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Abstract. We study reproducing kernel Hilbert and Pontryagin spaces of slice
hyperholomorphic functions. These are analogs of the Hilbert spaces of analytic

functions introduced by de Branges and Rovnyak. In the first part of the paper, we

focus on the case of Hilbert spaces and introduce, in particular, a version of the

Hardy space. Then we define Blaschke factors and Blaschke products and con-

sider an interpolation problem. In the second part of the paper, we turn to the case

of Pontryagin spaces. We first prove some results from the theory of Pontryagin

spaces in the quaternionic setting and, in particular, a theorem of Shmulyan on

densely defined contractive linear relations. We then study realizations of gener-
alized Schur functions and of generalized Carathéodory functions.

1 Introduction

Functions s analytic in the open unit disk D and contractive there, or equivalently

such that the kernel
1 − s(z)s(w)∗

1 − zw∗

is positive definite in D, play an important role in operator theory, and their study

is a part of a field called Schur analysis. The present work is a continuation of [5]

and deals with various aspects of Schur analysis in the case of slice hyperholo-

morphic functions. To review the classical case, and to present the outline of the

paper, we first recall a definition. A signature matrix is a matrix J (say, with

complex entries; in the sequel, quaternionic entries are allowed) which is both

self-adjoint and unitary. We denote by sq−J the multiplicity (possibly equal to

0) of the eigenvalue −1. Now let J1 and J2 be two signature matrices belonging

to C
N×N and C

M×M respectively, and assume that sq−J1 = sq−J2. Functions 2
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which are C
M×N -valued and meromorphic in D and such that the kernel

(1.1) K2(z, w) =
J2 − 2(z)J12(w)∗

1 − zw∗

has a finite number of negative squares in D are called generalized Schur func-

tions. They have been studied by Krein and Langer in a long series of papers;

see, for instance, [46, 47, 49, 48, 50]. These authors also considered the case of

operator-valued functions and other classes and, in particular, kernels of the form

(1.2) kϕ(z, w) =
ϕ(z)J + Jϕ(w)∗

1 − zw∗
,

where ϕ is CN×N -valued and analytic in a neighborhood of the origin, J ∈ CN×N

is a signature matrix, and the counterparts of these kernels when the open unit disk

is replaced by the open upper half-plane. Meromorphic functions 2 for which the

kernel (1.1) has a finite number of negative squares are called generalized Schur

functions, and meromorphic functions 2 for which the kernel (1.2) has a finite

number of negative squares are called generalized Carathéodory functions.

Associated problems (such as realization and interpolation questions) have been

studied extensively.

As mentioned above, a study of Schur analysis in the setting of slice hyper-

holomorphic functions has been initiated recently in [5], and it is the purpose of

the present paper to continue this study. The paper [5] was set in the Hilbert

space framework and presented, in particular, the notions and properties of Schur

multipliers, de Branges Rovnyak space, and coisometric realizations in the slice

hyperholomorphic setting. In the first part of this work, we also focus on the

Hilbert space case, while in the second part, we consider the case of indefinite

inner product spaces. The next steps in this study are as follows.

(1) The study of the indefinite case and, in particular, the Krein-Langer fac-

torization for generalized Schur functions and the characterization of de

Branges-Rovnyak spaces associated to generalized Schur functions in the

slice hyperholomorphic setting. This study is presented in [4].

(2) The study in [2] of the case of Hilbert spaces, of the classical Beurling-Lax

Theorem, and interpolation for Schur multipliers.

(3) The multiplicative structure of Schur multipliers, in a way similar to the

multiplicative structure of bounded analytic functions.

(4) The finite dimensional case, i.e., the analogue of the paper [9] and of part of

[7] here. Some results appear in the present paper in Section 9.

(5) Next, and as already mentioned in [5], we attack the case of several quater-

nionic variables; see [3].
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To set the present work into perspective, we recall that the theory of slice

hyperholomorphic functions represents a novelty with respect to other theories

of hyperholomorphic functions that can be defined in the quaternionic setting. In

fact, it allows the definition of a quaternionic functional calculus and its associated

S-resolvent operator. The importance of the S-resolvent operator in the context of

this paper is the definition of the quaternionic version of the operator (I − zA)−1

that appears in the realization function s(z) = D + zC(I − zA)−1B . It turns out

that when A is a quaternionic matrix and p is a quaternion, (I − pA)−1 has to be

replaced by (I − pA)−⋆ = (I − p̄A)(|p|2A2 − 2Re(p)A + I )−1, which is equal to

p−1S−1
R (p−1, A), where S−1

R (p−1, A) is the right S-resolvent operator associated to

the quaternionic matrix A.

Slice hyperholomorphic functions have two main formulations depending on

whether the functions we consider are defined on quaternions and are quaternion-

valued, in which case they are called slice regular (see [39, 21, 25]), or they are

defined on the euclidean space R
N +1 and take values in the Clifford algebra RN , in

which case they are called slice monogenic functions (see [31, 32]). We also

point out that there exists a non-constant coefficient differential operator whose

kernel contains slice hyperholomorphic functions defined on suitable domains;

see [23].

As already discussed, slice hyperholomorphicity has applications in operator

theory, specifically, in the case of quaternions, it allows the definition of a quater-

nionic functional calculus (see, e.g., [22, 24, 27]), while slice monogenic functions

admit a functional calculus for n-tuples of operators (see [30, 26, 28]). The book

[33] collects some of the main results on the theory of slice hyperholomorphic

functions and the related functional calculi.

Finally, we mention the papers [13, 14, 12], where Schur multipliers were in-

troduced and studied in the quaternionic setting using the Cauchy-Kovalevskaya

product and series of Fueter polynomials, and the papers [42, 54, 53], which treat

various aspects of a theory of linear systems in the quaternionic setting. Our ap-

proach is quite different from the methods used there.

In Sections 2 and 3, we review some basic definitions on slice hyperholomor-

phic functions. In Section 4, we discuss the notion of multipliers in the case of

reproducing kernel Hilbert spaces of slice hyperholomorphic functions. In Section

5, we discuss the Hardy space in the present setting and introduce Blaschke prod-

ucts. Interpolation in the Hardy space is studied in Section 6. Sections 7–10 are

in the framework of indefinite metric spaces. A number of facts on quaternionic

Pontryagin spaces, as well as a proof of a theorem of Shmulyan on relations, are

proved in Section 7. Negative squares are discussed in Section 8, while Section 9
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introduces generalized Schur functions and discusses their realizations. We also

consider in that section the finite dimensional case. Finally, in Section 10, we

briefly discuss the case of generalized Carathéodory functions.

2 Slice hyperholomorphic functions

The literature contains several different notions of quaternion-valued hyperholo-

morphic functions. In this paper, we consider a notion which includes power

series in the quaternionic variable, the so-called slice regular or slice hyperholo-

morphic functions; see [33]. In order to introduce the class of slice hyperholo-

morphic functions, we fix some preliminary notation. We denote the algebra of

real quaternions p = x0 + ix1 + jx2 + kx3 by H. A quaternion can also be written

as p = Re(p) + Im(p), where x0 = Re(p) and ix1 + jx2 + kx3 = Im(p). It can also

be written as p = Re(p) + Ip|Im(p)|, where Ip = Im(p)/|Im(p)|, as long as p is

non-real. The element Ip belongs to the 2-sphere

S = {p = x1i + x2 j + x3k : x2
1 + x2

2 + x2
3 = 1}

of unit purely imaginary quaternions.

Definition 2.1. Let � ⊆ H be an open set and f : � → H be a real differ-

entiable function. Let I ∈ S and fI be the restriction of f to the complex plane

CI := R + IR passing through 1 and I . Denote by x + Iy an element in CI .

(1) We say that f is a left slice regular function (or left slice hyperholo-

morphic or slice hyperholomorphic) if for every I ∈ S,

1

2

(
∂

∂x
+ I

∂

∂y

)
fI (x + Iy) = 0.

(2) We say that f is a right slice regular function (or right slice hyper-

holomorphic) if for every I ∈ S,

1

2

(
∂

∂x
fI (x + Iy) +

∂

∂y
fI (x + Iy)I

)
= 0.

Definition 2.2. The set of all elements of the form Re(p) + J|Im(p)|, where J

varies in S is called the 2-sphere defined by p and is denoted by [p].

The most important feature of slice hyperholomorphic functions is that on a

suitable class of open sets, they can be reconstructed from their values on a com-

plex plane CI by the so-called Representation Formula; see [21, 25, 33] and Theo-

rem 2.4 below.
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Definition 2.3. Let � be a domain in H. We say that � is a slice domain

(s-domain for short) if � ∩ R is non-empty and � ∩ CI is a domain in CI for all

I ∈ S. We say that � is axially symmetric if for all p ∈ �, the 2-sphere [p] is

contained in �.

Theorem 2.4 (Representation Formula). Let � ⊆ H be an axially sym-

metric s-domain. If f is a left slice regular function on � ⊆ H, then for all

p = x + Ipy ∈ �,

(2.1) f (p) = f (x + Ipy) =
1

2

[
f (z) + f (z)

]
+

1

2
IpI
[

f (z) − f (z)
]
,

where z := x + Iy, z := x − Iy ∈ � ∩ CI . If f is a right slice regular function on

� ⊆ H then for all p = x + Ipy ∈ �,

(2.2) f (p) = f (x + Ipy) =
1

2

[
f (z) + f (z)

]
+

1

2

[
f (z) − f (z)

]
IIp.

The Representation Formula allows us to extend a function f : �̃ ⊆ CI → H

defined on a domain �̃ symmetric with respect to the real axis and in the kernel

of the corresponding Cauchy-Riemann operator to a function f : � ⊆ H → H

slice hyperholomorphic, where � is the smallest axially symmetric open set in H

containing �̃. In the above notation, the extension is obtained by means of the

extension operator

(2.3) ext( f )(p) :=
1

2

[
f (z) + f (z)

]
+

1

2
IpI
[

f (z) − f (z)
]
, z, z̄ ∈ � ∩ CI , p ∈ �.

For example, in the case of the kernel associated to the Hardy space, the extension

operator applied to the function
∑∞

n=0 znw̄n gives the following result.

