g is radial and ‖g‖Lp′ ≤1

}
.

Proof. Denote the right-hand side of (3.1) by B . Obviously, B ≤ ‖ f ‖Lp(Rn);
thus it suffices to show ‖ f ‖Lp(Rn) ≤ B . By duality, we have

‖ f ‖Lp(Rn) = sup
g∈Lp′

,‖g‖
Lp′ =1

∣∣∣∣
∫
Rn

f (x)g(x)dx

∣∣∣∣
= sup

g∈Lp′
,‖g‖

Lp′ =1

∣∣∣∣
∫ ∞

0

∫
Sn−1

f (r)g(rx′)rn−1drdσ(x′)
∣∣∣∣

= sup
g∈Lp′

,‖g‖
Lp′ =1

∣∣∣∣
∫
Rn

f (x)g̃(x)dx

∣∣∣∣ ,
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where we have set g̃(x) = |Sn−1|−1
∫
Sn−1 g(|x|x′)dσ(x′). It is easy to see from

Hölder’s inequality that g̃ is radial and ‖g̃‖Lp′ ≤ 1. Thus we get ‖ f ‖Lp(Rn) ≤ B
as desired. �

Obviously, Lemma 3.1 holds similarly for functions f (t, x) spherically sym-
metric in x, e.g., f ∈ Lp

t Lq
x . As a corollary, we can apply Lemma 3.1 to obtain dual

version estimates of the linear estimates in the radial case.

Lemma 3.2. Assume 1 ≤ q, r ≤ ∞, 1/q + 1/q′ = 1/r + 1/r ′ = 1, k ∈ Z. If

for all radial u0 ∈ L2(Rn)

‖Sφ(t)Pku0‖Lq
t Lr

x
�C(k)‖u0‖L2,

then for all f ∈ Lq′
t Lr ′

x spherically symmetric in space,∥∥∥∥
∫
R

Sφ(−t)[Pk f (t, ·)](x)dt

∥∥∥∥
L2(Rn)

�C(k)‖ f ‖
Lq′

t Lr′
x
.

The following lemma is very useful for deriving retarded estimates from non-
retarded estimates. The estimate we need is the following. For its proof, we refer
the readers to [24].

Lemma 3.3 (Christ-Kiselev [4]). Assume 1 ≤ p1, q1, p2, q2 ≤ ∞ with p1 >

p2. If ∥∥∥∥
∫
R

Sφ(t − s)(Pk f (s))(x)ds

∥∥∥∥
L

p1
t L

q1
x

�C(k)‖ f ‖L
p2
t L

q2
x

holds for all f ∈ Lp2
t Lq2

x spherically symmetric in space, then∥∥∥∥
∫ t

0
Sφ(t − s)(Pk f (s))(x)ds

∥∥∥∥
L

p1
t L

q1
x

�C(k)‖ f ‖L
p2
t L

q2
x

holds with the same bound C(k), for all f ∈ Lp2
t Lq2

x spherically symmetric in space.

We are now ready to give some new Strichartz estimates for some concrete
equations. First note that from Minkowski’s inequality and the Littlewood-Paley
square function theorem, we get

(3.2) ‖ f ‖Lq
t Lr

x
�‖‖Pk f ‖Lq

t Lr
x
‖l2

k
, ‖‖Pk f ‖

Lq′
t Lr′

x
‖l2

k
�‖ f ‖

Lq′
t Lr′

x

for 2 ≤ q, r < ∞. We apply (3.2) to obtain Strichartz estimates on the whole
space.

1: Schrödinger equation

i∂tu +�u = F, (t, x) ∈ R × R
n,

u(0) = u0(x).
(3.3)
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By Duhamel’s principle, u = S(t)u0 − i
∫ t

0 S(t − τ)F (τ)dτ, where S(t) = e−it�,
which corresponds to φ(r) = r 2. We see that φ satisfies (H1)-(H4) with m1 =
m2 = α1 = α2 = 2. Thus, by Theorem 1.2,

(3.4) ‖S(t)Pku0‖Lq
t,x(Rn+1)�2( n

2 − n+2
q )k‖u0‖2

for q ≥ (4n − 2)/(2n − 1) and radial u0.

Definition 3.4. Suppose n ≥ 2. The exponent pair (q, r) is said to be n-D
radial Schrödinger-admissible if q, r ≥ 2 and

4n + 2
2n − 1

≤ q ≤ ∞ and
2
q

+
2n − 1

r
≤ n − 1

2

or

2 ≤ q <
4n + 2
2n − 1

and
2
q

+
2n − 1

r
< n − 1

2
.

(3.5)

For n ≥ 3, the n-D radial Schrödinger-admissible pairs are described in Figure
1 (a �= 1).

