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Abstract. We prove some new Strichartz estimates for a class of dispersive
equations with radial initial data. In particular, we obtain the full radial Strichartz
estimates up to some endpoints for the Schrodinger equation. Using these esti-
mates, we obtain some new results related to nonlinear problems, including small
data scattering and large data LWP for the nonlinear Schrodinger and wave equa-
tions with radial critical initial data and the well-posedness theory for the fractional
order Schrodinger equation in the radial case.

1 Introduction

In this paper, we study the Cauchy problem for a class of dispersive equations of
the type

(1.1) iou =—p(V=Mu+f, u(0,x) = up(x),

where ¢ : R* — R is smooth away from origin, u(¢,x) : R x R" — C, n > 2, is
the unknown function, f(¢, x) is a given function (e.g., f = |u|”u in the nonlinear
setting), and ¢(\/—A)u = Z71¢(|¢])Fu. Here, .# denotes the spatial Fourier
transform, and ¢(|£]) is usually referred to as the dispersion relation of equation
(1.1). Many dispersive equations, for instance, the Schrodinger equation (¢(r) =
r?), the wave equation (¢(r) = r), the Klein-Gordon equation (¢(r) = V1+ r?),
the beam equation (¢(r) = V1+ r4), and the fourth-order Schrédinger equation
(Pp(r) = r? +r*) reduce to equations of type (1.1).
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2 ZIHUA GUO AND YUZHAO WANG

In the pioneering work [30], Strichartz derived a priori estimates in space-time
norm L{L". of solutions of (1.1) by proving a Fourier restriction inequality. Later,
his results were improved via a dispersive estimate and duality argument (cf. [16]
and references therein). The dispersive estimate

(1.2) €YD ugllx < 111~ lluollx s

where X’ is the dual space of X, plays a crucial role. Applying (1.2) together with
a standard argument (cf. [16]), we can immediately obtain the Strichartz estimates.
For instance, we see from the explicit formula of the free Schrddinger solution that

itA —n/2
lle™ A uollzee SIE1 ™" luoll .-

In [10], the authors systematically studied the dispersive estimates for (1.1) by
imposing certain asymptotic conditions on ¢.

As explained in [16], the full range of the non-retarded Strichartz estimates for
the Schrodinger equation are known completely while that of the retarded esti-
mates remain open. However, it is well known that if the initial data u is radial,
generalized Strichartz estimates exist; see, e.g., [25]. Shao [23] showed that the
frequency localized non-retarded Strichartz estimates for the Schrddinger equa-
tion give a wider range of estimates. For example,

. n__n+2 k
(1.3) lle"APuolls oy < €227 "0 ¥lugll

if g > (4n+2)/(2n — 1) and uy is radial. The proof relies deeply on the radial
assumption, which eliminates the bad-type evolution in the non-radial case (e.g.,
the Knapp counter-example). Similar estimates hold for the wave equation; see
[22].

It is easy to see that equation (1.1) is rotationally-invariant. Thus it is natu-
ral to ask whether better Strichartz estimates are obtainable for radial initial data
than those derived from the dispersive estimates. Moreover, for applications, it is
important to have the mixed space-time estimate

(1.4) ™Y =D Peug|l ay @y < Celluolla,

where 1 is assumed to be radial.

The first purpose of this paper is to obtain the sharp range of (1.3) for equa-
tion (1.1) in the case ¢ = r. Indeed, we simplify some proofs and overcome
the difficulty caused by the lack of scaling invariance by adapting some ideas in
[10]. Moreover, by dealing carefully with logarithmic divergence, we prove that
(1.3) actually holds for g = (4n + 2)/(2n — 1). Our second purpose is to apply



STRICHARTZ ESTIMATES FOR DISPERSIVE EQUATIONS 3

the improved Strichartz estimates to the nonlinear equations including the nonlin-
ear Schrodinger equation, nonlinear wave equation, and nonlinear fractional-order
Schrodinger equation.

Using the Christ-Kiselev lemma (Lemma 3.3 below), we derive the retarded
estimates from the non-retarded estimates in order to apply our results to nonlinear
problems. For example, consider the nonlinear Schrodinger equation

iu + Au = plulPu,  u0,x) = up(x),

the well-posedness theory of which was studied deeply during the past decades.
We remark that even in the case that L2 is subcritical in the sense of scaling, the
threshold of regularity in H* for strong well-posedness is s > max(0, s.), where
s is the scaling critical regularity. This can be seen from the Galilean invariance
(see [1, 3])
u(t, x) — e x —21y), y e RY

However, it is also easy to see that the radial assumption breaks down the Galilean
invariance. Thus it is natural to expect to be able to go below L? in the radial case.
This is indeed the case, as discussed in detail in Section 4.

In order to study the non-homogeneous case (e.g. Klein-Gordon equation), we
treat the high frequency and the low frequency in different scales. As in [10], we
assume that ¢ : R* — R is smooth and satisfies some of the following conditions.
(H1) There exists m; > 0O such that

/() ~ ™~ and [§O] S M7 2 L,

for all integers o > 2.
(H2) There exists m, > 0 such that

lp'(M| ~ r™ " and || ST 0<r <,

for all integers o > 2.
(H3) There exists a1 such that

" ()| ~r*=2, r>1.
(H4) There exists a,, such that
" (P ~r*="2, 0<r<l.

Remark 1.1. Heuristically, (H1) and (H3) reflect the dispersive effect in high
frequency. If ¢ satisfies (H1) and (H3), then a1 < m;. Similarly, the dispersive
effect in low frequency is described by (H2) and (H4). If ¢ satisfies (H2) and (H4),
then a; > m,. The special case o, = m, occurs in most instances.
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For convenience, given m, my, a1, o, € R as in (H1)-(H4), we define

my, fork >0, ay fork >0,
(1.5) m(k) = and a(k) =
my, fork <O; a, fork <O.

Now we are ready to state our first result.

Theorem 1.2. Supposen > 2,k € Z, ¢ : R* — R is smooth away from
origin, and uq is spherically symmetric. If ¢ satisfies (H1) and (H2), then for
2n/(n—1) < g < oo,

n __ n+m(k)
(1.6) ISp@OPxuol g @ty S 227 0 ¥ lluoll2,
Furthermore, if ¢ also satisfies (H3) and (H4), then for (4n+2)/(2n—1) < q < 6,
(1.7) ||S¢(t)Pku0 ||L:{X(R"+1)52(; — n+r;l(k) Ye+( ) — Zlq Ym(k)—a(k))k lluto]la,

where m(k), o(k) are given by (1.5), Py is the Littlewood-Paley projector, and
Spt) = V=D s the dispersive group, (defined later). The range of q is op-
timal in the sense that (1.6) fails to hold if g < 2n/(n — 1) and (1.7) fails to hold
ifg<@n+2)/2n—1).

For the Schrodinger equation, ¢(r) = r? and ¢ satisfies (H1)-(H4) with m(k) =
o(k) = 2. The following corollary is then an immediate consequence of Theorem
1.2.

Corollary 1.3. Assumen > 2,k € Z,(4n+2)/(2n—1) < g < o0o. Then there
exists C > 0 such that

itA n__n+2 k
(1.8) lle"*Pruoll s ey < €270 ¥ lugll

for spherically symmetric uy € L>*(R"). Moreover, the range of q is optimal in the
sense that (1.8) fails to hold if g < (4n+2)/(2n—1).

Remark 1.4. Shao [23] proved (1.8) for g > (4n+2)/(2n — 1). For the wave
equation, ¢(r) = r and ¢ satisfies (H1)-(H2) with m(k) = 1. Equation (1.6) then
reduces to that given in [22]. Of interest is the fact that the range g > 2n/(n—1) is
optimal for the wave equation. It is also worth noting that if ¢ > 2n/(n — 1), (1.6)
gives a better bound than (1.7) since k[m (k) — a(k)] > O in view of Remark 1.1.

We apply Theorem 1.2 to some concrete equations. Then, using the Christ-
Kiselev lemma, we get the retarded Strichartz estimates. In view of the classical
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Strichartz estimates, it is natural to want to know the sharp range of the mixed
Strichartz estimates

ISP ruollLazy @y S C K luoll2.

For the purpose of finding the sharp range, we restrict ourselves to the simple case
¢(r) =r?, a > 0; namely, we consider the estimate

a

ADH kn_ _n
(1.9) €™ Pif oy @xrny < C2° 707N fll2genys

where D = v/—A, a > 0. In this case, we have scaling invariance, and thus
the proof is less complicated. Nevertheless, the proof can still be adapted to the
general case.