Proposition 2.5. (see [5, Proposition 5.3]) Let p and q be quaternionic vari-

ables. The sum of the series
∑+∞

n=0 pnq̄n is the function k(p, q) given by

(2.4) k(p, q) = (1−2Re(q)p+|q|2p2)−1(1−pq) = (1−p̄q̄)(1−2Re(p)q̄+|p|2q̄2)−1.

The kernel k(p, q) is defined for all p outside the 2-sphere defined by [q−1] (or,

equivalently, for all q outside the 2-sphere [p−1]). Moreover,

(a) k(p, q) is slice hyperholomorphic in p and right slice hyperholomorphic in

q̄;

(b) k(p, q) = k(q, p).

The function k(p, q) in Proposition 2.5 is positive definite and is the reproduc-

ing kernel of the slice hyperholomorphic counterpart of the Hardy space H2(B) of

functions analytic in the open unit ball B; see [5] and Section 5 below.
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Remark 2.6. The two expressions for k(p, q) given in (2.4) correspond to the

left slice regular reciprocal of 1 − pq̄ in the variable p and to the right slice regular

reciprocal in the variable q̄, (see the discussion in [5, Proposition 5.3]) and these

two reciprocals coincide. Thus, henceforth, we often write (1 − pq̄)−⋆ instead of

k(p, q).

Remark 2.7. Note that whenever a function k(p, q) is slice hyperholomorphic

in p and Hermitian, it is also right slice hyperholomorphic in q̄.

3 Slice hyperholomorphic multiplication

Recall that it is possible to introduce a binary operation called the ⋆-product

of two left slice hyperholomorphic functions f , g such that f ⋆ g is a left slice

hyperholomorphic function. Similarly, we can define the ⋆-product of two right

slice hyperholomorphic functions. When considering both products in the same

formula, it is often useful to distinguish between them. In this case, we denote the

left slice regular product by ⋆l and the right slice regular product by ⋆r . When no

subscript appears, the ⋆-product is assumed to be the left ⋆-product.

Let � be an axially symmetric s-domain. Let f, g : � ⊆ H be slice hyper-

holomorphic functions whose restrictions to the complex plane CI can be written

respectively as

fI (z) = F (z) + G(z)J, gI (z) = H (z) + L(z)J,

where J ∈ S, J ⊥ I . The functions F , G, H , L are holomorphic functions of

the variable z ∈ � ∩ CI and exist by the Splitting Lemma; see [33, p. 117]. The

⋆l-product of f and g is defined as the unique left slice hyperholomorphic function

whose restriction to the complex plane CI is given by

(3.1) (F (z) + G(z)J) ⋆l (H (z) + L(z)J)

:= (F (z)H (z) − G(z)L(z̄)) + (G(z)H (z̄) + F (z)L(z))J;

see [33, p. 125]. Analogously, one can define the ⋆r product of two right slice

hyperholomorphic functions. While pointwise multiplication and slice multiplica-

tion are different, they can be related, as the following result shows.

Proposition 3.1. ([33, Proposition 4.3.22]) Let U ⊆ H be an axially sym-

metric s-domain, and let f, g : U → H be slice hyperholomorphic functions such

that f (p) 6= 0 for all p ∈ U. Then

(3.2) ( f ⋆ g)(p) = f (p)g( f (p)−1p f (p)),

for all p ∈ U.
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Remark 3.2. The transformation p → f (p)−1p f (p) is clearly a rotation in H,

since |p| = | f (p)−1p f (p)|; this allows us to rewrite the ⋆-product as a pointwise

product. Note also that if f ⋆ g(p) = 0, then either f (p) = 0 or g( f (p)−1p f (p)) = 0.

Corollary 3.3. If limr→1 | f (reIθ)| = 1 for all I ∈ S, then

lim
r→1

| f ⋆ g(reIθ)| = |g(eI ′θ )|

where θ ∈ [0, 2π) and I ′ ∈ S depends on θ, I , and f .

Proof. Set b = f (reIθ ) and write b = ReJα for suitable R, J, α. By hypothesis,

we can assume that b 6= 0 as r → 1; thus b−1 exists. We have

b−1reIθb = e−Jα(reIθ)eJα

= r(cos α − J sin α)(cos θ + I sin θ)(cos α + J sin α)

= r(cos θ + I cos2 α sin θ − JI cos α sin α sin θ)

+ r(IJ cos α sin α sin θ − JIJ sin2 α sin θ)

= r(cos θ + cos αe−JαI sin θ + e−JαIJ sin α sin θ)

= r(cos θ + e−JαIeJα sin θ) = r(cos θ + I ′ sin θ),

where I ′ = e−JαIeJα. The result now immediately follows from the equalities

lim
r→1

| f ⋆ g(reIθ)| = lim
r→1

| f (reIθ)g(b−1reIθb)| = lim
r→1

|g(reI ′θ )| = |g(eI ′θ )|.
�

It is possible to construct a slice regular reciprocal of a left slice regular func-

tion f , which is denoted by f −⋆. The general construction can be found in [33].

In this paper, we need the reciprocal of a polynomial or a power series with center

at the origin, which can be described in the easier way illustrated below.

Definition 3.4. Given f (p) =
∑∞

n=0 pnan, let

f c(p) =

∞∑

n=0

pnān, f s(p) = ( f c ⋆ f )(p) =

∞∑

n=0

pncn, cn =

n∑

r =0

ar ān−r .

If f converges in the ball of radius R centered at 0, the other series also converge

in that ball. The left slice hyperholomorphic reciprocal of f is defined as

f −⋆ := ( f s)−1 f c. Analogously, we define the right slice hyperholomorphic

reciprocal of a right slice regular function f (q) =
∑

n anqn as f −⋆ := f c( f s)−1.

Note that the series f s has real coefficients.
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Remark 3.5. Let � be an axially symmetric open set. Recall that if f is left

slice hyperholomorphic in q ∈ �, then f (q) is right slice hyperholomorphic in q.

This fact follows immediately from (∂x + I∂y) fI (x+ Iy) = 0, since conjugation gives

fI (x + Iy)(∂x − ∂yI ) = 0 for all I ∈ S.

Lemma 3.6. Let � be an axially symmetric s-domain and f, g : � → H be

two left slice hyperholomorphic functions. Then f ⋆l g = g ⋆r f , where ⋆l , ⋆r are

the left and right ⋆-products with respect to q and q̄, respectively.

Proof. Let fI (z) = F (z) + G(z)J and gI (z) = H (z) + L(z)J be the respective

restrictions of f and g to the complex plane CI . The functions F , G, H , L are

holomorphic functions of the variable z ∈ � ∩ CI , which exist by the Splitting

Lemma. Also, J is an element in the sphere S orthogonal to I . The ⋆r-product of

the two right slice hyperholomorphic functions g and f in the variable q is defined

as the unique right slice hyperholomorphic function whose restriction to a complex

plane CI is given by

(H (z)−J L(z))⋆r (F (z)−J G(z)) :=(H (z) F (z)−L(z̄)G(z))−J(L(z) F (z)+H (z̄)G(z)).

Thus, a comparison with (3.1) makes clear that fI ⋆l gI = gI ⋆r fI . Taking the

unique right slice hyperholomorphic extension, we obtain the lemma. �

Remark 3.7. For the sake of completeness, we adapt some of the previous

definitions to matrix-valued functions. We say that a real differentiable function

f : � ⊆ H → H
N×M is left (respectively, right) slice hyperholomorphic

if and only if for any linear and continuous functional 3 acting on HN×M , the

function 3 f is left (respectively, right) slice hyperholomorphic in �. It can be

shown using standard techniques that if, in particular, � = B, then f is left slice

hyperholomorphic if and only if f (p) =
∑∞

n=0 pnAn, where An ∈ H
N×M and the

series converges in B. Let f : B → H
N×M , g : B → H

M×L be left slice hy-

perholomorphic and f (p) =
∑∞

n=0 pnAn, g(p) =
∑∞

n=0 pnBn. The ⋆-product of f

and g is defined as f ⋆ g :=
∑∞

n=0 pnCn, where Cn =
∑n

r =0 ArBn−r . Analogous

definitions can be given in more general cases (see [2]) and also for right slice

hyperholomorphic functions.

Remark 3.8. When considering the function
∑∞

n=0 pnAn, where A ∈ H
N×N

and |p| < 1/‖A‖ or, more generally, a bounded right linear quaternionic operator

A from a quaternionic Hilbert space to itself, (I − pA)−⋆ can be constructed using

the functional calculus; see [5, Proposition 2.16]. It is sufficient to construct the

right slice regular inverse of 1 − pq with respect to q and then replace q with the

operator A. Note that, for simplicity, we write (I − pA)−⋆ using the symbol ⋆

instead of ⋆r ; the discussion in Remark 2.6 justifies this abuse of notation.
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4 Multipliers in reproducing kernel Hilbert spaces

In this section, we study the multiplication operators and their adjoints. We show

that positivity implies slice hyperholomorphicity for a class of functions and we

prove that if a kernel is positive and slice hyperholomorphic, then the correspond-

ing reproducing kernel Hilbert space consists of slice hyperholomorphic functions.

Let us begin by recalling the following definition; cf. [11].

Definition 4.1. A quaternionic Hilbert space H of H
N -valued functions

defined on an open set � ⊆ H is called a reproducing kernel quaternionic

Hilbert space if there exists a H
N×N -valued function defined on �×� such that

(1) for every q ∈ � and a ∈ HN , the function p 7→ K (p, q)a belongs to H ;

(2) for every f ∈ H , q ∈ �, and a ∈ H
N , 〈 f, K (·, q)a〉H = a∗ f (q).

The function K (p, q) is called the reproducing kernel of the space. As ob-

served in [11], Definition 4.1, one may impose the weaker requirement that H

be a quaternionic pre-Hilbert space. However, the next result guarantees that a

reproducing kernel quaternionic pre-Hilbert space has a unique completion as a

reproducing kernel quaternionic Hilbert space. We denote this space by H (K ).

Theorem 4.2 ([11]). Given an H
N×N -valued function K (p, q) positive on a

set � ⊂ H, there exists a uniquely defined reproducing kernel quaternionic Hilbert

space of HN -valued function defined on � and with reproducing kernel K (p, q).