Proposition 3.5 (Schrödinger Strichartz estimate). Suppose n ≥ 2 and u, u0,

and F are spherically symmetric and satisfy equation (3.3). Then

(3.6) ‖u‖Lq
t Lr

x
+ ‖u‖C(R:Ḣγ)�‖u0‖Ḣγ + ‖F‖

Lq̃′
t Lr̃′

x
,

if γ ∈ R, (q, r) and (q̃, r̃) are both n-D radial Schrödinger-admissible, either

(q̃, r̃, n) �= (2,∞, 2) or (q, r, n) �= (2,∞, 2), and (q, r, n) and (q̃, r̃, n) satisfy the
“gap” condition

2
q

+
n
r

=
n
2

− γ,
2
q̃

+
n
r̃

=
n
2

+ γ.

Proof. The case F = 0 follows from Theorem 1.52. Now assume F �= 0,
(q, r) and (q̃, r̃) are both n-D radial Schr ödinger admissible, (q̃, r̃, n) �= (2,∞, 2),
and (q, r, n) and (q̃, r̃, n) satisfy the “gap” condition. If γ = 0, the result follows
from known estimates [16]. If γ �= 0, by scaling, it suffices to prove

(3.7)
∥∥∥∥
∫ t

0
S(t − s)P0F (s)ds

∥∥∥∥
Lq

t Lr
x

�‖F‖
Lq̃′

t Lr̃′
x
.

In view of the Christ-Kiselev Lemma, since either q, r > 2 or q̃, r̃ > 2, it suffices
to prove

(3.8)

∥∥∥∥
∫
R

S(t − s)P0F (s)ds

∥∥∥∥
Lq

t Lr
x

�‖F‖
Lq̃′

t Lr̃′
x
,

which follows immediately from non-retarded linear estimates and Lemma 3.2. �
2For (q, r, n) = (2,∞, 2), it was proved similarly for the wave equation in [31].
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Remark 3.6. We can take γ < 0, which means there is a smoothing effect in
the non-retarded Strichartz estimates. This only holds in the radial case. There are
also smoothing effects in some retarded estimates; but we only derive estimates
which do not have a smoothing effect.

2. Wave equation

∂ttu −�u = F, (t, x) ∈ R × R
n,

u(0) = u0(x), ut(0) = u1(x).
(3.9)

By Duhamel’s principle, u = W ′(t)u0 + W (t)u1 − ∫ t
0 W (t − τ)F (τ)dτ, where

W (t) =
sin(t

√−�)√−� , W ′(t) = cos(t
√−�).

This reduces to W±(t) := e±it(−�)1/2
, which corresponds to φ(r) = r. Then we see

that φ satisfies (H1) and (H2) with m1 = m2 = 1. Thus by Theorem 1.2,

(3.10) ‖W±(t)Pku0‖Lq
t,x(Rn+1)�2( n

2 − n+1
q )k‖u0‖2.

for q > 2n/(n − 1) and radial u0

Definition 3.7. Suppose n ≥ 2. The exponent pair (q, r) is said to be n-D
radial wave-admissible if q, r ≥ 2, and one of the following holds:

(1) n = 2, (q, r) ∈ A2 = {(q, r) : 1
q + 1

r <
1
2 , q > 4} ∪ {(4,∞), (∞, 2)};

(2) n ≥ 3, (q, r) ∈ A≥3 = {(q, r) : q ≥ 2, 1
q + n−1

r < n−1
2 } ∪ {(∞, 2)}.

For n ≥ 4, the n-D radial wave-admissible pairs are described in the Figure 1
(a = 1).

Proposition 3.8 (Wave Strichartz estimate). Suppose n ≥ 2 and u, u0, u1,F
are spherically symmetric and satisfy equation (3.9). Then

(3.11) ‖u‖Lq
t Lr

x
+ ‖u‖C([0,T ]:Ḣγ) + ‖∂tu‖C([0,T ]:Ḣγ−1)�‖u0‖Ḣγ + ‖u1‖Ḣγ−1 + ‖F‖

Lq̃′
t Lr̃′

x

if γ ∈ R, (q, r) and (q̃, r̃) are both n-D radial wave-admissible, (q̃, r̃, n) �=
(2,∞, 3), and (q, r, n) and (q̃, r̃, n) satisfy the “gap” condition

1
q

+
n
r

=
n
2

− γ,
1
q̃

+
n
r̃

=
n
2

− 1 + γ.

The proof is similar to that of Proposition 3.5; hence we omit it.
3. Klein-Gordon equation

∂ttu −�u + u = F,

u(0) = u0(x), ut(0) = u1(x).
(3.12)
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By Duhamel’s principle, u = K ′(t)u0 + K (t)u1 − ∫ t
0 K (t − τ)F (τ)dτ, where

K (t) = ω−1 sin(tω), K ′(t) = cos(tω), ω =
√

I −�.

