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Abstract. Motivated by the work of D. Y. Kleinbock, E. Lindenstrauss, G. A.

Margulis, and B. Weiss [8, 9], we explore the Diophantine properties of probabil-

ity measures invariant under the Gauss map. Specifically, we prove that every such

measure which has finite Lyapunov exponent is extremal, i.e., gives zero measure

to the set of very well approximable numbers. We show, on the other hand, that
there exist examples where the Lyapunov exponent is infinite and the invariant

measure is not extremal. Finally, we construct a family of Ahlfors regular mea-

sures and prove a Khinchine-type theorem for these measures. The series whose

convergence or divergence is used to determine whether or not µ-almost every

point is ψ-approximable is different from the series used for Lebesgue measure,

so this theorem answers in the negative a question posed by Kleinbock, Linden-

strauss, and Weiss [8].

1 Introduction

Definitions 1.1. Let ψ : N → (0,∞) be an arbitrary function. We recall that

an irrational x ∈ [0, 1] is ψ-approximable if there exist infinitely many p/q ∈ Q

such that

(1.1)

∣

∣

∣

∣

x −
p

q

∣

∣

∣

∣

≤ ψ(q).

We also recall the following facts and definitions from the classical theory of

Diophantine approximation.

• Every x is ψ-approximable when ψ(q) = q−2.

• x is badly approximable if there exists ε > 0 such that x is not ψ-

approximable when ψ(q) = εq−2. The set of badly approximable numbers

has Hausdorff dimension 1 but Lebesgue measure 0.
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• x is very well approximable if there exists c > 0 such that x is ψ-

approximable when ψ(q) = q−(2+c). The set of very well approximable num-

bers has Hausdorff dimension 1 but Lebesgue measure 0.

• x is a Liouville number if for all c > 0, the number x is ψ-approximable

when ψ(q) = q−c. The set of Liouville numbers has Hausdorff dimension 0.

1.1 Extremal measures. A measure1 µ on R is said to be extremal if the

set of very well approximable numbers is null with respect to µ. In other words, µ

behaves like Lebesgue measure with respect to very well approximable numbers.

This definition was introduced by D. Y. Kleinbock, E. Lindenstrauss, and B. Weiss

in [8] as a generalization of the notion of an extremal manifold, which was defined

by V. Sprindžuk. B. Weiss [13] proved that measures satisfying a certain decay

condition, called absolutely decaying, are extremal.

Definition 1.2. For α > 0, a measure µ on R is said to be absolutely α-

decaying if there exists C > 0 such that for all x ∈ R, for all 0 < r ≤ 1, and for

all 0 < ε ≤ 1,

(1.2) µ(B(x, εr)) ≤ Cεαµ(B(x, r)).

It is said to be absolutely decaying if it is absolutely α-decaying for some α > 0.

We recall also that for δ > 0, a measure µ on R is Ahlfors δ-regular if there

exist positive constants C1 and C2 such that

C1rδ ≤ µ(B(x, r)) ≤ C2rδ

for all x in the topological support of µ and for all 0 < r ≤ 1. Examples of

Ahlfors regular measures include Lebesgue measure and the Hausdorff measure

in the appropriate dimension on certain fractals such as the Cantor set. Clearly,

any Ahlfors δ -regular measure on R is automatically absolutely δ -decaying.

Generalizations of Weiss’s result to higher dimensions have been considered by

Kleinbock, Lindenstrauss, and Weiss [8]. However, here we consider only Weiss’s

original result and not the higher dimensional generalizations.

Let G : [0, 1] → [0, 1] be the Gauss map, i.e.,

(1.3) G(x) =







1/x − ⌊1/x⌋ x > 0,

0 x = 0,

where ⌊x⌋ is the integer part of x. A measure µ is invariant with respect to the

Gauss map if µ ◦ G−1 = µ. We consider the extremality of probability measures

1In this paper, all measures are assumed to be Borel and locally finite.
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invariant with respect to the Gauss map. Specifically, we show that if an invariant

measure µ has finite Lyapunov exponent, then µ is extremal.

Definition 1.3. If µ is a probability measure on [0, 1] invariant with respect

to the Gauss map, the number χµ(G) =
∫

log |G′|dµ is called the Lyapunov

exponent of the measure µ with respect to the Gauss map G.

Theorem 2.1. A probability measure µ on [0, 1] \ Q which is invariant with

respect to the Gauss map G and has finite Lyapunov exponent χµ(G) is extremal.

The assumption that χµ(G) is finite is very reasonable and is satisfied for a

large class of dynamically defined measures; see Section 4. In particular, there

exist measures which satisfy this assumption but are not absolutely decaying. It is

also a necessary assumption for Theorem 2.1 to hold, as seen from the following

theorem.

Theorem 4.5. There exists a measure µ invariant with respect to the Gauss

map which gives full measure to the Liouville numbers. In particular, µ is not

extremal.

1.2 A question about absolutely decaying measures. In [8], Klein-

bock, Lindenstrauss, and Weiss asked the following questions.2

Question 1.4 ([8, Question 10.1]). Let µ be an absolutely decaying measure

on R.

(a) Is it true that for every decreasing function ψ : N → (0,+∞), either the set

of ψ-approximable numbers or its complement has µ-measure 0?

(b) Is it true that for all ψ as in (a), µ-almost every point is ψ-approximable if

and only if

(1.4)

∞
∑

q=1

qψ(q) = ∞?3

We answer these questions in the negative by constructing a family of measures

on R which are Ahlfors regular (and, in particular, absolutely decaying) and yet

satisfy neither (a) nor (b).

To construct these measures, we fix a set I ⊆ N and let

JI = {x ∈ [0, 1] \ Q : the continued fraction entries of x lie in I}.

2Actually, Kleinbock, Lindenstrauss, and Weiss’s question was about friendly measures on R
d .

When restricted to one dimension, friendly measures are the same as absolutely decaying measures;

see [8, Lemma 2.2].
3In this formula, we have replaced ψ(q) by qψ(q) because of a difference in the definition of ψ-

approximability.
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Theorem 6.1. Let I ⊆ N be infinite and h be the Hausdorff dimension of JI .

Assume that the h-dimensional Hausdorff measure H
h restricted to JI is Ahlfors

h-regular. Let µ = H
h ↿JI

, and let ψ : N → (0,+∞) be such that the function

q 7→ q2ψ(q) is nonincreasing. Then µ-almost every (respectively, µ-almost no)

point is ψ-approximable, assuming that the series

(6.1)

∞
∑

q=1

q2α−1ψ(q)α

diverges (respectively, converges).

We note that the convergence case of Theorem 6.1 is a theorem of Weiss [13].

He proved this theorem for any absolutely decaying measure µ and for all func-

tions ψ : N → (0,+∞).

Note that when I = N, µ is Lebesgue measure on [0, 1] and Theorem 6.1

reduces to the classical Khinchine Theorem.

It appears that the only easy example of a set I satisfying the hypotheses of

Theorem 6.1 is the set I = N. Nevertheless, we prove the following result.