Recall that H (K ) is the completion of the linear span
◦

H (K ) of functions of

the form

(4.1) p 7→ K (p, q)a, q ∈ �, a ∈ H
N ,

with the inner product

(4.2) 〈K (·, q)a, K (·, s)b〉 ◦

H (K )
:= b∗K (s, q)a.

Proposition 4.3. Let φ be a slice hyperholomorphic function defined on an

axially symmetric s-domain � and with values in H
N×M . Let K1(p, q) and K2(p, q)

be positive definite kernels in �, respectively H
M×M - and H

N×N -valued, and slice

hyperholomorphic in the variable p.

(1) If the slice multiplication operator Mφ : H(K1) → H(K2) given by

Mφ : f 7→ φ ⋆ f is continuous, then the adjoint operator is given by the

formula

M∗
φ (K2(·, q)d ) = K1(·, q) ⋆r φ∗(q)d.
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(2) The multiplication operator Mφ has norm less than or equal to k (in partic-

ular, Mφ is bounded) if and only if the function

(4.3) K2(p, q) −
1

k2
φ(p) ⋆l K1(p, q) ⋆r φ(q)∗

is positive on �.

Proof. We compute the adjoint of the operator Mφ : H(K1) → H(K2):

c∗(M∗
φ (K2(·, q)d ))(p) = 〈M∗

φ (K2(·, q)d ), K1(·, p)c〉H(K1)

= 〈K2(·, q)d, φ ⋆l K1(·, p)c〉H(K2)

= 〈φ ⋆l K1(·, p)c, K2(·, q)d〉∗H(K2)

= (d∗(φ(q) ⋆l K1(q, p))c)∗

= c∗(φ(q) ⋆l K1(q, p))∗d.

Now observe that by Lemma 3.6, we have (φ(q) ⋆l K1(q, p))∗ = K1(p, q) ⋆r φ∗(q),

and so M∗
φ (K2(·, q)d ) = K1(·, q)⋆r φ∗(q)d . The positivity of (4.3) follows from the

positivity of the operator k2 − MφM∗
φ .

Conversely, the standard argument shows that ‖Mφ‖ ≤ k if (4.3) is positive. �

Example 4.4. Let us consider the case in which the kernel K is of the form

K (p, q) =

∞∑

n=0

pnqnαn, αn ∈ R for all n ∈ N.

In this case,

φ(p) ⋆l K (p, q) =

∞∑

n=0

pnφ(p)qnαn

and

(φ(p) ⋆l K (p, q))∗ =

∞∑

n=0

qnφ(p)∗pnαn,

from which we obtain

φ(q) ⋆l (φ(p) ⋆l K (p, q))∗ = φ(q) ⋆l

∞∑

n=0

qnφ(p)∗pnαn = φ(q) ⋆l K (q, p) ⋆r φ(p)∗.

Recall that in [5], a Schur function S is defined to be a HN×M -valued function,

slice hyperholomorphic in B, whose kernel

(4.4) kS(p, q) =

∞∑

n=0

pn(IN − S(p)S(q)∗)qn = (IN − S(p)S(q)∗) ⋆ (1 − pq)−⋆
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is positive on B. We show, in Theorem 4.6 below, the converse for a subclass of

slice hyperholomorphic functions, i.e. that for a subclass of slice hyperholomor-

phic functions, positivity forces hyperholomorphicity. This subclass, denoted by

N, corresponds to those functions f such that f : B ∩ CI → CI for all I ∈ S. For

functions f ∈ N, the pointwise multiplication of f with a monomial of the form

pn is well-defined and commutative. In fact, f takes the complex plane CIp
to itself

and thus behaves, on each plane, like a complex-valued function.

We need the following preliminary result.

Proposition 4.5. ([11, Proposition 9.3]) Suppose � is an arbitrary set. Let

K1 : � → HN×N and K2 : � → HM×M be positive functions and φ : � → HN×M .

The pointwise multiplication operator by φ has norm less than or equal to k (and,

in particular, is bounded) if and only if the function

(4.5) K2(p, q) −
1

k2
φ(p)K1(p, q)φ(q)∗

is positive on �.

Theorem 4.6. Let S : B → H
N×M be a function such that for every I ∈ S,

S : B ∩ CI → C
N×M
I . Then the following are equivalent.

(1) The function
∑∞

n=0 pn(IN − S(p)S(q)∗)q̄n is positive on B.

(2) The operator MS is a contraction from HM
2 (B) to HN

2 (B).

(3) S is a Schur function belonging to N(B).

Proof. The equivalence between (1) and (2) follows as in [1, Theorem 2.6.3],

and its proof is based on Proposition 4.5. Indeed, in (4.5) set

K1(p, q) = IM (1 − pq̄)−⋆, K2(p, q) = IN (1 − pq̄)−⋆.

Then

(4.6) IN (1 − pq̄)−⋆ −
1

k2
S(p)(1 − pq̄)−⋆S(q)∗

= IN

∞∑

n=0

pnq̄n −
1

k2
S(p)(

∞∑

n=0

pnq̄n)S(q)∗.

Now observe that, by hypothesis, S(p) commutes with pn since S takes the complex

plane CIp
to itself; similarly, S(q)∗ commutes with q̄n. So we conclude that (4.6)

equals
∞∑

n=0

pn(IN −
1

k2
S(p)S(q)∗)q̄n.
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Thus, if (1) holds, then by Proposition 4.5, MS is a contraction from HM
2 (B) to

HN
2 (B). Conversely, if (2) holds, then again Proposition 4.5 allows us to conclude

that (1) holds.

The implication (3) implies (2) follows from the fact that S is a Schur function.

To see that (2) implies (3), notice that S is slice hyperholomorphic, since

Sc ∈ HN
2 (B) for every c ∈ H

M . Moreover, S is contractive, since M∗
S acts as

M∗
S

(
(1 − pq)−⋆d

)
= (1 − pq)−⋆S(q)∗d

and M∗
S is also a contraction. �

Definition 4.7. A subset � of B is called a set of uniqueness if every slice

hyperholomorphic function on B which vanishes on � is identically zero on B.

Example 4.8. Every open subset � of B ∩ CI is a set of uniqueness. More

generally, every subset � of B ∩ CI , I ∈ S, having an accumulation point in CI is

a set of uniqueness.

Theorem 4.9. Let � be a set of uniqueness in B and S a function defined on

� such that S : � ∩ CI → CN×M
I for every I ∈ S. Then S can be extended slice

hyperholomorphically to a Schur function in N(B) if and only if the kernel

(4.7)

∞∑

n=0

pn(IN − S(p)S(q)∗)q̄n

is positive on �.

Proof. If S can be extended hyperholomorphically to a Schur function, then

the kernel (4.7) is positive definite on �.

To prove the converse, define the right linear quaternionic operator T as

T
(

(1 − pq)−⋆d
)

= (1 − pq)−⋆S(q)∗d, q ∈ �

and reason as in the proof of Theorem 4.6. By assumption, the kernel

∞∑

n=0

pn(IN − S(p)S(q)∗)q̄n

is positive; thus T is well-defined and contractive. Its domain is dense, since � is

a set of uniqueness. So T extends to a contraction from HM
2 to HN

2 . Its adjoint is a

contraction; and for every q ∈ � and F ∈ HN
2 ,

〈T ∗F, (1 − pq)−⋆d〉 = 〈F, T
(

(1 − pq)−⋆d
)
〉

= 〈F, (1 − pq)−⋆S(q)∗d〉

= d∗S(q)F (q).
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Since we obtained a function equal to S(q)F (q) on �, the choice F = 1 shows that

S = T ∗1 is the restriction to � of a Schur function. �

To conclude this section, we show that if a kernel K (p, q) is positive and slice

hyperholomorphic in p, then its corresponding reproducing kernel Hilbert space

consists of slice hyperholomorphic functions.

Theorem 4.10. Let K (p, q) be an HN×N -valued function defined on an open

set � ⊂ H and let H (K ) be the associated reproducing kernel quaternionic

Hilbert space. Assume that for all q ∈ �, the function p 7→ K (p, q) is slice

hyperholomorphic. Then the entries of the elements of H (K ) are also slice hyper-

holomorphic.

Proof. It suffices to consider the case of H-valued functions, as the matrix

case is similar. For any f ∈ H (K ), p, q ∈ �, and sufficiently small ε ∈ R \ {0},

1

ε
(K (p, q + ε) − K (p, q)) =

1

ε
(K (q + ε, p) − K (q, p)).

Let (u + Iv, x + Iy) ∈ CI × CI . Then

∂K (p, q)

∂x
=

∂K (q, p)

∂u
.

Similarly,

1

ε
(K (p, q + Iε) − K (p, q)) =

1

ε
(K (q + Iε, p) − K (q, p)),

from which we deduce
∂K (p, q)

∂y
=

∂K (q, p)

∂v
.

The two families
{

1

ε
(K (p, q + ε) − K (p, q))

}

ε∈R\{0}

,

{
1

ε
(K (p, q + Iε) − K (p, q))

}

ε∈R\{0}

,

are uniformly bounded in norm and therefore have weakly convergent subse-

quences which converge to ∂K (p, q)/∂x and ∂K (p, q)/∂y, respectively. Moreover,

1

ε
( f (p + ε) − f (p)) = 〈 f (·),

1

ε
(K (·, p + ε) − K (·, p))〉H (K )

and
1

ε
( f (p + Iε) − f (p)) = 〈 f (·),

1

ε
(K (·, p + Iε) − K (·, p))〉H (K ).

Thus, we can write
∂ f

∂u
(p) = 〈 f (·),

∂K (·, p)

∂x
〉H (K ),
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and
∂ f

∂v
(p) = 〈 f (·),

∂K (·, p)

∂y
〉H (K ).

To show that f is slice hyperholomorphic, we consider its restriction to an arbitrary

complex plane CI and show that it is in the kernel of the corresponding Cauchy-

Riemann operator:

∂ f

∂u
+ I

∂ f

∂v
=
〈

f,
∂K (·, q)

∂x

〉
H (K )

+ I
〈

f (·),
∂K (·, q)

∂y

〉
H (K )

=
〈

f,
∂K (·, q)

∂x
−

∂K (·, q)

∂y
I
〉

H (K )

=
〈

f,
∂K (q, ·)

∂u
+ I

∂K (q, ·)

∂v

〉
H (K )

= 0,

since the kernel K (q, p) is slice hyperholomorphic in the first variable q. �

5 Blaschke products

The space H2(B) was introduced in [5] as the space of power series

f (p) =

∞∑

n=0

pn fn,

where the coefficients fn lie in H and satisfy

(5.1) ‖ f ‖H2(B)
def.
=

√√√√
∞∑

n=0

| fn|
2 < ∞.

