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Abstract. We characterize all the real numbers a, b, c and 1 ≤ p, q, r < ∞
such that the weighted Sobolev space

W (q,p)
{a,b}(R

N \{0}) := {u ∈ L1
loc(RN \{0}) : |x|a/qu ∈ Lq(RN ), |x|b/p∇u ∈ (Lp(RN ))N }

is continuously embedded into

Lr (RN ; |x|cdx) := {u ∈ L1
loc(RN \{0}) : |x|c/r u ∈ Lr (RN )}

with norm || · ||c,r . It turns out that, except when N ≥ 2 and a = c = b − p = −N ,
such an embedding is equivalent to the multiplicative inequality

||u||c,r ≤ C||∇u||θb,p||u||1−θ
a,q

for some suitable θ ∈ [0, 1], which is often but not always unique. If a, b, c >
−N , then C∞

0 (RN ) ⊂ W (q,p)
{a,b}(R

N \{0}) ∩ Lr (RN ; |x|cdx) and such inequalities

for u ∈ C∞
0 (RN ) are the well-known Caffarelli-Kohn-Nirenberg inequalities; but

their generalization to W(q,p)
{a,b}(R

N \{0}) cannot be proved by a denseness argument.
Without the assumption a, b, c > −N , the inequalities are essentially new, even
when u ∈ C∞

0 (RN \{0}), although a few special cases are known, most notably the
Hardy-type inequalities when p = q.
In a different direction, the embedding theorem easily yields a generalization when
the weights |x|a, |x|b and |x|c are replaced with more general weights wa, wb and
wc, respectively, having multiple power-like singularities at finite distance and at
infinity.

1 Introduction

Suppose N is a positive integer, d ∈ R, and 1 ≤ s < ∞. Let || · ||d,s denote the
norm of the space Ls(RN ; |x|d dx), where the |x|d dx -measure of {0} is defined to
be 0 (which must be specified if d ≤ −N ). With this definition, u ∈ Ls(RN ; |x|d dx)
if and only if |x|d/su ∈ Ls(RN ) and ||u||d,s = || |x|d/su||s, where || · ||s := || · ||0,s.
Throughout the paper, RN∗ := RN \{0}.
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Given a, b ∈ R and 1 ≤ p, q < ∞, consider the weighted Sobolev space

(1.1) W 1,(q,p)
{a,b} (RN

∗ ) := {u ∈ L1
loc(R

N
∗ ) : u ∈ Lq(RN ; |x|adx),

∇u ∈ (Lp(RN ; |x|bdx))N },

equipped with the norm

(1.2) ||u||a,q + ||∇u||b,p.

Since W 1,(q,p)
{a,b} (RN∗ ) may contain functions which are not locally integrable near 0,

and hence not distributions on RN , it is generally larger than the space W 1,(q,p)
{a,b} (RN )

(self-explanatory notation) which, incidentally, is not always complete.

In this paper, we characterize all the real numbers a, b, c and 1 ≤ p, q, r < ∞
such that W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx), where “↪→” denotes continuous embed-

ding. This provides sufficient conditions for W 1,(q,p)
{a,b} (RN ) ↪→ Lr(RN ; |x|cdx); their

necessity is not investigated.

In spite of the large literature devoted to embeddings of weighted Sobolev
spaces, there seems to be little that addresses and resolves the same question in
special cases. While most results allow for weights satisfying general properties,
they also incorporate a number of restrictive hypotheses which are rarely neces-
sary. Only a few are applicable to the whole (or punctured) space, and even fewer
accommodate weights which, like all nontrivial power weights, exhibit singulari-
ties at 0 and infinity simultaneously. This is especially true when more than one
weight (here, a 
= b) or more than one order of integration (i.e., p 
= q) is involved
in the source space. In addition, the weighted spaces are often defined to be the
unknown closure of some subspace of smooth (enough) functions, as the issue of
denseness in (1.1) is a notorious difficulty [30]. In particular, this is the definition
chosen in [17] (see also the more recent and expanded book [18]), except in the
unweighted case.

Before continuing this discussion, we state the embedding theorem. In addition
to the standard notation

p∗ =

⎧⎨⎩∞ if p ≥ N,

Np/(N − p) if 1 ≤ p < N,

we denote by c0 and c1 the two points

(1.3) c0 :=
r(a + N )

q
− N and c1 :=

r(b − p + N )
p

− N,
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where it is understood that a, b, p, q and r are given. The points c0 and c1 are
distinct if and only if (a + N )/q 
= (b − p + N )/p. If so, and if c ∈ [c0, c1], we set

(1.4) θc :=
c − c0

c1 − c0 ,

so that θc ∈ [0, 1] and

(1.5) c = θcc1 + (1 − θc)c0.

Observe that θc0 = 0, θc1 = 1 and by (1.3), (1.4), and (1.5),

(1.6)
c + N

r
= θc

b − p + N
p

+ (1 − θc)
a + N

q
.

Theorem 1.1. Let N be a positive integer. If N > 1, let a, b, c ∈ R and
1 ≤ p, q, r < ∞. If N = 1, let 1 ≤ p < ∞ and 0 < q, r < ∞. Then

W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) (and hence W 1,(q,p)

{a,b} (RN∗ ) ↪→ W 1,(r,p)
{c,b} (RN∗ )) if and

only if r ≤ max{p∗, q} and one of the following conditions1 holds:

(i) a and b − p are on the same side of −N (including −N ), (a + N )/q

= (b − p + N )/p, c is in the open interval with endpoints c0 and c1, and
θc(p−1 − N −1 − q−1) ≤ r−1 − q−1;

(ii) a and b − p are strictly on opposite sides of −N (hence (a + N )/q

= (b − p + N )/p), c is in the open interval with endpoints c0 and −N , and

θc(p−1 − N −1 − q−1) ≤ r−1 − q−1;
(iii) r = q and c = a (= c0);

(iv) p ≤ r ≤ p∗, a ≤ −N and b − p < −N or a ≥ −N and b − p > −N, c = c1;
(v) (max{p∗, q} ≥) r ≥ min{p, q}, (a + N )/q = (b − p + N )/p 
= 0, and c = c1

(= c0);

(vi) a = −N, b = p − N, q < r ≤ p∗ and c = c1 (= c0 = −N ).

Since r is finite, r = p∗ is impossible when p ≥ N . The set of admissible
values of c is an interval (possibly empty, see Remark 1), of which c0, c1 and −N

may or may not be endpoints, but are never interior points. When c0 or c1 are
endpoints, their admissibility is decided by parts (iii) to (vi). Endpoints other than
c0, c1 or −N are always admissible, but −N is never admissible when a 
= −N .
If a = −N , then −N is admissible only in the trivial case (iii) and the exceptional
case (vi).

Apparently, aside from the trivial part (iii), only parts (v) and (vi) of Theorem
1.1 when q = p (hence a = b − p) are known with nontrivial weights. See Opic
and Kufner [22, p. 291], where the result is credited to Opic and Gurka [21].

1The overlap between conditions (iii), (iv) and (v) makes for a simpler and clearer statement.
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Curiously, part (v) shows that if b − p 
= −N and aq := q(b − p + N )/p − N , the
space W 1,(q,p)

{aq,b} (RN∗ ) is independent of q ∈ [p, p∗], q < ∞, with equivalent norms
as q varies. When N = 1, part (iv) can and will be deduced from an inequality of
Bradley [5]. Related, but different, work is discussed further below.

In the unweighted case a = b = c = 0 and if p = q and N ≥ 2 (a minor point),
Theorem 1.1 gives again W 1,p(RN∗ ) = W 1,p(RN ) ↪→ Lr(RN ) if and only if (r < ∞
and) p ≤ r ≤ p∗ (Subsection 11.1). If p 
= q (and still a = b = c = 0), Theorem
1.1 is akin to embedding theorems in [2, 3].

Remark 1. If r ≤ min{p∗, q}, then θc(p−1 − N −1 − q−1) ≤ r−1 − q−1 for
every c between c0 and c1. In contrast, all the conditions of Theorem 1.1 fail (i.e.,
no embedding holds for any c) if p < N and r > max{p∗, q} or if either

(i) p < N, r = p∗ > q, b − p = −N 
= a, or
(ii) q < r ≤ p∗, a and b − p are strictly on opposite sides of −N (hence θ−N is

defined) and θ−N (p−1 − N −1 − q−1) ≥ r−1 − q−1.

A simple rescaling shows (Corollary 2.1) that when (a + N )/q 
= (b−p + N )/p,
the embedding W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) is equivalent to the multiplicative
inequality

(1.7) ||u||c,r ≤ C||∇u||θc
b,p||u||1−θc

a,q ,

rather than just ||u||c,r ≤ C
(||u||a,q + ||∇u||b,p

)
.

When a, b, c >−N and u ∈ C∞
0 (RN ), (1.7) is one of the well-known Caffarelli-

Kohn-Nirenberg (CKN for short) inequalities in [6]. Therefore, parts (i) and (ii) of
Theorem 1.1 give necessary and sufficient conditions for the validity of the CKN
inequality (1.7) when (a+N )/q 
= (b−p+N )/p, but without the restriction a, b, c >

−N and for u ∈ W 1,(q,p)
{a,b} (RN∗ ). Note that C∞

0 (RN ) ⊂ W 1,(q,p)
{a,b} (RN∗ ) when a, b > −N ,

so that even in this case, (1.7) is a genuine generalization. As already pointed
out, it does not follow by a denseness argument without many extra conditions
(RN∗ replaced with RN , p = q, a = b and |x|a an Ap weight, i.e. −N < a <

(p−1)N ; see [11, Theorem 1.27] or [20]). The denseness of C ∞
0 (RN ) is obviously

meaningless when a ≤ −N or b ≤ −N while that of C∞
0 (RN∗ ), always contained

in W 1,(q,p)
{a,b} (RN∗ ), is generally false (see Subsection 11.3) and hence definitely not a

viable approach.
Inequalities of CKN type have been discussed, beginning with the 1961 work

of Il’in [12, Theorem 1.4], who proved (with c1 given by (1.3)) ||u||c1,r,G ≤
C||∇u||b,p,� when� is a fairly general open subset of RN , G is a bounded measur-
able subset of �, and u is C1. There are further limitations on b, p, and r, but the
result has various generalizations when higher order derivatives are involved, or



GENERALIZED CAFFARELLI-KOHN-NIRENBERG INEQUALITIES 255

when G is a bounded subset of a section of� by a lower-dimensional hyperplane.
Results of a somewhat similar nature are proved in [17, Section 2.1.6], [18] when
� = RN and u ∈ C∞

0 (RN ).

When� is an open subset of RN , μ and ν are nonnegative Borel measures,� ≥
0 is continuous and positively homogeneous of degree 1 in its second argument,
and 1/r ≤ θ/p + (1 − θ)/q, Maz’ya [16, Theorem 9] (reproduced in [17, p.127]
and [18]) gives interesting necessary and sufficient conditions for the inequality

(1.8) ||u||Lr (�;μ) ≤ C
(∫

�
�(x,∇u)pdx

)θ/p
||u||1−θ

Lq(�;ν),

to hold for u ∈ C∞
0 (�). When � = RN∗ , μ(E) =

∫
E |x|cdx, ν(E) =

∫
E |x|adx, and

�(x, y) = |x|b/p|y|, the setting of Theorem 1.1 is recovered.

Maz’ya’s conditions for (1.8) are expressed in terms of the (p,�)-capacity of
“admissible” sets and their μ and ν measures. As early as 1960, he noted in
[15] that such conditions could be used to prove the equivalence between various
multiplicative inequalities (e.g., Sobolev and Nash). This kind of equivalence has
since been revisited by a number of authors. For example, it follows from Bakry
et al. [1] that when a = c, if the inequality ||u||a,r ≤ C||∇u||θb,p||u||1−θ

a,q holds when
q = q0, r = r0, θ = θ0 and (say) u is a Lipschitz continuous function with compact
support, then the same inequality continues to hold for a family of other values of
q, r and θ. Once again, denseness issues are an obstacle to extending this property
to the spaces W 1,(q,p)

{a,b} (RN∗ ) unless a = b = c = 0 (unweighted case).

The connection of this work with the CKN inequalities can be found in some of
the preliminary results in [6] which, possibly in generalized form, are also useful
for the proof of Theorem 1.1. However, without the compactness of the supports
and other key assumptions, a mere tweaking of the arguments of [6] is not possible.

In the next section, we show that (1.7) is equivalent to an embedding in-
equality and that the hypotheses of Theorem 1.1 are necessary. The necessity
of r ≤ max{p∗, q} and of θc(p−1 − N −1 − q−1) ≤ r−1 − q−1 in parts (i) and (ii)
of Theorem 1.1 follows very simply from (1.7) and a remark in [6] used here in a
more general framework (Theorem 2.2 (i)). A variant of it proves the necessity of
r ≤ max{p∗, q} in the remaining cases (Theorem 2.2 (ii)).

The verification of the sufficiency is demanding. The general idea is first to
prove Theorem 1.1 for radially symmetric functions. Once this is done, there
are two different ways to proceed. The first one is to reduce the problem to the
symmetric case by a suitable radial symmetrization. This works when 1 ≤ r ≤
min{p, q}. The second option is to prove an independent embedding theorem for
a direct complement of the subspace of radially symmetric functions. This can
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be done, based on ideas in [6], under assumptions about p, q and r that rule out
r < min{p, q}. This is why it is crucial that this case be settled by other arguments.