Theorem 1.5. (a) Assume a =1 and n > 3. Then (1.9) holds for all radial
functions f € L2(R") if and only if

(q,r) =(00,2) or 2<qg< o0, + <

(b) Assume 0 < a # 1 and n > 2. Then (1.9) holds for all radial functions
[ e L’ R if

4n+2< < 2+2n—1<n 1 or
m—1-9=° q ro - 2

dn+2 2 2n-—1 1

2<qg< , + <n— _.

2n—1 q r 2

On the other hand, (1.9) fails to hold if

2 2n-—1 1
+ >n—

2 .
q > or . 5

Remark 1.6. The range of (g, r) is indicated in Figure 1, where
n—3 1 n—2 1 n—1 n—1
B = C = D =
<2n—2’2>’ (211—2’2)’ ( 2n ° 2n )’
B - n—2 1 C = 2n—3 1 D - 2n—1 2n—1
2n " 2)° 4n—2"2)° 4n+2’ 4n+2 )’
The results for the wave equation (a = 1) are not new. The positive results appear
in [20, 25, 29, 7]. A counter-example was given in [13].
On the other hand, for the Schrddinger equation, the results seem to be new. We
see that the picture is almost complete, except that the segment C’D’ is unknown!.

In view of the positive results on the non-radial endpoint in [16], we conjecture
the following radial endpoint estimates.

I After this paper appeared on arXiv, there was further improvement showing that C'D’ is also
allowed except the point C’; see [6, 15].
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Figure 1. Range of (g, r) for (1.9).

Conjecture 1.7. Assumen > 2 and 0 < a # 1. Then there exists a constant
C such that

1.10 eitDaP 4n—2 <C 2(Rn
(1.10) 1€ Pof 1, 5 < OOl

for all radial functions f € L*(R").

This is very similar to the endpoint Strichartz estimates in the non-radial case,
which was studied in [16]. As expected, (1.10) is just “logarithmically far” from
being proved. Indeed, for every j € N,

itD*
P n— <C ).
lle 0f||L,2L§”‘§(Rx{|x|~2f}) < Cllfllzzaee
However, we cannot adapt the method on D’E’ to overcome this logarithmical
divergence; see Remark 2.14 below for further discussion of (1.10).

Using these Strichartz estimates, we study nonlinear problems and prove some
new results, one of which is the following for the nonlinear Schrédinger equation.

Theorem 1.8. Assume
4 n 2 1—n
>2, O0<p< , = _ - < <0,
n= p n Ssch o) p m+1 Ssch
and uy is radial. If ||uollgse < O for some 0 < 1, there exists a unique global
solution u of

iu+ Au = plulPu,  u(0,x) = up(x)
p(n+2)

(u = £1) such that u € C(R : H**) N L, (R x R"). Moreover, there exist
usr € H% such that ||lu — Su|| s, — 0, ast — oo.



STRICHARTZ ESTIMATES FOR DISPERSIVE EQUATIONS 7

Our methods show that the index (1 — n)/(2n — 1) is sharp for the critical
global well-posedness (GWP). For further results in this direction, see Theorem
4.1 below. For the nonlinear wave equation, we prove the following result.

Theorem 1.9. Assume

1
Sw = . — <8, < 1/2,

>2, O0<pc< ,
"= P= 27 p 2

and uy is radial. If ||uo|| gso + U1l gse—1 < 0 for some 6 K 1, there exists a unique
global solution u of

duu — Au = plulPu, (t,x) € R™,  u(0) = up(x), u(0) = u;(x)
(i ==1)suchthatu e CR : H*)NC'R : H*»~ )N L/ (R x R"), and there
exists (uy, vy) € H x H such that

lu—W Ousllgs + lue — W@OvL|lggowr = 0 ast — £oo.

Our results also hold for more general nonlinearity, e.g., F' (1) with F satisfying
conditions such as (4.3). In [21], Lindblad and Sogge studied the semi-linear wave
equation with the same nonlinearity but with general non-radial initial data. For
example, for the nonlinearity |u|?, they proved small data scattering in H* x H*~!
withs = 5 — 2 ifp > ™
s(p, n). Thus their results cover the case s,, > 1/2 in Theorem 1.9, which is the

and local well-posedness if s > s(p, n) for some

main reason why we restrict ourselves to the case s,, < 1/2. In the same paper
[21], the authors actually showed that their results are sharp by constructing some
counter-examples. However, the counter-examples for s,, < 1/2 don’t work for
the radial case. Our Theorem 1.9 improves their results in the radial case. Actually,
we find a critical regularity in the radial case so(n) < 1/2n, which we discuss in
detail in Theorem 4.4. In Section 4, we also study the nonlinear fractional order
Schrodinger equation and establish the well-posedness theory in the radial case;
cf. Theorem 4.7 below.

The fact that better well-posedness results hold in the radial case has been ob-
served before; see [25, 8], [11, 12]. Our results generalize these results. In the
non-radial case, with additional angular regularity, one can also go below L?; see
[8, 14] and the references therein. Actually, the results in [8] for the Schr 6dinger
equation are more general than ours but with different resolution space. Our re-
sults for local well-posedness hold without change for the inhomogeneous data
ug € H?®; see Remark 4.3. It is then natural to ask whether (1.8) and (1.9) hold for
non-radial functions with certain angular regularity.
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Throughout this paper, C > 1 and ¢ < 1 denote universal positive constants,
which might be different at different places. We write A < B to mean that there
exists C such that A < CB, and A ~ B to mean that A < B and B < A. We use
f (&) and Z(f) to denote the spatial Fourier transform of f on R” defined by

f© = /R f@e " dx.
We denote by p’ the Hoélder dual of p € [1, 0], i.e., 1/p+ 1/p’ = 1. Unless
stated otherwise, @ : R — [0, 1] is a non-negative, smooth, even function such
that supp @ C {x: |x| < 2}. and ®(x) =1 for |x| < 1, We set w(x) = ®(x) — D(2x)
and let P; be the Littlewood-Paley projector for k € Z, namely,
Pof =F 'wQMENFS, Poof = F ' OEDFS
We denote by S4(?) the evolution group related to (1.1), defined as

Sa0ux) = Vo) =, [ Dy (&) e
RVI

We use the Lebesgue spaces L? := LP(R"), || - ||, := || - lz» and the space-time norm
LIL of f on R x Q defined by

£ gy = ||IFE Dl .
where Q C R". When g =r, we abbreviate L{L7(R x Q) by L{ (R x Q).

The rest of this paper is organized as follows. In Section 2, we prove Theorem
1.2. In Section 3, we apply Theorem 1.2 to some concrete equations. In Section
4, we apply the improved Strichartz estimates to nonlinear problems.

2 Proofs of Theorem 1.2 and Theorem 1.5

First we prove Theorem 1.2 by adapting some ideas in [10] and [23]. However,
there is a new difficulty for the endpoint case ¢ = (4n + 2)/(2n — 1) in (1.7)
due to a logarithmic divergence. Fortunately, this logarithmic divergence can be
overcome by using the double weight Hardy-Littlewood-Sobolev inequality. On
the other hand, the logarithmic divergence for the endpoint g = 2n/(n— 1) in (1.6)
is essential. We present the proof in the following three steps.

Step 1. Non-endpoint: g > 2n/(n— 1) in (1.6), g > (4n+2)/(2n—1) in (1.7).

For j e Z,letA; :={x e R":2/71 < |x| < 2/},1; =[2/~1,2/). Fixing k € Z,
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we decompose [|S4(2) Axuo(X) |19 rxrey and get

ISp(OPrttoll g ey <> ISpOPrttoll g mxa)

JEL
2.1 = Y ISs@Puuollrg @xap + O 1SpOPruolls mxa)-
jHk<1 Jk=2

The main task reduces to estimating ||S4 ()P ruol| LI (RxA))- It is easy to see that
Sg(#)Prug is spherically symmetric in space if ug is radial. Thus we can rewrite it
in an integral form related to the Bessel function. The two parts j + k < 1 and
Jj +k > 2 exploit different properties of Bessel functions. We give the estimates of
the two parts in the following two propositions.

Proposition 2.1. Assume uy € L>(R"), ug is radial, and ¢ satisfies (H1) and
H2). If k, j € Zwith j+k < 1and?2 < q < o0, then

nj n __ m(k)
(2.2) ISs(OP o)l g, @xay S 2027 0 X Peuoll 2,
where m(k) is given by (1.5).

Proposition 2.2. Assume uy € L*>(R"), ug is radial, and ¢ satisfies (H1) and
H2). If k, j € Zwith j+k >2and?2 < q < 00, then

n_n=1y;: 1 _ mk)
(2.3) ISpOP o) @xay S 2097 2 V257 0 K Prasoll -

Furthermore, if ¢ also satisfies (H3) and (H4), then for 2 < q < 6,

(2n+1 _

2n—1\ » -
Q24 ISpOPuo@ s s,y S 200 472

3mk)+ak)+1 | mk)—a(k)+1
+ )k
2 4 I1Pruolly2,

where m(k), a(k) is given by (1.5).