This reduces to the semi-group K±(t) := e±it(I−�)1/2
, which corresponds to φ(r) =

(1 + r2)1/2. A simple calculation yields

φ′(r) =
r

(1 + r2)
1
2

, φ′′(r) =
1

(1 + r2)
3
2

,

which shows that φ satisfies (H1)-(H4) with m1 = 1, α1 = −1, m2 = α2 = 2.
Thus, by Theorem 1.2, for q ≥ (4n + 2)/(2n − 1) and radial u 0,

(3.13) ‖K±(t)Pku0‖Lq
t,x(Rn+1)�C(q, k)‖u0‖2,

where

C(q, k) =

⎧⎪⎪⎨
⎪⎪⎩

2( n
2 − n+2

q )k for k ≤ 0;

2( n
2 − n+1

q )k for k ≥ 0, 2n/(n − 1) < q ≤ ∞;

2( n
2 − n+1

q )k+( 1
2 − 1

q )k for k ≥ 0, (4n + 2)/(2n − 1) ≤ q ≤ 2n/(n − 1).

4. Beam equation

∂ttu +�2u + u = F,

u(0) = u0(x), ut(0) = u1(x).
(3.14)

By Duhamel’s principle, u = B ′(t)u0 + B(t)u1 − ∫ t
0 B(t − τ)F (τ)dτ, where

B(t) = ω−1 sin(tω), B ′(t) = cos(tω), ω =
√

I +�2.

This reduces to the semi-group B±(t) := e±it(I+�2)1/2
, which corresponds to φ(r) =

(1 + r4)1/2. A simple calculation yields

φ′(r) =
2r3

(1 + r4)1/2 , φ′′(r) =
6r2 + 2r6

(1 + r4)3/2 ,

which shows that φ satisfies (H1) and (H2) with m1 = α1 = 2, m2 = α2 = 4. Thus,
by Theorem 1.2, for q ≥ (4n + 2)/(2n − 1) and radial u 0,

(3.15) ‖B±(t)Pku0‖Lq
t,x(Rn+1)�B(q, k)‖u0‖2,

where

B(q, k) =

⎧⎨
⎩2( n

2 − n+4
q )k for k ≤ 0;

2( n
2 − n+2

q )k for k ≥ 0.
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5. Fractional-order Schrödinger equation

i∂tu + (−�)
σ
2 u = F,

u(0) = u0(x),
(3.16)

where 1 < σ < 2. By Duhamel’s principle, u = Sσ(t)u0 +
∫ t

0 Sσ(t−τ)F (τ)dτ, where
Sσ(t) = e−itφ(

√−�) with φ(r) = rσ. By simple calculation, we see that φ satisfies
(H1)-(H4) with m1 = α1 = m2 = α2 = σ. Thus, by Theorem 1.2,

(3.17) ‖Sσ(t)Pku0‖Lq
t,x(Rn+1)�2( n

2 − n+σ
q )k‖u0‖2

for q ≥ (4n + 2)/(2n − 1) and radial u0.

Proposition 3.9. Suppose n ≥ 2 and u, u0,F are spherically symmetric in
space and satisfy equation (3.16). Then

(3.18) ‖u‖Lq
t Lr

x
+ ‖u‖C(R:Ḣγ)�‖u0‖Ḣγ + ‖F‖

Lq̃′
t Lr̃′

x
,

if γ ∈ R, (q, r) and (q̃, r̃) are both n-D radial Schrödinger-admissible, (q̃, r̃, n) �=
(2,∞, 2), and (q, r, n) and (q̃, r̃, n) satisfy the “gap” condition

σ

q
+

n
r

=
n
2

− γ,
σ

q̃
+

n
r̃

=
n
2

+ γ.

The proof is similar to that of Proposition 3.5 except for the case(q, r, n) =
(2,∞, 2), which needs to be handled separately. This particular case follows sim-
ilarly as for the Schrödinger equation in [31]. We omit the details.

In particular, taking γ = 0, we get a family of Strichartz estimates without loss
of regularity.

Corollary 3.10. Suppose n ≥ 2, 2n/(2n − 1) < σ ≤ 2, and u, u0,F are

spherically symmetric in space and satisfy equation (3.16). Then

(3.19) ‖u‖Lq
t Lr

x
+ ‖u‖C(R:L2)�‖u0‖L2 + ‖F‖

Lq̃′
t Lr̃′

x

if (q, r) and (q̃, r̃) ∈ {(q, r) : q, r ≥ 2, σq + n
r = n

2} and (q̃, r̃, n) �= (2,∞, 2).

These estimates without loss of derivative hold only in the radial case. We
present the Knapp-counterexample to show that the general non-radial Strichartz
estimates have loss of derivative for 1 < σ < 2.

