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Abstract. We deal with the Cauchy problem associated to a class of quasi-

linear singular parabolic equations with L∞ coefficients whose prototypes are

the p-Laplacian (2N/(N + 1) < p < 2) and the porous medium equation
(((N − 2)/N )+ < m < 1). We prove existence of and sharp pointwise estimates

from above and from below for the fundamental solutions. Our results can be

extended to general non-negative L1 initial data.

1 Introduction

Let us consider the homogeneous quasilinear parabolic equation

(1.1) ut = div A(x, t, u,Du), (x, t) ∈ R
N × [0,+∞),

where the functions A := (A1, . . . ,AN ) are assumed only to be measurable in

(x, t) ∈ R
N × [0,+∞) and continuous with respect to u and Du for almost all

(x, t). For the p-Laplacian type equation, we suppose that A satisfies the structure

conditions

A(x, t, u, η) · η ≥ c0|η|
p,

|A(x, t, u, η)| ≤ c1|η|
p−1

(1.2)

for almost all (x, t) ∈ R
N × [0,+∞) and (u, η) ∈ R × R

N , where

(1.3)
2N

N + 1
< p < 2

(supercritical range of the fast diffusion case) and c0, c1 are given positive con-

stants. Moreover, we assume that there exists L > 0 such that

(A(x, t, u, η1) − A(x, t, u, η2)) · (η1 − η2) ≥ 0,

|A(x, t, u1, η) − A(x, t, u2, η)| ≤ L |u1 − u2|(1 + |η|p−1),
(1.4)
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for almost all (x, t) ∈ R
N × [0,+∞) and all u, ui ∈ R and η, ηi ∈ R

N , i = 1, 2.

For the porous medium type equation, we follow the notation of [10, Chapter

7, Section 5]. Let

(1.5) ut = div A(x, t, u,Dum), (x, t) ∈ R
N × [0,+∞),

where A satisfies the conditions

A(x, t, u, η) · η ≥ c′
0|η|

2,

|A(x, t, u, η)| ≤ c′
1|η|,

(1.6)

for almost all (x, t) ∈ R
N × [0,+∞) and (u, η) ∈ R × R

N with

(1.7)
(N − 2

N

)

+
< m < 1.

We assume the monotonicity and Lipschitz conditions

A(x, t, u, η1) − A(x, t, u, η2) · (η1 − η2) ≥ 0,

|A(x, t, u1, η) − A(x, t, u2, η)| ≤ L′
∣

∣

∣
|u1|

m−1u1 − |u2|
m−1u2

∣

∣

∣
(1 + |η|).

(1.8)

These conditions are sufficient for a comparison principle and to preserve the pos-

itivity of solutions. We remark that, in fact, hypotheses (1.4) and (1.8) not only

imply a comparison principle for weak solution of (1.1), but also guarantee the

existence of the solution; see, e.g., [22].

The aim of this paper is to estimate from above and from below solutions of

(1.1) with initial datum the Dirac mass in R
N . Our results can be extended to

general non-negative L1 initial data.

Estimates for the p-Laplacian and porous medium equations (for both the slow

diffusion and fast diffusion case) have been considered by several authors; see,

e.g., [30], [31], [18] and the references therein and also [1], [4], [15], [17], [24],

[25]. In the literature, results similar to ours are proved only for the prototype

equations using comparison functions and entropy methods. Since we seek es-

timates for more general operators, we are forced to use a completely different

and more sophisticated approach, based on DiBenedetto’s techniques, recent Har-

nack inequalities, and De Giorgi estimates. One difficulty we face is that whereas

the equation gives local estimates of solutions, the global behaviour of a solution

differs significantly from its local behavior.

Fundamental solutions (i.e., solutions with initial datum a Dirac mass) of the

prototype equations are known explicitly. First, let us consider the p-Laplacian. It

is known (see, e.g., [30], [31]) that there exists Cp > 0 such that

(1.9) Bp = t−N/λ
[

Cp + γp

( |x|

t1/λ

)p/p−1]−(p−1)/(2−p)
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with

(1.10) γp =
(1

λ

)1/p−1(2 − p

p

)

and λ = N (p − 2) + p

is the solution of the Cauchy problem in R
N × (t > 0)

ut = div(|Du|p−2Du), u(x, 0) = δ (0).

Analogously, it is known (see, for instance, [30], [31]) that for porous medium

equations, there exists Cm > 0 such that

(1.11) Bm = t−N/κ
[

Cm + γm

( |x|

t1/κ

)2]−1/(1−m)

with

γm =
(1

κ

)1 − m

2
and κ = N (m − 1) + 2

is the solution of the Cauchy problem in R
N × (t > 0)

ut = 1(um), u(x, 0) = δ (0).