H2(B) endowed with the inner product

[ f, g]2 =

∞∑

n=0

gn fn, where g(p) =

∞∑

n=0

pngn,

is the right quaternionic reproducing kernel Hilbert space with reproducing kernel

k(p, q) =

∞∑

n=0

pnq̄n = (1 − pq)−⋆.

The norm (5.1) admits another expression.

Theorem 5.1. The norm in H2(B) can be written as

sup
0<r<1, I∈S

[ 1

2π

∫ 2π

0

| f (reIθ)|2 dθ
]1/2

= sup
0<r<1

[ 1

2π

∫ 2π

0

| f (reIθ )|2 dθ
]1/2

.
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Proof. The equality is clear from the power series expansion of f with center

at 0 and the Parseval identity. Thus the norm can be defined as in the classical

complex case by computing the integral on a chosen complex plane. �

Let us prove some results associated to the Blaschke factors in the slice hyper-

holomorphic setting.

Definition 5.2. Let a ∈ H, |a| < 1. The function

(5.2) Ba(p) = (1 − pā)−⋆ ⋆ (a − p)
ā

|a|

is called the Blaschke factor at a.

Lemma 5.3. Let a ∈ B. Then Ba is a slice hyperholomorphic function in B.

Furthermore,

(5.3) Ba(a)a = aBa(a).

Proof. Indeed, Ba(p) is slice hyperholomorphic by its definition. Now

Ba(p) =
( ∞∑

n=0

pnan
)

⋆ (a − p)
a

|a|

=

∞∑

n=0

(pnana − pn+1an)
a

|a|

= |a| +

∞∑

n=0

pn+1an+1(|a| −
1

|a|
),

(5.4)

from which (5.3) follows. �

Remark 5.4. Set λ(p) = 1 − pā. Then

(1 − pā)−⋆ = (λc(p) ⋆ λ(p))−1λc(p).

Applying formula (3.2) to the products λc(p) ⋆ λ(p) and λc(p) ⋆ (a − p), we can

rewrite (5.2) as

Ba(p) = (λc(p) ⋆ λ(p))−1λc(p) ⋆ (a − p)
ā

|a|
= (λc(p)λ(p̃))−1λc(p)(a − p̃)

ā

|a|

= λ(p̃)−1(a − p̃)
ā

|a|
= (1 − p̃ā)−1(a − p̃)

ā

|a|
,

(5.5)

where p̃ = λc(p)−1pλc(p). Formula (5.5) represents the Blaschke factor Ba(p) in

terms of pointwise multiplication only.
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Theorem 5.5. Let a ∈ H, |a| < 1. Then

1. Ba takes the unit ball B to itself;

2. Ba takes the boundary of the unit ball to itself;

3. Ba has a unique zero for p = a.

Proof. By Remark 5.4 we can write Ba(p) = (1 − p̃ā)−1(a − p̃)ā/|a|. Let us

show that |p| = |p̃| < 1 implies |Ba(p)|2 < 1. The latter inequality is equivalent to

|a − p̃|2 < |1 − p̃ā|2,

which is also equivalent to

(5.6) |a|2 + |p|2 < 1 + |a|2|p|2.

Inequality (5.6) can be written as (|p|2 − 1)(1 − |a|2) < 0 and holds when |p| < 1.

For |p| = 1, we set p = eIθ , so that p̃ = eI ′θ , by the proof of Corollary 3.3. Then

|Ba(eIθ)| = |1 − eI ′θ ā|−1|a − eI ′θ |
|ā|

|a|
= |e−I ′θ − ā|−1|a − eI ′θ | = 1.

Finally, from (5.5) it follows that Ba(p) has only one zero that comes from the

factor a − p̃. Moreover Ba(a) = (1 − ãā)−1(a − ã)ā/|a|, where

ã = (1 − a2)−1a(1 − a2) = a,

and thus Ba(a) = 0. �

Theorem 5.6. Let {a j } ⊂ B, j = 1, 2, . . ., be a sequence of nonzero quater-

nions such that [ai] 6= [a j ] if i 6= j and assume that
∑

j≥1(1 − |a j |) < ∞. Then

the function

(5.7) B(p) := 5⋆
j≥1(1 − pā j )

−⋆ ⋆ (a j − p)
ā j

|a j |
,

where 5⋆ denotes the ⋆-product, converges uniformly on compact subsets of B.

Proof. Let α j (p) := Ba j
(p) − 1. Remark 5.4 yields the chain of equalities

α j (p) =Ba j
(p) − 1 = (1 − p̃ā j )

−1(a j − p̃)
ā j

|a j |
− 1

=(1 − p̃ā j )
−1

[
(a j − p̃)

ā j

|a j |
− (1 − p̃ā j )

]

=(1 − p̃ā j )
−1

[
(|a j | − 1)

(
1 + p̃

ā j

|a j |

)]
.

Thus, if |p| < 1 then |α j (p)| ≤ 2(1 − |p|)−1(1 − |a j |), since |p̃| = |p|, and since∑∞
j =1(1 − |a j |) < ∞, it follows that

∑∞
j =1 |α j (p)| converges in B. �
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Definition 5.7. The function B(p) defined in (5.7) is called a Blaschke

product.

Remark 5.8. In the complex case, the sequence of complex numbers {a j }

turns out to be the sequence of zeroes of the Blaschke product. The quaternionic

case is different, and we discuss it in the following results. In order to illustrate

the differences, let us consider the simpler case of a polynomial

P(p) = (p − a1) ⋆ . . . ⋆ (p − an)

and assume that [ai] 6= [a j ] for all i, j = 1, . . . , n. Then it can be verified that

p = a1 is a zero of the polynomial P(p), while the other zeroes lie on the spheres

[a j ] defined by a j for j = 2, . . . , n. Note that in case all the elements a j , j =

1, . . . , n, lie on a common sphere and ai+1 6= āi , the only zero of the polynomial is

a1 and it has multiplicity n; see [16, Lemme 2] or [52, Lemma 2.2.1]. Moreover,

whenever a polynomial or, more generally, a slice hyperholomorphic function f

has two zeroes belonging to the same 2-sphere, then all the elements of the sphere

are zeroes of f . Thus the zeroes of a slice hyperholomorphic function are either

isolated points or isolated spheres; see [33].

Assume that the slice hyperholomorphic function f has zero set

Z = {a1, a2, . . .} ∪ {[c1], [c2], . . .}.

Then it is possible to construct a suitable Blaschke product having Z f as zero set.

Let us begin with the case in which the zeros are isolated points. We require of the

following remark.

Remark 5.9. Direct computations show the following equality of polynomi-

als:

(1 − pa) ⋆ (a − p)
ā

|a|
=
(

(a − p)
ā

|a|

)
⋆ (1 − pa) = (a − p) ⋆ (1 − pa)

ā

|a|
.

Proposition 5.10. Let Z = {a1, a2, . . .} be a sequence of elements in B,

a j 6= 0 for all j = 1, 2, . . . such that [ai] 6= [a j ] if i 6= j , and assume that∑
j≥1(1 − |a j |) < ∞. Then there exists a Blaschke product B(p) whose zero set is

Z.

Proof. Let us prove the statement by induction. By hypothesis, the zero set

of the required Blaschke product consists of isolated points, all of them belonging

to different spheres. We have already proved that if n = 1, then B1(p) := Ba1
(p)

has a1 as its unique zero.
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Let us now assume that the statement holds for a1, . . . , ak, so there exists a

Blaschke product Bk(p) vanishing at the given points. We construct a Blaschke

product vanishing at a1, . . . , ak, ak+1. Observe that it is possible to choose an

element a′
k+1 belonging to the sphere [ak+1] such that Bk(p) ⋆ Ba′

k+1
(p) has zeros

a1, . . . , ak+1. In fact, consider the product

Bk+1(p) := Bk(p) ⋆ (1 − pā′
k+1)−⋆ ⋆ (a′

k+1 − p)
ā′

k+1

|a′
k+1|

and rewrite it using Remark 5.9 in the form

Bk+1(p) := Bk(p) ⋆ (a′
k+1 − p) ⋆ (1 − pa′

k+1)(1 − 2Re(ā′
k+1)p + |ā′

k+1|
2p2)−1 ā′

k+1

|a′
k+1|

.

We now observe that the zeros of Bk+1(p) belonging to the ball B come from the

zeros of the product B̃(p) := Bk(p) ⋆ (a′
k+1 − p). Also observe that

B̃(ak+1) = Bk(ak+1)(a′
k+1 − Bk(ak+1)−1ak+1Bk(ak+1)),

so in order for ak+1 to be a zero of B̃, and thus also of Bk+1, it suffices to choose

a′
k+1 = Bk(ak+1)−1ak+1Bk(ak+1).

The convergence of the Blaschke product follows as in Theorem 5.6. �

From now on, whenever we write Z = {(a, µ)}, we mean that Z consists of the

point a repeated µ times. Let us now prove the analog of Theorem 5.5(3) in the

case a has multiplicity µ.

Lemma 5.11. Let Z = {(a, µ)} with a ∈ B and a 6= 0. The Blaschke product

B(p) :=
(

(1 − pā)−⋆ ⋆ (a − p)
ā

|a|

)⋆µ

:=
(

(1 − pā)−⋆ ⋆ (a − p) ā
|a|

. . . (1 − pā)−⋆ ⋆ (a − p) ā
|a|

)

︸ ︷︷ ︸
µ times

has zero set Z.

Proof. Since

(1 − pā)−⋆ ⋆ (a − p)
ā

|a|
= (1 − 2Re(a)p + p2|a|2)−1(1 − pa) ⋆ (a − p)

ā

|a|
,

using the fact that 1 − 2Re(a)p + p2|a|2 has real coefficients, we can write

B(p) = (1 − 2pRe(a) + p2|a|2)−µ (1 − pa) ⋆ (a − p)
ā

|a|
· · · (1 − pa) ⋆ (a − p)

ā

|a|︸ ︷︷ ︸
µ times

.
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Thanks to Remark 5.9, we obtain

B(p) = (1 − 2pRe(a) + p2|a|2)−µ
(

(a − p)
ā

|a|

)⋆µ

⋆ (1 − pa)µ.