Assume that for a general non-radial function f ,

(3.20)

∥∥∥∥
∫
Rd

eit|ξ |σeixξη0(ξ ) f̂ (ξ )dξ

∥∥∥∥
Lq

t Lr
x

�‖ f ‖L2 .
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Take D = {ξ = (ξ1, ξ
′) ∈ R

d : |ξ1 − 1|�δ, |ξ ′| ≤ δ} and let f̂ = 1D(ξ ). Then
‖ f ‖2 ∼ δ d/2, and∫

Rd
eit|ξ |σeixξη0(ξ ) f̂ (ξ )dξ = ei(t+x1)

∫
D

eit(|ξ |σ−ξσ1 )eit(ξσ1 −1−σ(ξ1−1))ei(tσ+x1)(ξ1−1)eix′ξ ′
dξ.

Since in D ||ξ |σ− ξσ1 |�|ξ ′|2�δ 2 and |ξσ1 − 1 − σ(ξ1 − 1)|�|ξ1 − 1|2�δ 2, it follows
that ∣∣∣∣

∫
Rd

eit|ξ |σeixξη0(ξ ) f̂ (ξ )dξ
∣∣∣∣ ∼ |D|

for |t|�δ−2, |tσ + x1|�δ−1, and |x′|�δ−1. Therefore, (3.20) implies δ− 2
q − d

r + d
2 �1.

Taking δ � 1 then implies immediately that

2
q

+
d
r

≤ d
2
.

4 Applications to nonlinear equations

In this section, we apply the improved Strichartz estimates to certain nonlinear
equations, viz., the nonlinear Schrödinger equation and nonlinear wave equation.
These equations have been studied extensively.

4.1 Non-linear Schrödinger equations. First we consider the semi-
linear Schrödinger equation

(4.1) i∂tu +�u = μ|u|pu, u(0) = u0(x),

where u(t, x) : R×Rn → C, n ≥ 2, u0 ∈ Ḣ s, p > 0, μ = ±1. It is easy to see that
equation (4.1) is invariant under the scaling transformation

u(t, x) → λ2/pu(λ2t, λx), u0(x) → λ2/pu0(λx), λ > 0.

Then the space Ḣ ssch (ssch = n
2 − 2

p ) is the critical space for (4.1) in the sense of
scaling, i.e., ‖λ2/pu0(λ·)‖Ḣ ssch = ‖u0‖Ḣ ssch . In particular, if p < 4/n, then ssch < 0,
which is our main concern.

The well-posedness and scattering for the nonlinear Schr ödinger equation (4.1)
have been studied extensively. We refer the reader to [19] for a survey. It is well
known that the threshold of Ḣ s-well-posedness for (4.1) is s ≥ max(0, ssch). Our
next result concerns the well-posedness and scattering in the radial case.
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Theorem 4.1. Assume n ≥ 2, 0 < p < 4/n, ssch = n
2 − 2

p , 1−n
2n+1 ≤ ssch < 0,

and u0 is radial. Then we have the following.
(1) (small data scattering): If ‖u0‖Ḣ ssch ≤ δ for some δ � 1, there exists a

unique global solution u of (4.1) such that

u ∈ C(R : Ḣ ssch) ∩ L
p(n+2)

2
t,x (R× R

n),

and u± ∈ Ḣ ssch such that ‖u − S(t)u±‖Ḣ ssch → 0 as t → ±∞.
(2) (large data local well-posedness): If u0 ∈ Ḣ s for some ssch ≤ s < 0, there

exist T > 0 and a unique solution u ∈ C((−T,T ) : Ḣ s)∩L
2(n+2)
n−2s

t,x ((−T,T )×Rn)
of (4.1).

Proof. The proof is quite standard. The main point is to choose the resolution
space. By Duhamel’s principle,

u = 	u0 (u) = S(t)u0 + μ
∫ t

0
S(t − s)(|u| 4

n−2ssch u)(s)ds.

First, we show part (1). Take3

q = r =
2(n + 2)
n − 2ssch

, q̃ = r̃ =
2(n + 2)
n + 2ssch

.

It is easy to verify that (q, r), (q̃, r̃) satisfy the hypotheses of Proposition 3.5 with
γ = ssch. Thus, applying Proposition 3.5, we obtain

‖	u0 (u)‖Lq
t,x

+ ‖Dssch	u0 (u)‖L∞
t L2

x
�‖S(t)u0‖Lq

t Lq
x

+ ‖|u| 4
n−2ssch u‖

Lq̃′
t,x

�‖Dsschu0‖L2 + ‖u‖1+ 4
n−2ssch

L

(n−2ssch+4)q̃′
n−2ssch

t,x

.

Note that q̃′ = 2(n + 2)/(n − 2ssch + 4); therefore, (n − 2ssch + 4)q̃′/(n − 2ssch) = q.
Thus part (1) follows from standard fixed point arguments; see[2].

Next, we show part (2). Local well-posedness for equation (4.1) in Ḣ ssch fol-
lows from the fact that for q = 2(n + 2)/(n − 2ssch) < ∞,

lim
T →0

‖S(t)u0‖Lq
t∈[−T,T ]L

q
x

= 0.