These solutions are positive for all time t and their decay depends on the dimension

N , whereas, in the case of a bounded domain, solutions extinguish in finite time

and their decay does not depend on N ; see, for instance, [12] and [30]. Hence, to

capture the global behaviour, we are compelled to “stretch” the local estimates.

Finally, we mention that pointwise estimates for general operators have been

considered only recently. T. Kuusi and G. Mingione ([19] and [20]) gave estimates

based on the Wolff potential for equations of the type

ut = div A(x, t, u,Du) + µ,

where A is a p-Laplacian-type operator with regular coefficients and µ is a Radon

measure. Their powerful method seems applicable only to p-Laplacian-type oper-

ators with quite regular coefficients.

Recall that a locally bounded non-negative function u(x, t) is said to be a weak

solution of (1.1) in R
N × R

+ if u ∈ C(R+; L2(RN )) ∩ Lp(R+; W 1,p(RN )), and for

every subinterval [t1, t2] ⊂ R
+,

∫

RN

uφ dx
∣

∣

∣

t2

t1
+

∫ t2

t1

∫

RN

(−uφt + A(x, t, u,Du) · Dφ)dxdt = 0

for all test functions φ ∈ W 1,2(R+; L2(RN )) ∩ Lp(R+; W 1,p(RN )). We use this def-

inition because ut may have limited regularity and, in general, has meaning as a

solution only in the sense of distributions; see, e.g., [6] and [10].
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Observe that the explicit fundamental solutions given above have less regular-

ity than is required in the our definition of a solution. In general, when the initial

datum is a measure, the gradient of the solution belongs only to the Marcinkiewicz

space of order N (p−1)/(N −1). However, the gradient raised to the power (p−1)

belongs to the Marcinkiewicz space of order N/(N −1) and therefore to L1. Hence,

a distributional solution is well defined. For a more refined theory, see [2] and [3]

for the definition of entropy solutions and [5] and [27] for the definition of renor-

malised solutions.

Following the approach of [18] and [26], we define the notion of fundamental

solution of (1.1). A non-negative function u(x, t) is defined to be a fundamental

solution of (1.1) if

(i) u ∈ C(R+; L1(RN ));

(ii) for all s > 0, u(x, t) is a weak solution of (1.1) in R
N × [s,+∞);

(iii) for all R > 0, limt→0

∫

BR
u(x, t)dx = 1;

(iv) for all R > 0, limt→0

∫

RN \BR
u(x, t)dx = 0.

Here, BR denotes the euclidean ball in R
N of radius R centered at the origin.

We are now able to state our main theorem concerning p-Laplacian type equa-

tions.

Theorem 1.1 (p-Laplacian type). Let u be a fundamental solution of

(1.12) ut = div A(x, t, u,Du), (x, t) ∈ R
N × [0,+∞), u(x, 0) = δ (0), x ∈ R

N ,

where A satisfies (1.2), (1.4), and p in the supercritical range (1.3). There exist

positive constants γ, γ depending only on N , p, c0, c1 such that for all x ∈ R
N and

t > 0,

(1.13) γBp(x, t) ≤ u(x, t) ≤ γBp(x, t),

where Bp, defined in (1.9), is the fundamental solution of the p-Laplacian equa-

tion.

Analogously to p-Laplacian type equation, we can introduce the definitions of

weak and fundamental solutions of porous medium type equations. For brevity,

we omit these definitions and refer the reader to [10], [26] and [31] for all of the

necessary details.

Theorem 1.2 (porous medium type). Let u be a fundamental solution of

(1.14) ut = div A(x, t, u,Dum), (x, t) ∈ R
N ×[0,+∞), u(x, 0) = δ (0), x ∈ R

N ,

where A satisfies (1.6), (1.8) and m is in the supercritical range (1.7). There exist

positive constants γ′, γ′ depending only upon N , m, c′
0, c′

1 such that for all x ∈ R
N
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and t > 0,

(1.15) γ′
Bm(x, t) ≤ u(x, t) ≤ γ′Bm(x, t),

where Bm is the Barenblatt solution defined in (1.11).

The existence of fundamental solutions for p-Laplacian type and porous

medium type equations is guaranteed by the following result, whose proof is given

in the Appendix.

Theorem 1.3 (Existence of fundamental solutions). There exists at least one

non-negative fundamental solution of the fast diffusion equation (1.1) (respec-

tively, (1.5)) with A satisfying (1.2), (1.4) (respectively, (1.6), (1.8)) and p in the

supercritical range (1.3) (respectively, m in the supercritical range (1.7)).

We stress that the main results of this paper are estimates (1.13) and (1.15).

These results imply that the potentials of the equation with L∞ coefficients behave

exactly like the potentials for the prototype equations. This in turn implies that

the cases of the p-Laplacian and the porous medium equations are surprisingly

analogous to the non-degenerate case. It is known that in that case, the poten-

tial of general quasilinear equations behaves as the heat kernel. We find it quite

surprising that the proof of such a result requires neither explicit solutions (nor

supersolutions and barriers) nor any kind of functional associated to these equa-

tions. The estimates on the potential are purely structural and do not depend on

any gradient flow of functionals.