Thus B(p) has a unique zero in B at p = a of multiplicity µ. Note that the zero on

the sphere [1/a] which (as can be proved) coincides with 1/a, has to be excluded

since B(p) is not defined there; moreover, 1/a 6∈ B. �

Proposition 5.12. Let Z = {(a1, µ1), (a2, µ2), . . .} be a sequence of points

a j ∈ B with respective multiplicities µ j ≥ 1, a j 6= 0 for j = 1, 2, . . .. Let a j be

such that [ai] 6= [a j ] if i 6= j and
∑

j≥1 µ j (1 − |a j |) < ∞. Then there exists a

Blaschke product of the form

B(p) =

⋆∏

j≥1

(Ba′
j
(p))⋆µ j

having zero set Z. Here, a′
1 = a1, and a′

j ∈ [a j ] are suitably chosen elements,

j = 2, 3, . . ..

Proof. We prove the assertion by induction on the number of distinct zeros. If

there is just one zero a1 with multiplicity µ1, then the statement follows by Lemma

5.11.

Let us next assume that the proposition holds in the case of k different ze-

ros ai with respective multiplicities µi , and prove that it holds in the case of

k + 1 different zeros. Let Bk(p) be the Blaschke product having zeros at Z =

{(a1, µ1), . . . , (ak, µk)} and consider Bk+1(p) := Bk(p) ⋆ (Ba′
k+1

(p))⋆µk , where a′
k+1

is chosen such that Bk(p) ⋆ Ba′
k+1

(p) has a zero at p = ak+1. Then all the other zeros

of Bk+1 must belong to the sphere [ak+1]. Moreover, they must coincide with ak+1.

Otherwise, the Blaschke product (Ba′
k+1

(p))⋆µk vanishes at two different points on

the same sphere, and thus on the entire sphere. In particular, any two conjugate

elements on the sphere are zeros of the product and so

Ba(p) ⋆ Bā(p) = (1 − pā)−⋆ ⋆ (a − p)
ā

|a|
⋆ (1 − pa)−⋆ ⋆ (ā − p)

a

|a|

= (1 − 2Re(a)p + p2|a|2)−1(|a|2 − 2Re(a)p + p2).

However, it is immediate that the product (Ba′
k+1

(p))⋆µk does not contain factors of

the above form; thus all its zeros coincide with ak+1 as stated. The convergence of

the Blaschke product now follows as in Theorem 5.6. �

If a Blaschke product of two factors has an entire sphere of zeros then, as

discussed in the proof of the previous result, it has a specific form. We are thus led

to the following definition.



106 D. ALPAY, F. COLOMBO, AND I. SABADINI

Definition 5.13. Let a ∈ H, |a| < 1. The function

(5.8) B[a](p) = (1 − 2Re(a)p + p2|a|2)−1(|a|2 − 2Re(a)p + p2)

is called a Blaschke factor at the sphere [a].

Remark 5.14. Note that the definition of B[a](p) does not depend on the

choice of the point a that identifies the 2-sphere. Indeed, all the elements in the

sphere [a] have the same real part and module. It is easy to verify that the Blaschke

factor B[a](p) vanishes on the sphere [a].

The following result is immediate.

Proposition 5.15. A Blaschke product having zeros at the set of spheres

Z = {([c1], ν1), ([c2], ν2), . . .},

where c j ∈ B, the sphere [c j ] is a zero of multiplicity ν j , j = 1, 2, . . ., and∑
j≥1 ν j (1 − |c j |) < ∞, is given by

∏
j≥1(B[c j ](p))ν j .

Proof. All the factors B[c j ](p) have real coefficients and thus belong to the

classN (see Section 4), so we can use the pointwise product. The fact that the zeros

are the given spheres follows by taking the zeros of each factor. The convergence

of the infinite product follows as in Theorem 5.6. �

Theorem 5.16. A Blaschke product having zeros at the set

Z = {(a1, µ1), (a2, µ2), . . . , ([c1], ν1), ([c2], ν2), . . .}

where a j ∈ B, a j have respective multiplicities µ j ≥ 1, a j 6= 0 for j = 1, 2, . . .,

[ai] 6= [a j ] if i 6= j , ci ∈ B, the spheres [c j ] have respective multiplicities ν j ≥ 1,

j = 1, 2, . . ., [ci] 6= [c j ] if i 6= j and
∑

i, j≥1

(
µi (1 − |ai |) + ν j (1 − |c j |)

)
< ∞,

is given by
∏

i≥1(B[ci ](p))νi
∏⋆

j≥1(Ba′
j
(p))⋆µ j , where a′

1 = a1 and a′
j ∈ [a j ] are

suitably chosen elements, j = 2, 3, . . ..

Proof. The theorem follows from Propositions 5.10 and 5.12.

Theorem 5.17. Let Ba be a Blaschke factor. The operator Ma : f 7→ Ba ⋆ f

is an isometry from H2(B) into itself.

Proof. We first consider f (p) = puh and g(p) = pvk, where u, v ∈ N0 and

h, k ∈ H, and show that

(5.9) [Ba ⋆ f, Ba ⋆ g]2 = δuvkh.



PONTRYAGIN-DE BRANGES-ROVNYAK SPACES 107

Using (5.4), and with f and g as above, we have

(Ba ⋆ f )(p) = puh|a| +

∞∑

n=0

pn+1+uan+1(|a| −
1

|a|
)h

and

(5.10) (Ba ⋆ g)(p) = pvk|a| +

∞∑

n=0

pn+1+van+1(|a| −
1

|a|
)k.

If u = v , then

[Ba ⋆ f, Ba ⋆ g]2 = kh

(
|a|2 +

∞∑

n=0

|a|2n+2(|a| −
1

|a|
)2

)
= kh = [ f, g]2.

To compute [ f, g]2, we assume that u < v . Then, in view of (5.10), we have

[puh|a|, Ba ⋆ g]2 = 0.

Thus,

[Ba ⋆ f , Ba ⋆ g]2 = [

∞∑

n=0

pn+1+uan+1

(
|a| −

1

|a|

)
h, pv |a|k]2+

+ [

∞∑

n=0

pn+1+uan+1

(
|a| −

1

|a|

)
h,

∞∑

m =0

pm+1+vam+1

(
|a| −

1

|a|

)
k]2

= |a|kav−u

(
|a| −

1

|a|

)
h+

+ [

∞∑

m =0

pm+1+vam+1+v−u

(
|a| −

1

|a|

)
h,

∞∑

m =0

pm+1+vam+1

(
|a| −

1

|a|

)
k]2

= |a|kav−u

(
|a| −

1

|a|

)
h + k

(
|a| −

1

|a|

)2

av−u |a|2

1 − |a|2
h

= 0 = [ f, g]2.

The case v < u is handled by symmetry of the inner product. Hence, (5.9) holds

for polynomials. By continuity and a corollary of Runge’s theorem (see [29]), it

holds for all f ∈ H2(B). �

Similar results hold for bicomplex numbers; see [8].

Finally we note the following. In the classical case, Blaschke factors have

counterparts in the matrix-valued case. More precisely, a rational matrix-valued

function which takes unitary values (with respect to a possibly indefinite metric)

on the unit circle and has McMillan degree 1 is called a Blaschke-Potapov
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factor of the first kind if its unique pole is outside D, a Blaschke-Potapov

factor of the second kind the second kind if the pole lies inside D, and a

Blaschke-Potapov factor of the third kind if the pole lies on the unit cir-

cle. These terms originate with the work of Potapov [55]; also see [36]. The

results in this section are a stepping stone toward the study of these notions in the

slice-hyperholomorphic setting.

6 Homogeneous interpolation in the Hardy space

In this section, we consider homogeneous interpolation in the space H2(B). We

first briefly discuss the Beurling-Lax theorem to set the problem in perspective.

Beurling’s theorem (see [17], [57]) characterizes the closed, shift-invariant, non-

trivial subspaces of the Hardy space of the disk H2(D). These are spaces of the

form M = jH2(D), where the function j is inner, i.e., analytic and bounded by

1 in modulus in the open unit disk, and with non-tangential limits everywhere of

modulus 1. Thus M has reproducing kernel j (z) j (w)/(1 − zw), and its orthogonal

complement has reproducing kernel

(6.1)
1 − j (z) j (w)

1 − zw
.

In the vector-valued version of Beurling’s theorem (that is, the Beurling-Lax Theo-

rem), j is now operator-valued and takes isometric boundary values on the unit

circle; see, for instance, [56, Theorem A, p. 98]. In another direction, reproducing

kernel Hilbert spaces of vector-valued functions with reproducing kernel of the

form (6.1) (where now j need not take isometric values on the boundary, but is

merely contractive in the open unit disk) were characterized by de Branges and

Rovnyak in [19] in the scalar case; see also the papers of Guyker [40, 41]. In

the case of vector-valued functions, they have been characterized in [6, Theorem

3.1.2] in the setting of Pontryagin spaces. The counterpart of the result of [6] in

the setting of slice hyperholomorphic functions is presented in the preprint [4].

The problem considered in this section is set in the scalar case and gives a char-

acterization of the family of subspaces of H2(B) which are invariant under slice

multiplication by the variable; see Problem 6.1 and Theorem 6.2. This amounts

to the simplest Beurling-Lax type theorem in the present setting. We note that the

computations made in Section 9 below (see, in particular, Theorem 9.4) help to

obtain finite dimensional matrix-valued versions of Theorem 6.2. In the study of

the infinite dimensional case, one encounters problems such as the counterpart of

singular inner functions in the slice holomorphic case. These problems will be

considered in [2].
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Problem 6.1. Given N points a1, . . . , aN ∈ B, and M spheres [c1], . . . , [cM ]

in B such that the spheres [a1], . . . [aN ], [c1], . . . , [cM ] are pairwise disjoint, find

all f ∈ H2(B) such that

(6.2) f (ai ) = 0, i = 1, . . . , N,

and

(6.3) f ([c j ]) = 0, j = 1, . . . , M.