The proof of the embedding theorem for radially symmetric functions and,
next, by radial symmetrization requires some preliminaries. It is more natural to
work with the larger spaces (for simplicity, the domain RN∗ is not mentioned)

(1.9) W̃ 1,(q,p)
{a,b} := {u ∈ L1

loc(R
N
∗ ) : u ∈ Lq(RN ; |x|adx), ∂ρu ∈ Lp(RN ; |x|bdx)},

equipped with the norm

(1.10) ||u||{a,b},(q,p) := ||u||a,q + ||∂ρu||b,p,
where ∂ρu := ∇u · (x/|x|) is the radial derivative of u. Since |x|−1x is a smooth
field on RN∗ , this definition makes sense for every distribution u on RN∗ .

When 0 < q < 1, the definitions (1.1) and (1.9) can still be used, but (1.2) and
(1.10) are only quasi-norms. The equivalence of continuity and boundedness for
linear operators remains true in quasi-normed spaces. For more details about such
spaces, see [4] or [24].

The spaces W 1,(q,p)
{a,b} (RN∗ ) and W̃ 1,(q,p)

{a,b} contain the same radially symmetric func-
tions and the induced (quasi) norms are the same, because ∇u = (∂ρu)(x/|x|) when
u is radially symmetric. Thus, when referring to radially symmetric functions, the
ambient space W 1,(q,p)

{a,b} (RN∗ ) or W̃ 1,(q,p)
{a,b} is unimportant.

In the next section, the basic features of a related space W̃ 1,p
loc (RN∗ ) (abbreviated

W̃ 1,p
loc ) are discussed, along with some of their implications regarding W̃ 1,(q,p)

{a,b} . This
material is directly relevant to the proof of the main results of Sections 4 and 5.

Necessary and sufficient conditions for the continuity of the embedding of the
subspace of radially symmetric functions when q, r > 0 and p ≥ 1 are given in
Theorem 4.1. Of course, this is a (barely) disguised form of Theorem 1.1 when
N = 1. Compared with the treatment of the same problem in [6], convenient tools
(e.g., radial integration by parts) cannot be used and some estimates (e.g., of |u(0)|)
no longer make sense. For that reason, our approach is technically completely
different.

The proof of Theorem 1.1 for arbitrary N begins in Section 5, where the case
1 ≤ r ≤ min{p, q} is considered. As mentioned, this is done by radial sym-
metrization, though not in the obvious way (Lemma 5.1). The result (Theorem
5.1) is more general and sharper than the corresponding part of Theorem 1.1, since
it establishes the continuous embedding of the larger space W̃ 1,(q,p)

{a,b} with a weaker
norm into Lr(RN ; |x|cdx) under the conditions already necessary for the embedding
of W 1,(q,p)

{a,b} (RN∗ ). Thus, the embedding is obtained without assuming the integrabil-
ity of the first derivatives, except for just the radial one.
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The case r > min{p, q} is split into the three parts: p < r ≤ q (Theorem
7.1), r > q and r ≥ p (Theorem 8.1) and q < r < p (Theorem 9.1). If p = q,
Sections 7 and 9 can be skipped with no prejudice. A preliminary embedding
lemma for functions with null radial symmetrization, essentially due to Caffarelli,
Kohn and Nirenberg, is proved in Section 6 (Lemma 6.1), then rephrased in a
more convenient way (Corollary 6.1). The technical steps are simple, but cannot
be repeated with the larger space W̃ 1,(q,p)

{a,b} . The proofs of Theorem 7.1 (when p <

r ≤ q) and Theorem 9.1 (when 1 ≤ q < p < r) also rely heavily on Theorem 5.1
(when 1 ≤ r ≤ min{p, q}, but with other parameters).

The relationship between Theorem 1.1 and the CKN inequalities does not stop
with (1.7) when (a + N )/q 
= (b − p + N )/p. In Section 10, we show that the
embedding W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) continues to be equivalent to a mul-
tiplicative inequality ||u||c,r ≤ C||∇u||θb,p||u||1−θ

a,q for some suitable θ ∈ [0, 1]
when (a + N )/q = (b − p + N )/p (Theorem 10.1), except when N ≥ 2 and
a = c = b−p = −N (Theorem 10.2). Of course, θ is no longer θ c in (1.4), which is
not defined, and it may not always be unique; see Remark 6. When θ = 1, this is an
N -dimensional weighted Hardy inequality more general than those in the current
literature ([9], [22]). The case when u ∈ C ∞

0 (RN∗ ), p = q = r = 2, c = (a+b)/2−1
and θ = 1/2 was recently investigated by Catrina and Costa [7].

In Section 11, three special cases are discussed and the (simple) generalization
when |x|a, |x|b and |x|c are replaced by weights wa, wb and wc having multiple
power-like singularities is sketched briefly.

1.1 Notation. Throughout the paper, C > 0 denotes a constant which, as is
customary, may have different values in different places. If k ≥ 1 is a real number,
k′ ≤ ∞ always denotes the Hölder conjugate of k, i.e., k−1 + k′−1 = 1. Also,
ζ ∈ C∞

0 (RN ) is chosen once and for all such that 0 ≤ ζ ≤ 1 is radially symmetric,

ζ (x) =

⎧⎨⎩1 if |x| ≤ 1/2,

0 if |x| ≥ 1.

Naturally, we also use the notation introduced more formally earlier. Up to and
including Section 4, we frequently refer to the Kelvin transform, defined in the
following remark.

Remark 2. The Kelvin transform is the map x �→ |x|−2x on RN∗ . It is
is an isometry from W̃ 1,(q,p)

{a,b} onto W̃ 1,(q,p)
{−2N−a,2p−2N−b} and from Lr(RN ; |x|cdx) onto

Lr(RN ; |x|−2N−cdx) for all values of the parameters. As a result, in many proofs
that split into two complementary cases, it suffices to discuss only one of them,
because the other follows from this isometry.



258 PATRICK J. RABIER

2 Necessary conditions for continuous embedding

In this section, we prove that the conditions given in Theorem 1.1 are necessary.

Theorem 2.1. Let a, b, c ∈ R and 1 ≤ p < ∞, 0 < q, r < ∞. Then
W 1,(q,p)

{a,b} (RN∗ ) (hence, a fortiori, W̃ 1,(q,p)
{a,b} ) is not contained Lr(RN ; |x|cdx) if

(i) c does not belong to the closed interval with endpoints c0 and c1, or

(ii) b − p ≤ −N < a or b − p ≥ −N > a and c does not belong to the interval
with endpoints c0 (included) and −N (not included).

Furthermore, W 1,(q,p)
{a,b} (RN∗ ) (hence, a fortiori, W̃ 1,(q,p)

{a,b} ) is not continuously2

embedded into Lr(RN ; |x|cdx) if any of the following hold:

(iii) (a + N )/q 
= (b − p + N )/p, c = c0 and r 
= q (if r = q, then c0 = a and the
embedding is trivial);

(iv) (a + N )/q 
= (b − p + N )/p, c = c1 and r < p;
(v) (a + N )/q = (b − p + N )/p, r < min{p, q} and c = c0 (= c1);

(vi) a = −N, b = p − N, r < q and c = c0 (= c1 = −N ).

Proof. (i) If c < min
{

c0, c1
}

, let u(x) := |x|−(c+N )/rζ (x) with ζ as in Subsec-
tion 1.1. Then, u /∈ Lr(RN ; |x|cdx) since |x|c|u(x)|r = |x|−N on a neighborhood of
0, but u ∈ W 1,(q,p)

{a,b} (RN∗ ) since min{a − (q(c + N ))/r, b − p − (p(c + N ))/r} > −N

and ∇ζ has compact support and vanishes on a neighborhood of 0.

If c > max{c0, c1}, let u(x) := |x|−(c+N )/r(1 − ζ (x)) and argue as above, with
obvious modifications.

(ii) By Kelvin transform, it suffices to consider the case b−p ≤ −N < a. Note
that c1 ≤ −N < c0 and let c /∈ (−N, c0

]
. By (i), W 1,(q,p)

{a,b} (RN∗ ) � Lq(RN ; |x|cdx) if
c > c0. If now c ≤ −N , then ζ /∈ Lr(RN ; |x|cdx) since ζ = 1 on a neighborhood
of 0, but ζ ∈ W 1,(q,p)

{a,b} (RN∗ ) because a > −N and ∇ζ has compact support and
vanishes on a neighborhood of 0.

(iii) The argument is by contradiction. If W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|c0

dx), then

||u||c0,r ≤ C(||u||a,q + ||∇u||b,p) for every u ∈ W 1,(q,p)
{a,b} (RN∗ ). By rescaling, i.e.,

changing u(x) into u(λx), and since (c0 + N )/r = (a + N )/q, it follows that

||u||c0,r ≤ C(||u||a,q + λ(a+N )/q−(b−p+N )/p||∇u||b,p)

for the same constant C, where C is independent of λ. Because of the fact that
(a + N )/q = (b − p + N )/q, this yields ||u||c0,r ≤ C||u||a,q. In particular, if
u(x) := |x|−(c0+N−1)/r g(|x|) = |x|1/r−(a+N )/qg(|x|) with g ∈ C∞

0 (0,∞), it follows
that ||g||r ≤ C||g||q/r−1,q when g ∈ C∞

0 (0,∞), g ≥ 0, or g is the a.e. limit of a

2In principle at least, that does not rule out W1,(q,p)
{a,b} (RN∗ ) ⊂ Lr (RN ; |x|cdx).
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nondecreasing sequence of such functions. Thus, a contradiction is obtained by
choosing g := χ(n,n+1) if r > q and g := t1/n−1/rχ(0,1) if r < q, and by letting n tend
to ∞.

(iv) The scaling used in (iii) now shows that if W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|c1

dx),
then ||u||c1,r ≤ C||∇u||b,p for some constant C > 0. The proof that C does not
exist is slightly different when a 
= −N and when a = −N.

Case (iv-1): a 
= −N . By Kelvin transform, we may assume, with no loss of
generality, that a < −N . It suffices to prove that given C > 0,

(2.1) || f ||c1+N−1,r ≤ C|| f ′||b+N−1,p,

cannot hold for every f ∈ W 1,p
loc (0,∞) with f ≥ 0, f = 0 on a neighborhood

of 0, and f = M (constant) on a neighborhood of ∞ (if so, u(x) = f (|x|) is in
W 1,(q,p)

{a,b} (RN∗ ) irrespective of b ∈ R and of p ≥ 1, q > 0).
It is well known that if 1 ≤ r < p and C > 0, the weighted Hardy inequality(∫ ∞

0
t(r(b−p+N )−p)/p

(∫ t

0
g(τ)dτ

)r

dt
)1/r

≤ C
(∫ ∞

0
tb+N−1g(t)pdt

)1/p

does not hold for every measurable g ≥ 0 on (0,∞), because power weights
never satisfy the necessary compatibility condition when r < p ( [17, Theorem 1,
p. 47]). This is also true, but more delicate, when 0 < r < 1 ([26], [27]). Thus, if
0 < r < p, there is a sequence gn ≥ 0 such that

∫∞
0 tb+N−1gn(t)pdt <∞ and(∫ ∞

0
tr(b−p+N )/p−1

(∫ t

0
gn(τ)dτ

)r

dt
)1/r

> n
(∫ ∞

0
tb+N−1gp

n(t)dt
)1/p

.

If b − p ≥ −N , the left-hand side is even ∞ when gn 
= 0, so it may be assumed
that b−p < −N whenever convenient (which happens to be the case when p = 1).
The simple proof by Sinnamon and Stepanov ([27, Theorem 2.4 for p > 1], [27,
Theorem 3.3 for p = 1]) reveals at once that gn may be chosen in Lp(0,∞) and
with compact support. Then fn(t) :=

∫ t
0 gn(τ)dτ ≥ 0 vanishes on a neighborhood

of 0 and is eventually constant. Since (r(b − p + N ) − p)/p − 1 = c1 + N − 1, (2.1)
does not hold for fn if n is large enough.

Case (iv-2): a = −N . In this case, b−p 
= −N , since (a+N )/q 
= (b−p+N )/p.
By the usual Kelvin transform argument (which does not affect a = −N ), we may
assume that b − p < −N . It suffices to show that (2.1) cannot hold for every
f ∈ W 1,p

loc (0,∞) with f ≥ 0, f = 0 on a neighborhood of 0 and f (t) = Mt−ε for
some constants M, ε > 0 and large t (if so, u(x) = f (|x|) is in W 1,(q,p)

{−N,b}(R
N∗ ) since

b − p < −N ).
With fn and gn = f ′

n as in Case (iv-1) above, set hn(t) := fn(t) if 0 < t < 1
and hn(t) := t−εn fn(t) if t ≥ 1, where εn > 0 will be chosen shortly. Note that
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hn = 0 on a neighborhood of 0 and hn(t) = Mnt−εn for t > 0 large enough, since
fn(t) = Mn is constant for large t. Since (2.1) does not hold for f n and hn = fn on
(0, 1), (2.1) does not hold for hn either if, when n is fixed, εn > 0 is chosen so that∫∞

1 tc1+N−1hn(t)rdt is arbitrarily close to
∫∞

1 tc1+N−1 fn(t)rdt and
∫∞

1 tb+N−1|h′
n(t)|pdt

is arbitrarily close to
∫∞

1 tb+N−1| f ′
n(t)|pdt.

That εn > 0 can be chosen so that
∫∞

1 tc1+N−1hn(t)rdt is arbitrarily close to∫∞
1 tc1+N−1 fn(t)rdt follows by the monotone convergence of

∫∞
1 tc1+N−1−rε fn(t)rdt

as ε ↘ 0. To see that ε > 0 can be chosen so that
∫∞

1 tb+N−1|h′
n(t)|pdt is arbitrarily

close to
∫∞

1 tb+N−1| f ′
n(t)|pdt, it suffices to use

(1) limε→0
∫∞

1 tb+N−1−pεgn(t)pdt =
∫∞

1 tb+N−1gn(t)pdt, which is also proved by a
monotone convergence argument, and

(2) limε→0 ε
p
∫∞

1 t−pε+b−p+N−1 fn(t)pdt = 0, which follows from the boundedness
of fn and from b − p < −N .