Now we assume ssch < s < 0. Take q = r = 2(n + 2)/(n − 2s) and

1
q̃

=
n + 2s
2n + 4

− 2n(s − ssch)
(n + 2)(n − 2ssch)

,
1
r̃

=
n + 2s
2n + 4

+
4s − 4ssch

(n + 2)(n − 2ssch)
.

3The choice of index was determined by a collection of linear equation or inequalities. The choice
is not unique, and we choose the simplest one here. We remark further on this for the wave equation.
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It is easy to verify that (q, r), (q̃, r̃) satisfy the hypotheses of Proposition 3.5 with
γ = s, and (p + 1)r̃ ′ = q. Thus, applying Proposition 3.5, we obtain

‖	u0(u)‖Lq
t,x

+ ‖Ds	u0 (u)‖L∞
t L2

x
� ‖Dsu0‖L2 + ‖|u| 4

n−2ssch u‖
Lq̃′

t∈[−T,T ]L
r̃′
x

�‖Dsu0‖L2 + T θ‖u‖1+4/(n−2sc)

L
(n−2ssch+4)r̃′/(n−2ssch)
t,x

.

for some θ > 0. Thus part (2) also follows from standard fixed-point arguments.�

Remark 4.2. In part (2) of Theorem 4.1, the existence time T depends only
on ‖u0‖Ḣ s for s > ssch, but on the profile of u0 for s = ssch.

Actually, we can say more than Theorem 4.1. Using a similar proof, we can
obtain for ssch < (1 − n)/(2n + 1) (namely 0 < p < (8n + 4)/(2n2 + 3n − 2)) large
data local well-posedness for (4.1) with u0 ∈ Ḣ s for s > s0, where

(4.2) s0 =

⎧⎨
⎩

1−n
2n+1 , for 2

n ≤ p < 8n+4
2n2+3n−2 ;

np−n2p
2(−1+2n+np) , for p ≤ 2

n .

Actually, s0 is determined by the conditions

2 ≤ q, r, q̃, r̃ ≤ ∞,

2
q

+
2n − 1

r
= n − 1

2
,

2
q

+
n
r

=
n
2

− γ,

2
q̃

+
n
r̃

=
n
2

+ γ,

(p + 1)r̃ ′ = r, q̃ = ∞.

Then we can also obtain (q, r), (q̃, r̃) for s > s0, which can be used to prove local
well-posedness as in the proof of Theorem 4.1.

The conclusions obtained above hold for general nonlinear terms F (u), for
example, if F satisfies

|F (u)| � |u|p+1,

|u||F ′(u)| ∼ |F (u)|.(4.3)

We describe the regularity s for Ḣ s local well-posedness and nonlinear increasing
rate p + 1 in Figure 3.

Remark 4.3. Part (2) in Theorem 4.1 also holds for data u0 ∈ H s. Indeed,
we simply construct the resolution space

‖u‖YT = ‖P≤0u‖L∞
[−T,T ]L

2 + ‖P≥1u‖Lq
|t|≤T,x

.
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p

s

1−n
2n+1

2
n

8n+4
2n2+3n−2

O

Figure 2. Ḣ s well-posedness for NLS

4.2 Nonlinear wave equations. Next, we consider the semi-linear wave
equations

∂ttu −�u = μ|u|pu, (t, x) ∈ R × R
n,

u(0) = u0(x), ut(0) = u1(x),
(4.4)

where u(t, x) : R × R
n → R, n ≥ 2, μ = ±1, u0 ∈ Ḣ s, u1 ∈ Ḣ s−1. It is easy to see

that equation (4.4) is invariant under the scaling transformation

u(t, x) → λ2/pu(λt, λx), u0(x) → λ2/pu0(λx), u1(x) → λ(2+p)/pu1(λx), λ > 0.

Then the space Ḣ sw × Ḣ sw−1 (sw = n
2 − 2

p ) is the critical space for (4.4) in the sense
of scaling, i.e., ‖λ2/pu0(λ·)‖Ḣ sw = ‖u0‖Ḣ sw .

The well-posedness and scattering for equation (4.4) have been studied deeply.
We refer the reader to [9, 21, 25, 17] and the references therein. In this section, we
study the well-posedness theory for (4.4) in Ḣ s × Ḣ s−1 with radial initial data. As
indicated in the Introduction, sharp results at the critical regularity were obtained
in [21] for sw ≥ 1/2. Thus we restrict ourselves to the case sw < 1/2 and find a
threshold s0(n) for the critical GWP in the radial case

(4.5) s0(n) =

⎧⎪⎪⎨
⎪⎪⎩

5−√
17

4 for n = 2,
12−√

129
6 for n = 3,

n2+3n−3−√
n4+6n3−n2−14n+9
4n−4 for n ≥ 4.