The proofs in this paper are based on several powerful tools. The two key

ingredients are L1-L1 estimates and some quite recent Harnack estimates. The L1-

L1 estimates are not only a kind of integral Harnack estimate, but also give a sharp

quantitative estimate on the speed of the propagation of the solution. The Harnack

estimates are very surprising because for our singular equations, the diffusion is

so strong that it wins with respect to the time evolution. Hence an elliptic-type

Harnack inequality holds. We state all these results with all due detail in the next

section. We prove only Theorem 1.1 and refer the reader to the recent monograph

[10] to see how to extend results to porous medium type equations.

Note that below the critical values, i.e., for 1 < p ≤ 2N/(N + 1) and

0 < m ≤ ((N − 2)/N )+, there are no longer smoothing effects; for this reason,

the Dirac mass cannot be chosen as initial datum. In the supercritical range, i.e.,

2N/(N + 1) < p < 2 and ((N − 2)/N )+ < m < 1, the initial datum needs to have

finite mass; otherwise, the solution becomes +∞ at every positive time. For these

results, see [30].
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The case of bounded domains and equations with variable coefficients was

dealt with in [29]. There, because of a lack of known boundary Harnack estimates,

results were obtained only for a smaller class of equations. The degenerate case,

i.e., p > 2 and m > 1, was considered in [28] for bounded domains. The case

of the whole space is more difficult because it requires sharp estimates on the free

boundary and is still open in the sense that analogous estimates (1.13) and (1.15)

have not yet been obtained.

Estimates of the type (1.13) and (1.15) might be useful in proving the asymp-

totic limit of the solutions. We will consider this problem in a forthcoming paper.

As for the uniqueness of the fundamental solution, we note that this issue was

addressed for the p-Laplacian equation for p > 2 in [18], for the porous medium

equation for N = 1 in [16], and for arbitrary N and in a more general setting in

[26]. The extension of uniqueness results to our case seems to be not at all trivial,

not least because uniqueness would seem to depend on the choice of the definition

of a solution (renormalised, entropy, distributional). This will be the object of

future investigation.

The paper is organised as follows. In Section 2, we collect some known results

which are used in our proofs. In Section 3, estimates from above are derived for

the solutions of problems (1.12) and (1.14). In Section 4, we derive interior esti-

mates from below. In Section 5, using a recent Harnack inequality [9], we obtain

estimates from below in the whole space. Combining the estimates of Sections

2– 5, we prove Theorem 1.1 and Theorem 1.2. In Section 6, we prove pointwise

estimates on the derivatives, and in Section 7, we sketch proofs of some miscella-

neous results (estimates in bounded domains, problems with more general initial

conditions, and estimates from below and above for solutions of Fokker Planck

equations). In Section A, we prove the existence result for the fundamental solu-

tions.

Throughout this paper, γk is a positive constant that depends only on the data;

i.e., for equation (1.1), it depends only on N, p, c0, c1, and for equation (1.5), it

depends only on N,m, c′
0, c′

1.

2 Preliminaries

Let Bρ(x) denote the euclidean ball in R
N centered at x of radius ρ, and set Bρ(0) =

Bρ.

We need the following known results.

Theorem 2.1 (Local L1 form of the Harnack inequality [9]). Let

u ∈ Cloc(R
+; L2

loc(R
N )) ∩ L

p
loc(R

+; W
1,p
loc (RN ))
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be a non-negative local weak solution of (1.1)–(1.2) in R
N × [0,+∞), and

1 < p < 2. There exists a constant γ depending only on the data such that for

all cylinders B2ρ(y) × [s, t] ⊂ R
N × [0,+∞),

sup
s≤τ≤t

∫

Bρ(y)

u(x, τ)dx ≤ γ inf
s≤τ≤t

∫

B2ρ(y)

u(x, τ)dx + γ
( t − s

ρλ

)1/(2−p)

,

where λ = N (p − 2) + p.

Theorem 2.2 (L1-L∞ estimates [9]). Let

u ∈ Cloc(R
+; L2

loc(R
N )) ∩ L

p
loc(R

+; W
1,p
loc (RN ))

be a non-negative local weak solution of (1.1)–(1.2) in R
N × [0,+∞), and assume

(1.3) holds. There exists a constant γ1 depending only on the data such that for all

cylinders B2ρ(y) × [s − (t − s), s + (t − s)] ⊂ R
N × [0,+∞),

sup
Bρ(y)×[s,t]

u(x, t) ≤
γ1

(t − s)N/λ

(

inf
2s−t≤τ≤t

∫

B2ρ(y)

u(x, τ)dx
)p/λ

+ γ1

( t − s

ρp

)1/(2−p)

.