(v) The main difference in the proof of (v) from the proofs of parts (iii) and (iv)
is that the scaling argument used in the latter proofs is inoperative. This is because
all the powers of λ cancel.

Let η denote the common value

(2.2) η :=
a + N

q
=

b − p + N
p

=
c + N

r
.

If ||u||c,r ≤ C(||u||a,q + ||∇u||b,p) for every u ∈ W 1,(q,p)
{a,b} (RN∗ ), the choice u(x) :=

f (|x|) with f ∈ C∞
0 (0,∞) yields || f ||c+N−1,r ≤ C(|| f ′||b+N−1,p + || f ||a+N−1,q). If

now g ∈ C∞
0 (R), then f (t) = t−ηg(ln t) with η from (2.2) is in C∞

0 (0,∞). By
the change of variable s := ln t, we obtain the unweighted inequality ||g||r ≤
C(||g′||p + ||g||q + ||g||p) for every g ∈ C∞

0 (R). With g 
= 0 chosen once and for all
and g(t) replaced by g (λt) , λ > 0, it follows that

I1 ≤ C(λ1/p′+1/r I2 + λ1/r−1/qI3 + λ1/r−1/pI4)

with I1, . . . , I4 > 0 independent of λ. Since r < min{p, q}, the right-hand side
tends to 0 with λ, which is absurd.

(vi) Argue as in (v), just noticing that now η = 0 in (2.2). This produces the
simpler ||g||r ≤ C(||g′||p + ||g||q) when g ∈ C∞

0 (R). Then

I1 ≤ C(λ1/p′+1/rI2 + λ1/r−1/qI3)

for λ > 0 by rescaling, which is absurd for r < q. �
We obtain as a corollary that the embedding is often characterized by a multi-

plicative rather than additive norm inequality; see also Section 10.
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Corollary 2.1. Let a, b, c ∈ R and 1 ≤ p < ∞, 0 < q, r < ∞ be such that

(a + N )/q 
= (b − p + N )/p. Then, W 1,(q,p)
{a,b} (RN∗ ) is continuously embedded into

Lr(RN ; |x|cdx) if and only if c is in the closed interval with endpoints c0 and c1 and

there exists C > 0 such that

(2.3) ||u||c,r ≤ C||∇u||θc
b,p||u||1−θc

a,q for all u ∈ W 1,(q,p)
{a,b} (RN

∗ ),

where θc is given by (1.4). The same property is true with W 1,(q,p)
{a,b} (RN∗ ) replaced

with W̃ 1,(q,p)
{a,b} and (2.3) replaced with

(2.4) ||u||c,r ≤ C||∂ρu||θc
b,p||u||1−θc

a,q , for all u ∈ W̃ 1,(q,p)
{a,b} .

Proof. The sufficiency follows from the arithmetic-geometric inequality. We
prove the necessity only for W̃ 1,(q,p)

{a,b} ; similar arguments work for W 1,(q,p)
{a,b} (RN∗ ).

Suppose then that W̃ 1,(q,p)
{a,b} ↪→ Lr(RN ; |x|cdx). By Theorem 2.1(i), c is in the

closed interval with (distinct) endpoints c0 and c1. Furthermore,

||u||c,r ≤ C(||u||a,q + ||∂ρu||b,p)

for every u ∈ W̃ 1,(q,p)
{a,b} . In this inequality, replace u(x) by u(λx) with λ > 0 to obtain

||u||c,r ≤ Cλ(c+N )/r−(a+N )/q||u||a,q + Cλ(c+N )/r−(b−p+N )/p||∂ρu||b,p
= Cλθc(c1−c0)/r ||u||a,q + Cλ(1−θc)(c0−c1)/r ||∂ρu||b,p.

(2.5)

If c = c0 (c = c1), then θc = 0 (θc = 1), so that ||u||c,r ≤ C||u||a,q (||u||c,r ≤
C||∂ρu||b,p); i.e., (2.4) holds, by letting λ tend to 0 or to ∞. Otherwise, (2.4)
follows by minimizing the right-hand side of (2.5) for λ > 0. This changes C,
which however remains independent of u even though the minimizer is of course
u-dependent. (If θc 
= 0, (2.5) shows that u = 0 if ∂ρu = 0, so that it is not
restrictive to assume ||u||a,q > 0 and ||∂ρu||b,p > 0 in the minimization step.) �

The next theorem gives a different necessary condition for the continuity of the
embedding W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx).

Theorem 2.2. Let a, b, c ∈ R and 1 ≤ p <∞, 0 < q, r < ∞.

(i) If (a + N )/q 
= (b − p + N )/p and W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx), then

θc ∈ [0, 1] and

(2.6) θc

(
1
p

− 1
N

− 1
q

)
≤ 1

r
− 1

q
.

In particular, r ≤ max{p∗, q}.
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(ii) If (a+N )/q = (b−p+N )/p, c = c0 (= c1), and W 1,(q,p)
{a,b} (RN∗ ) ↪→Lr(RN ; |x|cdx),

then r ≤ max{p∗, q}.

Proof. (i) Theorem 2.1(i) shows that θc ∈ [0, 1]. The next argument is taken
from [6], with a minor adjustment to fit the setting of this paper. Let ϕ ∈ C∞

0 (RN ),
ϕ 
= 0, be chosen once and for all. If x0 ∈ RN and R := |x0| is large enough,
then ϕ(· + x0) ∈ C∞

0 (RN∗ ) ⊂ W 1,(q,p)
{a,b} (RN∗ ) irrespective of a, b, p and q. Using (2.3)

with u = ϕ(· + x0) and letting R → ∞, we obtain (because Suppϕ is compact)
Rc/r ||ϕ||r ≤ CRbθc/p+a(1−θc)/q||∇ϕ||θc

p ||ϕ||1−θc
q for large R after changing C, whence

c/r ≤ (bθc)/p + a(1 − θc)/q. Then (2.6) follows by adding N/r and using (1.6).
If p < N and r > max{p∗, q}, then (2.6) cannot hold, since it fails when θc = 0

and when θc = 1. Thus r ≤ max{p∗, q} is necessary.
(ii) Use the same method as in (i), but with the additive inequality ||ϕ||c0,r ≤

C(||ϕ||a,q + ||∇ϕ||b,p). This yields Rc0/r ||ϕ||r ≤ C(Ra/q||ϕ||q + Rb/p||∇ϕ||p) for
large R > 0. By (1.3), c0/r = a/q + N/q − N/r and (since c0 = c1) b/p =
a/q + N/q + 1 − N/p, whence RN/q−N/r ||ϕ||r ≤ C(||ϕ||q + RN/q+1−N/p||∇ϕ||p). This
implies that if r > q, then N/q − N/r ≤ N/q + 1 − N/p, i.e., r ≤ p∗, so that
r ≤ max{p∗, q} in all cases. �

The above proof may give the wrong impression that (2.6) arises only as a
result of integrability at infinity. That this is not the case can be seen by noticing
that the choice ϕ(x|x|−2 +x0) instead of ϕ(x+x0) also yields (2.6), while the support
of ϕ(x|x|−2 + x0) shrinks towards 0 as |x0| → ∞.

The verification that Theorems 2.1 and 2.2 together imply that the hypotheses
of Theorem 1.1 are necessary is routine and left to the reader.

3 The spaces W̃ 1,p
loc and related concepts

In this section, we develop the background material needed for the proofs of the
main results of the next two sections. Let ωN denote the volume of the unit ball of
RN . For u ∈ Lp

loc(R
N∗ ) with p ≥ 1, define the spherical mean of u

(3.1) fu(t) := (NωN )−1
∫
SN−1

u(tσ)dσ.

By Fubini’s theorem in spherical coordinates, f u(t) is defined for a.e. t > 0 and
fu ∈ Lp

loc(0,∞). If u ∈ W̃ 1,p
loc , where

W̃ 1,p
loc := {u ∈ Lp

loc(RN
∗ ) : ∂ρu ∈ Lp

loc(R
N
∗ )}

and ∂ρu := ∇u · (x/|x|), more is true.
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Lemma 3.1. If 1 ≤ p < ∞ and u ∈ W̃ 1,p
loc , then fu ∈ W 1,p

loc (0,∞). Further-

more,

(3.2) f ′
u(t) = (NωN )−1

∫
SN−1

∂ρu(tσ)dσ.

Conversely, if f ∈ W 1,p
loc (0,∞) and u(x) := f (|x|), then u ∈ W̃ 1,p

loc and

fu = f, ∂ρu(x) = f ′(|x|).

Proof. Let u ∈ W̃ 1,p
loc . If ϕ ∈ C∞

0 (0,∞), set ψ(x) := ϕ(|x|), so that
ψ ∈ C∞

0 (RN∗ ) and ∂ρψ(x) = ϕ′(|x|). It follows that

〈 f ′
u, ϕ〉 = −(NωN )−1

〈
u, |x|1−N∂ρψ

〉
= (NωN )−1

〈
|x|1−N ∂ρu, ψ

〉
(use ∇ · (|x|−N x) = 0). Since ∂ρu ∈ Lp

loc(R
N∗ ), this shows that 〈 f ′

u, ϕ〉 = 〈 f∂ρu, ϕ〉,
that is, f ′

u = f∂ρu ∈ Lp
loc(0,∞). Thus, fu ∈ W 1,p

loc (0,∞) and (3.2) holds.

Conversely, suppose that f ∈ W 1,p
loc (0,∞) and set u(x) := f (|x|). Then,

u ∈ Lp
loc(RN∗ ) (it is continuous) and, by [14, Theorem 4.3], ∇u(x) = f ′(|x|)(x/|x|),

because f is locally absolutely continuous. Thus, u ∈ W 1,p
loc (RN∗ ) ⊂ W̃ 1,p

loc and
f ′(|x|) = ∇u(x) · (x/|x|) = ∂ρu(x). That fu = f is obvious. �

Lemma 3.2. If 1 ≤ p < ∞ and u ∈ W̃ 1,p
loc , then |u|p ∈ W̃ 1,1

loc and ∂ρ(|u|p) =
p|u|p−1(sgn u)∂ρu, where sgn u := 0 on u−1(0).

Proof. It is well known that if � is an open subset of RN and if u ∈ W 1,1(�),
then |u| ∈ W 1,1(�) with ∇|u| = ( sgn u)∇u (see for instance [31, p. 48] or [14,
Theorem 2.2] for more general statements), where sgn u is defined to be 0 at points
where u = 0. This is proved by showing that if u ∈ L1(�) and ∂iu ∈ L1(�) for
some index 1 ≤ i ≤ N , then ∂i |u| ∈ L1(�) and ∂i |u| = (sgn u)∂iu because the as-
sumptions suffice to ensure the local absolute continuity of u on almost every line
segment in � parallel to the xi-axis. Since a radial derivative is just a directional
derivative after passing to spherical coordinates, the same arguments show that if
u ∈ W̃ 1,1

loc , then |u| ∈ W̃ 1,1
loc and ∂ρ|u| = (sgn u)∂ρu. (That the derivative of u(·, σ) is

∂ρu(·, σ) can be justified by a variant of the proof of Lemma 3.1.)

Another well-known result, usually proved by localization and mollification,
is that if u ∈ W 1,p(�) and u ≥ 0, then up ∈ W 1,1(�) and ∂i(up) = pup−1∂iu. Not
surprisingly, the proof actually requires only that u and ∂ iu be in Lp(�), so that
completely similar arguments show that if u ∈ W̃ 1,p

loc and u ≥ 0, then up ∈ W̃ 1,1
loc

and ∂ρup = pup−1∂ρu. The lemma follows by combining these facts. �
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Since f|u| is continuous on (0,∞) when u ∈ W̃ 1,1
loc , the following two subsets

are well defined:

W̃ 1,1
loc,− := {u ∈ W̃ 1,1

loc : lim t→∞ f|u|(t) = 0},(3.3)

W̃ 1,1
loc,+ := {u ∈ W̃ 1,1

loc : lim t→0+ f|u|(t) = 0}.(3.4)

The sets W̃ 1,1
loc,± are not closed under addition and so are not vector spaces. They

are transformed into one another by Kelvin transform. Various other properties
are collected in the next lemma.

Lemma 3.3. The following properties hold.

(i) If u ∈ W̃ 1,1
loc,− (W̃ 1,1

loc,+), then |u| ∈ W̃ 1,1
loc,− (W̃ 1,1

loc,+).

(ii) u ∈ W̃ 1,1
loc,− (W̃ 1,1

loc,+) implies uS := fu ◦ | · | ∈ W̃ 1,1
loc,− (W̃ 1,1

loc,+) and ∂ρuS(x) =
f ′
u(|x|).

(iii) If u ∈ W̃ 1,1
loc and |x|a|u|q ∈ L1(RN ) for some a ∈ R and some q ≥ 1, then

u ∈ W̃ 1,1
loc,− (W̃ 1,1

loc,+) if a ≥ −N (a ≤ −N ). In particular (see (1.9)), if

a ≥ −N (a ≤ −N ), then W̃ 1,(q,p)
{a,b} ⊂ W̃ 1,1

loc,− (W̃ 1,1
loc,+).

(iv) If u ∈ W̃ 1,1
loc is radially symmetric and |x|a|u|q ∈ L1(RN ) for some a ∈ R

and q > 0, then u ∈ W̃ 1,1
loc,− (W̃ 1,1

loc,+) if a ≥ −N (a ≤ −N ). In particular,
if u ∈ W̃ 1,(q,p)

{a,b} is radially symmetric, then u ∈ W̃ 1,1
loc,− (W̃ 1,1

loc,+) if a ≥ −N

(a ≤ −N ).