It seems that this is the optimal regularity obtainable by our methods.

Theorem 4.4. Assume that n ≥ 2, 0 < p < 4/(n − 1), sw = n/2 − 2/p,

s0(n) < sw < 1/2 with s0(n) given by (4.5), and u0 is radial.
(1) If ‖u0‖Ḣ sw + ‖u1‖Ḣ sw−1 ≤ δ for some δ � 1, there exist a unique global

solution u to (4.4) such that

u ∈ C(R : Ḣ sw) ∩ C1(R : Ḣ sw−1) ∩ Lq
t Lr

x(R× R
n),
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where (q, r) are given in the proof, and (u±, v±) ∈ Ḣ sw × Ḣ sw−1 such that

‖u − W ′(t)u±‖Ḣ sw + ‖ut − W (t)v±‖Ḣ sw−1 → 0, as t → ±∞.

(2) If u0 ∈ Ḣ s for some sw ≤ s < 1/2, there exist T > 0 and a unique solution u
to (4.4) defined on (−T,T ) such that

u ∈ C((−T,T ) : Ḣ s) ∩ C1((−T,T ) : Ḣ s−1) ∩ Lq
t Lr

x((−T,T ) × R
n),

where (q, r) is the index given by part (1) for sw = s.

Proof. By Duhamel’s principle,

u = 	u0,u1 (u) = W ′(t)u0 + W (t)u1 + μ
∫ t

0
W (t − s)(|u| 4

n−2sw u)(s)ds.

First we show part (1) and explain how s0 is obtained. The main issue is to choose
the admissible pairs (q, r), (q̃, r̃) so that we can close the contraction argument 4.
By the choice of (q, r) and (q̃, r̃), we should have

‖	u0,u1 (u)‖Lq
t Lr

x
�‖W ′(t)u0‖Lq

t Lr
x

+ ‖W (t)u1‖Lq
t Lr

x
+ ‖|u| 4

n−2sw u‖
Lq̃′

t Lr̃′
x

�‖Dswu0‖L2 + ‖Dsw−1u1‖L2 + ‖u‖1+ 4
n−2sw

Lq
t Lr

x
.

These inequalities hold if (q, r), (q̃, r̃) satisfy

(q, r), (q̃, r̃) is n-D radial wave admissible,

1
q

+
n
r

=
n
2

− sw,

1
q̃

+
n
r̃

=
n
2

− 1 + sw,

(p + 1)r̃ ′ = r, (p + 1)q̃′ = q.

(4.6)

Given a solution to (4.6), part (1) follows from standard arguments. Therefore,
it remains to find a solution of (4.6). We give explicit solutions in each of the
possible cases.

Case 1: 1/2n < sw ≤ 1/2.

(q, r) =
(

2n + 2
n − 2sw

,
2n + 2

n − 2sw

)
, (q̃, r̃) =

(
2n + 2

n + 2sw − 2
,

2n + 2
n + 2sw − 2

)
.

Case 2: s0 < sw ≤ (2n)−1.

4The ideas for the Schrödinger equations are the same. However, the choice of the index for the
wave equations is more complicated.
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Case 2a: n = 2.

(q, r) =
(

3 − sw
(1 − sw)2 ,

3 − sw
1 − sw

)
, (q̃, r̃) =

(
1
sw
,∞

)
.

Case 2b: n = 3. There exists 0 < θ � 1 such that(
1
q
,

1
r

)
=
(

2sw − 3θ,
1
2

− sw + θ
)
, (q̃, r̃) =

(
q

q − p − 1
,

r
r − p − 1

)
.

Case 2c: n ≥ 4.

(q, r) =
(

2n + 8 − 4sw
n − 2sw

,
2n2 + 8n − 4nsw

n2 + 3n − 4nsw + 4s2
w − 6sw

)
, (q̃, r̃) =

(
2,

2n
n + 2sw − 3

)
.

Part (1) is proved.

Next we show part (2). Local well-posedness in Ḣ sw follows from the fact that
for the choice of (q, r) in the proof of part (1),

lim
T →0

‖W ′(t)u0‖Lq
t∈[−T,T ]L

r
x

+ ‖W (t)u1‖Lq
t∈[−T,T ]L

r
x

= 0.

Now we assume sw < s < 1/2. The proof is very similar to that for the
Schrödinger equations. We take (q, r) corresponding to s in part (1) and then
take (q̃, r̃) to complete the argument. We omit the details. �

Remark 4.5. As with the Schrödinger equation, if sw ≤ s0(n), i.e., p ≤
4/(n − 2s0(n)), we are unable to prove well-posedness in Ḣ s × Ḣ s−1 down to
s = sw. However, we can improve the well-posedness results in [21]. We men-
tion only the case n ≥ 4. If 3/n < p ≤ 4/(n − 2s0(n)), then large data local
well-posedness holds in Ḣ s × Ḣ s−1 for s > s2 with

s2 =
np − 3

2np + 2n − 2
.