Postponing momentarily the proofs of Propositions 2.1 and 2.2, we show how
these results can be used to complete the proof of Theorem 1.2 in the non-endpoint
case.

Proof of Theorem 1.2 (non-endpoint). We may assume g < co. Assume
first that ¢ satisfies (H1) and (H2). From (2.1), Proposition 2.1, and Proposition
2.2, we get

nj n __ m(k) k
ISP tto@) |l g @y S D 29247 0 || Pruoll 2

k<1

n n— - m(k)
+ 3 2GR R P 2
j+k>2

n_m(k)_nk
<267 TN Prug 2,
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since g > 2n/(n — 1), and thus Z — ”;1 < 0. Thus (1.6) is proved.

Now assume ¢ also satisfies (H3) and (H4). Then

nj n __ m(k) k
ISp(OPruoCO)l g, oy S Y 20207 0 || Prutg]l 2
Jjtk<l1

2n+1 _ 2n—1y =3mk)+at+1 _ mk)—a(k)+1
+ ) 2% =7 iy <R Pl 2

j+k>2

Note that if ¢ > (4n+2)/(2n — 1), then 2;;1 — 2"4_1 < 0. Thus we can sum over j

and bound the quantity above by

€[4 dpim 0 e Wl 9 G="OK] 1y

which is sufficient for (1.7) since (i - zlq)[m(k) — a(k)]k > 0 in view of Remark
1.1. O

It remains to prove Propositions 2.1 and 2.2. The proofs rely heavily on the
radial properties, in particular, the Fourier-Bessel function

_ (r/2)" : irt 2\m—1/2
Jm(r)—r(m+1/2)”1/2/_le 1-1r) d,, m>—1/2.

We first recall two properties of J,,, (7).

Lemma 2.3 (Properties of Bessel functions). For0 <r < ocoandm > —1/2,
@) Jn(r) < Cr™,
(ii) Jna(r) < Cr=Y/2.

For the proof of Lemma 2.3, we refer the reader to [27, p. 338].
It is well known that if f(x) = g(|x|) is radial, the Fourier transform of f is also
radial (cf. [26]) and

(2.5) f&) =2z /Ooo 8" (SIED TP T gy a2 (s1E s

Thus, if ip(&) = A(|&)) is radial, Sy (#)Prug = F (¢, |x|) and

(2.6) F(, |x]) =27 /Ooo Py (h(s)s" (s|x) TP T2y 2 (s1xl s,
where y;(x) = w(x/2%). Proving Propositions 2.1 and 2.2 reduces to a one-

dimensional problem involving Bessel functions. We use the following local
smoothing effect type estimate.



STRICHARTZ ESTIMATES FOR DISPERSIVE EQUATIONS 11

Lemma 2.4. Suppose k € Z, 9 € L>(R), and ¢ satisfies (H1) and (H2). Then
for2 < q < oo,

1_mkyyp
207" K ol 2,
L]

H / e(©)p(s)e 49 ds
R

where m(k) is defined in (1.5).

Proof. Itis easy to see that ¢ is invertible in the support of ;. We denote the
inverse of ¢ by ¢~!. By the change of variable a = ¢(s), we obtain

L 9@ @)
l¢' (o~ (@)
Then, from the Hausdorff-Young inequality and change of variable s = ¢(a), we

see that this is bounded by

H / Ve(©)p(s)e O ds
R

/ (™ @)e
R

L ‘ L

p(¢p~ (@) ¢(s)
9" (¢~ (@) |/ (s)] 4

From the condition, we have ¢'(s) ~ 2/"®~Dk in the support of y;. By Holder’s

CHwk(qb—l(a»

wi(s)

- >
/ ’
Ll ‘ ’ L!

inequality, we can then bound this by

(k)+1

27" 2Ty po)llze = C2E T K lypll . -
Lemma 2.5 (Strichartz estimate). Suppose ¢ € L*(R) and ¢ satisfies either
(H3) or (H4). Then, for k € Z,
H / vi($)p(s)e™ " ds
R

where o(k) is defined in (1.5).

1_ak)yp
267 Kyl 2,
LOLS

Proof. Since ¢ satisfies (H3) and (H4), [10, Theorem 1] gives the decay esti-
mate

_1 l_a(k) -1
Sl 2292017 Lyl
L

H / wi(s)p(s)e™ 9 ds
R

The result now follows immediately from [10, Proposition 1]; also see [16]. O

Proof of Proposition 2.1. It follows from (2.6), Lemma 2.3(i), and Lemma
2.4 that

n—1
ISeDP ol 11 @ xa SIF @ r)r o “Lf’L;’j
1 _ m(k) _ n—1
2G0T (RS g g2
relj s

nj n __ m(k) n—
<20 207"y ()hs)s 2 .z,
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completing the proof of Proposition 2.1, since || i (s)h(s)s X lzz = I1Pruoll2- U
It remains to prove Proposition 2.2. We use the decay properties of the Bessel
function at co, more precisely,
Pl r—(n=Dm/4) | p=ir—(n—D)z/4)
2rl/2
where E.(r)<r="*D/2 if r > 1 and d,,, e, are constants; see [27]. We insert (2.7)
into (2.6) and then divide F (¢, |x|) into two parts: a main term and an error term,

Q2.7) Jiza(r) = vdr"? e TE(r)— et eTE_(r),

namely,
(2.8) F(t, |x]) =M, |x]) + E(2, |x]),
where

M(t,r) =cr=""V/2 / Wi ($)h(s)s"~ D2 5O g
R
+ =D/ / Ve(Sh(s)s"s e O g,
R
E(t,r) =c / Wi ()h(s)s" " LeTOTISE (rs)ds
R

-0 / Wi ()h(s)s" " LeTIPONISE_ (rs)ds.
R
First we estimate the error term E (¢, |x]).

Lemma 2.6. Assume ¢ satisfies (H1) and (H2). If j+k > 2 and2 < q < oo,
then

n+l , n

_ P (1 pm®)
(2.9) IE @ Dy mxay S 2072 Fa 2700 X 1Pag 2.
Proof. As in the proof of Proposition 2.1, we have
n—1
E @, WDy, @xanSUEE 1l
1__ m(k) _ n—1
20 Ky ()F ()" EL(rs)l o, 12
rel; s
_(1+m(k))k j(n_n+1) n—1
S22 2T 2 Ny (9F (9)s 2 Iz,

where we have used the fact that |E(r)|<r=tD/2, O

Next we estimate the main term M (z, |x]|).

Lemma 2.7. (a) Assume ¢ satisfies (H1) and (H2). If j +k > 2, then

1—m(k) k

(2.10) 1M @, 1Dl 2 xay S 27722 FlIPeuoll 2,
2.11) IM @, XD llgsana,y S 2772242 Pl 2.
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(b) Assume ¢ satisfies (H3) and (H4). If j +k > 2, then

_n—1: 1_ atk)
(2.12) IM (@t Dl s mxa,y S 272 72657 X IPag o

Proof. From symmetry, it suffices to estimate the first term in M (¢, |x|). From
Lemma 2.4 with g = 2, we obtain

n—1
IM (@, 1D 22 @xa ) SIM @, ) > 2z,

< H/ Wi (s)h(s)s "2 el s =18 g
R

Lj L}
/2 _mk~1y n—1
$27727 2 Fllyr()h(s)s 2 Iz,
which gives the first inequality, as desired. Similarly,
1M (@, XDl Losrxa) SIM (2, r)||L;>°L,°;>

<p—i(ni=1)/2

/ wi(s)h(s)s "3 el —1h(9) g
R

Ly
L2298 2 e ()h(s)s " Iz,
To prove (b), observe that Lemma 2.5 gives
I Gt el e SIM (L O g

<p—(=1)j/3

/ wir(s)h(s)s "3 el —1h(9) g ¢
R

g,

—(n—1)i 1_ ak) n—1
27 DIBG= Ky ()h(s)s ™ 2.

Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. Since ¢ satisfies (H1) and (H2), interpolating
(2.10) and (2.11), we get

n__n—1y; 1 __ m(k)
(2.13) 1M (&, 1Dl g xa )y S22 257 0 K Praaol 2
for 2 < g < co. From Lemma 2.6, we then obtain
1Sg@OP kol g (rxa SIE W XD e @xay) + 1M @ XD L2 xa))
272G P
for 2 < g < co. Moreover, interpolating (2.10) and (2.12) yields

(2n+1 _ 2n4—1 )j 2( 73m(k%;a(k)+1 +m(k)—:z(k)+] )k

(2.14) IM (2, XD s mxa ) S2° 2 1 Pruollz2
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for 2 < g < 6 if ¢ also satisfies (H3) and (H4). Thus, in view of Lemma 2.6 and
(2.14), the left-hand side of (2.4) is bounded by

1Sg@OP kol L (rxa) SIE W XD e xay) + 1M @ XD L2 rxa))
S(Cilk, j)+ Colk, OIPruollL2,

where

n+l  ny o 1 m(k)
C . ="+ —(,+ k
l(k:.])=2( 2 4)12 G a ) >
(2;-;1 _ 2n4—1 )jA( —3m(k%-;a(k)+l +m(k)—;x(k)+l Yk '

Calk, j) =2

It remains to prove Cy(k, j) < Ca(k, j). A simple calculation yields
Cak, j) (Gt 2ttty (I O] Lm0y

. - 2 1
Cik, j)
= UG+ 4 = g mk)—atk)k

It is easy to see that

G0 (g + ) * (4 = 5 om0 = a0k = 1.

since j + k > 2 and (m(k) — a(k))k > 0 in view of Remark 1.1. O
Step 2. Endpoint: g = (4n+2)/(2n — 1) in (1.7).
From Step 1, we see that in this case the sum over j > 2 —k does not converge.
To overcome this, we do not decompose for large j. The main tools are the van der
Corput Lemma [27] and the double weight Hardy-Littlewood-Sobolev inequalities
[28].

Lemma 2.8 (van der Corput [27]). Assume y € C°(R) and P € C R)isa
real-valued function satisfying |P"(&)| > A in the support of w. Then

‘/eip(f)w(é)df < CA 2l + 1Y)

Lemma 2.9 (double weight Hardy-Littlewood-Sobolev inequalities [28]). If
l<rns<oo, 1l/r+1/s>1,0<A<d,a+f >0and

1 4 a 1 1 1 A+a+p
+ + =
r d d rr s d

Fg»)
dxd S Ca S r S
/Rd /Rd belelx — y)A ) yxvd va ey

2,

then
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Now we proceed to prove (1.7) for g = (4n +2)/(2n — 1). Obviously,

ISpOPrttoll g gy < Y ISpPrUoll 2 mxa ) + 1SgOPrttoll g @ pxi>21-4))
j<1—k

=l +11.

From Step 1, we see that the term [ is bounded, as desired. It remains to bound
the term /. Using (2.25), we get

1T < IM @, 1xDI s @xr=21-+p + IE @ XD g =21y
=1L +115.

From Step 1, we see that the term /I, is bounded as desired. Thus, it remains to
bound the term //;. From symmetry, it suffices to prove

1_1 n—1 .
Hl[wm)(r)r%—z)("—l) / wi($)h(s)s"> &5 g
R

q
Lt,r

<2<;—"*Z;‘“)k+<5—;q>(m(k>—a<k>)k” h(s)s" |12,

which follows from the estimate

1_1
q 52(4 — 2 )mk)—a(k)k I4]l5.
Lt,r

(215) |r|(}1—;)(l‘l—1)/ l//o(S)h(s)el'(rS—l‘Z*km(k)qg(ZkS))ds
R

It remains to prove (2.15). Since y(s) is supported in {s ~ 1}, from (H1)-
(H4), we see that ¢ (s) = 2750 p(2ks) has an inverse, which we denote by 7; =
¢! range(pr) — {s ~ 1}. Moreover,

(2.16) 7l ~ 1, ] ~ 2807,
By a change of variable s = #;(u), we conclude that (2.15) is equivalent to

1_1 _
52(4 20 m(K)—a(k)k A8
Ll

(2.17)

11y i _
Rl R

For f € L*(R), define the operator
11y i _
10y = W [ o ey,
It suffices to prove ||T | 2, ¢ S20 72" ®O=4®k By quality, we have

T*g(u) = WO(”/k(ﬂ))/ e_i(x”"(”)_”‘)lxl(fll_é)(”_l)g(x, H)dxdt.
RxR
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By the TT* arguments, it suffices to prove
177 glla 522~ O= @K g
By definition,
TT*g(x, 1) = |x| (=2 / T e N R
x g0y, T)ei(xﬂk(!l)_fﬂ)dﬂdydr

= 420 [ K=yt = ol P Vg, ndye,
R

where
Kx—yt—r1) = / u,g(,]k(lu))ei[(x—y)nk(ﬂ)—(t—r)ﬂ]dﬂ'

Using Plancherel’s equality, we get

H/K(x—y,t— 7)g(y, t)dr

<l Iz
%

On the other hand, it follows from the van der Corput Lemma and (2.16) that

k(m(k)—a(k))
2

IK(x—y,t— 10|52 lx — y| 72

Thus, by interpolation, we have

<2k(m(k)—a(k))(§—}1)|x _ yl—(é—},)”g(u’ ')”Lq/‘
L

H/K(x —yt—1)g0, 1)dt

Minkowski’s inequality then gives

1 1
ITT* gllyg, S25" 0= ®VG =)

1_1yp—1 1_1yp—1 _(1_1
FERC )/|y|‘q DD} oy, bt — ¥~ 4= Py

Ll

To complete the proof, it suffices to show that

g fx)
// (=D, G=Hn-1) (‘—dealy
RJR |x|*27a [y['2"e |x —y|*2 79

However, this follows immediately from Lemma 2.9; indeed, it is easy to verify
the hypotheses of that lemma with ¢ = (4n+2)/2n—1),a = =(} — ;)(n -1,
A =;—‘11,r =s=q,d =1.

(2.18) Sl Lo L M-
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Step 3. Sharpness.
It remains to prove that the range of g is optimal. We prove that

lle™™ =2 Poug |l < lluoll2
fails to hold if ¢ < 2n/(n — 1) and

itA
lle" Pouoll e Sliuoll2

fails to hold if ¢ < (4n+2)/(2n — 1). As for the first claim, we see from the proof
in Step 1, that it suffices to disprove the following statement: for g =2n/(n — 1),

(2.19)

P / wo(s)h(s) cos(rs — (n — 1) /4)e™ds
R

ShAll.
Lq

t,r>2

To this end, take A(s) = 1j0,101(s). From the fact that for r > 1

(n 4 )n.)eltsds

H/ wo(s) cos(rs —
R

Zlepo+r) +epot =l , 21,

q
|t—=r|<1

L

we obtain

Pl / wo($)h(s) cos(rs — (n — 1)z /4)e™ds = 0.
R

L9

tr>2

Thus (2.19) fails to hold if g =2n/(n — 1).
To prove the second claim, note that similarly, it suffices to disprove the fol-
lowing statement; forg < (4n+2)/(2n— 1),

(2.20)

Pl / wo(s)h(s) cos(rs — (n — 1)7r/4)e”s2ds
R

Sliall2.
LLI

1,r=2

To this end, fix j sufficiently large and take A(s) = 2//21,_y<>-;. Then ||h|lz = 1.

. . . n=1_ n—1 2 .
For ¢t > 0, the main contribution of r ¢ r~ 2 fR h(s)cos(rs — (n — Dz /4)e'™ ds is
nl _n-l —irs its? 3 _ g2, ot =t _ —irs its? i2ts
Cpl 4 r 2 h(s)e e ds =c,2/%r « r~ 2 Ligi<2-i(8)e™""e"™ e ds.
R R

Thus the left-hand side of (2.20) is larger than

which is unbounded if g < (4n+2)/(2n—1). This completes the proof of Theorem
1.2.
Before proving Theorem 1.5, we give the following maximal function esti-

-(2n+] _ 2n—])
22005,

. n—1 _n—1 o o,
2//2r qa r=2 / 1|s|§2*/(s)e irs s ethsds
R

L. .
r~220 r—211<2J

mates, which generalize the results in [18] fora > 2toa > 0.
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Lemma 2.10. Assume a > Qand k > 0. Then

(2.21) H /]R el e no(¢/25) f(E)dE <B(a, D)l f]l2,

2] 0
LXLIIISI

where
2%/% - fora #1,

B(a, k) = o
2K2 fora =1.

Moreover, these bounds are sharp.

Proof. By the change of variables & = 2%y, x = 27Xy, we see that (2.21) is
equivalent to

(2.22) H /R 1" e o (&) f (&)d&

SBa, b flla
2L

x mszka

By TT* methods, (2.22) is equivalent to
(2.23)

‘ / [ / /(O el no<5>d4 8(t', x)d'dx
R?2 LJR

Set K,(x—x', t—1t') = [ eIV el =0 o (2)dé . Since |1 —1'| <2k, by the method
of stationary phase and the van der Corput Lemma, it is easy to see that fora # 1,

SB(a, D lgla -
X |'|§2ka

27 00
LI e

—12 —4
IKy(x —x',t =S+ x — X7V Lot + 1 = X7 Lt
and, fora =1,
4
IKi(x — X', 6 = )| ST - 1 <or + 0 = X7 e psor

Using these bounds and Young’s inequality, we get

Thus we obtain the desired bounds.