Theorem 7.1. For each 0 < δ ≤ 1, there exists an infinite set I ⊆ N such

that HD(JI ) = δ and H
δ ↿JI

is Ahlfors δ -regular.4

Combining Theorems 6.1 and 7.1 in the obvious way yields the following

corollary.

Corollary 1.5. For every 0 < α ≤ 1, there exists an Ahlfors α-regular,

and therefore absolutely α-decaying, measure µ such that for every function

ψ : N → (0,+∞) for which the function q 7→ q2ψ(q) is nonincreasing, µ-almost

every (respectively, µ-almost no) point is ψ-approximable, assuming that the se-

ries (6.1) diverges (respectively, converges).

In the case α = 1, the measure is simply Lebesgue measure.

Remark 1.6. It appears that (when α < 1) this is the first known example of

a measure µ which is neither atomic nor absolutely continuous to Lebesgue for

which a complete criterion has been given for when the set of ψ-approximable

numbers is µ-null or µ-full.

Corollary 1.7. The answer to Question 1.4 is negative (for both parts (a) and

(b)).

4Here and henceforth, HD(S) denotes the Hausdorff dimension of a set S and H
δ (S) and P

δ (S)
denote its δ -dimensional Hausdorff and packing measure, respectively.
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Proof. Fix 0 < α < 1 and let µ be the measure guaranteed by Corollary 1.5.

To see that the answer to (b) is negative, we merely note the existence of a function

ψ for which (1.4) converges but (6.1) diverges, for example,

ψ(q) =
1

q2 log1/α(q)
·

To see that the answer to (a) is negative, let y ∈ R be chosen at random with

respect to Lebesgue measure. As noted in [8] (see the paragraph immediately

following Question 10.1), the measure ν := µ ◦ (x 7→ x + y)−1 satisfies (b) of

Question 1.4. But then the measure µ + ν is also Ahlfors regular, but does not

satisfy (a); indeed, for the function ψ given above, µ-almost every point but ν-

almost no point is ψ-approximable. �

In the process of proving Theorems 6.1 and 7.1, we establish the following

criterion for determining whether Hα ↿JI
is Ahlfors regular. This improves more

complicated criteria which can be found in [10].

Theorem 5.5 (Abridged). Fix an infinite set I ⊆ N and let h = HD(JI ). The

following are equivalent.

(a) Hh(JI ) > 0 and Ph(JI ) < ∞.

(b1) H
h ↿JI

is Ahlfors h-regular.

(c1) For all y ∈ I and r ≥ 1, #(B(y, r) ∩ I ) ≍ rh.

Thus, the Ahlfors regularity of JI is equivalent to the “dual Ahlfors regularity”

of the generating set I .

Note that it is possible for (c1) to be satisfied for some h 6= HD(JI ). In such a

case, the set JI is not Ahlfors regular.

The structure of the paper is as follows. In Section 2, we prove Theorem 2.1.

In Section 3, we recall some basic definitions and theorems from the theory of

conformal iterated function systems which are needed to prove Theorems 4.5, 5.5,

6.1, and 7.1. In Section 4, we give some examples of measures which satisfy the

hypotheses of Theorem 2.1, and prove Theorem 4.5. In Section 5, we discuss

various characterizations of Ahlfors regularity and semiregularity of JI , and prove

Theorem 5.5. In Section 6, we prove Theorem 6.1. Finally, in Section 7, we prove

Theorem 7.1.

The interdependence of the sections is as follows. Section 4 depends on Sec-

tions 2 and 3; Section 5 depends on Section 3; Section 6 depends on Sections 2, 3,

and 5; Section 7 depends on Sections 3 and 5.
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2 Proof of Theorem 2.1

In this section, we prove the following theorem.

Theorem 2.1. A probability measure µ on [0, 1] \ Q which is invariant with

respect to the Gauss map G and has finite Lyapunov exponent χµ(G) is extremal.

2.1 A relation between continued fractions and Diophantine ap-

proximation. In the proof of Theorem 2.1, we make use of a relation between

the continued fraction expansion of an irrational x ∈ [0, 1] with its Diophantine

properties.

Definition 2.2. For a function ψ : N → (0,∞), x is ψ-well approximable

if it is εψ-approximable for every ε > 0.

Remark 2.3. Note that ψ-well approximability implies ψ-approximability

but not conversely. For example, if x is a badly approximable number and ψ(q) =

1/q2, then x is ψ-approximable but not ψ-well approximable.

Lemma 2.4. Let x ∈ [0, 1] be irrational, [0;ω0, ω1, . . .] the continued frac-

tion expansion of x, and (pn/qn)∞n=0 the convergents of x. Let ψ : N → (0,∞) be a

function satisfying

ψ(q) ≤
1

q2

for all q. Then x is ψ-well approximable if and only if for every K > 0, there exist

infinitely many n ∈ N such that

(2.1) ωn ≥ Kφ(qn),

where

φ(q) :=
1

q2ψ(q)
≥ 1.

Remark 2.5. Lemma 2.4 can be deduced from [7, Theorem 8.5], which is

proved in a similar manner, but we include the proof for completeness. The ideas

of this proof can also be found in the proof of [6, Theorem 32].

Proof of Lemma 2.4. Fix an irrational x ∈ [0, 1]. We recall the following

well-known facts (see, e.g., [6] or [1]):

(i) A rational approximation p/q of x such that |x − p/q| < 1/(2q2) is a conver-

gent of x.
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(ii) For every n ∈ N,

(2.2)
1

qn(qn + qn+1)
<

∣

∣

∣

∣

x −
pn

qn

∣

∣

∣

∣

<
1

qnqn+1

and

(2.3) qn+1 = ωnqn + qn−1.

It follows from (i) that for no 0 < ε ≤ 1/2 can (1.1) be satisfied for any p/q which

is not a convergent. Thus we may restrict our attention to approximations of x

which are convergents. Fix n ∈ N and note that by (2.3), qn+1 ≍ ωnqn.5 Thus (2.2)

implies
∣

∣

∣

∣

x −
pn

qn

∣

∣

∣

∣

≍
1

q2
nωn

;

and x is ψ-well approximable if and only if for every ε > 0, there exist infinitely

many n ∈ N such that
1

q2
nωn

≥ εψ(qn) =
ε

q2
nφ(qn)

·

(We are using the “ε” to absorb the constant coming from the asymptotic.) The

lemma follows by rearranging and letting K = 1/ε. �

For x ∈ [0, 1], let

(2.4) ξ (x) = ⌊1/x⌋

be the first entry in the continued fraction expansion of x, so that ξ (Gn(x)) = ωn

for all n. Let

(2.5) η = log(1 + ξ ).

Corollary 2.6. Fix an irrational x ∈ [0, 1] and let [0;ω0, ω1, . . .] be the con-

tinued fraction expansion of x. The following are equivalent.

(i) The number x is very well approximable.