Proof. (i) Use Lemma 3.2 and the definitions (3.3) and (3.4).
(ii) That uS := fu ◦ | · | ∈ W̃ 1,1

loc and ∂ρuS(x) = f ′
u(|x|) follows from Lemma 3.1.

Next, the remark that f|uS | = | fu| ≤ f|u| shows that if also limt→∞ f|u|(t) = 0 (or
limt→0+ f|u|(t) = 0), then limt→∞ f|uS |(t) = 0 (or limt→∞ f|uS |(t) = 0).

(iii) Suppose that a ≥ −N and, to argue by contradiction, that u /∈ W̃ 1,1
loc,−. Then

f|u|(t) ≥ � > 0 for t ≥ T and large T > 0. Thus, by (3.1), �q ≤ ( f|u|)q(t) ≤ f|u|q (t)
for t ≥ T , so that∫

|x|≥T
|x|a|u|q = NωN

∫ ∞

T
ta+N−1 f|u|q (t)dt ≥ NωN �

q
∫ ∞

T
ta+N−1dt = ∞,

since a ≥ −N . This contradicts the fact that |x|a|u|q ∈ L1(RN ). The case a ≤ −N

follows by Kelvin transform; the “in particular” part is obvious.
(iv) If u is radially symmetric, then f |u|q = ( f|u|)q for every q > 0, so that

the argument by contradiction in the proof of (iii) works for q > 0, not just for
q ≥ 1. The “in particular” part is clear once we show that u ∈ W̃ 1,1

loc . To see this,
note that u ∈ W̃ 1,(q,p)

{a,b} implies ∂ρu ∈ Lp
loc(RN∗ ), which, by radial symmetry, implies

∇u ∈ Lp
loc(RN∗ ). Thus, u ∈ W 1,p

loc (RN∗ ) ([17, p. 7]). That W 1,p
loc (RN∗ ) ⊂ W̃ 1,1

loc is
obvious. �
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If u ∈ L1
loc(R

N∗ ) is radially symmetric, then u(x) = fu(|x|). This justifies refer-
ring to the function uS in Lemma 3.3(ii) as the “radial symmetrization” of u.

Lemma 3.4. Let a, b ∈ R and 1 ≤ p, q < ∞. If u ∈ W̃ 1,(q,p)
{a,b} , then

(i) |u| ∈ W̃ 1,(q,p)
{a,b} and || |u| ||a,q = ||u||a,q, ||∂ρ|u| ||b,p = ||∂ρu||b,p (if u is also

radially symmetric, this remains true when 0 < q < 1);

(ii) uS ∈ W̃ 1,(q,p)
{a,b} and ||uS||a,q ≤ ||u||a,q, ||∂ρuS||b,p ≤ ||∂ρu||b,p.

Proof. (i) This follows from u ∈ W̃ 1,(q,p)
{a,b} ⊂ W̃ 1,1

loc (see Lemma 3.3 (iv) if u is
radially symmetric and 0 < q < 1), so that ∂ρ|u| = (sgn u)∂ρu by Lemma 3.2.

(ii) Since uS(x) = fu(|x|) and fu in (3.1) is continuous, uS is continuous, and
so uS ∈ L1

loc(RN∗ ). By (3.1), |uS(x)|q ≤ (NωN )−1
∫
SN−1 |u(|x|σ)|qdσ since q ≥ 1

and, by (3.2) and Lemma 3.3(ii), |∂ρuS(x)|p ≤ (NωN )−1
∫
SN−1 |∂ρu(|x|σ)|pdσ almost

everywhere. Therefore, ||uS ||a,q ≤ ||u||a,q and ||∂ρuS ||b,p ≤ ||∂ρu||b,p. �
We complete this section with an inequality (Theorem 3.1) which is the basic

tool for the proof of Lemmas 4.3 and 4.4 in the next section.

Lemma 3.5. Let f ∈ W 1,1
loc (0,∞), f ≥ 0 and γ ∈ R.

(i) If γ ≥ 1 − N and lim t→∞ f (t) = 0, then

(3.5) 0 ≤ tN−1+γ f (t) ≤
∫ ∞

t
τN−1+γ| f ′(τ)|dτ ≤ ∞, for all t > 0.

(ii) If γ ≤ 1 − N and lim t→0+ f (t) = 0, then

(3.6) 0 ≤ tN−1+γ f (t) ≤
∫ t

0
τN−1+γ| f ′(τ)|dτ ≤ ∞, for all t > 0.

Proof. (i) Given t > 0, let T > t and write f (t) = f (T ) − ∫ T
t f ′(τ)dτ. Since

γ ≥ 1 − N implies tN−1+γ ≤ τN−1+γ when t ≤ τ, this yields

tN−1+γ f (t) ≤ tN−1+γ f (T )+
∫ T

t
τN−1+γ| f ′(τ)|dτ ≤ tN−1+γ f (T )+

∫ ∞

t
τN−1+γ| f ′(τ)|dτ.

Thus (3.5) follows from f ≥ 0 and limT →∞ f (T ) = 0.

(ii) Given t > 0, let 0 < ε < t and write f (t) = f (ε) +
∫ t
ε f ′(τ)dτ. Since

γ ≤ 1 − N implies tN−1+γ ≤ τN−1+γ when t ≥ τ, this yields

tN−1+γ f (t) ≤ tN−1+γ f (ε) +
∫ t

ε
τN−1+γ| f ′(τ)|dτ ≤ tN−1+γ f (ε) +

∫ t

0
τN−1+γ| f ′(τ)|dτ.

Thus (3.6) follows from f ≥ 0 and limε→0 f (ε) = 0. �
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In Theorem 3.1 below, the norm notation is used only for convenience, since
all the norms may actually be infinite. In practice, this simply means that in the
inequalities, the finiteness of the right-hand side implies the finiteness of the left-
hand side, which therefore need not be assumed separately. An alternate proof can
be based on the case q = ∞ of [17, Theorem 2, p.40] and Kelvin transform, but
the direct argument used below is more explicit and not longer.

Theorem 3.1. Let γ ∈ R and 1 ≤ p < ∞. There exists a constant C > 0
such that if u ∈ W̃ 1,1

loc is radially symmetric and either γ > 1 − N and u ∈ W̃ 1,1
loc,−

or γ < 1 − N and u ∈ W̃ 1,1
loc,+, then || |x|N−1+γu||∞ ≤ C|| |x|γ+N/p′

∂ρu||p.

Furthermore, if p = 1, this inequality remains true when γ = 1 − N .

Proof. Suppose first that p = 1 and γ ≥ 1 − N , and let u ∈ W̃ 1,1
loc,−. By

Lemmas 3.3(i) and 3.2, we may assume that u ≥ 0 with no loss of generality,
since || |x|γ∂ρu||1 and || |x|N−1+γu||∞ are unchanged when u is replaced by |u|.

By Lemma 3.1, u(x) = fu(|x|), where fu ∈ W 1,1
loc (0,∞) satisfies fu ≥ 0

and limt→∞ f|u|(t) = 0, by (3.3). Thus, || |x|N−1+γu||∞ = supt>0 tN−1+γ fu(t) and∥∥ |x|γ∂ρu
∥∥

1 =
∫∞

0 τN−1+γ| f ′
u(τ)|dτ since f ′

u(|x|) = ∂ρu(x) (use u = uS and Lemma
3.3(ii)). Hence, it suffices to show that tN−1+γ fu(t) ≤ ∫∞

0 τN−1+γ| f ′
u(τ)|dτ ≤ ∞

for every t > 0, which follows at once from (3.5) for f = f u. If γ ≤ 1 − N and
u ∈ W̃ 1,1

loc,+, use (3.6) instead of (3.5).
Now let 1 < p < ∞. Once again, assume, with no loss of generality, that

u ≥ 0, so that u(x) = fu(|x|) with fu ∈ W 1,1
loc (0,∞) and fu ≥ 0. It suffices to prove

(3.7) tN−1+γ fu(t) ≤ C
(∫ ∞

0
| f ′

u(τ)|pτpN+pγ−1dτ
)1/p

,

for every t > 0. We merely show how the proof in the case p = 1 above can be
modified to yield this inequality.

Suppose γ > 1 − N and let u ∈ W̃ 1,1
loc,−. Inequality (3.5) with γ = 1 − N

(which is allowed in Lemma 3.5) and f = fu yields fu(t) ≤ ∫∞
t | f ′

u(τ)|dτ for every
t > 0. Write | f ′

u(τ)| =
(| f ′

u(τ)|τN−1+γ+1/p′)
τ1−N−γ−1/p′

and, since γ > 1 − N ,
use Hölder’s inequality to get fu(t) ≤ Ct1−N−γ (∫∞

t | f ′
u(τ)|pτpN+pγ−1dτ

)1/p
with

C := [p′(γ+N −1)]−1/p′
, which is stronger than (3.7). If γ < 1−N and u ∈ W̃ 1,1

loc,+,
follow the same procedure, but start with the inequality (3.6). �

4 Embedding theorem for radially symmetric functions

In this section, we give necessary and sufficient conditions for the continuity of
the embedding of the subspace of W̃ 1,(q,p)

{a,b} of radially symmetric functions into
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Lr(RN ; |x|cdx). In principle, this can of course be done by reduction to the half-
line, which is reflected in the proofs, but we have found no expository or technical
advantage in doing so explicitly. Our first task is to make sure that the cut-off
operation is continuous. As a preamble, we need the following result.

Lemma 4.1. Let � be a bounded open annulus centered at 0 /∈ �, a, b ∈ R,

and 1 ≤ p < ∞, 0 < q < ∞. There exists a constant C > 0 such that ||u||p,� ≤
C||u||{a,b},(q,p) for every radially symmetric u ∈ W̃ 1,(q,p)

{a,b} .

Proof. Let u ∈ W̃ 1,(q,p)
{a,b} be radially symmetric. We already pointed out in

the Introduction that W̃ 1,(q,p)
{a,b} and W 1,(q,p)

{a,b} (RN∗ ) have the same radially symmetric

functions, with the same induced (quasi) norms. Since u ∈ W 1,(q,p)
{a,b} (RN∗ ) implies

∇u ∈ Lp
loc(R

N∗ ), it follows that u ∈ W 1,p
loc (RN∗ ) (this was already used in the proof

of Lemma 3.3(iv)) and hence that u ∈ W 1,p(�). Thus, it suffices to prove that
||v ||p,� ≤ C(||v ||q,� + ||∇v ||p,�) for every v ∈ W 1,p(�).

This is common knowledge when q ≥ 1; but since only q > 0 is assumed,
we give a proof. To argue by contradiction, assume that there exists a sequence
{vn} ⊂ W 1,p(�) such that ||vn||p,� = 1 and limn→∞ ||vn||q,�+||∇vn||p,� = 0. Since
{vn} is bounded in W 1,p(�) and the embedding W 1,p(�) ↪→ Lp(�) is compact
(even when p = 1), there exist v ∈ Lp(�) and a subsequence, still denoted by {vn},
such that vn → v in Lp(�) and vn → v a.e. on �. Obviously, ||v ||p = 1.

Now, since |vn|q → 0 in L1(�), there exists a subsequence {vnk} such that
|vnk |q → 0 a.e. on �. Thus, vnk → 0 a.e. on �, so that v = 0, which contradicts
||v ||p = 1. �

With the help of Lemma 4.1, we can now prove that truncation has the expected
properties in the subspace of W̃ 1,(q,p)

{a,b} of radially symmetric functions.

Lemma 4.2. Let a, b ∈ R, 1 ≤ p < ∞, 0 < q < ∞, and ϕ ∈ C∞(RN ) be

radially symmetric, constant on a neighborhood of 0 and constant outside a ball
with center 0. Then multiplication by ϕ is continuous on the subspace of radially

symmetric functions of W̃ 1,(q,p)
{a,b} .

Proof. If u ∈ W̃ 1,(q,p)
{a,b} , then ||ϕu||a,q ≤ ||ϕ||∞||u||a,q and

∂ρ(ϕu) = ϕ∂ρu + (∂ρϕ)u.

Clearly, ||ϕ∂ρu||b,p ≤ ||ϕ||∞||∂ρu||b,p. To evaluate ||(∂ρϕ)u||b,p when u is radially
symmetric, note that Supp ∂ρϕ is contained in a bounded open annulus� centered
at 0 /∈ �. Thus ||(∂ρϕ)u||b,p ≤ C||∂ρϕ||∞||u||{a,b},(q,p) by Lemma 4.1, since |x|b is
bounded on �. Altogether, this yields ||ϕu||{a,b},(q,p) ≤ C||u||{a,b},(q,p). �
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Radial symmetry is unimportant in Lemmas 4.1 and 4.2 if q ≥ p or if W̃ 1,(q,p)
{a,b}

is replaced with W 1,(q,p)
{a,b} (RN∗ ), but it does matter if q < p.

We first address the embedding when a and b − p are on the same side of −N .

Lemma 4.3. Let a, b, c ∈ R and 1 ≤ p < ∞, 0 < q, r < ∞ be given. If a

and b − p are on the same side of −N (including −N ), the subspace of W̃ 1,(q,p)
{a,b} of

radially symmetric functions is continuously embedded into Lr(RN ; |x|cdx) in the

following two cases (recall the definition of c0 and c1 in (1.3)):
(i) (a +N )/q 
= (b−p+N )/p, r ≤ q, and c is in the open interval with endpoints

c0 and c1.
(ii) (a + N )/q 
= (b − p + N )/p, b − p 
= −N if p > 1, r > q, and c is in the

half-open interval with endpoints c∗ := (1 − q/r)c1 + qc0/r (included) and
c1 (not included).

Proof. By Kelvin transform, we may assume that a ≥ −N and b − p ≥ −N

and, by Lemma 3.4, that u ≥ 0. By Lemma 4.2 and with ζ as in Subsection 1.1,
it suffices to show that ||(1 − ζ )u||c,r ≤ C||(1 − ζ )u||{a,b},(q,p) and that ||ζu||c,r ≤
C||ζu||{a,b},(q,p) for some constant C > 0 independent of u.