Theorem 6.2. There is a Blaschke product B such that the solutions of Prob-

lem 6.1 are the functions f = B ⋆ g, when g runs through H2(B).

Iterative proof. We proceed in three steps. As a preliminary computation,

we consider in the first step the case N = 1 and M = 0. The problem itself is

solved by considering the interpolation at the spheres first.

STEP 1. We solve the problem for M = 0 and N = 1.

Let Ba1
be the Blaschke factor (5.2) at a1. By (3.2), we have (Ba1

⋆ f )(a1) = 0

for all f ∈ H2(B). Furthermore, by Theorem 5.17, ‖Ba1
⋆ f ‖2 = ‖ f ‖2. Thus, for

N = 1, the set M of solutions of Problem 6.1 contains Ba1
⋆ H2(B).

We now prove that M ⊆ Ba1
⋆ H2(B). Let f ∈ M. By the reproducing kernel

property, f is orthogonal to (1 − pa1)−⋆. The range ran
√

I − Ma1
M∗

a1
is equal to

the span of (1−pa1)−⋆; see [5]. In view of Theorem 5.17, we have
√

I − Ma1
M∗

a1
=

I − Ma1
M∗

a1
, and thus H2(B) = (I − Ma1

M∗
a1

)H2(B) ⊕ (Ma1
M∗

a1
)H2(B). Therefore,

f ∈ (Ma1
M∗

a1
)H2(B). Hence M = Ba1

⋆ H2(B).

With this preliminary computation in hand, we solve the interpolation problem

by first considering the interpolation at the spheres [c1], . . . , [cM ].

STEP 2. Consider the sphere [c j ], and let B[c j ] be the corresponding Blaschke

factor given by (5.8), j = 1, 2, . . . , M. An element f ∈ H2(B) vanishes on the

spheres [c1], . . . , [cM ] if and only it can be written as

(6.4) f = B[c1]B[c2] · · · B[cM ]g,

where g ∈ H2(B).

Note that in (6.4), we have pointwise products since the Blaschke factors on

spheres have real coefficients. By [33, Corollary 4.3.7, p. 123], f vanishes on the

entire sphere [c1] if and only if f (c1) = f (c1) = 0. By STEP 1, the first condition

means that f = Bc1
⋆ g for some g ∈ H2(B). By (3.2), the second condition is

equivalent to

(6.5) Bc1
(c1)g((Bc1

(c1))−1c1Bc1
(c1)) = 0.
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Since Bc1
(c1) 6= 0, and because of (5.3), (6.5) is equivalent to g(c1) = 0. Thus,

once more using STEP 1, we have g(p) = Bc1
⋆ h for some h ∈ H2(B). Therefore,

f = Bc1
⋆ Bc1

⋆ h = B[c1]h.

This argument can be iterated for the spheres [c2], . . . , [cM ] since B[c2](c1) 6= 0

(which in turn follows from the fact that the spheres do not intersect).

We now turn to the conditions (6.2). The function f is of the form (6.4), and

thus the condition f (a1) = 0 becomes

(
B[c1]B[c2] · · · B[cM ]

)
(a1)g(a1) = 0.

Hence, by STEP 1, g = Ba1
⋆ g1 for some g1 ∈ H2(B). Now suppose f ∈ H2(B)

satisfies f (a2) = 0. By the previous argument, f is of the form

(
B[c1]B[c2] · · · B[cM ]

)
Ba1

⋆ g1

for some g1 ∈ H2(B). The condition f (a2) = 0 and formula (3.2) give

g(a′
2) = 0, where a′

2 = X−1a2X,

with

X =
(
B[c1]B[c2] · · · B[cM ]Ba1

)
(a2).

Hence f is a solution if and only if g2 = Ba′
2
⋆ g2 for some g1 ∈ H2(B). Iterating

this argument, we obtain the set of functions f ∈ H2(B) which vanish at the points

a1, . . . , aN . �

Remark 6.3. It is also possible to avoid iteration and to give a “global” proof

of Theorem 6.2. In other words, one can construct directly from the interpolation

data an N -dimensional backward shift invariant subspace, whose structure leads

to the function B .

7 Quaternionic Pontryagin spaces

Quaternionic Pontryagin spaces have been studied in [11]. In this section, we

review the main definitions and prove, in the setting of quaternionic spaces, an

important result due to Shmulyan in the complex setting; see [58] and [6, Theorem

1.4.2]. Consider a right vector space P on the quaternions endowed with a H-

valued Hermitian form [ · , · ], meaning that [va, wb] = b[v,w]a for all a, b ∈ H

and v,w ∈ P . P is called a (right, quaternionic) Pontryagin space if it

admits a decomposition

(7.1) P = P+ + P−,

where P+ and P− are subspaces such that
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(1) (P+, [·, ·]) is a (right, quaternionic) Hilbert space,

(2) (P−,−[·, ·]) is a finite dimensional (right, quaternionic) Hilbert space,

(3) the sum (7.1) is direct and orthogonal, i.e., P+ ∩ P− = {0} and [v+, v−] = 0

for all v+ ∈ P+ and v− ∈ P−.

The space P endowed with the form

〈v,w〉 = [v+, v−] − [w+, w−], v = v+ + v−, w = w+ + w−

is a (right quaternionic) Hilbert space. The decomposition (7.1) is called a fun-

damental decomposition. It is not unique (except for the case where one of the

components reduces to {0}), but all the corresponding Hilbert space topologies are

equivalent; see [11, Theorem 12.3]. The number κ = dim P− is called the index

of the Pontryagin space P . It is the same for all the decompositions; see [11,

Proposition 12.6]. The reader should be aware that in some of the literature on the

complex-valued case, in particular in [18], [44], the convention is the opposite and

it is the space P+ that is required to be finite dimensional.

Example 7.1. Let J ∈ H
N×N be a signature matrix. The space H

N endowed

with the Hermitian form [v,w]J = w∗Jv is a right quaternionic Pontryagin space,

which we denote by H
N
J .

Before turning to Shmulyan’s theorem, we recall the following definitions.

Given two right quaternionic Pontryagin spaces (P1, [·, ·]1) and (P2, [·, ·]2) a lin-

ear relation between P1 and P2 is a right linear subspace, say R, of the product

P1 × P2. The domain of the relation is the set of elements v1 ∈ P1 such that

there exists a (not necessarily unique) v2 ∈ P2 satisfying (v1, v2) ∈ R. The relation

is called contractive if [v1, v1]1 ≤ [v2, v2]2 for all (v1, v2) ∈ R. One example of a

relation is the graph of an operator. A relation is the graph of an operator if and

only it has no elements of the form (0, v2) with v2 6= 0.

Theorem 7.2. A densely defined contractive relation between quaternionic

Pontryagin spaces of the same index extends to the graph of a contraction from

P1 into P2.

Proof. Following the strategy of [6, pp. 29–30], we divide the proof into a

number of steps. Recall that a strictly negative subspace is a linear subspace

V such that [v, v] < 0 for every non-zero element of V .

STEP 1. The domain of the relation contains a maximum negative subspace.

Indeed, every dense linear subspace of a right quaternionic Pontryagin space of

index κ > 0 contains a κ dimensional strictly negative subspace; see [11, Theorem

12.8 p. 470]. We denote such a subspace of the domain of R by V−.
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STEP 2. The relation R restricted to V− has zero kernel, and the image of V−

is a strictly negative subspace of P2 of dimension κ.

Let (v1, v2) ∈ R with v1 ∈ V−. Since R is contractive, [v2, v2]2 ≤ [v1, v1]1 ≤ 0,

and the second inequality is strict when v1 6= 0. Thus, the image of V− is a strictly

negative subspace of P2. Next, let (v,w) ∈ R and (ṽ, w) with v, ṽ ∈ V− and

w ∈ P2. Then (v − ṽ , 0) ∈ R. Since R is contractive, [0, 0]2 ≤ [v − ṽ , v − ṽ]1.

This forces v = ṽ , since V− is strictly negative, and proves the second step.

STEP 3. R is the graph of a densely defined contraction.

Choose V− as in the first two steps, and take a basis v1, . . . , vκ of V−. There

exist uniquely defined vectors w1 . . . , wκ ∈ P2 such that (vi, wi ) ∈ R for i =

1, . . . , κ. Let W− be the linear span of w1, . . . , wκ. By STEP 2 and since the

spaces P1 and P2 have the same negative index,

dim V− = dim W− = ind−P1 = ind−P2,

and there exists fundamental decompositions P1 = V− + V+ and P2 = W− + W+,

where (V+, [·, ·]1) and (W+, [·, ·]2) are right quaternionic Hilbert spaces. Now let

(0, w) ∈ R. We need to show that w = 0. Still following [6, p. 30], we write

w = w− + w+, where w− ∈ W− and w+ ∈ W+. Let w− =
∑κ

n=1 w j q j , where each

q j ∈ H, and set v− =
∑κ

n=1 v j q j . Then (v−, w−) ∈ R, and

(0, w) = (v−, w−) + (−v−, w+).

It follows that (−v−, w+) ∈ R. Now, since R is contractive, [w+, w+]2 ≤ [v−, v−]1,

and so [w+, w+]2 ≤ 0. Thus w+ = 0. It follows that (0, w−) ∈ R, and so w− = 0

because R is one-to-one on V−, as follows from STEP 2.

STEP 4. R extends to the graph of an everywhere defined contraction.

In the complex case, this is [6, Theorem 1.4.1]. Following the arguments there,

we consider the orthogonal projection from P2 onto W−. Let T be the densely

defined contraction with graph the relation R. There exist H-valued right linear

functionals c1, . . . , cκ, defined on the domain of R such that

Tv =

κ∑

n=1

fncn(v) + w+,

where w+ ∈ W+ satisfies [ fn, w+]2 = 0 for n = 1, 2, . . . , κ. Assume that c1 is

unbounded on its domain, let v+ be such that c1(v+) = 1, and let vn be vectors in

V+ such that c1(vn) = 1 and limn→∞[v+ − vn, v+ − vn]1 = 0. Then v+ belongs to
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the closure of ker c1, and so the closure of ker c1 equals V+. Thus ker c1 contains

a strictly negative subspace, say K−, of dimension κ. For v ∈ K−, we have

Tv =
∑n

n=2 fncn(v). This contradicts STEP 2 and completes the proof. �

8 Negative squares

The notion of kernels with a finite number of negative squares extends the notion

of positive definite kernels. For this notion in the quaternionic case, we refer the

reader to [11, Section 11]. Recall that an HN×N Hermitian matrix A has only

real (right) eigenvalues. We denote by sq−(A) the number of strictly negative

eigenvalues.