(ii) There exists c > 0 such that for infinitely many n ∈ N,

(2.6) log(1 + ωn) ≥ c

n−1
∑

j =0

log(1 + ω j ),

or, equivalently,

(2.7) η(Gn(x)) ≥ c

n−1
∑

j =0

η(G j (x)).

5Here and henceforth, ≍ denotes a multiplicative asymptotic.
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Formula (2.7) is more useful than (2.6) for our ergodic theory purposes.

Proof. We first give some bounds for qn in terms of the continued fraction

entries ω0, . . . , ωn−1. The upper bound is easy: the recursion equation (2.3) im-

plies qn ≤
∏n−1

j =0(ω j + 1). For the other direction, we divide into cases according

to whether n is even or odd. If n = 2k,

qn ≥

k−1
∏

j =0

(ω2 jω2 j+1 + 1) ≥

n−1
∏

j =0

√

ω j + 1;

while if n = 2k + 1,

qn ≥ ωn−1qn−1 ≥
1
√

2

n−1
∏

j =0

√

ω j + 1.

Let t ≥ 0. Taking logarithms, we can rewrite the above inequalities as

(2.8)
1

2

n−1
∑

j =0

η(G j (x)) − log
√

2 ≤ log qn ≤

n−1
∑

j =0

η(G j (x)).

The corollary now follows immediately from (2.8) together with Lemma 2.4 and

the following characterization of the set VWA of very well approximable numbers:

an irrational x ∈ [0, 1] is very well approximable if and only if there

exists c > 0 such that x is ψ-well approximable where ψ(q) = q−(2+c).
�

Using (2.8) and Lemma 2.4, we also deduce the following corollary.

Corollary 2.7. For irrational x ∈ [0, 1], the following are equivalent:

(i) x is a Liouville number;

(ii) for all c > 0, there exist infinitely many n ∈ N for which (2.7) holds.

Remark 2.8. The well-known fact that an irrational x ∈ [0, 1] is badly ap-

proximable if and only if its continued fraction entries are bounded is also a corol-

lary of Lemma 2.4.

Proof of Theorem 2.1. First of all, note that it suffices to consider the

case where µ is ergodic with respect to G, since if χµ is finite, then χν is finite

for almost all measures ν in the ergodic decomposition of µ. Since the set VWA

is invariant with respect to the Gauss map, it follows that every ergodic measure

must give either 0 or full measure to VWA.
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Let µ be an ergodic invariant measure whose Lyapunov exponent is finite. Let

η be as in (2.4). Since η(x) ≍ −2 log(x) = log |G′(x)|, it follows that
∫

ηdµ is also

finite. On the other hand, η is a strictly positive function, and so

(2.9) 0 <

∫

ηdµ <∞.

We claim that µ is extremal. Suppose, to the contrary, that µ-almost every number

x ∈ [0, 1] is very well approximable. It then follows from Corollary 2.6, (2.9), and

the Birkhoff Ergodic Theorem that for µ-almost all such numbers x,

lim inf
n→∞

1

n

n−1
∑

j =0

η(G j (x)) ≤
1

cx

lim sup
n→∞

1

n
η(Gn(x)) = 0,

where cx > 0 comes from Corollary 2.6. Invoking the Birkhoff Ergodic Theorem

again, we conclude that
∫

ηdµ ≤ 0. This contradiction finishes the proof. �

3 Iterated function systems and conformal measures

Our main example of a measure invariant with respect to the Gauss map is the

unique invariant probability measure absolutely continuous to a conformal mea-

sure associated with an iterated function system consisting of inverse branches of

the Gauss map. In this section, we recall some definitions and main theorems. All

theorems in this section, except for those in Subsection 3.5, were first proved in

[10] and then, in a more general context, in [11].

3.1 IFSs and continued fractions. For each i ∈ N, the mapping

gi : [0, 1] → [0, 1] defined by gi (x) = 1/(i + x) is an inverse branch of the Gauss

map G. For each I ⊆ N, the collection of maps SI = {gi}i∈I is a conformal iterated

function system IFS; see [10] or [11] for the definition.

Given ω = ω0ω1ω2 . . . ωn−1 ∈ Nn, let

gω := gω0
◦ gω1

. . . ◦ gωn−1
: [0, 1] → [0, 1],

so that

gω(x) =
1

ω0 +
1

ω1 +
1

. . . +
1

ωn−1 + x

.



298 LIOR FISHMAN, DAVID SIMMONS, AND MARIUSZ URBAŃSKI

In particular, gω(0) = [0;ω0, ω1, . . . , ωn−1]. The set JI =
⋂

n∈N

⋃

ω∈IN gω([0, 1]).

is called the limit set of the IFS SI . It coincides with the set of irrational numbers

in [0, 1] whose continued fraction entries all lie in I . If I is infinite, the set JI \ JI

consists of the set of rational numbers whose continued fraction entries all lie in I .

Moreover, JI is forward invariant under the Gauss map G, i.e., G(JI ) = JI .

3.2 A formula for the Hausdorff dimension of JI . Fix I ⊆ N. A

famous formula of R. Bowen relates the Hausdorff dimension of JI to an invariant

of the IFS SI .

Given t ≥ 0, the limit

PI (t) := lim
n→∞

1

n
log

∑

ω∈In

‖g′
ω‖

t
∞)

exists. This limit is called the topological pressure of the IFS SI at t.

Theorem 3.1 (Bowen’s formula [11, Theorem 4.2.13]). For all I ⊆ N,

HD(JI ) = inf{t ≥ 0 : PI (t) ≤ 0}.

In particular, HD(JI ) is the unique zero of PI if such a zero exists.

We also need the following result.

Theorem 3.2 ([11, Theorem 2.1.5]). Given t ≥ 0, for each set I ⊆ N,

PI (t) = lim
N→∞

PI∩{1,...,N }(t).

3.3 Conformal measures. Conformal measures are an important tool for

understanding the geometry of the limit set JI . In many cases, they coincide with

either the normalized Hausdorff measure or the normalized packing measure.

Definition 3.3. Fix t ≥ 0 and I ⊆ N. A probability measure m on [0, 1] is

called t-conformal with respect to the iterated function system SI if m(JI ) = 1

and

m(gi(A)) =

∫

A

|g′
i |

tdm

for every Borel set A ⊆ [0, 1] and for every i ∈ I .

Definition 3.4. Fix I ⊆ N. The system SI is said to be regular if there exists

t ≥ 0 such that PI (t) = 0.

Proposition 3.5 ([11, Theorem 4.2.9]). Fix I ⊆ N. The following are equiv-

alent:
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(a) the IFS SI is regular;

(b) there exists a measure m and t ≥ 0 such that m is t-conformal.

Furthermore, when these conditions are met, m and t are both unique and P(t) = 0.

Corollary 3.6. Let t ≥ 0 and I ⊆ N. Then, if P(t) = 0, there exists a measure

m which is t-conformal.