(i) The assumption 0 < r ≤ q is retained.
Case (i-1): b − p > −N or p = 1 and b − 1 ≥ −N . We first prove ||v ||c,r ≤

C||v ||{a,b},(q,p) when v := (1 − ζ )u (≥ 0). Given ξ ∈ R and c ∈ R, we can
write |x|cv r = |x|−ξ (|x|c+ξv r). Since Supp v ⊂ RN \B(0, 1/2) and by Hölder’s
inequality, ||v ||rc,r =

∫
RN |x|cv r ≤ (

∫
RN \B(0,1/2) |x|−k′ξ )1/k′

(
∫
RN |x|k(c+ξ )vkr)1/k, where

k > 1 is arbitrary.
If k ′ξ > N , then Mk,ξ := (

∫
RN \B(0,1/2) |x|−k′ξ )1/k′

< ∞ and it suffices to find a
majorization of

∫
RN |x|k(c+ξ )vkr . Split |x|k(c+ξ )vkr = (|x|k(c+ξ )−avkr−q)|x|avq, so that

if kr − q > 0, then∫
RN

|x|k(c+ξ )vkr≤
∥∥∥|x|k(c+ξ )−avkr−q

∥∥∥∞

∫
RN

|x|avq =
∥∥∥|x|(k(c+ξ )−a)/(kr−q)v

∥∥∥kr−q

∞ ||v ||qa,q.

The next task is to majorize ‖|x|(k(c+ξ )−a)/(kr−q)v‖∞. This can be done by using
Theorem 3.1, as we now explain. Suppose, in addition to our other assumptions,
that k and ξ are chosen so that (k(c + ξ )−a)/(kr −q) = (b−p + N )/p. By Lemma
3.3(iii), v ∈ W̃ 1,1

loc,−, since a ≥ −N . Next, if γ := b/p − N/p′, then γ > 1 − N

if p > 1 since b − p > −N , and γ ≥ 1 − N if p = 1 since b − 1 ≥ −N . Thus
‖|x|(b−p+N )/pv‖∞ ≤ C||∂ρv ||b,p < ∞ by Theorem 3.1. To summarize,

(4.1) ||v ||c,r ≤ M 1/r
k,ξ C1−q/(kr)||∂ρv ||1−q/(kr)

b,p ||v ||q/(kr)
a,q ,

if k and ξ ∈ R can be found such that k ′ξ > N, kr − q > 0 (hence k > 1 since
r ≤ q) and (k(c+ξ )−a)/(kr−q) = (b−p+N )/p. By introducing s := kr −q > 0,
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so that k = (s + q)/r, it follows that (k(c + ξ ) − a)/(kr − q) = (b − p + N )/p if and
only if ξ = (arp + rs(b − p + N ))/(p(s + q)) − c, and then k ′ξ > N if and only if

(4.2) c <
arp + rs(b − p + N ) − Nps − Npq + Npr

p(s + q)
=

c1s + c0q
s + q

.

Thus, this inequality holding for some s > 0 ensures that (4.1) holds with
k := (s + q)/r > 1 and ξ = (arp + rs(b−p + N ))/(p(s + q))− c. The right-hand side
of (4.2) is a monotone function of s > 0 with limits c0 and c1 as s tends to 0 and
∞, respectively. Therefore, s > 0 can be chosen so that (4.2) holds if and only if
c < max{c0, c1}, and then, since v = (1 − ζ )u in (4.1), the arithmetic-geometric
inequality yields ||(1 − ζ )u||c,r ≤ C||(1 − ζ )u||{a,b},(q,p), with C > 0 independent
of u.

If now v := ζu, then once again v ∈ W̃ 1,1
loc,−, because v has bounded support.

The same procedure, but with k ′ξ > N replaced with k ′ξ < N , shows that

||v ||c,r = ||ζu||c,r ≤ C||u||{a,b},(q,p)

if c > min{c0, c1}. Hence, both ||(1 − ζ )u||c,r ≤ C||u||{a,b},(q,p) and ||ζu||c,r ≤
C||u||{a,b},(q,p) hold when c is in the open interval with endpoints c0 and c1.

Case (i-2): b−p = −N (and3 p > 1). In this case, (a+N )/q 
= (b−p+N )/p = 0
and a ≥ −N imply a > −N and −N = c1 < c < c0. If v := (1 − ζ )u,
then ||v ||c,r ≤ C||v ||a,q ≤ C||v ||{a,b},(q,p) by Hölder’s inequality (use |x|c|v |r =
|x|c−ar/q(|x|ar/q(1−ζ )r |u|r), Supp (1−ζ ) ⊂ RN \B(0, 1/2) and (cq−ar)/(q−r) <
−N , i.e., c < c0 if r < q, or c < a = c0 if r = q).

Next, choose b̂ > b (so that b̂ − p > −N ) such that

ĉ1 :=
r(b̂ − p + N )

p
− N < c

and use Case (i-1) with b replaced with b̂ (which changes c1 into ĉ1, but does not
change c0) and u replaced with ζu. This yields

||ζu||c,r ≤ C||ζu||{a,b̂},(q,p) ≤ C||ζu||{a,b},(q,p),

where the second inequality follows from the fact that b̂ > b and Supp ζ ⊂ B(0, 1)
(so that ||∇(ζu)||b̂,p ≤ ||∇(ζu)||b,p).

(ii) The assumption 0 < q < r is retained.
By Lemmas 3.3(iv) and 4.2, u, ζu and (1 − ζ )u are in W̃ 1,1

loc (even W̃ 1,1
loc,−, since

a ≥ −N and ζu has bounded support), because of radial symmetry, even when

3The argument also works when p = 1.
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q < 1. Since b−p ≥ −N and b−p 
= −N when p > 1, it follows that b−p > −N

if p > 1.
The general procedure is the same as in Case (i-1), with the following differ-

ence. To prove (4.1) with v := (1 − ζ )u (≥ 0), k and ξ ∈ R must be found so that
k′ξ > N, k > 1 and (k(c + ξ ) − a)/(kr − q) = (b − p + N )/p. With the same change
of variable k := (s + q)/r as before, k > 1 amounts to s > r − q, so that (4.1) holds
for some ξ if and only if c < max{c∗, c1} (the supremum of the right-hand-side of
(4.2) when s > r − q).

Likewise, as in Case (i-1), (4.1) holds with v = ζu if c > min{c∗, c1}. This
proves (ii) when b−p > −N , or p = 1 and b−1 ≥ −N , and when c is in the open
interval with endpoints c∗ and c1. Thus, it only remains to discuss the case c = c∗.

This can be done by proving inequality (4.1) for v = u radially symmetric, with
k = 1 and ξ = 0 (no need to split u). Specifically, since r > q (unlike in part (i)),
we can write

||u||rc∗,r =
∫
RN

|x|c∗ |u|r =
∫
RN

|x|a+(r−q)((b−p+N )/p)|u|r ≤ ‖|x|(b−p+N )/pu‖r−q
∞ ||u||qa,q

and notice that ‖|x|(b−p+N )/pu‖∞ ≤ C||∂ρu||b,p using, as before, Theorem 3.1 with
γ := b/p − N/p′. This requires that b − p > −N if p > 1, but b − 1 = −N is
allowed if p = 1. �

Lemma 4.3(ii) is not optimal; however, before improving it (in Lemma 4.6
below), we prove a similar result when a and b − p are on opposite sides of −N .

Lemma 4.4. Let a, b, c ∈ R and 1 ≤ p < ∞, 0 < q, r < ∞. If a and b − p
are strictly on opposite sides of −N , the subspace of W̃ 1,(q,p)

{a,b} of radially symmetric

functions can be continuously embedded into Lr(RN ; |x|cdx) in the following two
cases:

(i) r ≤ q and c is in the open interval with endpoints c0 and −N,
(ii) q < r, 1 − q/r < θ−N , and4 c is in the half-open interval with endpoints

c∗ := (1 − q/r)c1 + qc0/r (included) and −N (not included).

Proof. Since a and b−p are strictly on opposite sides of −N , we may assume
that b − p < −N < a by the usual Kelvin transform argument.

(i) By (1.3), c1 < −N < c0. Let c ∈ (−N, c0) be given. As in the proof of
Lemma 4.3, it suffices to show that ||(1 − ζ )u||c,r ≤ C||(1 − ζ )u||{a,b},(q,p) and that
||ζu||c,r ≤ C||ζu||{a,b},(q,p) when u is radially symmetric.

Since Supp (1 − ζ ) ⊂ RN \B(0, 1/2), it follows that (1 − ζ )u ∈ W̃ 1,1
loc,+. As a

result, the argument of the proof of Case (i-1) of Lemma 4.3, which is based on

4Since −N is between c0 and c1 when a and b − p are on opposite sides of −N , it follows that
θ−N ∈ (0, 1); see (1.4).
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Theorem 3.1, can be repeated verbatim, now with γ := b/p − N/p ′ < 1 − N . This
shows that ||(1 − ζ )u||c,r ≤ C||(1 − ζ )u||{a,b},(q,p), since c < max{c0, c1} = c0.

The inequality ||ζu||c,r ≤ C||ζu||{a,b},(q,p) cannot be obtained as in Case (i-1)
of Lemma 4.3, because b − p < −N but ζu /∈ W̃ 1,1

loc,+, so that Theorem 3.1 is not
applicable. However, it can be proved with the trick used in Case (i-2) of that
lemma. Since −N < c < c0, Lemma 4.3(i) can be used with b replaced with
p − N > b, because a 
= −N and c1 becomes −N when b is replaced with p − N

while c0 is unchanged. Thus ||ζu||c,r ≤ C||ζu||{a,p−N },(q,p), while

||ζu||{a,p−N },(q,p) ≤ ||ζu||{a,b},(q,p),

since p − N > b and Supp ζ ⊂ B(0, 1).
(ii) Observe that c1 < c∗ < c0 because q < r and c1 < c0 (recall that

b − p < −N < a), while 1 − q/r < θ−N ensures that −N < c∗.
Let then c ∈ (−N, c∗). Once again, use the fact that (1 − ζ )u ∈ W̃ 1,1

loc,+ since
Supp (1 − ζ ) ⊂ RN \B(0, 1/2), and Theorem 3.1 with γ := b/p − N/p′ < 1 − N .
The argument of the proof Lemma 4.3(ii) (with obvious modifications) then yields
||(1 − ζ )u||c,r ≤ C||(1 − ζ )u||{a,b},(q,p) since c < c∗ = max{c∗, c1}.

If c = c∗, the same argument works with k = 1, ξ = 0. To see this, let v :=
(1 − ζ )u ∈ W̃ 1,1

loc,+ and write

||v ||rc∗,r =
∫
RN

|x|c∗ |v |r =
∫
RN

|x|(a+(r−q))(b−p+N )/p|v |r ≤
∥∥∥|x|(b−p+N )/pv

∥∥∥r−q

∞ ||v ||qa,q.
Then, use Theorem 3.1 with γ := b/p − N/p′ < 1 − N to get∥∥∥|x|(b−p+N )/pv

∥∥∥∞ ≤ C||∂ρv ||b,p.
The proof of ||ζu||c,r ≤ C||ζu||{a,b},(q,p) when c ∈ (−N, c∗] proceeds as in (i)

above, with minor modifications. If b̂ > b, then ĉ1 := (r(b̂ − p + N ))/p − N > c1,
and so ĉ∗ := (1 − q/r)ĉ1 + qc0/r > c∗. Note also that ĉ1 is arbitrarily close to −N
if b̂ is close enough to p − N . As a result, c is in the open interval with endpoints
ĉ∗ and ĉ1 (even when c = c∗), provided that b̂ > p − N is close to p − N , while a
and b̂ − p are both on the right of −N . Thus, Lemma 4.3(ii) is applicable with b

replaced with b̂. (Because of the requirement in Lemma 4.3(ii) that b̂ − p 
= −N ,
unlike in (i), b̂ = p − N cannot be chosen if p > 1.) �

We now prove optimal variants of Lemmas 4.3 and 4.4. To do this, we need a
complement to Lemma 3.4(i) in the radially symmetric case.

Lemma 4.5. Let a, b ∈ R, 1 ≤ p < ∞, and 0 < q < ∞. If 1 ≤ ξ ≤ q/p′ + 1
and u ∈ W̃ 1,(q,p)

{a,b} is radially symmetric, then |u|ξ ∈ W̃ 1,(qξ ,pξ )
{a,bξ } , where

(4.3) pξ :=
pq

p(ξ − 1) + q
≥ 1, qξ :=

q
ξ
> 0, bξ :=

(
a(ξ − 1)

q
+

b
p

)
pξ .
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Furthermore, |u|ξ (is radially symmetric and) satisfies

(4.4) || |u|ξ ||a,qξ = ||u||ξa,q, ||∂ρ(|u|ξ )||bξ ,pξ ≤ ξ ||u||ξ−1
a,q ||∂ρu||b,p.

Proof. If ξ = 1, then qξ = q, pξ = p and bξ = b. This is the case covered by
Lemma 3.4, which also shows that it is not restrictive to assume that u ≥ 0. From
now on, assume ξ > 1. The assumption ξ ≤ q/p′ + 1 ensures that pξ ≥ 1 in (4.3).

That uξ is radially symmetric, uξ ∈ Lqξ (RN ; |x|adx), and || |u|ξ ||a,qξ = ||u||ξa,q
is obvious. It remains to prove that uξ ∈ L1

loc(RN∗ ), that ∂ρ(uξ ) ∈ Lpξ (RN ; |x|bξdx),
and the second inequality in (4.4).