(2.1)

Note that this theorem states that if a solution is in L1 at a certain time t0, it

remains in L∞ for all time s > t0. Also, (2.1) implies that if the solution v of

(1.12) can be approximated by regular problems, then

v ∈ C([s,∞); L2(RN )) ∩ Lp((s,∞); W 1,p(RN ))

for all s > 0.

Theorem 2.3 (Harnack inequality [10, Theorem 2.2, p. 190]). Let

u ∈ Cloc(R
+; L2

loc(R
N )) ∩ L

p
loc(R

+; W
1,p
loc (RN ))

be a non-negative local weak solution of (1.1)–(1.2) in R
N × [0,+∞) and p be in

the supercritical range (1.3). There exist positive constants δ, γ, ε such that for all

P0 = (x0, t0) ∈ R
N × [0,+∞) for which

B8ρ(x0) ×
{

t0 − u(P0)2−p(8ρ)p < t < t0 + u(P0)2−p(8ρ)p
}

⊂ R
N × [0,+∞),

the inequalities

γ−1 sup
Bρ(x0)

u(·, σ) ≤ u(P0) ≤ γ inf
Bρ(x0)

u(·, τ)

hold for all pairs of time levels σ, τ in the range

t0 − εu(P0)2−pρp ≤ σ, τ ≤ t0 + εu(P0)2−pρp.
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We now recall the property of non-negative local weak solutions of (1.1)–(1.2),

known as “expansion of positivity”. (For a detailed discussion of this argument,

see [10] and [8]; for a proof of the expansion of positivity exactly in this form, see

[13].)

Theorem 2.4 (Expansion of positivity). Let

u ∈ Cloc(R
+; L2

loc(R
N )) ∩ L

p
loc(R

+; W
1,p
loc (RN ))

be a non-negative local weak solution of (1.1)–(1.2) in R
N × [0,+∞) and p be

in the supercritical range (1.3). Assume that for some (y, s) ∈ R
N × [0,+∞) and

some ρ > 0, |[u(·, t) ≥ M ]∩Bρ(y)| ≥ α|Bρ| for all times 0 < s−εM 2−pρp ≤ t ≤ s

for some M > 0 and α, ε ∈ (0, 1). Then there exists ξ ∈ (0, 1), which can be

determined, a priori, quantitatively only in terms of the data and the numbers ε

and α and is independent of M and ρ and is such that u(x, t) ≥ ξ M, x ∈ B2ρ(y)

for all times s − εM 2−pρp/2 < t ≤ s.

Remark. The results of this section hold for porous medium type equations;

see [10, Appendix B]. The result of Theorem 2.4 can be extended to porous media

type equations by modifying the De Giorgi estimates in a suitable way, i.e. replac-

ing the intrinsic geometry related to the p-Laplacian equation, based on cylinders

with height equal to M 2−pρp, by the geometry related to the porous medium equa-

tion, based on cylinders with height equal to M 1−mρ2.

3 Estimates from above

Lemma 3.1 (Local L1 estimates). Let u be a fundamental solution of (1.12)

under conditions (1.2) and (1.4) with 1 < p < 2. Let γ2 := (2γ)p−2, where γ is the

constant defined in Theorem 2.1. Let

(3.1) T = γ2Rλ,

where λ is as defined (1.10). There exists γ3 > 0 depending on p and N > 0 such

that for all x satisfying |x| < R and all 0 ≤ t ≤ T ,
∫

B2R(x)

u(y, t)dy ≥ γ3.

Proof. Apply the L1 -estimates of Theorem 2.1, with ρ = R, s = ε, and t = T .

Noting that limε→0

∫

BR(x)
u(y, ε)dy = 1 and passing to the limit for ε → 0, we see

that for every T > 0,

1 ≤ sup
0≤t≤T

∫

BR(x)

u(y, t)dy ≤ γ inf
0≤t≤T

∫

B2R(x)

u(y, t)dy + γ
( T

Rλ

)1/(2−p)

.
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Since γ2 := (2γ)p−2, (3.1)) yields
∫

B2R(x) u(y, t)dy ≥ 1/2γ > 0, as desired. �

In order to obtain a pointwise estimate in the case |x| < R, we prove the fol-

lowing.

Lemma 3.2 (Local L∞ estimates). Let u be a fundamental solution of (1.12)

and p be in the supercritical range (1.3). Assume conditions (1.2) and (1.4). There

exists γ4 > 0 such that u(x,T ) ≤ γ4T −N/λ for all (x,T ) such that T > 0 and

|x| < R = (T/γ2)1/λ.

Proof. Applying Theorem 2.2 with s = (T + ε)/2, t = T , and ρ = R, we see

that for all T > 0,

u(x,T ) ≤ sup
y∈BR(x)

u(y,T ) ≤ γ12N/λ(T − ε)−N/λ
(

inf
ε≤t≤T

∫

B2R(x)

u(y, t)dy
)p/λ

+ γ12−1/(2−p)
(T − ε

Rp

)1/(2−p)

.