Indeed, take q̃ = 2, r̃ = 2n/(n − 3 + 2s), and (q, r) such that

1
q

=
n
2

− n
r

− s,
1
r

=
1

p + 1
− 1

(p + 1)r̃
.

With this choice, we can prove local well-posedness using arguments similar to
those in the proof of Theorem 4.4.

The same results hold for general nonlinear terms F (u) satisfying (4.3). We de-
scribe the regularity s for Ḣ s×Ḣ s−1 local well-posedness and nonlinear increasing
rate p + 1 for (4.4) in Figure 3.
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s0
3
n

4
4−2s0

O

Figure 3. Ḣ s × Ḣ s−1 well-posedenss for NLW.

4.3 Nonlinear fractional-order Schrödinger equation. In this sec-
tion, we apply the improved Strichartz estimates to the nonlinear fractional-order
Schrödinger equation

(4.7) i∂tu + (
√−�)σu = μ|u|pu, u(0) = u0(x),

where u(t, x) : R × R
n → C, n ≥ 2, 1 < σ < 2, μ = ±1, u0 ∈ Ḣ s. To the best of

our knowledge, there are few results concerning the well-posedness for (4.7). The
main reason is that the usual Strichartz estimates derived by the decay estimates
have a loss of derivative except the trivial one L∞

t L2
x . Thus one may need to use

other methods, for example, local smoothing effect methods, and the X s,b space.
These methods should certainly provide some results, at least when p is an even
integer.

However, in the radial case, we obtain additional Strichartz estimates for (4.7),
some of which do not have a loss in derivative. Our idea is to exploit these esti-
mates. The equation (4.7) has the following two symmetries.

(i) Scaling invariance: for all λ > 0, (4.7) is invariant under the transformation

u(t, x) → λσ/pu(λσt, λx), u0(x) → λσ/pu0(λx).

(ii) Conservation laws: if u is a smooth solution of (4.7), then

d
dt

∫
Rn

|u|2dx = 0 (conservation of mass),

d
dt

∫
Rn

∣∣|∇|σ/2u
∣∣2 − μ

p + 2
|u|p+2dx = 0 (conservation of energy).

Then we see the space Ḣ sc , where sc = n
2 − σ

p , is critical in the sense of scaling;
μ = −1 is the defocusing case, while μ = 1 corresponds to the focusing case. We
require the following lemma.

Lemma 4.6 (Fractional chain rule [5]). Suppose G ∈ C 1(C), s ∈ (0, 1], and

1 < p, p1, p2 < ∞ are such that 1
p = 1

p1
+ 1

p2
. Then

‖|∇|sG(u)‖p�‖G′(u)‖p1‖|∇|su‖p2.
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In view of the conservation laws, we only consider the nonlinear terms between
mass-critical and energy-critical, namely, 2σ/n ≤ p ≤ 2σ/(n − σ). First we con-
sider the critical Ḣ s well-posedness theory of (4.7). For simplicity of notation, we
set Sσ(t) = eit(

√−�)σ .

Theorem 4.7. Assume n ≥ 2, 2n/(2n − 1) ≤ σ < 2, p ≥ 2σ
n sc = n

2 − σ
p , and

u0 ∈ H sc is radial. Then the IVP (4.7) has the following properties.

(1) Small data scattering: if ‖u0‖Ḣ sc ≤ δ for some δ � 1, then there exist a

unique global solution

u ∈ C(R : H sc ) ∩ Lp+2
t L

2n(p+2)
2(n−σ)+np
x (R × R

n),

and u± ∈ Ḣ sc such that ‖u − Sσ(t)u±‖Ḣ sc → 0, as t → ±∞.
(2) Large data local well-posedness: there exists a unique solution

u ∈ C((−T,T ) : H sc) ∩ Lp+2
t L

2n(p+2)
2(n−σ)+np
x ((−T,T ) × R

n)

for some T = T (u0) > 0.

Proof. Since σ ≥ 2n/(2n−1), it follows that 2(n +σ)/n ≥ 2(2n + 1)/(2n−1).
Thus it is easy to see that (2 + 2σ

n , 2 + 2σ
n ) is an n-D radial Schrödinger admissible

pair. By Proposition 3.9, we then get ‖Sσ(t)u0‖
L

2+ 2σ
n

t,x (R×Rn)
�‖u0‖L2

x
. Interpolating

this with the trivial estimate ‖Sσ(t)u0‖L∞
t L2

x(R×Rn)�‖u0‖L2
x
, we get more estimates.

The key point is that these Strichartz estimates are without loss of regularity.