Proof. Since P(t) = 0, the IFS SI is regular, so, by Proposition 3.5, there exist

a measure m and t′ ≥ 0 such that m is t′-conformal and P(t′) = 0. But since P is

strictly decreasing ([11, Proposition 4.2.8(b)]), t = t′, so m is t-conformal. �

Proposition 3.7. Let I ⊆ N, and suppose that the IFS SI is regular. Let mI be

the unique conformal measure and h = HD(JI ), so that mI is h-conformal. Then

there exists a unique G-invariant Borel probability measure µI on JI , absolutely

continuous with respect to mI . This measure is ergodic and equivalent to mI . The

logarithm of the corresponding Radon-Nikodym derivative is a bounded function

on JI .

Proof. See [11, Theorem 2.4.3 and Corollary 2.7.5(c)]. �

Proposition 3.8.

(a) If the hI -dimensional Hausdorff measure of JI is positive (it is always finite),

then the system SI is regular, and

mI =
HhI ↿JI

HhI (JI )
·

(b) If the hI -dimensional packing measure of JI is finite (it is always positive),

then the system SI is regular, and

mI =
P

hI ↿JI

PhI (JI )
·

Proof. An argument analogous to the proof of the change of variables for-

mula demonstrates that both of the above expressions are hI -conformal. The result

therefore follows from Proposition 3.5. �

3.4 Regularity properties of the IFS SI . Fix I ⊆ N. In this subsection,

we discuss properties of the IFS SI which are stronger than regularity.

Let θI := inf{t ≥ 0 : PI (t) < +∞}.
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Proposition 3.9.

θI = inf
{

t ≥ 0 :
∑

i∈I

‖g′
i‖

t
∞ < +∞

}

= inf
{

t ≥ 0 :
∑

i∈I

i−2t < +∞
}

.

Proof. The first equality is [11, Proposition 4.2.8(a)]. The second equality

follows from the fact that ‖g′
i‖∞ = i−2 for all i ∈ N. �

Definition 3.10. Fix I ⊆ N. The system SI is said to be strongly regular if

there exists t ≥ 0 such that 0 < PI (t) < +∞ and is called cofinitely regular (or

hereditarily regular) if PI (θI ) = +∞.

Proposition 3.11 ([11, Theorem 4.3.5]).

(a) Every cofinitely regular system is strongly regular, and every strongly regular

system is regular.

(b) For each strongly regular system SI , HD(JI ) > θI .

Proposition 3.12 ([11, Theorem 4.3.4]). Let I ⊆ N. The system SI is co-

finitely regular if and only if the series
∑

i∈I ‖g′
i‖
θI
∞ =

∑

i∈I i−2θI diverges.

Recall from Definition 1.3 that the Lyaponov exponent of a probability mea-

sure on [0, 1] invariant wirh respect to the Gauss map G is given by χµ(G) =
∫

log |G′|dµ.

Proposition 3.13. Fix I ⊆ N. If the system SI is strongly regular, then

χµI
(G) < +∞.

Proof. By Proposition 3.11(b), hI > θI . Fix θI < t < hI . Then by the

definition of θI , the series
∑

i∈I i−2t converges. Now we can estimate the Lyapunov

exponent of µI as follows.
∫

log |G′|dµI ≍

∫

ηdmI =
∑

i∈I

log(1 + i)mI (gi([0, 1]))

≍
∑

i∈I

log(1 + i)i−2hI .
∑

i∈I

i−2t <∞. �

3.5 Two lemmas. The lemmas given in this subsection are used several

times throughout the remainder of the paper.

For each set I ⊆ N and t ≥ 0, let λt(I ) = ePI (t).

Lemma 3.14 ([5, Lemma 4.3]). Fix δ > 0. Let i ≥ 2, and let I be a finite

subset of N \ {i}. Then

(3.1) λδ (I ) +

(

1

i + 1

)2δ

≤ λδ (I ∪ {i}) ≤ λδ (I ) +

(

2

i + 2

)2δ

·
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Remark 3.15. Applying Theorem 3.2 to this lemma, we conclude that (3.1)

holds for all sets I ⊆ N \ {i}.

Recall that we have defined ξ (x) = ⌊1/x⌋ to be the first entry of the continued

fraction expansion of x. For any ω ∈ Nn, let

Sω := gω([0, 1]) = {x ∈ [0, 1] : ξ (G j (x)) = ω j for all j = 0, . . . , n − 1},

i.e., Sω is the set of all numbers whose continued fraction expansions begin with

the sequence ω0, . . . , ωn−1. Furthermore, for each k ∈ N let S+
ω,k =

⋃

i≤k Sωi .

Lemma 3.16. Fix I ⊆ N, and suppose that the IFS SI is regular. Let hI be the

Hausdorff dimension of JI and mI the unique hI -conformal measure of SI . Then

(3.2)
mI (Sωi)

mI (Sω)
≥

1

4hI
i−2hI

and

(3.3)
mI (S

+
ω,k)

mI (Sω)
≤ 1 −

1

4hI

∑

i∈I
i>k

i−2hI .

Proof. It is clear that (3.3) follows from (3.2). To prove (3.2), note that since

mI is hI -conformal,

mI (Sωi)

mI (Sω)
=

mI (gωi([0, 1]))

mI (gω([0, 1]))
=

∫

|(g′
ωi(x)|hI dmI (x)

∫

|g′
ω(x)|hI dmI (x)

≥
min[0,1] |g

′
ω|

hI

max[0,1] |g′
ω|

hI
min
[0,1]

|g′
i |

hI .

On the other hand (see [10, line -10 of p. 4997] or by direct computation),

max[0,1] |g
′
ω|

min[0,1] |g′
ω|

≤ 4,

which yields (3.2). �

4 Extremality of conformal measures

Fix I ⊆ N and suppose that the IFS SI is regular. In this section, we discuss the

extremality of the measures mI and µI defined in Section 3. Since mI and µI are

absolutely continuous with respect to one another, mI is extremal if and only if µI

is.

By Theorem 2.1, if χµI
< ∞, then µI is extremal. By Proposition 3.13, if SI

is strongly regular, then χµI
< ∞. The following proposition gives very general

sufficient conditions for SI to be strongly regular.
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Proposition 4.1. Let I ⊆ N, Each of the following four conditions entails

strong regularity of the iterated function system SI , and thus the extremality of the

measures mI and µI .

(a) I is finite.

(b) The series
∑

a∈I a−2θI diverges.

(c) The Hausdorff dimension of the limit set of the IFS is strictly greater than

1/2.

(d) 1, 2 ∈ I .

Proof. Item (a) follows directly from the definition (since 0 < PI (0) < ∞).

Item (b) follows from Proposition 3.11(a) and Proposition 3.12. Item (c) follows

from [11, Theorem 4.3.10] along with the observation that θI ≤ θN = 1/2. Item (d)

follows from item (c) and the fact, proved in [3], that h{1,2} = HD(J{1,2}) > 1/2.�

Remark 4.2. In case (a), the extremality of µI is obvious since µI ’s topo-

logical support JI is contained in the set of badly approximable numbers; see

Remark 2.8.