(3.2)

Recalling that limε→0

( ∫

B2R(x)
u(y, ε)dy

)p/λ
≤ 1 and letting ε → 0 in (3.2), we

obtain

u(x,T ) ≤ γ12
N
λ (T )−

N
λ + γ12−1/(2−p)

( T

Rp

)1/(2−p)

.

Taking into account R = (T/γ2)1/λ, we obtain

u(x,T ) ≤ γ12N/λT −N/λ + (γ2)p/(p−2)λ2−1/(2−p)γ1

( T

T p/λ

)1/(2−p)

and finally u(x,T ) ≤ γ4T −N/λ, where

γ4 = γ12N/λ
(

1 +
γ2

2λ

)p/λ
+ γ12−1/(2−p)γ

p/(p−2)λ
2 .

�

To complete the estimate from above, we have to estimate u(x,T ) when |x| ≥

R = (T/γ2)1/λ. We do this in the following lemma.

Lemma 3.3. Let u be a fundamental solution of (1.12) under conditions

(1.2)– (1.4). Let T > 0. For all x such that

(3.3) |x| ≥
( T

γ2

)1/λ

,

the inequality

(3.4) u(x,T ) ≤ γ12−1/(2−p)
( T

|x|p

)1/(2−p)

hold.
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Proof. Let R = |x|/2 and apply Theorem 2.2 with s = (T − ε)/2, t = T , and

ρ = R to get

u(x,T ) ≤ sup
y∈BR(x)

u(y,T ) ≤ γ12N/λ(T − ε)−N/λ
(

inf
ε≤t≤T

∫

B2R(x)

u(y, t)dy
)p/λ

+ γ12−1/(2−p)
(T − ε

Rp

)1/(2−p)

.

(3.5)

Taking into account that δ has its mass concentrated at the origin, which by hypoth-

esis (3.3), lies outside the ball BR(x), we obtain limε→0

( ∫

BR(x) u(y, ε)dy
)p/λ

= 0.

Therefore, letting ε → 0 and arguing as in the previous lemma, we get (3.4). �

Theorem 3.1. Let u be a fundamental solution of (1.12) under conditions

(1.2)–(1.4). Then for all (x, t) ∈ R
N × R

+, there exists γ = γ(N, p) > 0 such that

u(x, t) ≤ γBp(x, t).

Proof. Apply Lemmas 3.2 and 3.3. �

Remark. The techniques applied in the case of the Dirac mass apply more

easily to the case of an initial datum u0 ∈ L1 without passing to the limit for

t → 0. Also, as mentioned in Section 2, these results can be proved for the porous

medium case following the same arguments used for the p-Laplacian type case.

4 Interior estimate from below

In this section, we present a bound from below in a domain

P =
{

(x, t) : t > 0, x ∈ BRt

}

, where Rt =
( t

γ2

)1/λ

.

In the next theorem, we prove that γBp(x, t) ≤ u(x, t) for all (x, t) ∈ P.

Theorem 4.1. Let u be a fundamental solution of (1.12) under conditions

(1.2)–(1.4). Then there exists a positive γ5 such that for each (x, t) ∈ P,

(4.1) u(x, t) ≥ γ5t−N/λ.

Proof. First, decompose the ball B2Rt
into the two complementary sets

A1 =
{

(x, t) : u <
ε0

RN
t

∩ B2Rt

}

, A2 =
{

(x, t) : u ≥
ε0

RN
t

∩ B2Rt

}

,

where ε0 is a positive constant to be determined later. Lemma 3.1 implies

γ3 ≤

∫

B2Rt

u(x, t)dx =

∫

A1

u(x, t)dx +

∫

A2

u(x, t)dx;
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therefore,
∫

A2

u(x, t)dx ≥ γ3 −

∫

A1

u(x, t)dx ≥ γ3 −
ε0

(Rt)N
|A1|

≥ γ3 −
ε0

(Rt)N
(2Rt)

NωN =
γ3

2
,

(4.2)

where ε0 = γ3/ωN 2N +1. Now by Lemma 3.2,

(4.3)

∫

A2

u(x, t)dx ≤ γ4t−N/λ|A2| = γ4γ
−N
2 R−N

t |A2|.

Substituting (4.3) into (4.2) yields

(4.4) γ4γ
−N
2 R−N

t |A2| ≥ γ3/2

and then |A2| ≥ γ6RN
t and γ6 = γ3γ

N
2 /2γ4, which means

∣

∣

∣

{

u(x, t) ≥
ε0

RN
t

}

∩ B2Rt

∣

∣

∣
≥ γ6RN

t .