Definition 8.1. Let κ ∈ N0. An H
N×N -valued function K (z, ω) defined for

z, ω in the set � ⊆ H is said to have κ negative squares if the following hold.

(i) K (z, w) is Hermitian, i.e.,

(8.1) K (z, w) = K (w, z)∗, for all z, w ∈ �;

(ii) for every N ∈ N and every choice of z1, . . . , zN ∈ � and c1, . . . , cN ∈ HN ,

the N ×N Hermitian matrix with ℓ, j entry equal to c∗
ℓK (zℓ, z j )c j has at most

κ strictly negative eigenvalues;

(iii) for some choice of N ∈ N, z1, . . . , zN ∈ � and c1, . . . , cN ∈ H
N , the N × N

Hermitian matrix with ℓ, j entry equal to c∗
ℓK (zℓ, z j )c j has exactly κ strictly

negative eigenvalues.

We usually call such K (z, w)’s a kernel rather than function. When κ = 0, the

kernel K (z, w) is positive definite.

In the following theorem, we recall the following quaternionic counterparts of

results well known in the complex case. We first give a definition. A positive

definite H
N×N -valued function Q(z, w) is said to be of finite rank if it can be

factored as Q(z, w) = N (z, w)∗N (z, w), where N (z, w) is H
N×M -valued for some

M ∈ N. The smallest such M is called the rank of Q.

Theorem 8.2. (a) Let K (z, w) be an Hermitian H
N×N -valued function (see

(8.1)) for z, w in some set � ⊆ H. Then K has κ negative squares if and only

if it can be written as a difference K (z, w) = K+(z, w)−K−(z, w), where both

K+ and K− are positive definite in � and K− is of finite rank.

(b) There is a one-to-one correspondence between right quaternionic reproduc-

ing kernel Pontryagin spaces of index κ, of HN -valued functions on a set �,

and HN×N -valued functions with κ negative squares in �.
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For a proof of these facts, see [11, Theorems 11.5, and 13.1].

Theorem 8.3. Let K (p, q) be a H
N×N-valued function with κ negative squares

in an open non-empty subset � of H. Then there exists a unique right quaternionic

reproducing kernel Pontryagin space P consisting of HN -valued function slice

hyperholomorphic in � and with reproducing kernel K (p, q).

Proof. The fact that there exists a unique Pontryagin space P associated to K

follows as in [11, Theorem 13.1]. We have to show that the elements in P are

slice hyperholomorphic. Let
◦

P(K ) be the linear span of the functions of the form

p 7→ K (p, q)a where q ∈ � and a ∈ HN . Since K has κ negative squares,
◦

P(K )

has a maximal strictly negative subspace N− of dimension κ. By [11, Proposition

10.3], it is possible to write
◦

P(K )= N− + N
[⊥]

− , where N
[⊥]

− is a quaternionic

pre-Hilbert space. The space N
[⊥]

− has a unique completion, denoted by N+. Let

us define P := N+ + N−, with the inner product [ f, f ] := [ f+, f+]N+
+ [ f−, f−]N−

,

where f = f+ + f−, f± ∈ N±. If f1, . . . , fκ is an orthonormal basis of N−, then

(8.2) K (p, q) −

κ∑

j =1

f j (p) f j (q)∗

is a reproducing kernel for N+. The functions f j (p) are clearly slice hyperholo-

morphic in p since they belong to
◦

P(K ), and so are the products f j (p) f j (q)∗ as

well as the kernel (8.2). Therefore, the elements in N+ are slice hyperholomorphic,

and so are the elements in P . �

9 Generalized Schur functions

Definition 9.1. Let J1 and J2 be two signature matrices, respectively in H
N×N

and HM×M , and assume that sq−J1 = sq−J2. A HN×M -valued function 2, slice

hyperholomorphic in a neighborhood V of the origin, is called a generalized

Schur function if the kernel

K2(p, q) =

∞∑

ℓ=0

pℓ(J2 − 2(p)J12(q)∗)qℓ

has a finite number, say κ, of negative squares in V.

We denote the class of such functions by Sκ(J2, J1) This class was introduced

in [5] for the case N = M = 1, κ = 0 and J1 = J2 = 1. A pair of operators (C, A)

between appropriate spaces is called observable if

(9.1)

∞⋂

n=0

ker CAn = {0} .
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In the next result, we make use of the multiplication of operator valued slice hy-

perholomorphic functions. This multiplication is studied in detail in [2].

Theorem 9.2. Let 2 be slice hyperholomorphic in a neighborhood of the

origin. Then, it is in Sκ(J2, J1) if and only if it can written in the form

2(p) = D + pC ⋆ (IP − pA)−⋆B,

where P is a right quaternionic Pontryagin space of index κ, the pair (C, A) is

observable, and the operator matrix satisfies

(9.2)

(
A B

C D

)(
IP 0

0 J2

)(
A B

C D

)∗

=

(
IP 0

0 J1

)
.

Proof. Let P(2) be the right quaternionic reproducing kernel Pontryagin

space with reproducing kernel K2(p, q). Following the proof of [6, Theorem

2.2.1], we use the same densely defined linear relation as was used in [5], but

this time in (P(2) ⊕ H
M
J2

) × (P(2) ⊕ H
N
J1

). More precisely, now

R =

{(
K2(p, q)qu

qv

)
,

(
(K2(p, q) − K2(p, 0))u + K2(p, 0)qv

(2(q)∗ − 2(0)∗)u + 2(0)∗qv

)}
.

Since sq−(J1) = sq−(J2), these Pontryagin spaces have same negative index The

proof then follows from Shmulyan’s result. The arguments are similar to those in

[5] and are thus omitted. �

We now characterize finite dimensional P(s) spaces. We begin with a prelim-

inary proposition.

Proposition 9.3. Let

(9.3)

(
A B

C D

)(
H 0

0 J1

)(
A B

C D

)∗

=

(
H 0

0 J2

)

and

(9.4) s(p) = D + pC ⋆ (I − pA)−⋆B.

Then

J2 − s(p)J1s(q)∗ = C ⋆ (I − pA)−⋆ ⋆ (H − pHq̄) ⋆r

(
(I − qA)−⋆

)∗
⋆r C∗.
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Proof. We rewrite the matrix identity (9.3) as

J2 − DJ1D∗ = CHC∗

BJ1B∗ = H − AHA∗

AHC∗ = −BJ1D∗.

Let s(p) be given by (9.4), and consider the function J2 − s(p)J1s(q)∗, which is

slice hyperholomorphic in p and q on the left and on the right, respectively. Now

J2 − s(p)J1s(q)∗ = J2 − (D + pC ⋆ (I − pA)−⋆B)J1(D + qC ⋆ (I − qA)−⋆B)∗.

In order to preserve the hyperholomorphicity in p, q we take, accordingly, the ⋆-

product in p and the ⋆r-product in q and obtain

J2 − s(p)J1s(q)∗

= J2 − (D + pC ⋆ (I − pA)−⋆B)J1(D∗ + B∗ ⋆r ((I − qA)−⋆)∗ ⋆r C∗q̄)

= J2 − DJ1D∗ − pC ⋆ (I − pA)−⋆BJD∗ − DJ1B∗ ⋆r ((I − qA)−⋆)∗ ⋆r C∗q̄

− pC ⋆ (I − pA)−⋆BJ1B∗ ⋆r ((I − qA)−⋆)∗ ⋆r C∗q̄.

Using the relations implied by (9.3) and the identities (9.6), we obtain

J2 − s(p)J1s(q)∗

= CHC∗ + pC ⋆ (I − pA)−⋆AHC∗ + CHA∗ ⋆r ((I − qA)−⋆)∗ ⋆r C∗q̄

− pC ⋆ (I − pA)−⋆(H − AHA∗) ⋆r ((I − qA)−⋆)∗ ⋆r C∗q̄

= C⋆(I − pA)−⋆⋆
[
(I − pA)HC∗ + pAHC∗ + (I − pA)HA∗⋆r ((I − qA)−⋆)∗⋆r C∗q̄

− p(H − AHA∗) ⋆r ((I − qA)−⋆)∗ ⋆r C∗q̄
]

= C ⋆ (I − pA)−⋆ ⋆
[
(I − pA)H (I − qA)∗ + pAH (I − qA)∗ + (I − pA)HA∗q̄

− p(H − AHA∗)q̄
]
⋆r ((I − qA)−⋆)∗ ⋆r C∗

= C ⋆ (I − pA)−⋆ ⋆
[
H − HA∗q̄ − pAH + pAHA∗q̄ + pAH

− pAHA∗q̄ + HA∗q̄ − pAHA∗q̄ − pHq̄ + pAHA∗q̄
]
⋆r ((I − qA)−⋆)∗ ⋆r C∗

= C ⋆ (I − pA)−⋆ ⋆ (H − pHq̄) ⋆r ((I − qA)−⋆)∗ ⋆r C∗.

We can also write, equivalently.

J2 − s(p)J1s(q)∗ = C ⋆ (I − pA)−⋆H ⋆ (1 − pq̄) ⋆r (I − qA)−⋆ ⋆r C∗

= C ⋆ (I − pA)−⋆ ⋆ (1 − pq̄) ⋆r H ((I − qA)−⋆)∗ ⋆r C∗,
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or

J2 − s(p)J1s(q)∗ = (C ⋆ (I − pA)−⋆) ⋆ (H − pHq̄) ⋆r (C ⋆ (I − qA)−⋆)∗.
�

Specializing Theorem 9.2 to the finite dimensional case we obtain the follow-

ing result.

Theorem 9.4. Let s be a generalized Schur function. The associated right

reproducing kernel Pontryagin space P(s) is finite dimensional if and only there

exists a finite dimensional right Pontryagin space P such that

s(p) = D + pC ⋆ (I − pA)−⋆B,

where (
A B

C D

)
: P ⊕ H

M
J2

−→ P ⊕ H
N
J1

is coisometric, i.e.,

(9.5)

(
A B

C D

)(
IP 0

0 J2

)(
A B

C D

)∗

=

(
IP 0

0 J1

)
.