With these estimates, the proof is quite standard; see, for example, [19]. First
we show part (1). By Duhamel’s principle,

u = 	u0 (u) = Sσ(t)u0 + μ
∫ t

0
Sσ(t − s)(|u|pu)(s)ds,

Take

q = q̃ = p + 2, r = r̃ =
2n(p + 2)

2(n − σ) + np
.

It is easy to verify that (q, r), (q̃, r̃) satisfy the conditions in Proposition 3.9 with
γ = 0. Then we define the sets

B1 = {u ∈ L∞
t H sc

x (R × R
n) : ‖u‖L∞

t Hsc
x

≤ 2‖u0‖Hsc
x

+ C(n)(2η)1+p},
B2 = {u ∈ Lq

t W sc,r
x (R× R

n) : ‖u‖Lp+2
t Ẇ sc,r

x
≤ 2η, ‖u‖Lq

t Lr
x
≤ 2C(n)‖u0‖L2

x
},

with some sufficiently small η > 0 to be determined later, and consider the set
X = B1 ∩ B2 endowed with the metric d(u, v) := ‖u − v‖Lq

t Lr
x
. It is easy to see
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that (X, d) is complete. We show that the solution map 	u0 with the initial data
condition

(4.8) ‖u0‖Ḣ sc ≤ η � 1.

is a contraction on (X, d).
First we show that 	u0 maps X into itelf. It is easy to see that since q′ =

(p + 2)/(p + 1) and r ′ = 2n(p + 2)/(2(n + σ) + np),

1
q′ =

1
q

+
1

pq
,

1
r ′ =

1
r

+
2σ

n(p + 2)
.

Then by Proposition 3.9, the fractional chain rule Lemma 4.6, and Sobolev em-
bedding, we find that for u ∈ X ,

‖	u0 (u)‖L∞
t Hsc

x (I×Rn) ≤ ‖u0‖Hsc
x

+ C(n)‖〈∇〉sc(|u|p)u‖
Lq′

t Lr′
x

≤ ‖u0‖Hsc
x

+ C(n)‖〈∇〉scu‖Lq
t Lr

x
‖u‖p

Lq
t L

np(p+2)
2σ

x

≤ ‖u0‖Hsc
x

+ C(n)(2η + 2C(n)‖u0‖L2
x
)‖|∇|scu‖p

Lq
t Lr

x

≤ ‖u0‖Hsc
x

+ C(n)(2η + 2C(n)‖u0‖L2
x
)(2η)p.

Similarly,

‖	u0(u)‖Lq
t Lr

x
≤ C(d)‖u0‖L2

x
+ C(d)‖(|u|p)u‖

Lq′
t Lr′

x

≤ C(d)‖u0‖L2
x

+ 2C(d)2‖u0‖L2
x
(2η)p

and

‖|∇|sc	u0 (u)‖Lq
t Lr

x
≤ ‖|∇|scSσ(t)u0‖Lq

t Lr
x

+ C(n)(2η)p+1

≤ C(n)η + C(n)(2η)p+1.

Thus, choosing η0 = η0(n) sufficiently small, we see that for 0 < η ≤ η0, the
functional 	u0 maps the set X into itself. To see that 	u0 is a contraction, we
repeat the computations above and get

‖	u0 (u) −	u0 (v)‖Lq
t Lr

x
≤ C(d)‖(|u|p)u − (|v |p)v‖

Lq′
t Lr′

x

≤ C(d)(2η)p‖u − v‖Lq
t Lr

x

for u, v ∈ X . Thus for sufficiently small η, the map 	u0 is a contraction. By the
Contraction Mapping Theorem, it follows that 	u0 has a unique fixed point in X .
The rest of part (1) (e.g., uniqueness) follows from standard arguments; see [19].
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To show part (2), we observe that since q �= ∞,

lim
T →0

∥∥|∇|scSσ(t)u0
∥∥

Lq
t∈[−T,T ]L

r
x

= 0.

Part (2) then also follows from standard fixed-point arguments. �
The following corollary, whose proof is omitted, follows easily by similar ar-

guments and the conservation laws.

Corollary 4.8 (H s subcritical). Assume n ≥ 2, 2n/(2n − 1) < σ < 2 and
u0 is radial. Then for 0 < p < 2σ/n, the IVP (4.7) is globally well-posed if

u0 ∈ L2. Moreover, for 2σ/n ≤ p < 2σ/(n − 2σ), the IVP (4.7) is locally well-

posed (globally well-posed in the defocusing case) if u0 ∈ H σ/2.

Indeed, we can also prove some other subtle well-posedness results. We can
also go below L2, as long as σ is close to 2; however, we do not pursue this here. On
the other hand, in the H s-critical case, we assumed u0 ∈ H sc instead of u0 ∈ Ḣ sc as
in the work of Cazenave and Weissler [2]. This makes the proof much simpler [19].
We will address this in subsequent works which concern the large data scattering
theory for (4.7).
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