Remark 4.3. The main result of [12], namely, the extremality part of Theo-

rem 4.5 of that paper, can be deduced from Proposition 4.1(b).

Example 4.4. Fix a ≥ 2 and let I be the geometric series I = {a, a2, . . .}.

Then condition (b) of Proposition 4.1 is satisfied. Thus the measureµI is extremal.

On the other hand, µI is not absolutely decaying (see below), so the extremality

of µI does not follow from Weiss’s theorem [13].

Proof that µI is not absolutely decaying. Fix n ∈ N, and let

xn = a−n ∈ JI . Then

B

(

xn,
1

an
−

1

an + 1

)

∩ JI = B

(

xn,
1

an
−

1

an+1

)

∩ JI .

If µ were absolutely α-decaying, we would therefore have

1 =
µ
[

B
(

xn,
1
an − 1

an+1

)]

µ
[

B
(

xn,
1
an − 1

an+1

)] ≤ C

(

1
an − 1

an+1
1
an − 1

an+1

)α

≍

(

1/a2n

1/an

)α

=
1

anα
,

which, for sufficiently large n, is a contradiction. �

The remainder of this section is devoted to proving the following theorem.
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Theorem 4.5. There exists a measure µ invariant with respect to the Gauss

map which gives full measure to the Liouville numbers. In particular, µ is not

extremal.

The measure µ is of the form µI for some I ⊆ N defining a regular system SI .

Proof. Fix 0 < δ ≤ 1/2. Then define a sequence of finite subsets IN ⊆ N

recursively in the following manner.

1. Let I0 = ∅.

2. Suppose that the set IN−1 has been defined. Let MN−1 = max(IN−1). (By

convention let max(∅) = 0.)

3. Choose mN ∈ N so large that

log(1 + mN ) ≥ N 4N log(1 + MN−1),
(

2

mN + 2

)2δ

≤ 2−N .

4. Let RN ⊆ {mN , . . .} be a finite set satisfying

(4.1) 1 − 2−(N−1) ≤ λδ (IN−1 ∪ RN ) < 1 − 2−N .

(The existence of such a set is verified below.)

5. Let IN = IN−1 ∪ RN and then go back to step 2.

We now check that in step 4, it is always possible to find a set RN which satisfies

(4.1). We first claim that

(4.2) λδ (IN−1) < 1 − 2−N < λδ (IN−1 ∪ {mN , . . .}).

Indeed, the left inequality follows from the induction hypothesis (or by direct com-

putation in the case N = 1). The right hand side follows from Lemma 3.14 and

the fact that the series
∑∞

i =mN
(i + 1)−2δ diverges (since δ ≤ 1/2).

It follows from (4.2) that there exists K ∈ {mN , . . .} such that

λδ (IN−1 ∪ {mN , . . . ,K }) < 1 − 2−N ≤ λδ (IN−1 ∪ {mN , . . . ,K + 1}).

Let RN = {mN , . . . ,K }. By Lemma 3.14, we have

λδ (IN−1 ∪ {mN , . . . ,K }) ≥ λδ (IN−1 ∪ {mN , . . . ,K + 1}) −

(

2

(K + 1) + 2

)2δ

≥ 1 − 2−N − 2−N = 1 − 2−(N−1),

which proves (4.1))
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Let I =
⋃

N IN . By Theorem 3.2, λδ (I ) = 1, and thus PI (δ ) = 0. By Corol-

lary 3.6 and Proposition 3.7, HD(JI ) = δ , and there exist a δ -conformal measure

mI and an absolutely continuous G-invariant measure µI .

To complete the proof, we need to show that mI , and thusµI , gives full measure

to the set of Liouville numbers. To this end, fix N ∈ N. By Lemma 3.14,

(4.3) 1 − λδ (I ∩ {1, . . . ,MN }) ≤
∑

i∈I
i>MN

(

2

2 + i

)2δ

≤ 4δ
∑

i∈I
i>MN

(

1

1 + i

)2δ

·

Fix ω = (ω j )
n−1
j =0 ∈ Nn. It then follows from (3.3) and (4.3) that

mI (S
+
ω,MN

)

mI (Sω)
≤ 1 −

1

16δ
(1 − λδ (I ∩ {1, . . . ,MN })),

where Sω and S+
ω,k are defined before Lemma 3.16. Invoking (4.1) gives

(4.4)
mI (S

+
ω,MN

)

mI (Sω)
≤ 1 − c2−N ,

where c = 1/16δ . Now for each n ∈ N, let

Sn,N = {x ∈ [0, 1] : ξ (G j (x)) ≤ MN for all j = 0, . . . , n − 1}.

Formula (4.4) yields
mI (Sn+1,N )

mI (Sn,N )
≤ 1 − c2−N .

Iterating yields mI (Sn,N ) ≤ (1 − c2−N )n. Letting n = 4N , we see that mI (S4N ,N ) ≤

e−c2N

, and thus
∑∞

N =0 mI (S4N ,N ) < ∞. Thus, by the Borel-Cantelli lemma, mI -

almost every point x ∈ JI lies in only finitely many sets of the form S4N ,N . We now

show that every such x is a Liouville number. By Corollary 2.7, it suffices to prove

that for all c > 0,

(4.5) η(Gn(x)) ≥ c

n−1
∑

j =0

η(G j (x))

for infinitely many n ∈ N, where η is defined as in 2.5. Indeed, for all but finitely

many N ∈ N, x /∈ S4N ,N , and so there exists n ≤ 4N such that ξ (Gn(x)) > MN .

Without loss of generality, we may assume that n is minimal with respect to this

property, i.e., ξ (G j (x)) ≤ MN for all j < n. Now, since I does not contain any

numbers between MN and mN +1, it follows that ξ (Gn(x)) ≥ mN +1, and thus

η(Gn(x)) ≥ log(1 + mN +1) = N 4N log(1 + MN )

≥ N

n−1
∑

j =0

log(1 + ξ (G j (x))) = N

n−1
∑

j =0

η(G j (x)).
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This proves that (4.5) has infinitely many solutions. The proof of Theorem 4.5 is

complete. �

5 Combinatorial characterizations of Ahlfors regular-
ity

In this section, we prove Theorem 5.5, which gives a combinatorial characteriza-

tion of Ahlfors regularity of JI . We begin by recalling the following theorems.

Theorem 5.1 ([10, Theorem 4.1]). Let I ⊆ N, and suppose that the IFS SI is

regular. Let h = HD(JI ) and mI be an h-conformal measure. Then the following

are equivalent:

(a) Hh(JI ) > 0;

(b)

(5.1) sup
k1<k2

(k1k2)h

(k2 − k1)h

∑

i∈I
k1≤i≤k2

i−2h <∞;

(c) mI is Ahlfors h-lower regular, i.e.,

mI (B(x, r)) . rh for all x ∈ JI and all r ≤ 1.