Let M = ε0/R
N
t . Then for all s ∈ [t/2, t],

|{u(x, s) ≥ M} ∩ BRt
| ≥ γ6RN

t .

Thus we can apply Theorem 2.4 to obtain

(4.5) u(x, t) ≥ ξM.

By the definitions of M and Rt, estimate (4.1) holds for all (x, t) ∈ P. �

Remark. Observe that thanks to the corresponding results, this lemma can

also be extended to the porous medium case.

5 Estimate from below. Proof of Theorem 1.1.

To complete the proof of Theorem 1.1, we need an estimate from below that holds

for all (x, t) /∈ P. Since Bp(x, t) behaves as (t/|x|p)1/(2−p) outside P, the following

result suffices.

Theorem 5.1. Let u be a fundamental solution of (1.1) under conditions

(1.2)–(1.4). Then there exists γ7 > 0 such that

(5.1) u(x, t) ≥ γ7

( t

|x|p

)1/(2−p)

for all (x, t) /∈ P.
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Proof. Suppose (x, t) /∈ P and let γ8 = 8p/(p−2)/21/(2−p). Estimate (5.1) is

clearly satisfied with γ7 = γ8 if u(x, t) ≥ γ8(t/|x|p)1/(2−p). If, on the other hand,

u(x, t) < γ8(t/|x|p)1/(2−p), the Harnack inequality of Theorem 2.3 applied with

P0 = (x, t) and ρ = |x| gives u(x, t) ≥ γ−1u(0, t). By Theorem 4.1,

(5.2) u(x, t) ≥ γ−1γ5t−N/λ.

Now t < γ2|x|
λ since (x, t) /∈ P, Therefore, by (5.2),

u(x, t) ≥ γ−1γ5γ
p/λ(p−2)
2

( t

|x|p

)1/(2−p)

.

The result follows with γ7 equal to the smaller of γ8 and γ−1γ5γ
p/λ(p−2)
2 . �

Remark. As observed in the previous sections, the results for the p-Laplacian

type equations can be extended to the porous medium case. This extension yields

Theorem 1.2.

6 Pointwise estimates for the derivatives

Determining pointwise estimates for the derivatives is a natural application of the

results of the previous sections.

Let us first consider the case of the p-Laplacian type equations. The classical

energy estimates (see [10, Chapter 3]) imply that the Lp norm of the derivatives

can be estimated with the L2 norm of u. For the prototype equations, following the

argument introduced by DiBenedetto-Friedman in [7], sharp pointwise estimates

for the derivatives can be deduced using the sharp estimates on the Lp norm of Du.

In the case of general operators with regular coefficients, it is necessary to follow

the argument introduced by Kuusi and Mingione in [19] and [20].

Porous medium type equations are certainly more interesting. DiBenedetto,

Kwong and Vespri [11] proved sharp estimates for the derivatives of any order

in space and time; see also [10, Chapter 6, Section 18]). Here, working in R
N

rather than in a bounded domain, we are able to improve this result. We follow the

techniques introduced in [11].

Let (x0, t0) ∈ R
N × (0,+∞). The change of variables

(6.1) y =
x − x0√

t0u(x0, t0)(m−1)/2
, τ =

t − t0

t0
, v =

u

u(x0, t0)

transforms our operator A into an operator that we denote by Ã.

Theorem 6.1. Let u be a fundamental solution of (1.14) under conditions

(1.6)–(1.8). Assume that Ã, defined by (6.1) is uniformly analytic with respect to
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every (x0, t0). There exists a constant C, depending only on c′
1, c′

2,L′,m,N , and

independent of u, such that for all x0 ∈ R
N , t0 > 0, and every multi-index α,

(6.2) |Dαu(x0, t0)| ≤
C |α|+1|α|!

t
|α|/2
0

u(x0, t0)1+(1−m)|α|/2.

Moreover, for every positive integer k,

(6.3)
∣

∣

∣

∂k

∂tk
u(x0, t0)

∣

∣

∣ ≤
C2k+1(k!)2

tk
0

u(x0, t0).

Proof. We only sketch the proof, following Theorem 2.1 in [11], to which we

refer the reader for more details. Let

Q = {|x − x0| < 8ε
√

t0u(x0, t0)(m−1)/2 × (t0 − ε2t0, t0 + ε2t0)},

with ε so small that Q is strictly included in our domain. The change of variables

(6.1) maps Q into Qǫ := B8ǫ×] − ǫ2, ǫ2[, and v satisfies

vτ = div(Ã(y, τ, v,Dv)), v(0, 0) = 1

for (y, τ) ∈ Qǫ. By assumption, Ã is analytic. Moreover, in light of the sharp esti-

mate (1.15), we can choose ε independent of (x0, t0) and such that c−1
0 ≤ v(y, τ) ≤

c0 for all (y, τ) in Qǫ. Therefore, v is a solution of a quasi-linear non-degenerate

parabolic equation with analytic coefficients. By classical results due to Friedman

[14] (see also [21]), the solution is uniformly analytic in the space variables and

uniformly of Gevrey order 2 in the time variable.