K,(x—x',t—1)g(t,x)dr'dx’

, SIKallzie gl
R

X mszka

271
ey <ota

SB(a, k)18l

/\Szk“ :
It remains to show that these bounds are sharp. First we consider @ = 1. For f
supported in {& > 0}, we have

L.H.S of (2.22) 2 H /R e~ e no(O) f(E)d¢ Z 212,

L2
1 <2k
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which shows the sharpness of the bound 2¥2. Now consider a # 1. Take f =
0='21:_y1<9, 0 =27*/> Then || f||, ~ 1, and

L.H.S of (2.22) > 0~'/?

/ EHEH gt ixE g
1€1<50

L? L>®
<=2 e S2ka

> 9-1/2

/ e—ix(§+l)“/aeix/aeix§d€~:
1€1<50

L2
x| <02

Z 9—1/2 — 2ka/4’

where in the last inequality we have used the fact that |(& + 1)¢ — 1 — a&|<E2. O

We now present the proof of Theorem 1.5 in the casesa # 1anda =1,n > 3.

Case 1: a # 1.

Since (1.9) is trivial if (g, r) = (oo, 2), by Bernstein’s inequality, Riesz-Thorin
interpolation, and the classical Strichartz estimates, it suffices to prove (1.9) for
(q,r) =@2,r),where (4n—2)/2n—3) <r <2n/(n—2).

By the scaling transform (¢, x) — (19¢, Ax), we may clearly assume £ = 0. By
the classical Strichartz estimates

D
1€ Pofll | o <Cliflez
121, &

n—2
X

(see [16] for n > 3 and [31] for n = 2), we see from Ho6lder’s inequality that it
suffices to prove

(2.24) le"™ Pofllzrr < Cllf iz

1 x|=10

As before, we divide u,4(t, |x]) = ¢™“Pyf into a main term and an error term, viz.,
(2.25) uq(t, |x|) = Ma(t, |x]) + Eq(2, |x]),
where
My(t,r) =cr= 2 /R wo(s)g(s)s "2 el 51N g
+ G /R wo()g(s)s " e+ ds,
Eqt,r) = /]R Wo()g(s)s" e " T E, (rs)ds
—c /]R wo(s)g(s)s" e B ISE_(rs)ds.

First we bound the main term M.
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Lemma 2.11. Assumea #1,a> 0, j >2,and2 <r < co. Then

n—1 __

-2 2n—-3
(2.26) IMaCt 1XD 2 @xa 27 7740 F e

Proof. This was proved for r = 2 in Lemma 2.7. By Riesz-Thorin interpo-
lation, it suffices to prove for r = oco. By the definition of M, and symmetry, it
suffices to show

(n—1)j

(2.27) 27 2

_@n=3)j

<2704 gl
L2L2RxI )

/ n(s)g(s)e' "~ ds
R

where #(s) is a bump function on {s ~ 1}. By the change of variables & = 529/,
t = 2%x, we see that it suffices to prove

_(n=1)j z1/a
2

. . _@n-3)j
/R'l(f/Z‘”)g(é)e’(’g 52704 igllas

27 00
LiLi<

(2.28) 2 ) g

which reduces to a maximal function estimate associated to the dispersion & 1/¢,

Since a # 1, (2.28) follows immediately from Lemma 2.10. 0
Next we estimate the error term E, (¢, |x|). Although this term certainly has
better estimates than the main term, the following rough estimates suffice for our

purpose.
Lemma 2.12. Assumea #1, j > 2,and2 <r < 2n/(n—2). Then

_Jj(n_n=2
(2.29) NEaCt, XD 22y S22 2 f e
Proof. Th was proved for r =2 in Lemma 2.6. Forr =2n/(n — 2), we have

IEa(t, XDl o < luats XD, 2+ (1Mt XD 2 Sz,
121,072 . n—=2 L2LI 2 (RxA))

(RxAj) L2L!
where we have used the classical endpoint Strichartz estimates and Lemma 2.7. [

We are ready to prove (2.24). Indeed, since (4n—2)/(2n—3) <r < 2n/(n—2),
by Lemmas 2.7 and 2.6, we can sum over j > 1 to obtain

itD®
€™ Poflizey,

o o0

< Y Mot XDl 2ry@nay + D NEalts XD 2iy@na)y SIS -
j=1 j=1

Case2:a =1andn > 3.

As in Case 1, it suffices to prove (1.9) for (g, r) = (2, r), where

2n—2 2n —2
<r< .
n—2 n—3
Using the decomposition (2.25) and the following lemma, we immediately obtain

(1.9).
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Lemma 2.13. Assume j > 2and?2 <r < 00,2 < g < (2n—2)/(n—3).
Then

son—1 _ n—=2

M D 22 xa 527 211 s
_(n—=1_n=3

IE s XDl 2 <2~ 741 e

The proof follows exactly as the proof of two lemmas above; thus we omit it.
Finally, we show sharpness. The condition g > 2 is necessary since (1.9) is
time-translation invariant. The same counter-example used to show the sharpness
of (2.20) shows that the condition
2 2n-—1 1
+ <n-—

q r 2
is necessary.

Remark 2.14. From the proof of Theorem 1.5, we see that to prove Conjec-
ture 1.7 for a = 2, it suffices to prove

4n—2 rS ”8”2'
L2L2n—3

(=13

r—]/(Zn—l)/ Wo(s)g(s)ei(rs—tsz)ds
R

However, we have not been able to prove this last inequality.

3 Strichartz estimates in the radial case

In this section, we apply Theorem 1.2 to some dispersive equations. Since we
do not have decay estimates, we use the Christ-Kiselev Lemma to derive retarded
linear estimates. First we prove a duality property for radial function.

Lemma 3.1. Assume 1 < p < oo, 1 =1/p+1/p’, and radial f € LP(R").
Then

GB.D 1 flr@m =sup {‘ /R f(x)g(x)dx‘: ge LP(R™), g is radial and |\ gl < 1}.

Proof. Denote the right-hand side of (3.1) by B. Obviously, B < || f || .r®n);
thus it suffices to show || f|l»+ < B. By duality, we have

1S llr@ny = sup /]R ) f0)g)dx

gelr’ gl =1

= sup / N / f()grxyr" drdo(x')
0 Jsrt

gel”’ gl =1

b

= s /R g

gel” gl =1
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where we have set g(x) = [S"!|7! fsn—l g(|x|x")do(x). Tt is easy to see from
Holder’s inequality that § is radial and ||§||;» < 1. Thus we get || f||p®y < B
as desired. O

Obviously, Lemma 3.1 holds similarly for functions f(z, x) spherically sym-
metric in x, e.g., f € L7L4. As a corollary, we can apply Lemma 3.1 to obtain dual
version estimates of the linear estimates in the radial case.

Lemma 3.2. Assume 1 < q,r <oo,1/q+1/q =1/r+1/r' =1,k € Z. If
for all radial uy € L*(R")

IS¢ (DPiuioll o SC (K lluoll 2

then for all f € L?IL;' spherically symmetric in space,

H /]R Sy (—DIPLS (1, N()dr

SCONf N0,
LZ(R") t Hx

The following lemma is very useful for deriving retarded estimates from non-

retarded estimates. The estimate we need is the following. For its proof, we refer
the readers to [24].

Lemma 3.3 (Christ-Kiselev [4]). Assume 1 < p1,q1, P2, g2 < 00 with py >
p2- If

/R St — )(PLf()()ds

SCOIIf N2
Lfle-l

holds for all f € L{*L% spherically symmetric in space, then

/0 Sp(t — )P (5)@)ds

SCOONSf e
LflL;’l

holds with the same bound C(k), for all f € LY*L% spherically symmetric in space.

We are now ready to give some new Strichartz estimates for some concrete
equations. First note that from Minkowski’s inequality and the Littlewood-Paley
square function theorem, we get

(3.2) W g SIPE Negagllizs PRF N NI Ny

for 2 < g,r < co. We apply (3.2) to obtain Strichartz estimates on the whole
space.
1: Schrodinger equation

iu+ Au=F, (t,x)eR xR",
u(0) = up(x).

(3.3)
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By Duhamel’s principle, u = S(t)ug — ifotS(t — 7)F (t)dt, where S(t) = e™'"2,
which corresponds to ¢(r) = r2. We see that ¢ satisfies (H1)-(H4) with m; =
my = o1 = ay =2. Thus, by Theorem 1.2,

n__n+2
(3.4) ISPl g oy 2270 1ol
forg > (4n — 2)/(2n — 1) and radial u,.