Proof. The equivalence of (a) and (b) is proved in [10, Theorem 4.1]. The im-

plication (a)⇒(c) follows from the last line of the proof of the implication (c)⇒(a)

of [11, Theorem 4.5.3] (just before the mass distribution principle is applied). Fi-

nally, the implication (c)⇒(a) is the mass distribution principle; see [2, p. 55]. �

Theorem 5.2 ([10, Theorem 5.1]). Let I ⊆ N be infinite, and suppose that

the IFS SI is regular. Let h = HD(JI ), and let mI be an h-conformal measure.

Then the following are equivalent:

(a) P
h(JI ) < ∞;

(b)

inf
k1<k2

B
(

2k1k2
k1+k2

,1
)

∩I 6=∅

(k1k2)h

(k2 − k1)h

∑

i∈I
k1≤i≤k2

i−2h > 0 and inf
k≥1

kh
∑

i∈I
i≥k

i−2h > 0.

(c) mI is Ahlfors h-upper regular, i.e.,

mI (B(x, r)) & rh for all x ∈ JI and r ≤ 1.

Note that the assumption that I is infinite is necessary; indeed, every finite IFS

satisfies (a) and (c) but not (b).
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Proof. The equivalence of (a) and (b) is proved in [10, Theorem 5.1]. The im-

plication (a)⇒(c) follows from the last line of the proof of the implication (c)⇒(a)

of [11, Theorem 4.5.5] (just before the mass distribution principle for packing

measure is applied). Finally, the implication (c)⇒(a) is the mass distribution prin-

ciple for packing measure. �

We can add new equivalences to Theorems 5.1 and 5.2.

Theorem 5.3. (a)–(c) of Theorem 5.1 are equivalent to the following condi-

tion:

(d) (i) for all y ∈ N and for all 1 ≤ r ≤ y/2, #(B(y, r) ∩ I ) . rh and

(ii) for all k ∈ N,
∑

i∈I
i>k

i−2h . k−h.

Theorem 5.4. (a)–(c) of Theorem 5.2 are equivalent to the following condi-

tion:

(d) (i) for all y ∈ I and for all 1 ≤ r ≤ y/2, #(B(y, r) ∩ I ) & rh, and

(ii) for all k ∈ N,
∑

i∈I
i>k

i−2h & k−h.

Proof of Theorems 5.3 and 5.4. By way of illustration, we show that

Theorem 5.3(d) implies Theorem 5.1(b). The proof of the other implications are

left to the reader.

Fix k1 < k2. If I ∩ [k1, k2] = ∅, then the pair (k1, k2) does not contribute to the

supremum (5.1). Thus, suppose that I ∩ [k1, k2] 6= ∅ and fix y ∈ I ∩ [k1, k2]. Let

r = max(k2 − y, y − k1). If r ≤ y/2, then

2

3
k2 ≤ y ≤ 2k1,

r ≤ k2 − k1 ≤ 2r,

and thus by Theorem 5.3(d)(i),

(k1k2)h

(k2 − k1)h

∑

i∈I
k1≤i≤k2

i−2h ≍
(y2)h

rh

∑

i∈I
k1≤i≤k2

y−2h

= r−h#(I ∩ [k1, k2])

≤ r−h#(I ∩ B(y, r)) . r−hrh = 1.

On the other hand, suppose that r ≥ y/2. Then

k2 − k1 ≥ r ≥
k1

2
,

k2 ≥
3

2
k1,

k2 − k1 ≥
k2

3
,
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and thus by Theorem 5.3(d)(ii),

(k1k2)h

(k2 − k1)h

∑

i∈I
k1≤i≤k2

i−2h ≤
(k1k2)h

(k2/3)h

∑

i∈I
i≥k1

i−2h

≍ kh
1

∑

i∈I
i≥k1

i−2h . kh
1k−h

1 = 1

Thus, either way, we have

(k1k2)h

(k2 − k1)h

∑

i∈I
k1≤i≤k2

i−2h . 1,

which is equivalent to (5.1). �

If we restrict our attention to sets I which satisfy both the conditions of Theo-

rem 5.1 and those of Theorem 5.2, we get even more characterizations.

Theorem 5.5. Let I ⊆ N be infinite and h = hI = HD(JI ). Then (a)–(c3)

below are equivalent and imply (d)–(e):

(a) H
h(JI ) > 0 and P

h(JI ) < ∞;

(b1) Hh ↿JI
is Ahlfors h-regular;

(b2) P
h ↿JI

is Ahlfors h-regular;

(b3) the IFS SI is regular, and mI is Ahlfors h-regular;

(b4) the IFS SI is regular, and µI is Ahlfors h-regular;

(c1) for all y ∈ I and r ≥ 1,

(5.2) #(B(y, r) ∩ I ) ≍ rh;

(c2) (i) (5.2)) holds for all y ∈ I and 1 ≤ r ≤ y/2, and

(ii) there exists m ∈ N such that for all k ∈ N, [k,mk] ∩ I 6= ∅;

(c3) (i) (5.2) holds for all y ∈ I and 1 ≤ r ≤ y/2, and

(ii) for all k ∈ N,

(5.3)
∑

i∈I
i>k

i−2h ≍ k−h;

(d) θI = h/2;

(e) the IFS SI is cofinitely regular.

Proof. Let us first assume that SI is regular. Then the equivalence of (a), (b3),

and (c3) follows directly from Theorems 5.3 and 5.4. The equivalence of (b3) and

(b4) follows from Proposition 3.7. To see that (b1) and (b3) are equivalent, note
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that by Proposition 3.8(a), if the equivalence fails, then H
h(JI ) = 0. But in this

case, clearly (b1) and (a) are both false, so since (a) is equivalent to (b3), it follows

that (b1)⇔(b3). A similar argument yields the equivalence of (b2) and (b3).

We next show that (c1)⇔(c2)⇔(c3)⇒(d), (e). In these proofs we do not as-

sume regularity of SI .

Proof of (c3)⇒(c2). Suppose that (c3) holds. Let C be the implied constant of

(5.3), and let m = ⌈C2/h⌉ + 1, where ⌈·⌉ denotes the ceiling function. Then for any

k ∈ N,
∑

i∈I
i>mk

i−2h ≤ C(mk)−h < C−1k−h ≤
∑

i∈I
i>k

i−2h,

which demonstrates that [k,mk] ∩ I 6= ∅.

Proof of (c2)⇒(c1), (c3), (d), (e). Suppose that (c2) holds. We claim that

(5.4) #(I ∩ [k, 3mk]) ≍ kh

for all k ∈ N. Indeed, the upper bound can be achieved by covering I ∩ [k, 3mk] by

finitely many sets of the form B(y, y/2), where y ∈ I ∩[k, 3mk], and applying (5.2).

The lower bound follows from choosing a point y ∈ I ∩ [2k, 2mk] and applying

(5.2) to the set B(y, y/2).