By Lemma 3.3(iv), u ∈ W̃ 1,1
loc,± ⊂ W̃ 1,1

loc (depending upon whether a ≥ −N or
a ≤ −N ). Thus, from Lemma 3.1, u(x) = f u(|x|) with fu ∈ W 1,1

loc (0,∞), fu ≥ 0
and ∂ρu(x) = f ′

u(|x|). Clearly, since ξ > 1, f ξu ∈ W 1,1
loc (0,∞) and ( f ξu )′ = ξ f ξ−1

u f ′
u.

Hence, once again by Lemma 3.1, uξ (x) = f ξu (|x|) is in W̃ 1,1
loc ⊂ L1

loc(RN∗ ) and
∂ρ(uξ )(x) = ξ f ξ−1

u (|x|) f ′
u(|x|), i.e., ∂ρ(uξ ) = ξuξ−1∂ρu.

In general, if μ, ν > 0, multiplication maps Lμ × Lν into Lμν/(μ+ν). Moreover,
||vw||μν/(μ+ν) ≤ ||v ||μ||w||ν. This requires neither that μ ≥ 1 nor that ν ≥ 1
(just use |v |μν/(μ+ν) ∈ L1+μ/ν and |w|μν/(μ+ν) ∈ L1+ν/μ and Hölder’s inequality).
Now, |x|(a(ξ−1))/q|u|ξ−1 ∈ Lq/(ξ−1)(RN ) since |x|a|u|q ∈ L1(RN ) and ξ > 1, and
|x|b/p∂ρu ∈ Lp(RN ). Therefore, |x|bξ /pξuξ−1∂ρu ∈ Lpξ (RN ) with pξ and bξ given by
(4.3) and ∥∥∥|x|bξ /pξuξ−1∂ρu

∥∥∥
pξ

≤
∥∥∥|x|(a(ξ−1))/q|u|ξ−1

∥∥∥
q/(ξ−1)

|| |x|b/p∂ρu||p
= ||u||ξ−1

a,q ||∂ρu||b,p.
From the above, this implies ∂ρ(uξ ) ∈ Lpξ (RN ; |x|bξdx) with

||∂ρ(uξ )||bξ ,pξ ≤ ξ ||u||ξ−1
a,q ||∂ρu||b,p

.

�

Remark 3. Lemma 4.5 holds in the case 1 ≤ ξ ≤ min{q, q/p′ + 1} without
the radial symmetry assumption. Indeed, if u ∈ W̃ 1,(q,p)

{a,b} , then

|u|ξ ∈ Lqξ (RN ; |x|adx) ⊂ L1
loc(R

N
∗ )

since qξ ≥ 1 and u ∈ W̃ 1,(q,p)
{a,b} ⊂ W̃ 1,1

loc implies that |u|ξ is locally absolutely
continuous on almost every ray through the origin (see Section 3), with

∂ρ(|u|ξ ) = ξ |u|ξ−1(sgn u)∂ρu ∈ Lpξ (RN ; |x|bξdx) ⊂ L1
loc(R

N
∗ ).

This is used elsewhere.
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Lemma 4.6. Let a, b, c ∈ R, 1 ≤ p <∞, 0 < q, r <∞, and

θ̆ :=
(

1 − q
r

)( q
p′ + 1

)−1
< 1 (≤ 0 if r ≤ q).

The subspace of W̃ 1,(q,p)
{a,b} of radially symmetric functions is continuously embedded

into Lr(RN ; |x|cdx) in the following two cases:

(i) a and b − p are on the same side of −N (including −N ), (a + N )/q 
=
(b − p + N )/p, c is in the open interval with endpoints c0 and c1, and θc ≥ θ̆

(vacuously true if r ≤ q);

(ii) a and b − p are strictly on opposite sides of −N , c is in the open interval
with endpoints c0 and −N , and θc ≥ θ̆ (the empty set if θ̆ ≥ θ−N ).

Proof. If r ≤ q (so that θ̆ ≤ 0) or if r > q and p = 1 (so that θ̆ = 1 − q/r),
(i) follows from Lemma 4.3 (where b − p 
= −N is not required in part (ii) when
p = 1), and (ii) follows from Lemma 4.4. From now on, r > q (so that θ̆ ∈ (0, 1))
and p > 1. For convenience, we set ξ̆ := q/p′ + 1 > 1. In particular, the interval
(1, ξ̆] is not empty, a fact used implicitly below.

(i) Let u ∈ W̃ 1,(q,p)
{a,b} be radially symmetric. If 1 ≤ ξ ≤ ξ̆ , then by Lemma 4.5,

|u|ξ ∈ W̃ 1,(qξ ,pξ )
{a,bξ } with qξ > 0, pξ ≥ 1 and bξ given by (4.3). A routine verification

shows that a and bξ−pξ are on the same side of −N (since the same thing is true of
a and b−p) and that (a+N )/qξ 
= (bξ−pξ+N )/pξ (since (a+N )/q 
= (b−p+N )/p).

Furthermore, bξ − pξ 
= −N if ξ > 1 (which need not be true if ξ = 1, since
b − p 
= −N is not assumed). Indeed, bξ − pξ = −N amounts to

a + N
q

(ξ − 1) +
b − p + N

p
= 0.

Since a and b − p are on the same side of −N , this can only happen when a + N =
b − p + N = 0 when ξ > 1, which contradicts the assumption (a + N )/q 
=
(b − p + N )/p.

Accordingly, from Lemma 4.3(ii) with b, p, q and r replaced with bξ , pξ , qξ and
s, respectively, W 1,(qξ ,pξ )

{a,bξ } (RN∗ ) ↪→ Ls(RN ; |x|cdx) whenever 1 < ξ ≤ ξ̆ , 0 < qξ < s,
and c is in the half-open interval with endpoints a + ((s − qξ )(bξ − pξ + N ))/pξ
(included; this corresponds to c∗ with the parameters bξ , pξ , qξ , s) and
(s(bξ − pξ + N ))/pξ − N (not included; this corresponds to c1 with the parameters
bξ , pξ , qξ , s). Since r > q and qξ = q/ξ , the condition 0 < qξ < s holds when s =
r/ξ . If so, the embedding inequality |||u|ξ ||c,r/ξ ≤ Cξ (|||u|ξ ||a,qξ + ||∂ρ(|u|ξ )||bξ ,pξ )
reads (use (4.4))

||u||ξc,r ≤ Cξ (||u||ξa,q + ||u||ξ−1
a,q ||∂ρu||b,p) ≤ Cξ (||u||a,q + ||∂ρu||b,p)ξ ,
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so that ||u||c,r ≤ Cξ−1

ξ ||u||{a,b},(q,p). Above, c is in the half-open interval Jξ with
(distinct) endpoints e1(ξ ) := a+((r−q)(bξ−pξ +N ))/(ξpξ) (included) and e2(ξ ) :=
(r(bξ − pξ + N ))/(ξpξ ) − N (not included) and 1 < ξ ≤ ξ̆ . Thus, whenever
c ∈ J := ∪ξ∈(1,ξ̆ ]Jξ ,

(4.5) ||u||c,r ≤ C(||u||a,q + ||∂ρu||b,p),

for some constant C > 0 independent of the radially symmetric u ∈ W 1,(q,p)
{a,b} (RN∗ )

(specifically, C = Cξ−1

ξ for any ξ such that c ∈ Jξ ).
Since the distinct endpoints of Jξ depend continuously upon ξ , the lower (up-

per) endpoint e−(ξ ) (e+(ξ )) is either e1(ξ ) for every ξ or e2(ξ ) for every ξ . Hence,
e± are continuous functions of ξ which are never equal on (1, ξ̆]. Using this re-
mark, it is an easy exercise to show that J contains the open interval with endpoints
inf e− and sup e+.

If (a + N )/q > (b − p + N )/p, then e1 > e2 and both e1 and e2 are increas-
ing functions of ξ , so that J contains (e2(1), e1(ξ̆)). In addition, since it contains
e1(ξ̆) ∈ Jξ̆ , J contains (and, in fact, coincides with) (e2(1), e1(ξ̆)].

If (a + N )/q < (b − p + N )/p, then e2 > e1 and both e1 and e2 are decreasing
functions of ξ , so that J contains the open interval (e1(ξ̆), e2(1)). Once again, it
also contains e1(ξ̆). Therefore, in all cases, J coincides with the half-open interval
with endpoints e1(ξ̆) = θ̆c1 + (1 − θ̆)c0 (included) and e2(1) = c1 (not included).
For every c in that interval, (4.5) holds for some constant C independent of the
radially symmetric u ∈ W̃ 1,(q,p)

{a,b} . Clearly, J is equally characterized as the set of
those c in the open interval with endpoints c0 and c1 such that θc ≥ θ̆.

(ii) First, since a and b − p are on opposite sides of −N , it is obvious that
(a+N )/q 
= (b−p+N )/p. The proof proceeds as in part (i), but extra technicalities
arise from the fact that the points a and bξ − pξ (see (4.3)) need not remain on
opposite sides of −N for all ξ ∈ [1, ξ̆].

Nonetheless, since bξ − pξ is a strictly monotone function of ξ equal to b − p
when ξ = 1 and since a and b − p are strictly on opposite sides of −N , there are
only two possibilities:

(a) a and bξ − pξ are strictly on opposite sides of −N when ξ = ξ̆ (which
amounts to a and b/p + a/p′ − 1 being strictly on opposite sides of −N ) and
hence the same holds for every ξ ∈ [1, ξ̆], or

(b) 1. bξ0 − pξ0 = −N for some unique ξ0 ∈ (1, ξ̆),
2. bξ̆ − pξ̆ = −N .

In both these cases, a and bξ − pξ are on the same side of −N for every
ξ ∈ [ξ0, ξ̆ ].

Case (a). Replace q, r, b, p with q ξ̆ = q/ξ̆ , rξ̆ = r/ξ̆ , bξ̆ = a/p′ + b/p,
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pξ̆ = 1, respectively, in Lemma 4.4(ii) and use the conclusion of that Lemma

with u replaced with |u|ξ̆ . This is justified by Lemma 4.5. However, it is crucial to
notice that, due to the change of parameters, the condition “1 − q/r < θ−N ” in
Lemma 4.4 does not involve θ−N but, instead, the number θ̆−N given by the same
formula (1.4) when c0 and c1 are replaced with c̆0 and c̆1 defined by (1.3) with the
new parameters qξ̆ , rξ̆ , bξ̆ , pξ̆ . Thus, c̆0 = c0, but

c̆1 = r ξ̆−1
(a + N

p′ +
b − p + N

p

)
− N,

so that c̆1 − c̆0 = r ξ̆−1((b − p + N )/p − (a + N )/q). With this remark, it is readily
checked that θ̆−N = ξ̆ θ−N , so that the condition 1 − qξ̆ /rξ̆ < θ̆−N becomes θ̆ :=
(1 − q/r)(q/p′ + 1)−1 < θ−N .

In summary, the continuity of the embedding is ensured if θ̆ < θ−N and c is in
the half-open interval with endpoints c̆ := (1 − q/r)c̆1 + qc̆0/r = θ̆c1 + (1 − θ̆)c0

(included) and −N (not included), which, since r > q, coincides with the set of c

in the open interval with endpoints c0 and −N such that θc ≥ θ̆.
Case (b1). Since a and bξ − pξ are on the same side of −N for ξ ∈ [ξ0, ξ̆]

and since bξ − pξ 
= −N if ξ ∈ (ξ0, ξ̆ ], Lemma 4.3(ii) with u replaced with
|u|ξ and q, r, b, p replaced with q/ξ, r/ξ, bξ , pξ , respectively, yields that the sub-
space of W 1,(q,p)

{a,b} of radially symmetric functions is continuously embedded into
Lr(RN ; |x|cdx) for every c ∈ J := ∪ξ∈(ξ0,ξ̆ ] Jξ , where Jξ is the half-open interval
with endpoints e1(ξ ) := a + ((r − q)(bξ − pξ + N ))/ξpξ (included) and e2(ξ ) :=
(r(bξ − pξ + N ))/ξpξ − N (not included). Both endpoints are distinct (because
(a + N )/q 
= (b − p + N )/p) and on the same side of −N when ξ > ξ0. By arguing
as in the proof of (i) above, J is found to be the half-open interval with endpoints
e1(ξ̆) = c̆ = θ̆c1 + (1 − θ̆)c0 (included) and e2(ξ0) = −N (not included), exactly as
in (a). Therefore, the final argument is also the same.

Case (b2). Since a and b ξ̆ − pξ̆ are on the same side of −N and since p ξ̆ = 1,

it suffices to use Lemma 4.3(ii) with u replaced with |u| ξ̆ and q, r, b, p replaced by
q/ξ̆ , r/ξ̆ , bξ̆ = b/p + a/p′, pξ̆ = 1, respectively. �

It is informative that even if q, r ≥ 1 in Lemma 4.6, the proof involves Lemmas
4.3(ii) and 4.4(ii) when q, r > 0 (q, r ≥ 1 is not enough). The next theorem gives
necessary and sufficient conditions for the continuous embedding of the subspace
of radially symmetric functions.

Theorem 4.1. Let a, b, c ∈ R, 1 ≤ p < ∞ and 0 < q, r < ∞ and set

θ̆ := (1−q/r)(q/p′+1)−1. The subspace of W̃ 1,(q,p)
{a,b} of radially symmetric functions

is continuously embedded into Lr(RN ; |x|cdx) (and hence into W̃ 1,(r,p)
{c,b} ) if and only

if one of the following conditions holds.
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(i) a and b − p are on the same side of −N (including −N ), (a + N )/q 
=
(b − p + N )/p, c is in the open interval with endpoints c0 and c1, and θc ≥ θ̆

(vacuously true if q ≥ r).

(ii) a and b−p are strictly on opposite sides of −N, c is in the open interval with
endpoints c0 and −N and θc ≥ θ̆ (empty set if θ̆ ≥ θ−N ).