Returning to our solution u, we obtain estimates (6.2) and (6.3). For further

computations see [11]. �

Remark. Assume that the operator Ã is uniformly Ck,α. Reasoning as before,

we can prove that the solution is Ck+1,α in the space variables and C(k+1)/2,α/2 in

the time variable, and the derivatives (up to the order k + 1 for the space variables

and up to the order (k +1)/2 for the time variable) satisfy estimates (6.2) and (6.3).

7 Miscellaneous applications

In this section, we sketch how to apply the previous results to the case of bounded

domains with more general initial conditions and to the case of the Fokker-Planck

equation.
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7.1 Bounded domain. Consider the problem

ut = div A(x, t, u,Du), (x, t) ∈ BR × (t ≥ 0),

u(x, t) = 0, (x, t) ∈ BR × (t ≥ 0),

u(x, 0) = δ (0) x ∈ BR.

Repeating the interior estimates from below shows that the solution decays as t−N/λ

for all 0 ≤ t ≤ γ2Rλ with γ2 := (1/2γ)2−p as introduced in Lemma 3.1. Roughly

speaking, we can say that it is only after time t = γ2Rλ that the solution realises

that BR is a bounded domain, changes its rate of decay, and vanishes at a certain

time T ∗. This remark can be extended also to the case of a regular bounded domain

� ⊂ R
N that contains a large ball BR.

7.2 More general initial conditions. Let us consider the initial datum

u(x, 0) = u0(x) ≥ 0 with u0 ∈ L1(RN ) and
∫

RN u0(x)dx > 0. As already noticed, the

estimates from above can be studied as in Section 3. For the estimates from below,

we follow [28, Section 4, step 1], to which we refer the reader for more details.

We deduce the existence of λ, ν,R, and x0 such that

|{u0 ≥ λ} ∩ BR(x0)| ≥ ν|BR(x0)|.

Applying energy estimates, we prove the existence of t̃, σ > 0, and β such that for

all t ∈ (0, t̃),

|BσR(x0) ∩ (u ≥ λβ)| ≥
ν

8
|BσR(x0)|.

We are essentially in the same position to apply Theorem 2.4 as we were at the

end of the proof of Theorem 4.1. Therefore, arguing exactly as in Section 5. we

deduce that for each t0 > 0, there exists a positive constant γ depending only on

N , p, c0, c1, λ, ν, R, β, σ, t0 and the distance of x0 from the origin, such that for all

x ∈ R
N and t > t0,

γBp(x, t) ≤ u(x, t).

7.3 Fokker-Planck equation. Let us consider the problem

wt = div(A(x, t, w,Dw) + div(xw), (x, t) ∈ R
N × (t > 0),

w(x, 0) = δ (0), x ∈ R
N ,

(7.1)

where the operator A satisfies conditions (1.2)–(1.4) (respectively, conditions

(1.6)–(1.8). As proved by Carrillo-Toscani [4] (see also [30] and references

therein), (7.1) can be transformed into equation (1.1) by the change of variables

w(x, t) = α(t)N u(α(t)x, β(t)), where α(t) = et and β(t) = (ekt − 1)/k.
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From the estimates on the p-Laplacian type equation (respectively, porous

medium type equation), we can deduce sharp estimates on the solutions of the

Fokker Planck equation; i.e., for every s0 > 0, there exist positive constants k1, k2

(respectively, k̃1 and k̃2), depending on s0, such that for all t > s0,

k1Bp(x, 1) ≤ u(x, t) ≤ k2Bp(x, 1)

(respectively,

k̃1Bm(x, 1) ≤ u(x, t) ≤ k̃2Bm(x, 1)).

Remark. Observe that in contrast to other results in the literature, we deduce

the estimates for the Fokker-Planck equation from estimates for the p-Laplacian

type equation and porous medium type equations, and not vice-versa.

A Existence of fundamental solutions

In this Appendix, we prove Theorem 1.3. We prove only the existence of the

fundamental solution for the p-Laplacian case and omit the proof for the porous

medium case, since it is completely analogous.

Define ψ : N × R
N → N by

ψk(x1, . . . , xn) =







kN if − 1/2k ≤ x j ≤ 1/2k, j = 1, . . . ,N,

0 otherwise.

Note that ψk → δ (0) in the sense of measures as k → +∞. Let uk be the solution

of the Cauchy problem

(uk)t = div A(x, t, uk,Duk), (x, t) ∈ R
N × [0,+∞),

uk(x, 0) = ψk(x), x ∈ R
N .