Proof. One half of the theorem follows from the Propositioin 9.3, while the

other half is a special case of Theorem 9.2. �

Here we focus on the case M = N and P(s) finite dimensional.

Definition 9.5. Let J ∈ HN×N be a signature function. The HN×N -valued

generalized function s belongs to Uκ(J) if the space P(s) is finite dimensional and

sq−(s) = κ.

Theorem 9.6. s ∈ Uκ(J) and is slice hyperholomorphic in a neighborhood

of the origin and only if it admits a realization

s(p) = D + pC ⋆ (I − pA)−⋆B

where A, B, C and D are matrices such that

(
A B

C D

)(
H 0

0 J

)(
A B

C D

)∗

=

(
H 0

0 J

)

for some Hermitian matrix H ∈ HN×N .
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Proof. First of all, observe that the definition of (left) slice hyperholomorphic

product immediately yields

(9.6) pC ⋆l f (p) = C ⋆l p f (p) = C ⋆l f (p) ⋆l p

in the case f (p) is a slice hyperholomorphic function, and C is a matrix. Analo-

gous equalities holds for the right slice hyperholomorphic product. It is also useful

to recall (cf. Section 3) that if f, g are left slice hyperholomorphic functions, then

( f ⋆l g)∗ = g∗ ⋆r f ∗ and f ⋆l C = fC; analogously, if h is right slice hyperholomor-

phic, C ⋆r h = Ch. �

In the positive case, the formulas above give the slice-hyperholomorphic ana-

logs of Blaschke factors of the first, second and third kind and of finite Blasckhe-

Potapov products. For the complex-valued counterparts of these notions, we refer

to [9], [7]. These last papers also suggest factorization results, which will be

considered elsewhere.

10 Generalized Carathéodory functions

We conclude this paper with a brief study the counterparts of the kernels (1.2).

Definition 10.1. Let J ∈ H
N×N be a signature matrix. A C

N×N -valued func-

tion ϕ, slice hyperholomorphic in a neighborhood V of the origin, is called a gen-

eralized Carathéodory function if the kernel

kϕ(p, q) =

∞∑

ℓ=0

pℓ(ϕ(p)J + Jϕ(q)∗)qℓ

has a finite number, say κ, of negative squares in V.

We denote the class of such functions by Cκ(J). In the case of analytic func-

tions, and for N = 1 and κ = 0, these functions appear in the work of Herglotz

[43], [37]. Still for analytic functions, these classes were introduced and studied

by Krein and Langer, also in the operator-valued case [45]. We now give a realiza-

tion theorem for such functions which is the counterpart in the present setting of a

result of Krein and Langer [45]. As for the realization of generalized Schur func-

tions, we build a densely defined relation and apply Shmulyan’s theorem (Theorem

7.2 above). We follow the arguments in [15, Theorem 5.2]. For the notion of ob-

servability in the statement of Theorem 10.2, see (9.1). The observability of the

pair (C, V ) is equivalent to the condition

(10.1) C ⋆ (I − pV )−⋆ f ≡ 0 ⇒ f = 0.
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Theorem 10.2. An H
N×N -valued function ϕ slice, hyperholomorphic in a

neighborhood V of the origin belongs to Cκ(J) if and only if it can be written

as

(10.2) ϕ(p) =
1

2
C ⋆ (IP + pV ) ⋆ (IP − pV )−⋆C∗J +

ϕ(0) − Jϕ(0)∗J

2
,

where P is a right quaternionic Pontryagin space of index κ, V is a co-isometry

in P , C is a bounded operator from P into HN , and the pair (C, V ) is observable.

Proof. Let L (ϕ) denote the reproducing kernel right quaternionic Pontryagin

space of functions slice hyperholomorphic in V with reproducing kernel kϕ(p, q),

and proceed in a number of steps. In the sequel, for the sake of simplicity, I

denotes the identity without specification of the space on which it is defined.

STEP 1. The linear relation consisting of the pairs (F, G) ∈ L (ϕ)×L (ϕ) with

F (p) =

n∑

j =1

kϕ(p, p j )p j b j and G(p) =

n∑

j =1

kϕ(p, p j )b j − kϕ(p, 0)

(
n∑

ℓ=1

bℓ

)
,

where n varies in N, p1, . . . , pn ∈ V ⊂ H, and b1, . . . , bn ∈ H
N , is isometric. Here

p j b j means multiplication on the right by p j on all the components of b j .

We need to check that

(10.3) [F, F ]L (ϕ) = [G, G]L (ϕ).

We have

[F, F ]L (ϕ) =

[ n∑

j =1

kϕ(p, p j )p j b j ,

n∑

k =1

kϕ(p, pk)pkbk

]
]L (ϕ)

=

n∑

j,k =1

b∗
kpkkϕ(pk, p j )p j b j

=

∞∑

ℓ=1

n∑

j,k =1

b∗
kpℓ+1

k (ϕ(pk)J + Jϕ(p j )
∗)p j

ℓ+1b j .

The inner product [G, G]L (ϕ) is a sum of four terms, the first of which is

n∑

j,k =1

b∗
kkϕ(pk, p j )b j =

∞∑

ℓ=1

n∑

j,k =1

b∗
kpℓ

k(ϕ(pk)J + Jϕ(p j )
∗)p j

ℓb j .
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Let b =
∑n

ℓ=1 bℓ. The second and third terms are

−

(
n∑

k =1

b∗
kkϕ(pk, 0)

)
b = −

n∑

k =1

b∗
k (ϕ(pk)J + Jϕ(0)∗)b

= −

(
n∑

k =1

b∗
kϕ(pk)J

)
b − b∗Jϕ(0)∗b,

and

−b∗

(
n∑

k =1

kϕ(0, p j )b j

)
=

n∑

k =1

b∗(ϕ(0)J + Jϕ(p j )
∗)bk

= −b∗ϕ(0)Jb − b∗




n∑

j =1

Jϕ(p j )
∗b j



 ,

respectively, and the fourth term is b∗kϕ(0, 0)b = b∗(ϕ(0)J + Jϕ(0)∗)b. Equation

(10.3) follows, since

[F, F ]L (ϕ) −

n∑

j,k =1

b∗
kkϕ(pk, p j )b j =

∞∑

ℓ=1

n∑

j,k =1

b∗
kpℓ+1

k (ϕ(pk)J + Jϕ(p j )
∗)p j

ℓ+1b j−

−

∞∑

ℓ=1

n∑

j,k =1

b∗
kpℓ

k(ϕ(pk)J + Jϕ(p j )
∗)p j

ℓb j

=

n∑

j,k =1

b∗
k (ϕ(pk)J + Jϕ(p j )

∗)b j .

The domain of R is dense. Thus, by Shmulyan’s theorem (Theorem 7.2 above),

R is the graph of a densely defined isometry which extends as an isometry to all of

L (ϕ). We denote this extension by by T .

STEP 2. We compute the adjoint of the operator T .

Let f ∈ L (ϕ), h ∈ H
N and p ∈ V. Then

h∗p
(
(T ∗ f )(p)

)
= [T ∗ f, kϕ(·, p)ph]L (ϕ)

= [ f , T (kϕ(·, p)h)]L (ϕ)

= [ f , kϕ(·, p)h − kϕ(·, 0)h]L (ϕ)

= h∗ ( f (p) − f (0)) ,

and hence (with f (p) =
∑∞

ℓ=0 pℓ fℓ)

(T ∗ f )(p) =





p−1( f (p) − f (0)), p 6= 0,

f1, p = 0.
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STEP 3. Formula (10.2) holds.

We first note that fℓ = CRℓ
0 f , and so

f (p) =

∞∑

ℓ=0

pℓCRℓ
0 f = C ⋆ (I − pR0)−⋆ f.

Applying this formula to the function C∗1 = kϕ(·, 0), we obtain

ϕ(p)J + Jϕ(0)∗ = C ⋆ (I − pR0)−⋆C∗1 and ϕ(0)J + Jϕ(0)∗ = CC∗1.

Multiplying the second equality by 1/2 and subtracting it from the first, we obtain

ϕ(p)J +
1

2
(Jϕ(0)∗ − ϕ(0)J) =

1

2
C ⋆ (I − pR0)−⋆ ⋆ (I + pR0)C∗.

STEP 4. Conversely, every function of the form (10.2) is in Cκ(J).

From (10.2), we obtain

(10.4) ϕ(p)J + Jϕ(q)∗J = C ⋆ (I − pV )−⋆ ⋆ (1 − pq) ⋆r ((I − qV )−⋆)∗ ⋆r C∗;

and so the reproducing kernel of L (ϕ) can be written as

kϕ(p, q) = C ⋆ (I − pV )−⋆((I − qV )−⋆)∗ ⋆r C∗,

since, in light of (10.4), the right side of the above equation satisfies

kϕ(p, q) − pkϕ(p, q)q = ϕ(p)J + Jϕ(q)∗J.

In view of (10.1), L (ϕ) consists of the functions of the form

f (p) = C ⋆ (I − pV )−⋆ξ, ξ ∈ P,

with the inner product

[ f, g]L (ϕ) = [ξ, η]P (with g(p) = C ⋆ (I − pV )−⋆η),

and so the kernel kϕ has exactly κ negative squares. �

Corollary 10.3. If J = IN and κ = 0, then ϕ has a slice hyperholomorphic

extension to the whole unit ball of H.

Proof. This follows from (10.2), since V is then contractive. �
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When J = IN , and in the complex variable setting, generalized Carathéodory

functions admit another representation, namely,

(10.5) ϕ(z) = g(z)ϕ0(z)g(1/z)∗,

where ϕ0 is a Carathéodory function (i.e., the corresponding kernel is positive

definite) and g is analytic and invertible in the open unit disk; see [38, 35, 34].

We note that in the rational case, generalized Carathéodory functions are called

generalized positive functions, and play an important role in linear system

theory. We refer to [10] for a survey of the literature and a constructive proof of

the factorization (10.5) (in the half-line case) in the scalar rational case.
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Mat. Obšč. 4 (1955), 125–236; English translation in: Amer. Math. Soc. Transl. (2) 15 (1960),
131–243.

[56] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Birkhäuser Verlag, Basel,
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