Definition 3.4. Suppose n > 2. The exponent pair (q, r) is said to be n-D
radial Schrodinger-admissible if ¢, r > 2 and

dn+2 2 2n-—1 1
<g<oo and + <n-—
2n—1 q r 2
(3.5) or
dn+2 2 2n-—1 1
2<qg< an + <n-—
2n—1 q r 2

For n > 3, the n-D radial Schrodinger-admissible pairs are described in Figure
1(a #1).

Proposition 3.5 (Schrodinger Strichartz estimate). Suppose n > 2 and u, uy,
and F are spherically symmetric and satisfy equation (3.3). Then

(3.6) el g+ el gy S ol + I1F Nl

if y € R, (g,r) and (g, ) are both n-D radial Schrddinger-admissible, either
G, 7,n) #(2,00,2)0r (g, 1,n) # (2,00,2), and (q, r, n) and (g, 7, n) satisfy the
“gap” condition
2+n=n_y 2+n=n+y
ro 2 ’ F '

Proof. The case F = 0 follows from Theorem 1.52. Now assume F # 0,
(g, r) and (g, ) are both n-D radial Schrodinger admissible, (G, 7, n) # (2, oo, 2),
and (q, r, n) and (g, 7, n) satisfy the “gap” condition. If y = 0, the result follows
from known estimates [16]. If y # 0, by scaling, it suffices to prove

t
(3.7) H / S = PF ()ds|  SIF g,
0 L r
In view of the Christ-Kiselev Lemma, since either g, r > 2 or g, ¥ > 2, it suffices
to prove
(3.8) H / S@—=9PoF ()ds|  SIF 7,
R L e

which follows immediately from non-retarded linear estimates and Lemma 3.2. [J

2For (¢, r, n) = (2, 00, 2), it was proved similarly for the wave equation in [31].
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Remark 3.6. We can take y < 0, which means there is a smoothing effect in
the non-retarded Strichartz estimates. This only holds in the radial case. There are
also smoothing effects in some retarded estimates; but we only derive estimates
which do not have a smoothing effect.

2. Wave equation

oyu— Au=F, (t,x)eR xR",
u(0) = up(x), u/(0) = u(x).

(3.9)

By Duhamel’s principle, u = W' (&)ug + W (Hu; — fot W (t — ©)F (t)dt, where

sin(tv/—A)

V=A
This reduces to W_.(¢) := eii’(_A)I’/z, which corresponds to ¢(r) = r. Then we see
that ¢ satisfies (H1) and (H2) with m; = m, = 1. Thus by Theorem 1.2,

W) = W'(£) = cos(tvV—A).

n__n+l
(3.10) IWL(OP ol g ey S22 70 ¥ luol2.
for g > 2n/(n — 1) and radial ug

Definition 3.7. Suppose n > 2. The exponent pair (g, r) is said to be n-D
radial wave-admissible if g, r > 2, and one of the following holds:
(D) n=2,(gr) €A ={(g1): ;+, <5,q>4U{(, 00),(c0,2)};
2y n=3,(q,r)eAsz ={(q,r):q=2, ; + "1 < "1 U {(00,2)).
For n > 4, the n-D radial wave-admissible pairs are described in the Figure 1
(a=1).

Proposition 3.8 (Wave Strichartz estimate). Suppose n > 2 and u, ug, uy, F
are spherically symmetric and satisfy equation (3.9). Then

G110 Null oz, + lulleqo,ryay + 0l cqorym—n Sluollgy + Nl -1 + My
if y € R, (g,r) and (§,7) are both n-D radial wave-admissible, (§,7,n) #
(2, 00, 3), and (q, r, n) and (4, 7, n) satisfy the “gap” condition

1 n n 1 n n
+ =_—v, _+_=_—1+y.
q r 2 g 7 2
The proof is similar to that of Proposition 3.5; hence we omit it.
3. Klein-Gordon equation

Oyu — Au+u =F,
u(0) = ug(x), u/(0) = ui(x).

(3.12)
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By Duhamel’s principle, u = K'()ug + K (H)u; — fot K (t — ©)F (t)dz, where

K() =0 'sin(tw), K'(t) =cos(tw), o =VI—A.

Lit(I—A)/?

This reduces to the semi-group K.(¢) :=e , which corresponds to ¢(r) =

(1+r%)'/2. A simple calculation yields
r 1
(r) = . P = ,
? (1+7r2): ? (1+r2):

which shows that ¢ satisfies (H1)-(H4) with m; =1, a1 = —1, my = a; = 2.
Thus, by Theorem 1.2, for g > (4n+2)/(2n — 1) and radial u,

(3.13) IK+(@PruollLe ey SC (g, B lluoll2,
where
PGk fork < 0;
C(g, k) = { 26"k fork > 0,2n/(n— 1) < g < o0;

267Gk fork > 0, (4n+2)/Qn—1) < q < 2n/(n— 1).
4. Beam equation

anu+ A2u+u :F‘,

(3.14)
u(0) = ug(x), u/(0) = u1(x).

By Duhamel’s principle, u = B'(t)ug + B(t)u; — fot B(t — 7)F (t)dt, where

B(t) = ™ 'sin(tw), B'(t) =cos(tw), o = VI + A2,

Lit(+A2)1/?

This reduces to the semi-group B.(¢¥) :=e , which corresponds to ¢(r) =

(1+r*H1/2. A simple calculation yields

273 6r2 +2r°

) = (L+r4Hl/2’ $r) = (1+r%)3/2°

which shows that ¢ satisfies (H1) and (H2) with m; =a; =2, m; = a; =4. Thus,
by Theorem 1.2, for g > (4n+2)/(2n — 1) and radial u,

(3.15) I1B+(O)Pguiollps o) SB (g5 k) lluoll2,

where

26="% fork < 0;
B(qa k) = (n_n+2)k
2'27 4 for k > 0.
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5. Fractional-order Schrodinger equation

idu+(—A)u =F,

(3.16)
u(0) = uo(x),

where 1 < o < 2. By Duhamel’s principle, u = S,(t)ug+ fot S,(t —7)F (t)dt, where
S,() = e~i1P(V=1) \yith ¢(r) = r°. By simple calculation, we see that ¢ satisfies
(H1)-(H4) with m; = oy = my = ay = 0. Thus, by Theorem 1.2,

(3.17) IS 5(Peuoll g gy S22 ¥l 2
forg > (4n+2)/(2n — 1) and radial uy.

Proposition 3.9. Suppose n > 2 and u, ug, F are spherically symmetric in
space and satisfy equation (3.16). Then

(3.18) el o + Nl cerrn Sluoll s + 1E N gy

if y € R, (g, r) and (G, ¥) are both n-D radial Schrédinger-admissible, (g, 7, n) #
(2, 00, 2), and (q, r, n) and (g, 7, n) satisfy the “gap” condition
o n n o n n
+

= _ - + = 4.
g r 27" g7 T2

The proof is similar to that of Proposition 3.5 except for the case(q,r,n) =
(2, 00, 2), which needs to be handled separately. This particular case follows sim-
ilarly as for the Schrodinger equation in [31]. We omit the details.

In particular, taking y =0, we get a family of Strichartz estimates without loss
of regularity.

Corollary 3.10. Suppose n > 2, 2n/(2n — 1) < o < 2, and u, ugy, F are
spherically symmetric in space and satisfy equation (3.16). Then

(3.19) el s, + Nl cny Sluolle + NE 1z

if(q,r)and (G,7) € {(g,r): q,r > 2, [q’+f ="} and (4,7, n) # (2, 0,2).

These estimates without loss of derivative hold only in the radial case. We
present the Knapp-counterexample to show that the general non-radial Strichartz
estimates have loss of derivative for 1 <o < 2.

Assume that for a general non-radial function f,

NTAZS
Ll

(3.20) H /R ) eV e (&) f(&)dé
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Take D = {& = (&1,¢) e RY ¢ |& — 11<5, €| < J) and let f = 1p(&). Then
I fll2 ~ 692, and

/ d e ol o (VP (E)dE = el / 17 =ED) GitET = 1=0(&=1)) fillox)(E =) gix'E’ g
R D

Since in D ||£]7 — &7|<IE12<0% and |E7 — 1 — o(& — DIS|E — 112562, it follows
that

‘ /IR jethe no(é)f(é)dé‘ ~ D]
for |t|<672, |to +x1|<67!, and |x'|<5~!. Therefore, (3.20) implies 5—3,—‘,’%51.
Taking ¢ <« 1 then implies immediately that
2 d d
+ < ..
q r 2

4 Applications to nonlinear equations

In this section, we apply the improved Strichartz estimates to certain nonlinear
equations, viz., the nonlinear Schrodinger equation and nonlinear wave equation.
These equations have been studied extensively.