(iii) r ≥ p, a ≤ −N and b − p < −N or a ≥ −N and b − p > −N, c = c1.
Furthermore, there is a constant C > 0 such that

(4.6) ||u||c,r ≤ C||∂ρu||b,p,

for every radially symmetric function u ∈ W̃ 1,(q,p)
{a,b} .

(iv) r = q and c = c0 (= a), or p 
= q,min{p, q} ≤ r ≤ max{p, q}, (a + N )/q =
(b − p + N )/p 
= 0 and c = c0 (= c1). Furthermore, there is a constant C > 0
such that

(4.7) ||u||c,r ≤ C||∂ρu||θb,p||u||1−θ
a,q ,

for every radially symmetric function u ∈ W̃ 1,(q,p)
{a,b} , where θ = 0 if r = q and

c = a and θ = p(r − q)/(r(p − q)) otherwise.

(v) a = −N, b = p − N, r > q and c = c0 (= c1 = −N ). Furthermore, there is a
constant C > 0 such that

(4.8) ||u||−N,r ≤ C||∂ρu||θ̆p−N,p||u||1−θ̆
−N,q,

for every radially symmetric function u ∈ W̃ 1,(q,p)
{−N,p−N }.

Proof. The theorem is (as it should be) equivalent to Theorem 1.1 when N =
1 (in particular, p∗ = ∞ regardless of p and p−1 − N −1 − q−1 = −(p′−1 + q−1))
and a, b, c are replaced with a +N −1, b+N −1 and c+N −1, respectively. Since
the hypotheses of Theorem 1.1 are necessary (Section 2), the necessity follows.

The sufficiency of parts (i) and (ii) has already been proved in Lemma 4.6. To
complete the proof, we show that parts (iii), (iv) or (v) are also sufficient.

(iii) By Kelvin transform, we may assume that a ≤ −N and b − p < −N .
In particular, u ∈ W̃ 1,1

loc,+ by Lemma 3.3(iv). By Lemma 3.3(i), we may also as-
sume with no loss of generality that u ≥ 0. Then u(x) = f u(|x|) with
fu ∈ W 1,1

loc (0,∞), fu ≥ 0 and limt→0+ fu(t) = 0, so that fu(t) ≤ ∫ t
0 | f ′

u(τ)|dτ by
(3.6) with γ = 1 − N and f = fu.

On the other hand, since r ≥ p,(∫ ∞

0
tr(b−p+N )/p−1

(∫ t

0
| f ′

u(τ)|dτ
)r

dt
)1/r

≤ C
(∫ ∞

0
tb+N−1| f ′

u(t)|pdt
)1/p

,
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by a weighted Hardy inequality of Bradley ([5, Theorem 1], [17, p. 40]) inspired
by Muckenhoupt [19] when r = p. This yields (4.6), since Lemma 3.1 implies
c = c1 = r(b − p + N )/p − N and ∂ρu(x) = f ′

u(|x|).
(iv) This is trivial if r = q and c = a. From now on, take p 
= q and r between p

and q (both included), so that r = μp+(1−μ)q, whereμ = (r−q)/(p−q) ∈ [0, 1],
whence μ(b − p) + (1 − μ)a = c0 = c (use b − p = p(a + N )/q − N ). Thus,
if u is measurable,

∫
RN |x|c|u|r =

∫
RN (|x|b−p|u|p)μ(|x|a|u|q)1−μ and, by Hölder’s

inequality,

(4.9) ||u||r
c,r ≤ ||u||μp

b−p,p||u||(1−μ)q
a,q .

Since (a + N )/q = (b − p + N )/p 
= 0, both a and b − p are on the same side of
−N and neither equals −N . Therefore, when u ∈ W̃ 1,(q,p)

{a,b} is radially symmetric,
||u||b−p,p ≤ C||∂ρu||b,p by (iii) with r = p (hence c = b − p). By substitution into
(4.9), ||u||c,r ≤ C||∂ρu||μp/r

b,p ||u||(1−μ)q/r
a,q = C||∂ρu||θb,p||u||1−θ

a,q with θ = μp/r =
p(r − q)/(r(p − q)). This proves (4.7) and hence the embedding property as well.

(v) It follows from part (i) of the theorem if p = 1 and from part (ii) if p > 1
that if r > q, N = 1, and a = b = c = 0, the subspace of even functions in the
unweighted space W 1,(q,p)(R∗) is continuously embedded into Lr(R). This read-
ily implies the same result in this one-dimensional setting without the evenness
assumption, i.e., W 1,(q,p)(R∗) ↪→ Lr(R), and then

(4.10) ||g||r ≤ C||g′||θ̆p||g||1−θ̆
q ,

for g ∈ W 1,(q,p)(R∗) by the usual rescaling argument. In particular, (4.10) holds
with g ∈ W 1,(q,p)(R) (if g ∈ C∞

0 (R) and q ≥ 1, this also follows from [6]).
Now, on the one hand, as in (iii), if u ∈ W̃ 1,(q,p)

{−N,p−N } is radially symmetric, then
u(x) = fu(|x|) with fu ∈ W 1,1

loc (0,∞) and ∂ρu(x) = f ′
u(|x|), so that

||u||q−N,q = NωN

∫ ∞

0
t−1| fu(t)|qdt <∞

and
||∂ρu||pp−N,p = NωN

∫ ∞

0
tp−1| f ′

u(t)|pdt < ∞.

On the other hand, it is easy to check that if g(s) := f u(es), then g ∈ W 1,(q,p)(R)
with ||g||qq =

∫∞
0 t−1| fu(t)|qdt and ||g′||pp =

∫∞
0 tp−1| f ′

u(t)|pdt. Therefore, (4.10)

may be rewritten as ||u||−N,r ≤ C||∂ρu||θ̆p−N,p||u||1−θ̆−N,q. �

Remark 4. Since W̃ 1,(q,p)
{a,b} and W 1,(q,p)

{a,b} (RN∗ ) contain the same radially sym-
metric functions and the induced norms are the same, Theorem 4.1 is also true
when W̃ 1,(q,p)

{a,b} is replaced by W 1,(q,p)
{a,b} (RN∗ ).
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Remark 5. In Theorem 4.1(ii), the admissible interval is empty if θ̆ ≥ θ−N ,
which can only happen if r > q. However, a careful examination of the proofs
reveals that the subspace of (radially symmetric) functions with support in a ball
B centered at 0 is continuously embedded into Lr(RN ; |x|cdx) if c > −N when
b − p < −N < a and if c ≥ c̆ (even if c̆ = −N ) when a < −N < b − p. For
functions with support in RN \B , the conditions (c ≤ c̆ if b − p < −N < a and
c < −N if a < −N < b − p) follow by Kelvin transform. Details are left to the
reader.

5 Embedding theorem when 1 ≤ r ≤ min{p, q}
We now extend Theorem 4.1 to the non-symmetric case when 1 ≤ r ≤ min{p, q}.
To do this, we need the following refinement of Lemma 3.4(ii).

Lemma 5.1. Let a, b ∈ R and 1 ≤ r ≤ p, q < ∞. If u ∈ W̃ 1,(q,p)
{a,b} , then v :=

[(|u|r)S]
1
r ∈ W̃ 1,(q,p)

{a,b} . Furthermore, ||v ||a,q ≤ ||u||a,q and ||∂ρv ||b,p ≤ ||∂ρu||b,p, so

that ||v ||{a,b},(q,p) ≤ ||u||{a,b},(q,p).

Proof. By Lemma 3.4(i), it is not restrictive to assume that u ≥ 0. Since
v(x) = [ fur (|x|)] 1

r with fur (t) := (NωN )−1
∫
SN−1 ur(tσ)dσ, it follows from r ≤ q and

Hölder’s inequality that

(v(x))q ≤ (NωN )−1
∫
SN−1

uq(|x|σ)dσ.

Thus ||v ||a,q ≤ ||u||a,q is clear.
We now show that ∂ρv ∈ Lp(RN ; |x|bdx) and prove the desired estimate. For-

mally, if h := ( fur )1/r , then h′ = (1/r)( fur )−1/r ′
f ′
ur but, by the de la Vallée Poussin

criterion ([29], [14, Lemma 1.2], [25, Corollary 8]), this formula holds and
h ∈ W 1,1

loc (0,∞) if and only if fur ∈ W 1,1
loc (0,∞) and ( fur )−1/r ′

f ′
ur ∈ L1

loc(0,∞),
with the understanding that ( fur )−1/r ′

f ′
ur = 0 when f ′

ur = 0, irrespective of whether
( fur )−1/r ′

is defined. Since f ′
ur = 0 a.e. on ( fur )−1(0), this amounts to defining

( fur )−1/r ′
f ′
ur = 0 on ( fur )−1(0). That ( fur )−1/r ′

f ′
ur ∈ L1

loc(0,∞) is verified below.
First, u ∈ W̃ 1,r

loc , since r ≤ p, q. By Lemma 3.2, ur ∈ W̃ 1,1
loc (so that

fur ∈ W 1,1
loc (0,∞)) and ∂ρ(ur) = rur−1∂ρu. Upon replacing u by ur in (3.2) and

by Hölder’s inequality, it follows that

| f ′
ur | ≤ r( fur )1/r ′

(
(NωN )−1

∫
SN−1

|∂ρu|rdσ
)1/r

≤ r( fur )1r ′
(

(NωN )−1
∫
SN−1

|∂ρu|pdσ
)1/p

.
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Since ( fur )−1/r ′
f ′
ur = 0 on ( fur )−1(0), this yields

( fur )−1/r ′ | f ′
ur | ≤ r

(
(NωN )−1

∫
SN−1

|∂ρu|pdσ
)1/p

∈ Lp
loc(0,∞) ⊂ L1

loc(0,∞).

From the above, h ∈ W 1,1
loc (0,∞), h′ = (1/r)( fur )−1/r ′

f ′
ur and, in addition,

|h′(t)| ≤
(

(NωN )−1
∫
SN−1

|∂ρu(tσ)|pdσ
)1/p

.

Since ∂ρv(x) = h′(|x|) by Lemma 3.1, |∂ρv(x)|p ≤ (NωN )−1
∫

S
N−1 |∂ρu(|x|σ)|pdσ,

so that ||∂ρv ||b,p ≤ ||∂ρu||b,p. �

Theorem 5.1. Suppose that a, b, c ∈ R and that 1 ≤ r ≤ p, q < ∞. Then

W̃ 1,(q,p)
{a,b} ↪→ Lr(RN ; |x|cdx) (and hence W̃ 1,(q,p)

{a,b} ↪→ W̃ 1,(r,p)
{c,b} ) in the following cases:

(i) a and b − p are on the same side of −N (including −N ), (a + N )/q 
=
(b − p + N )/p and c is in the open interval with endpoints c0 and c1;

(ii) a and b − p are strictly on opposite sides of −N (in this case, (a + N )/q 
=
(b − p + N )/p) and c is in the open interval with endpoints c0 and −N ;

(iii) r = q ≤ p, and c = a;

(iv) r = p ≤ q, a ≤ −N , b − p < −N or a ≥ −N , b − p > −N , and c = b − p.

Proof. (i)-(ii) Set v := [(|u|r)S]1/r . By Lemma 5.1, v ∈ W̃ 1,(q,p)
{a,b} and

||v ||{a,b},(q,p) ≤ ||u||{a,b},(q,p).

Thus, since v is radially symmetric, it follows from Theorem 4.1(i) and (ii) (where
θc ≥ θ̆ holds, since θ̆ ≤ 0) that ||v ||c,r ≤ C||u||{a,b},(q,p), where C > 0 is indepen-
dent of u. The conclusion follows from the remark that ||v ||c,r = ||u||c,r .

(iii) is trivial.
(iv) Argue as in (i)-(ii) above, now using Theorem 4.1(iii) with r = p. �
When W̃ 1,(q,p)

{a,b} is replaced with the smaller space W 1,(q,p)
{a,b} (RN∗ ), Theorem 5.1

coincides with Theorem 1.1 when 1 ≤ r ≤ p, q < ∞. Indeed, r ≤ min{p, q}
implies r ≤ min{p∗, q}, so that θc(p−1 − N −1 − q−1) ≤ r−1 − q−1 holds for every
c in the closed interval with endpoints c0 and c1; see Remark 1.

6 The Caffarelli-Kohn-Nirenberg Lemma and applica-
tion

The reduction to the radially symmetric case in the previous section cannot be used
when r > min{p, q}. Consistent with the strategy outlined in the Introduction, this
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section is devoted to the formulation and proof of an embedding property for a
direct complement of the subspace of radially symmetric functions.

It turns out to be necessary to confine attention to the space W 1,(q,p)
{a,b} (RN∗ ) (as

opposed to W̃ 1,(q,p)
{a,b} ). This is because integrability conditions on all the first order

partial derivatives are implicitly required. Although phrased differently and under
less general conditions, Lemma 6.1 below is already contained in [6].

Lemma 6.1 (CKN Lemma). Let a, b, c ∈ R and 1 ≤ p, q, r < ∞, and
suppose that there exist δ ≤ b/p and θ ∈ [0, 1] such that

(i) c/r = θδ + (1 − θ)a/q,
(ii) (c + N )/r = θ(b − p + N )/p + (1 − θ)(a + N )/q,

(iii) θr/p + (1 − θ)r/q ≥ 1.

Then

(6.1) W0 :=
{

u ∈ W 1,(q,p)
{a,b} (RN

∗ ) : uS = 0
}
↪→ Lr(RN ; |x|cdx),

and there exists a constant C > 0 such that

(6.2) ||u||c,r ≤ C||∇u||θb,p||u||(1−θ)
a,q for all u ∈ W0.