From (5.4), we calculate that for all t ≥ 0 and k ∈ N,

∑

i∈I
i>k

i−2t ≍
∑

n∈N

∑

i∈I
(3m)nk<i≤(3m)n+1k

i−2t ≍
∑

n∈N

[(3m)nk]h[(3m)nk]−2t,

which diverges if t ≤ h/2 and is otherwise asymptotic to kh−2t < ∞. Special-

izing to the case t = h yields (c3). Applying Proposition 3.9 yields (d). Finally,

Proposition 3.7 yields (e).

To prove (c1), fix y ∈ I and r ≥ 1. If r ≤ y/2, then we obtain (5.2) for free.

Thus, suppose r > y/2. Let N = ⌈log3m(y + r)⌉. Then

B(y, r) ⊆

N
⋃

n=0

[

(3m)n, (3m)n+1
]

.

On the other hand, for each n ≤ N we have, from (5.4),

#
(

I ∩
[

(3m)n, (3m)n+1
])

≍ [(3m)n]h,

and summing yields

#(B(y, r) ∩ I ) . [(3m)N ]h ≍ rh.

To get the lower bound, note that

#(B(y, r) ∩ I ) ≥ #(B(y, y/2) ∩ I ) ≍ (y/2)h ≍ yh.
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This bound is good enough unless r ≥ y. In case r ≥ y, let k = ⌊r/(3m)⌋; then

(5.4) yields the bound.

Proof of (c1)⇒(c2). The proof is similar to the proof of (c3)⇒(c2).

This completes the proof of the theorem in the case where SI is regular.

Suppose now that SI is not regular. Then (b3) and (b4) are clearly false. Ap-

plying parts (a) and (b) of Proposition 3.8 yields that (a), (b1), and (b2) are false.

Applying part (a) of Proposition 3.11 yields that (d) is false. Since (c1), (c2), and

(c3) are equivalent and imply (d), and the proof of this does not depend on the

regularity of SI , we see that (c1)-(c3) are also false. This completes the proof of

the theorem. �

6 Proof of Theorem 6.1

In this section, we prove the following theorem.

Theorem 6.1. Let I ⊆ N be infinite and h be the Hausdorff dimension of JI .

Assume that the h-dimensional Hausdorff measure Hh restricted to JI is Ahlfors

h-regular. Let µ = H
h ↿JI

, and let ψ : N → (0,+∞) be such that the function

q 7→ q2ψ(q) is nonincreasing. Then µ-almost every (respectively, µ-almost no)

point is ψ-approximable, assuming that the series

(6.1)

∞
∑

q=1

q2α−1ψ(q)α

diverges (respectively, converges).

Proof. As noted in the Introduction, the convergence case follows from

Weiss’s theorem [13].

Fix a function ψ : N → (0,∞) such that that the series (6.1) diverges and

that the function q 7→ q2ψ(q) is nonincreasing. By Proposition 3.8(a), we have

mI ≍ Hh ↿JI
; so to prove the theorem, it suffices to show that mI -almost every

number is ψ-approximable. In fact, we prove the (slightly) stronger statement that

mI -almost every number is ψ-well approximable.

By (b1)⇒(e) of Theorem 5.5, the iterated function system SI = {ga}a∈I is

cofinitely regular. Thus, the Lyapunov exponent of µI is finite (Proposition 3.13

and Proposition 3.11(a)); in particular, 0 <
∫

ηdµI < ∞ (see (2.9)), where η is

defined as in Definition (2.5). Hence, by the Birkhoff Ergodic Theorem,

1

n

n−1
∑

j =0

η(G j (x))−→
n

E :=

∫

ηdµI
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for µI -almost every x ∈ [0, 1]. Combining the above equation with (2.8) gives

(6.2)
E

2
≤ lim inf

n→∞

1

n
log(qn) ≤ lim sup

n→∞

1

n
log(qn) ≤ E.

Let x ∈ [0, 1] be a point at which (6.2) holds but which is not ψ-well approx-

imable. By Lemma 2.4, there exists K > 0 such that for all n ∈ N, (2.1) fails to

hold. Combining (6.2), the negation of (2.1), and the fact that φ(q) = 1/q2ψ(q) is

nondecreasing yields

(6.3) ωn = ξ (Gn(x)) ≤ Kφ(γn)

for all n sufficiently large, where γ = 1 + ⌈eE⌉. By increasing K , we can ensure

that (6.3) holds for all n ∈ N.

Thus, we are done once we show that the set of x for which there exists K such

that (6.3) holds for all n ∈ N is a null set. Given n ∈ N and K > 0, let

Sψ,n,K = {x ∈ JI : (6.3) holds for n,K }

and S+
ψ,n,K =

⋂n−1
j =0 Sψ, j,K . To complete the proof of Theorem 6.1, we now show

that

(6.4) mI

(

S+
ψ,∞,K

)

= 0 for all K > 0.

Fix K > 0. For each n ∈ N, let kn = Kφ(γn). In the notation of Lemma 3.16,

we have

Sψ,n,K =
⋃

ω∈An

Sω, Sψ,n+1,K =
⋃

ω∈An

S+
ω,kn
,

where An =
∏n−1

j =0{1, . . . , k j }.

It therefore follows from (3.3) that

mI (S
+
ψ,n+1)

mI (S+
ψ,n)

≤ 1 −
1

4hI

∑

i∈I
i>kn

i−2hI .

On the other hand, by the implication (b1)⇒(c3) of Theorem 5.5, we have

(6.5)
∑

i∈I
i>kn

i−2h ≍ k−h
n ≍ φ(γn)−h.

Thus, for some constant K2 > 0 depending on K ,

mI (S
+
ψ,n+1,K )

mI (S
+
ψ,n,K )

≤ 1 − K2φ(γn)−h;
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and hence

mI (S
+
ψ,∞,K ) ≤

∞
∏

n=0

(

1 − K2φ(γn)−h
)

,

which vanishes if the series

(6.6)

∞
∑

n=0

φ(γn)−h

diverges. Now, by Cauchy’s condensation test, (6.6) diverges if and only if (6.1)

diverges. This establishes (6.4), completing the proof of Theorem 6.1. �

7 Proof of Theorem 7.1

In this section, we prove the following theorem.

Theorem 7.1. For every 0 < δ ≤ 1, there exists an infinite set I ⊆ N such

that HD(JI ) = δ and H
δ ↿JI

is Ahlfors δ -regular.

Fix 0 < δ ≤ 1. If δ = 1, we let I = N; the conclusion of the theorem then

holds since H
δ ↿JI

is simply Lebesgue measure. Thus, we may assume that δ < 1.

By the implication (c1)⇒(b1) of Theorem 5.5, to prove Theorem 7.1 it suffices to

find a set I satisfying

(7.1) HD(JI ) = δ

and

(7.2) #(B(y, r) ∩ I ) ≍ rδ .

We begin by finding a set I0 which satisfies (7.2) but not (7.1). We then construct a

set R which satisfies (7.1) but not (7.2). Finally, we combine I0 and R into a single

set Iδ which satisfies both (7.1) and (7.2).