4.1 Non-linear Schrodinger equations. First we consider the semi-
linear Schrodinger equation

“4.1) o+ Au = ululPu, u(0) = ug(x),

where u(t,x) :RxR* — C, n > 2,up € H*,p > 0, u = %1. Itis easy to see that
equation (4.1) is invariant under the scaling transformation

u(t, x) = 22Pu(2%t, 2x), up(x) > 21*Puy(ix), A > 0.

Then the space H*" (sgop = " — 1%) is the critical space for (4.1) in the sense of

n
scaling, i.e., || A2/ Pug(A-)|| frssen 2= lto|l s - In particular, if p < 4/n, then sy, < O,
which is our main concern.

The well-posedness and scattering for the nonlinear Schrodinger equation (4.1)
have been studied extensively. We refer the reader to [19] for a survey. It is well
known that the threshold of H*-well-posedness for (4.1) is s > max(0, s). Our

next result concerns the well-posedness and scattering in the radial case.
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2 1-n < Ssen < 0,

Theorem 4.1. Assumen > 2,0 < p < 4/n, Sgep = g — il S

and uy is radial. Then we have the following.
(1) (small data scattering): If uollgsss < O for some 6 K 1, there exists a
unique global solution u of (4.1) such that

. (n+2)
ue CR:H*)NL? (RxRY,

and uy € H such that |lu — S(O)u| s, — 0 ast — oo.
(2) (large data local well-posedness): If ug € H® for some sgp < s < 0, there
2(n+2)

exist T > 0 and a unique solutionu € C((—T,T) : H“')OL,I’;ZS (=T, T)xRM
of (4.1).

Proof. The proof is quite standard. The main point is to choose the resolution
space. By Duhamel’s principle,

u==ao,w@=SOuo+u / St — s)(|u|"‘24:sch u)(s)ds.
0

First, we show part (1). Take?

2(n+2) _  _ 2n+2)
=r = 5 =y = .
q n— 28 1 n+ 28

It is easy to verify that (g, r), (g, ) satisfy the hypotheses of Proposition 3.5 with
y = Sscp- Thus, applying Proposition 3.5, we obtain

4
Doy @I, + 1D Doy @)l o2 SIS Dol g + Nl =>sen ull
B X

‘ 1+,
S”Dsm uO”L2 + lull (n'LzS;i;Iiw’ .
n—=2s
Lt,.\'

sch

Note that § = 2(n+2)/(n — 25 +4); therefore, (n — 25,0, +4)G' /(n — 285e1) =q.
Thus part (1) follows from standard fixed point arguments; see[2].

Next, we show part (2). Local well-posedness for equation (4.1) in H*< fol-
lows from the fact that for g =2(n+2)/(n — 2s4) < 00,

lim 1Sl 1z =0.

Now we assume sy, < s < 0. Takeqg =r =2(n+2)/(n — 2s) and

1 n+2s 2n(s — Sgen) I n+2s 4s — ASgen

= — — + .
G 2n+4 (n+2)(n—2s5p) F 2n+4  (n+2)(n— 285p)

3The choice of index was determined by a collection of linear equation or inequalities. The choice
is not unique, and we choose the simplest one here. We remark further on this for the wave equation.
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It is easy to verify that (g, r), (g, ) satisfy the hypotheses of Proposition 3.5 with
y =s, and (p + 1)’ = q. Thus, applying Proposition 3.5, we obtain

N N 4
[ @uDls, + 1D° Pyl oer2 S 1D uoll 2 + [ul e ull g

te[-T,T1-x

0 1+4/(n—2s¢)
,S ”DSUO l2+T IIu”Lgn—ZSSch+4)F(;/(n—25wh)'
X

for some @ > 0. Thus part (2) also follows from standard fixed-point arguments.[]

Remark 4.2. In part (2) of Theorem 4.1, the existence time 7" depends only
on |lug||gs for s > s, but on the profile of ug for s = s4c.

Actually, we can say more than Theorem 4.1. Using a similar proof, we can
obtain for sy, < (1 —n)/(2n+1) (namely 0 < p < (8n+4)/(2n? +3n — 2)) large
data local well-posedness for (4.1) with uy € H* for s > s, where

1—n 2 8n+4
_ ) o1 for | <p < 2030
“4.2) So = 2
np—np

2
2A—142n4np) forp < .

Actually, s is determined by the conditions

ZSqaraq>f§OOa

2+2n—1 =n—l
q r 2’
2+n_n
q r R
2+n=n+y
qg i 2 ’

(p+ )i =r,§ =o0.

Then we can also obtain (g, r), (g, 7) for s > s¢, which can be used to prove local
well-posedness as in the proof of Theorem 4.1.

The conclusions obtained above hold for general nonlinear terms F(u), for
example, if F satisfies

IF @) < lul”*!,

4.3)
lullF' @] ~ |F w).

We describe the regularity s for H* local well-posedness and nonlinear increasing
rate p + 1 in Figure 3.

Remark 4.3. Part (2) in Theorem 4.1 also holds for data ug € H®. Indeed,
we simply construct the resolution space

lully, = 1P <oullzpe

o k2 T |1P>1ullpe

l1<T.x
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Figure 2. H* well-posedness for NLS

4.2 Nonlinear wave equations. Next, we consider the semi-linear wave
equations

Oyu — Au = plulPu, (t,x) e R x R",
u(0) = up(x), u(0) =u;(x),

where u(t,x) : R x R" - R,n > 2, u =+1,up € H*, u; € H*"'. It is easy to see
that equation (4.4) is invariant under the scaling transformation

(4.4)

u(t, x) = 22Pu(it, 2x), uo(x) = 2*Puy(Ax), uy(x) = A@PPy(Jx), 1> 0.

Then the space H*» x H~! (s,, = o [2)) is the critical space for (4.4) in the sense
of scaling, i.e., | A2Puo(Z-) || gysw = ol s -

The well-posedness and scattering for equation (4.4) have been studied deeply.
We refer the reader to [9, 21, 25, 17] and the references therein. In this section, we
study the well-posedness theory for (4.4) in H* x H*~! with radial initial data. As
indicated in the Introduction, sharp results at the critical regularity were obtained
in [21] for s,, > 1/2. Thus we restrict ourselves to the case s,, < 1/2 and find a

threshold sy(n) for the critical GWP in the radial case

5‘3{” forn =2,
(4.5) so(n) = 4 127129 forn =3,
n*+3n—3—vn*+6n3 —n2—14n+9

A forn > 4.

It seems that this is the optimal regularity obtainable by our methods.
Theorem 4.4. Assume thatn > 2,0 < p < 4/(n—1), s, =n/2 —2/p,
so(n) < s, < 1/2 with so(n) given by (4.5), and u is radial.
D) If Nluollgso + Nutllgsw—s < O for some 6 K 1, there exist a unique global
solution u to (4.4) such that

ue CR:H*)NC'(R: H* YNLIL(R x R"),
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where (q, r) are given in the proof, and (u+, v+) € H* x H*~! such that
lu — W Ousllgso + |ty — W0+ gswr — 0, ast — Foo.

(2) If uy € H® for some s,, < s < 1/2, there exist T > 0 and a unique solution u
to (4.4) defined on (—T, T) such that

ueC(=T,T): H)YNC'(=T,T): H*"YNLIL'((~T, T) x R"),
where (q, r) is the index given by part (1) for s, =s.

Proof. By Duhamel’s principle,
t
U = @) = WO+ WO+ [ Wit =)l ) (5)ds.
0

First we show part (1) and explain how s¢ is obtained. The main issue is to choose
the admissible pairs (g, r), (4, 7) so that we can close the contraction argument*.
By the choice of (g, r) and (g, ), we should have

4
P ug,es D L2, SIW Ouoll Loz, + IW Ourll Loz, + ul =20 ull

4
+"—251u

1
LiL;

)
Y
Ll LX

SID* ugllzz + 1D*~ uy |2 + Nl
These inequalities hold if (g, r), (G, 7) satisfy

(g, r), (g, F) is n-D radial wave admissible,

1+n_n s

qg r 2 w2
4.6) 1 n n

o+ = —1+s,,

g F

PP+ =r, (p+1)§ =gq.

Given a solution to (4.6), part (1) follows from standard arguments. Therefore,
it remains to find a solution of (4.6). We give explicit solutions in each of the
possible cases.

Case 1: 1/2n < s, < 1/2.

2n+2 2n+2 o 2n+2 2n+2
q,r) = , , (q,7) = , :
n—2s, n—2s, n+2s,—2 n+2s,—2

Case 2: 59 < 5, < 2n)~ L.

4The ideas for the Schrodinger equations are the same. However, the choice of the index for the
wave equations is more complicated.
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Case 2a: n = 2.