(A.1)

As already noted (see, e,g., [10, chap. 7]), there exists a unique solution of (A.1)

under conditions (1.2)–(1.4). Arguing as in Lemmas 3.2 and 3.3, we see that as

ψk → δ ,

(A.2) uk(x, t) ≤ γ̃Bp(x, t),

in (RN ×R
+) \

(

[−1/k, 1/k]N × [0, γλ2(1/k)λ]
)

, where Bp is defined in (1.9) and γ̃

is a positive constant that does not depend on k.

For any positive integer r, define the cube Qr = {(x, t) ∈ [−r, r]N × [1/2r, rp]}.

Applying DiBenedetto’s regularity results (see, e.g., [6]), we conclude that the

functions uk, k ≥ 1, are equi-Hölder continuous in each Qr . By the Ascoli-Arzelà



250 F. RAGNEDDA, S. VERNIER PIRO, AND V. VESPRI

Theorem, there exists a subsequence {u1, j }
∞
j =1 of {uk}

∞
k =1 that converges uniformly

in Q1. We can extract a subsequence {u2, j }
∞
j =1 from {u1, j }

∞
j =1 that converges in Q2.

Continuing in this fashion, for each n, we can extract a subsequence {un+1, j }
∞
j =1

from {un, j }
∞
j =1 that converges in Qn+1.

Let v j = u j, j and consider the sequence {v j }
∞
j =1. By construction, {v j }

∞
j =1

converges to a function v in (RN × R
+) uniformly in every compact set. Since the

operator is monotone, by Minty’s Lemma [23], v is a solution of (1.1) and belongs

to C([s,∞); L2(RN )) ∩ Lp((s,∞); W 1,p(RN )) for every s > 0.

Let us check the initial condition. By construction, v is non-negative and satis-

fies (A.2). The support of v at time t = 0 is at most only the origin {0}. We claim

that limt→0

∫

RN v(x, t)dx = 1. To prove the claim, let ζ be a cut-off function such

that 0 ≤ ζ ≤ 1 and

ζ (x) =







1 if s ∈ B2,

0 if x 6∈ B3,

where Ba = {|x| ≤ a}. Applying ζ as a test function in (A.1) yields

∫

RN

ζuk(x, t)dx −

∫

RN

ζuk(x, 0)dx = −

∫ t

0

∫

RN

A(x, t, uk,Duk) · Dζdxdτ.

This, in turn, implies

∣

∣

∣

∣

∫

RN

ζuk(x, t)dx − 1

∣

∣

∣

∣

≤

∫ t

0

∫

RN

|A(x, t, uk,Duk) · Dζ |dxdτ

≤ C

∫ t

0

∫

A2,3

|Duk|
p−1dxdτ

≤ C

∫ t

0

(

∫

A2,3

|Duk|
pdx

)(p−1)/p

dτ,

(A.3)

where A2,3 = {x ∈ R
N : 2 ≤ |x| ≤ 3}. In (A.3), C is a positive constant that

depends only upon the data and may change from line to line. Let θ be another

cut-off function satisfying 0 ≤ θ ≤ 1 and

θ(x) =







1 if x ∈ A2,3,

0 if x ∈ A1,4 = B1 \ B4.

Applying θpuk as a test function in (A.1) and using the energy estimates (see [6,

chap. 2, § 3]), we obtain

∫ t

0

∫

A2,3

|Duk|
pdxdτ ≤ C

∫ t

0

∫

A1,4

|uk|
pdxdτ ≤ Cγ̃p

∫ t

0

∫

A1,4

|Bp(x, t)|pdxdτ,
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where we have used (A.2) in the last inequality. Then
∫ t

0

∫

A2,3
|Duk|

pdxdτ ≤ Ct.

By (A.3), there exists a positive constant C such that

(A.4) 1 − Ct ≤

∫

RN

ζuk(x, t)dx ≤ 1 + Ct.

Let us now estimate
∫

RN (1 − ζ )uk(x, t)dx. By (A.2),

∫

RN

|(1 − ζ )uk(x, t)|dx ≤ γ̃

∫

RN \B3

Bp(x, t)dx ≤ Ct1/(2−p)

∫

RN \B3

|x|−p/(2−p)dx.

Therefore,

(A.5)

∫

RN

|(1 − ζ )uk(x, t)|dx ≤ Ct1/(2−p).

Estimates (A.4) and (A.5) yield the existence of a continuous function g(t) such

that g(0) = 0 and

1 − g(t) ≤

∫

RN

uk(x, t)dx ≤ 1 + g(t)

for all t > 0 and k ≥ 1. By construction, the previous inequality also holds for the

solution v , and therefore,

lim
t→0

∫

RN

v(x, t)dx = 1.

To conclude, observe that for each R > 0,

lim
t→0

∫

RN \BR

v(x, t)dx ≤ γ̃ lim
t→0

∫

RN \BR

Bp(x, t)dx

≤ C lim
t→0

t1/(2−p)

∫

RN \BR

|x|−p/(2−p)dx = 0.
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