7.1 Constructing I0.

Lemma 7.2. There exists a set I0 ⊆ N satisfying (7.2).

Proof. Let I0 be the set of all sums of the form 1 +
∑

n∈N an⌊2n/δ⌋, where

an = 0 or 1 for all n ∈ N, with only finitely many 1s. It is readily verified that I0

satisfies (7.2). �
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7.2 Constructing R. We define a sequence of subsets RN ⊆ N by induction

on N .

1. Let R1 = {1}.

2. Suppose that RN−1 ⊆ {1, . . . ,N − 1} has been defined for some N ≥ 2.

Define

Rn =







RN−1 ∪ {N } if λδ (RN−1 ∪ {N }) < 1,

RN−1 otherwise.

Observation 7.3. For all N ∈ N, λδ (RN ) < 1.

Proof. The base case follows either from direct computation or from Bowen’s

formula (Theorem 3.1); the inductive step follows from the construction of RN . �

Claim 7.4. R :=
⋃

N RN is not cofinite.

Proof. By Theorem 3.2 and by the previous observation, λδ (R) ≤ 1. Combin-

ing with Bowen’s formula, we see that HD(JR) ≤ δ < 1 = HD(JN). In particular,

R 6= N.

Thus if we suppose, by way of contradiction, that R is cofinite, then N\R has a

maximal element M . Moreover, M ≥ 2, since 1 ∈ R. But then, by the construction

of RM , λδ (RM−1 ∪ {M}) ≥ 1; and so, by Lemma 3.14,

(7.3) λδ (RM−1) ≥ 1 −

(

2

2 + M

)2δ

·

On the other hand, by Observation 7.3,

λδ (RM−1 ∪ {M + 1, . . . ,N }) = λδ (RN ) < 1

for every N ∈ N. So, applying Lemma 3.14, we see that

(

2

2 + M

)2δ

> λδ (RM−1 ∪ {M + 1, . . . ,N }) − λδ (RM−1)

≥

N
∑

i =M+1

(

1

1 + i

)2δ

>

∫ N +1

x=M+1

(

1

1 + x

)2δ

dx.

Since N is arbitrary, we can take the limit as N approaches ∞, obtaining

∫ ∞

x=M+1

(

1

1 + x

)2δ

dx <

(

2

2 + M

)2δ

·

If δ ≤ 1/2, the left hand integral diverges, a contradiction. If δ > 1/2, the left

hand integral converges, and

(M + 2)1−2δ

2δ − 1
<

(

2

2 + M

)2δ

·
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Rearranging yields

M + 2 < 22δ (2δ − 1) ≤ 22(2 − 1) = 4,

which contradicts M ≥ 2. �

Observation 7.5. It follows from (7.3), Observation 7.3, and Theorem 3.2

that HD(JR) = δ .

7.3 Combining I0 and R. Fix N1 ∈ N \ R large; how large is to be deter-

mined later.6 By the construction of RN1
, we have (7.3) with M = N1, and so

1 −

(

2

2 + N1

)2δ

≤ λδ (RN1−1) < 1.

Now let I0 be as in Lemma 7.2, and let I+ := 2I0 and I− := 2I0 − 1. It is evident

that every set Iδ ⊆ N satisfying

(7.4) I− ⊆∗ Iδ ⊆∗ I+ ∪ I−

satisfies (7.2), where A ⊆∗ B means #(A \ B) < ∞. We construct such a set

recursively. By the implication (c1)⇒(c3) of Theorem 5.57, we have

∑

i∈I−

(

2

2 + i

)2δ

≍
∑

i∈I−

i−2δ < ∞;

thus we may choose N2 so large that

(7.5)
∑

i∈I−\{1,...,N2}

(

2

2 + i

)2δ

< 1 − λδ (RN1−1).

We now construct a sequence of sets (IN )N≥N1−1 recursively in the following man-

ner.

1. Let IN1−1 = RN1−1 ∪ (I− \ {1, . . . ,N2}).

2. Suppose that IN−1 has been defined for some N ≥ N1. If N /∈ I+ ∪ {N1}, let

IN = IN−1.

3. If N ∈ I+ ∪ {N1}, and λδ (IN−1 ∪ {N }) < 1, let IN = IN−1 ∪ {N }.

4. Otherwise, let IN = IN−1.

Observation 7.6. For all N ≥ N1 − 1, λδ (IN ) < 1.

6Specifically, N1 should so large that (7.7) cannot hold whenever M ≥ N1.
7Note that the implication holds even when h 6= HD(JI ).
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Proof. The base case of induction follows from Lemma 3.14 together with

(7.7). The induction step follows from the construction of IN . �

Claim 7.7. Case 4 occurs infinitely many times.

Proof. As N1 /∈ R, Case 4 occurs at least once, namely at N = N1. Suppose,

by contradiction, that Case 4 occurs only finitely often. Then there is some max-

imal value M at which it occurs. In particular λδ (IM−1 ∪ {M}) ≥ 1. Applying

Lemma 3.14 gives

(7.6) λδ (IM−1) ≥ 1 −

(

2

2 + M

)2δ

·

On the other hand, by the above observation and by the maximality of M ,

λδ (IM−1 ∪ (I+ ∩ {M + 1, . . . ,N })) < 1

for all N ∈ N. Combining these last two formulas and then applying Lemma 3.14,

we see that

(

2

2 + M

)2δ

> λδ (IM−1 ∪ (I+ ∩ {M + 1, . . . ,N })) − λδ (IM−1)

≥

N
∑

i =M+1
i∈I+

(

1

1 + i

)2δ

·

Since N is arbitrary, we can take the limit as N approaches ∞, and this yields

(7.7) M−2δ ≍

(

2

2 + M

)2δ

>

∞
∑

i =M+1
i∈I+

(

1

1 + i

)2δ

≍ M−δ .

Since δ > 0, this is a contradiction for sufficiently large M . Thus, the proof is

completed by letting N1 be large enough so that (7.7) cannot hold for M ≥ N1. �

Now let I = Iδ =
⋃

N≥N1−1 IN . As mentioned earlier, it is clear that I satisfies

(7.2) since it satisfies (7.4). Thus to complete the proof of Theorem 7.1, it suffices

to prove (7.1). To this end, let (Mk)k be an increasing sequence of points at which

Case 4 occurs. For each k ∈ N, (7.6) holds with M = Mk , i.e.,

1 −

(

2

2 + Mk

)2δ

≤ λδ (IMk−1) < 1.

Taking the limit as k approaches ∞, we see that λδ (I ) = 1. Thus by Bowen’s

formula (Theorem 3.1), HD(JI ) = δ . This completes the proof of Theorem 7.1.
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DEPARTMENT OF MATHEMATICS

UNIVERSITY OF NORTH TEXAS

1155 UNION CIRCLE #311430

DENTON, TX 76203-5017, USA

email: urbanski@unt.edu

(Received June 28, 2012 and in revised form January 14, 2013)