3—sw 3—s5y, (1
(q,r)=((1—sw)2,l—sw)’ (qar)_(Swaoo>-

Case 2b: n = 3. There exists 0 < 8 < 1 such that

11 1
< 5 > = (2510_399 _Sw+0>a (@F) :< q D ’ )
q r 2 gq—p—1r—p-—1

Case 2c: n > 4.

2n+8 —4s, 2n? + 8n — 4ns,, o 2n
b 2 2 b (q) r) = 25 .
n—2s, n* +3n — 4ns,, +4s2 — 65y, n+2s,—3

(q,r)=<

Part (1) is proved.
Next we show part (2). Local well-posedness in H*» follows from the fact that
for the choice of (g, r) in the proof of part (1),

lim W/ Ouollpe, 1+ IW@urllLe =0.
T—0 !

e[-T.,T 1 té[—T,T]L,{‘
Now we assume s, < s < 1/2. The proof is very similar to that for the
Schrodinger equations. We take (g, r) corresponding to s in part (1) and then
take (g, 7) to complete the argument. We omit the details. (|

Remark 4.5. As with the Schrodinger equation, if s, < sp(n), i.e., p <
4/(n — 2s¢(n)), we are unable to prove well-posedness in H* x H*~! down to
s = s,. However, we can improve the well-posedness results in [21]. We men-
tion only the case n > 4. If 3/n < p < 4/(n — 2s¢(n)), then large data local
well-posedness holds in HS x HS~! for s > s, with

np—3

2= pr2n—2

Indeed, take § =2, 7 =2n/(n — 3 + 2s), and (g, r) such that

I n n 1 1
q I Tp+l (p+ DF
With this choice, we can prove local well-posedness using arguments similar to
those in the proof of Theorem 4.4.
The same results hold for general nonlinear terms F (u) satisfying (4.3). We de-
scribe the regularity s for H* x H*~! local well-posedness and nonlinear increasing
rate p + 1 for (4.4) in Figure 3.



STRICHARTZ ESTIMATES FOR DISPERSIVE EQUATIONS 33
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Figure 3. H* x H*~! well-posedenss for NLW.

4.3 Nonlinear fractional-order Schrodinger equation. In this sec-
tion, we apply the improved Strichartz estimates to the nonlinear fractional-order
Schrodinger equation

“4.7) i10u + (\/—A)”u = ululPu, u0) = up(x),

where u(t,x) : RxR" — C, n>2,1 <o <2, u ==+1, uy € H*. To the best of
our knowledge, there are few results concerning the well-posedness for (4.7). The
main reason is that the usual Strichartz estimates derived by the decay estimates
have a loss of derivative except the trivial one L>°L2. Thus one may need to use
other methods, for example, local smoothing effect methods, and the X s,b space.
These methods should certainly provide some results, at least when p is an even
integer.

However, in the radial case, we obtain additional Strichartz estimates for (4.7),
some of which do not have a loss in derivative. Our idea is to exploit these esti-
mates. The equation (4.7) has the following two symmetries.

(1) Scaling invariance: for all 1 > 0, (4.7) is invariant under the transformation

u(t, x) = A°Pu(A°t, Ax), up(x) = A°Puy()x).

(i) Conservation laws: if u is a smooth solution of (4.7), then

d .
dr / |u|2dx =0 (conservation of mass),
R)’l

d
At / I zu‘z — i 2|u|1’+2abc =0 (conservation of energy).
R7 p

Then we see the space H*, where s, = ; — Z is critical in the sense of scaling;
u = —1 is the defocusing case, while ¢ = 1 corresponds to the focusing case. We

require the following lemma.

Lemma 4.6 (Fractional chain rule [5]). Suppose G € C!(C), s € (0, 1], and

1 _ 1,1
1 <p,p1,p2 < ooaresuchthatp =0t Then

HVIG@I,SIG @y, 11V ullp,
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In view of the conservation laws, we only consider the nonlinear terms between
mass-critical and energy-critical, namely, 20/n < p < 2¢/(n — o). First we con-
sider the critical H* well-posedness theory of (4.7). For simplicity of notation, we
set S,(1) = e'V=A,

Theorem 4.7. Assumen > 2,2n/2n—1) <o <2,p > 2: S = g — ; and
ug € H* is radial. Then the IVP (4.7) has the following properties.
(1) Small data scattering: if ||ug|lgs. < O for some 6 K 1, then there exist a
unique global solution

2n(p+2)

ue CR : H*) NLPPLI"™ (R x R"),

and uy € H such that ||u — S,(Ou||gs. — 0, ast — Fo0.
(2) Large data local well-posedness: there exists a unique solution

2n(p+2)

ue C(=T,T): H*) ﬂL’,”zL)?(”‘”“”” (=T, T) x R"Y
for some T =T (up) > 0.

Proof. Since o > 2n/(2n—1), it follows that 2(n+0o)/n > 2(2n+1)/2n—1).
Thus it is easy to see that (2 + Zn”, 2+ 2:) is an n-D radial Schrodinger admissible

pair. By Proposition 3.9, we then get ||S,(H)ug|| ,,20
LW (RxRA

this with the trivial estimate [|Sq(0)uo || Loor2r xR <lluoll 12> We get more estimates.

) Slluoll 2. Interpolating

The key point is that these Strichartz estimates are without loss of regularity.
With these estimates, the proof is quite standard; see, for example, [19]. First
we show part (1). By Duhamel’s principle,

u =, (u) =Se(Nuo + u / So(t — $)(|ulPu)(s)ds,
0

Take ) )

+
g=G=p+2, r=p= 0+
2(n—o)+np

It is easy to verify that (g, ), (G, 7) satisfy the conditions in Proposition 3.9 with
y = 0. Then we define the sets

By ={u e LHF R x R") 1 lullgopse < 2lluollme + Cn)(2n)' 7},
By ={u e LIW; " R x R") 1 Null peyer < 20, llullygr, < 2Cm)luollLz},

with some sufficiently small # > O to be determined later, and consider the set
X = B; N B, endowed with the metric d(u,v) := [lu — vl[z9,. It is easy to see
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that (X, d) is complete. We show that the solution map ®,, with the initial data
condition

(4.8) luollpse < n << 1.

is a contraction on (X, d).
First we show that @, maps X into itelf. It is easy to see that since ¢’ =
@P+2)/(p+1)andr’ =2n(p+2)/2(n+ o)+ np),

1 1 1 1 1 20
+

= = + .
a q pg r r np+2)
Then by Proposition 3.9, the fractional chain rule Lemma 4.6, and Sobolev em-
bedding, we find that for u € X,
1Dy @l orzeascrry < Nollze + CEIV)>*(ulP)ull g,

< ol e +C(n)“<V>SCU||L7L;||U||[)(’ i
LiL, 2

1 x

< Nuollzze + C(m)2n+2C M uoll )NV I*ulls),
< Nuolluye + C ()20 +2C (M) lluoll2)(2n)".

Similarly,

1D @llarr < C@lluollzz + C@I(lul”)ull
< C(@)lluoll 2 +2C(@)?lluoll 2 (2nY

q
L Ly

and

VI @l < VIS @il oz +C(m2nPt!
< C(mn+Cm2n)P.
Thus, choosing 79 = #o(n) sufficiently small, we see that for 0 < 5 < 5, the

functional ®,, maps the set X into itself. To see that ®,, is a contraction, we
repeat the computations above and get

194, @0) = oy )2, < C@II e = (o101l
< C@)2n)’llu = vll Lo,
for u, v € X. Thus for sufficiently small #, the map ®,, is a contraction. By the

Contraction Mapping Theorem, it follows that ®,, has a unique fixed point in X.
The rest of part (1) (e.g., uniqueness) follows from standard arguments; see [19].
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To show part (2), we observe that since g # oo,

}ig}) H |V|SCS”(Z)uO”L?e[fT,TIL; =0.

Part (2) then also follows from standard fixed-point arguments. O

The following corollary, whose proof is omitted, follows easily by similar ar-
guments and the conservation laws.

Corollary 4.8 (H°® subcritical). Assume n > 2,2n/2n— 1) < o0 < 2 and
uo is radial. Then for 0 < p < 20/n, the IVP (4.7) is globally well-posed if
ug € L>. Moreover, for 26/n < p < 20/(n — 20), the IVP (4.7) is locally well-
posed (globally well-posed in the defocusing case) if uy € H/?.

Indeed, we can also prove some other subtle well-posedness results. We can
also go below L2, as long as o is close to 2; however, we do not pursue this here. On
the other hand, in the H *-critical case, we assumed u( € H* instead of uy € H* as
in the work of Cazenave and Weissler [2]. This makes the proof much simpler [19].
We will address this in subsequent works which concern the large data scattering
theory for (4.7).

Acknowledgments. The authors are very grateful to Victor Lie for helpful
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