Proof. Of course, it suffices to prove (6.2). For τ > 0, let �τ denote the
annulus {x ∈ RN : τ < |x| < 2τ}. Under the conditions (i) and (ii) of the lemma5,
it is shown in [6, pp. 262-263] that the unweighted inequality

(6.3)
∫
�1

|u|r ≤ C
(∫

�1

|∇u|p
)θr/p (∫

�1

|u|q
)(1−θ)r/q

,

holds for some constant C and every u ∈ C ∞
0 (RN ) such that

∫
�1

u = 0. The proof
relies on the Gagliardo-Nirenberg and Sobolev inequalities. (Since a, b, c are not
involved in (6.3), what matters is the relation r−1 = θ(p−1 − N −1 + γ) + (1 − θ)/q
with γ ≥ 0; that γ = N−1(b/p − δ ) from (i) and (ii) combined, is not relevant at
this stage.)

From the geometric properties of �1, proving the denseness of C ∞
0 (RN ) in the

unweighted space W 1,(q,p)(�1) := {u ∈ Lq(�1) : ∇u ∈ Lp(�1)} is routine (see [3],
[23] for more general results) and it is trivial that denseness remains true if, in both
spaces, attention is confined to functions with mean 0 on�1. Thus, (6.3) continues
to hold for u ∈ W 1,(q,p)(�1) such that

∫
�1

u = 0 and hence for u ∈ W 1,(q,p)
{a,b} (RN∗ )

such that
∫
�1

u = 0 since, irrespective of a and b, the restrictions to�1 of functions

in W 1,(q,p)
{a,b} (RN∗ ) are obviously in W 1,(q,p)(�1).

5None of the other assumptions in [6] is involved.



GENERALIZED CAFFARELLI-KOHN-NIRENBERG INEQUALITIES 281

If x ∈ �1, then |x|a, |x|b are bounded below and |x|c is bounded above. Thus,
after changing C, (6.3) yields∫

�1

|x|c|u|r ≤ C
(∫

�1

|x|b|∇u|p
)θr/p (∫

�1

|x|a|u|q
)(1−θ)r/q

for every u ∈ W 1,(q,p)
{a,b} (RN∗ ) such that

∫
�1

u = 0. After rescaling, this and (ii) imply
that with the same C, independent of τ,

(6.4)
∫
�τ

|x|c|u|r ≤ C
(∫

�τ

|x|b|∇u|p
)θr/p (∫

�τ

|x|a|u|q
)(1−θ)r/q

,

for every u ∈ W 1,(q,p)
{a,b} (RN∗ ) such that

∫
�τ

u = 0. In particular, (6.4) holds for every
τ > 0 and every u ∈ W0 defined in (6.1).

It has also been observed, in [6, p. 268], that if k ∈ Z and Ak,Bk ≥ 0 and if
α, β ≥ 0 satisfy α + β ≥ 1, then

(6.5)
∑
k∈Z

Aαk Bβ
k ≤

(∑
k∈Z

Ak

)α(∑
k∈Z

Bk

)β
,

where the first (second) factor on the right is 1 when α = 0 (β = 0). Thus, when
condition (iii) holds, (6.2) follows from (6.5) and (6.4) with τ = 2k, k ∈ Z.

There is a clearer and more convenient formulation of Lemma 6.1.

Corollary 6.1. Let a, b, c ∈ R and 1 ≤ p, q, r < ∞.
(i) If (a + N )/q 
= (b − p + N )/p and c is in the closed interval with endpoints

c0 and c1, then W0 ↪→ Lr(RN ; |x|cdx) if the following conditions hold (with
θc given by (1.4));
(i-1) Either r = q and c = c0 (= a), or c 
= c0 and θc(p−1 − N −1 − q−1) ≤

r−1 − q−1.

(i-2) θcr/p + (1 − θc)r/q ≥ 1.

(ii) If (a + N )/q = (b − p + N )/p and c = c0 (= c1), then W0 ↪→ Lr(RN ; |x|cdx)
if min{p, q} ≤ r ≤ max{p∗, q}. Furthermore, there is a constant C > 0 such

that for every u ∈ W0,

(6.6) ||u||c,r ≤ C||∇u||b,p if p ≤ r ≤ p∗,

(6.7) ||u||c,r ≤ C||∇u||θb,p||u||1−θ
a,q if r = q or if p 
= q and

min{p, q} ≤ r ≤ max{p, q},
where θ := p(r − q)/(r(p − q)) if p 
= q and θ = 0 if p = q = r.
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Proof. (i) Suppose (a + N )/q 
= (b − p + N )/p. By (1.6), condition (ii) of
Lemma 6.1 holds if and only if θ = θc. If r = q and c = c0 = a, so that θc0 = 0,
condition (i) of Lemma 6.1 holds with any δ . On the other hand, if c 
= c0, then
θc ∈ (0, 1] and condition (i) of Lemma 6.1 holds with

δ =
b − p + N

p
+

1 − θc

θc

N
q

− 1
θc

N
r
.

Hence, δ ≤ b/p (as required in Lemma 6.1) if and only if θc(p−1 − N −1 − q−1) ≤
r−1 − q−1. Thus, W0 ↪→ Lr(RN ; |x|cdx) if also (θcr)/p + ((1 − θc)r)/q ≥ 1.

(ii) Suppose (a + N )/q = (b − p + N )/p and let c = c0 = c1. Then condition
(ii) of Lemma 6.1 holds with any θ ∈ [0, 1]. Thus, it only remains to show that if
min{p, q} ≤ r ≤ max{p∗, q}, then δ ≤ b/p and θ ∈ [0, 1] can be chosen such that
c/r = θδ + (1 − θ)a/q and that θr/p + (1 − θ)r/q ≥ 1. If so, all the requirements
of Lemma 6.1 are satisfied, whence W0 ↪→ Lr(RN ; |x|cdx).

Observe that min{p, q} ≤ r ≤ max{p∗, q} if and only if either p ≤ r ≤ p∗ or
p 
= q and min{p, q} ≤ r ≤ max{p, q} (possibly both). If p ≤ r ≤ p∗, we may
choose δ = c/r = b/p + N/p − N/r − 1 ≤ b/p (since r ≤ p∗) and θ = 1, so that
θr/p + (1 − θ)r/q = r/p ≥ 1. Then (6.6) follows from (6.2).

If now p 
= q and min{p, q} ≤ r ≤ max{p, q}, let θ be defined by 1/r =
θ/p + (1 − θ)/q, i.e., θ = p(q − r)/(r(q − p)). Obviously, θr/p + (1 − θ)r/q = 1,
but it must be checked that c/r = θδ + (1 − θ)a/q for some δ ≤ b/p. Since
c = c0 and (a + N )/q = (b − p + N )/p, a straightforward verification shows that
c/r = θδ +(1−θ)a/q with δ = b/p−1. Thus, (6.7) follows from (6.2). Of course,
(6.7) remains true with θ = 0 if p = q = r, for then c = c0 = a. �

While Corollary 6.1 gives sufficient conditions for W0 ↪→ Lr(RN ; |x|cdx), nec-
essary and sufficient conditions for Wrad ↪→ Lr(RN ; |x|cdx) are listed in Theorem
4.1, where Wrad is the subspace of radially symmetric functions in W 1,(q,p)

{a,b} (RN∗ ).

Thus, W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) can be inferred from the remark that

W 1,(q,p)
{a,b} (RN∗ ) = Wrad ⊕ W0 together with the following obvious lemma.

Lemma 6.2. Let X and Y be normed spaces and X1 and X2 be two subspaces
of X such that X = X1 ⊕ X2 (topological direct sum). Then, X ↪→ Y if and only if

Xi ↪→ Y, i = 1, 2.

The relation W 1,(q,p)
{a,b} (RN∗ ) = Wrad ⊕W0 reflects the equality u = uS+(u−uS) with

uS the radial symmetrization of u, that is, uS(x) = fu(|x|) with fu given by (3.1).
Then, uS ∈ Wrad and ||uS ||{a,b},(q,p) ≤ ||u||{a,b},(q,p) ≤ ||u||a,q + ||∇u||b,p by Lemma
3.4(ii), which proves the continuity of u �→ uS (W 1,(q,p)

{a,b} (RN∗ ) and W̃ 1,(q,p)
{a,b} contain

the same radially symmetric functions and the induced norms are the same). That
u − uS ∈ W0 and Wrad ∩ W0 = {0} is trivial.
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The principle outlined above is simple, but cannot always be implemented in a
straightforward way, primarily because condition (i-2) in Corollary 6.1 is far from
being necessary. The case r < min{p, q} (Section 5) is one, but not the only, ex-
ample when this condition fails but the embedding holds under other assumptions.
In practice, this means that Corollary 6.1 alone does not always suffice to prove
that W0 ↪→ Lr(RN ; |x|cdx) under optimal conditions about c. Other arguments,
most notably Theorem 5.1(but with other parameters), are needed; see the proofs
of Lemma 7.1 and of Theorem 9.1.

7 Embedding theorem when p < r ≤ q

In this section, we discuss the embedding W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) when

p < r ≤ q. Together with Theorem 5.1 (when 1 ≤ r ≤ min{p, q}), this settles the
issue when 1 ≤ r ≤ q.

Theorem 7.1. Suppose that a, b, c ∈ R and 1 ≤ p < r ≤ q < ∞. Then

W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) (and hence W 1,(q,p)

{a,b} (RN∗ ) ↪→ W 1,(r,p)
{c,b} (RN∗ )) in the

following cases:

(i) a and b − p are on the same side of −N (including −N ), (a + N )/q 
=
(b − p + N )/p, c is in the open interval with endpoints c0 and c1, and

θc(p−1 − N −1 − q−1) ≤ r−1 − q−1;
(ii) a and b − p are strictly on opposite sides of −N (hence (a + N )/q 
=

(b − p + N )/p), c is in the open interval with endpoints c0 and −N and
θc(p−1 − N −1 − q−1) ≤ r−1 − q−1;

(iii) r = q and c = a;

(iv) r ≤ p∗, a ≤ −N and b − p < −N or a ≥ −N and b − p > −N, c = c1;
(v) (a + N )/q = (b − p + N )/p 
= 0 and c = c1 (= c0).

7.1 Proof of parts (i) and (ii). In this subsection, we assume that
(a + N )/q 
= (b − p + N )/p. Let 0 ≤ θ̄ ≤ 1 denote the largest value of θ ∈ [0, 1]
such that θ(p−1 − N −1 − q−1) ≤ r−1 − q−1; i.e., since r ≤ q is assumed,

(7.1) θ̄ =

⎧⎨⎩1 if r ≤ p∗,

(r−1 − q−1)(p−1 − N −1 − q−1)−1 < 1 if p < N and r > p∗.

Denote the corresponding value of c by c̄, namely,

(7.2) c̄ := θ̄c1 + (1 − θ̄)c0,

so that θ̄ = θc̄; see (1.4). Since (a + N )/q 
= (b − p + N )/p, the points c0 and c̄
coincide if and only if θ̄ = 0, i.e., r = q > p∗, and then c̄ = c0 = a by (1.3).
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Lemma 7.1. If (a+N )/q 
= (b−p+N )/p and c̄ is given by (7.1) and (7.2), the

subspace W0 of W 1,(q,p)
{a,b} (RN∗ ) in (6.1) is continuously embedded into Lr(RN ; |x|cdx)

for every c in the interval J with endpoints c̄ (included) and c0 (not included,

unless r = q).

Proof. If r = q, the embedding W0 ↪→ Lr(RN ; |x|cdx) for c ∈ J follows from
Corollary 6.1(i), since θc(p−1 − N −1 − q−1) ≤ r−1 − q−1 = 0 by definition of J

and θcr/p + (1 − θc) ≥ 1 irrespective of θc ∈ [0, 1] since r > p by assumption.

From now on, suppose that r < q and c0 /∈ J . Observe that the set

{c ∈ R : W0 ↪→ Lr(RN ; |x|cdx)}

is always an interval (in this statement, W0 may be replaced with any normed
space of measurable functions on RN ). Thus, to prove that this interval contains
J , it suffices to show that W0 ↪→ Lr(RN ; |x|cdx) when c = c̄ and when c ∈ J is
arbitrarily close to c0.

The embedding W0 ↪→Lr(RN ; |x|c̄dx) follows once again from Corollary 6.1(i),
since θ̄(p−1−N −1 −q−1) < r−1 −q−1 by definition of θ̄, and θ̄r/p+(1− θ̄)r/q ≥ 1
by a simple calculation (obvious if θ̄ = 1; otherwise, use p < N and q ≥ r > p∗).

To complete the proof, assume that c ∈ J is close to c0, so that θc > 0 is
small. If so, condition (i-2) of Corollary 6.1 fails when r < q and this corollary
cannot be used. Nonetheless, using another argument, we prove that in this case,
W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx), a stronger result than actually needed.

Define c̃ := ((b−p)(q−r)+a(r −p))/(q−p) and note that by (1.6), θ c̃ = p(q−
r)/(r(q − p)) ∈ (0, 1) (recall p < r < q), so that c̃ 
= c 0. Both the open intervals
with endpoints c0 and either c̃ 
= c0 or c̄ 
= c0 consist of convex combinations of
c0 and c1. Thus, they intersect along a nonempty open interval having c0 as an
endpoint. As a result, it suffices to show that W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) for c

close enough to c0 in the open interval J̃ with endpoints c0 and c̃.

Given any such c, set σ := c−a(r−p)/(q−p) and γ := (q−r)/(q−p) ∈ (0, 1). If
u ∈ W 1,(q,p)

{a,b} (RN∗ ), write |x|c|u|r = |x|σ|u|pγ|x|c−σ|u|r−pγ and use Hölder’s inequality
to obtain

(7.3)
∫
RN

|x|c|u|rdx ≤
(∫

RN
|x|σ/γ|u|pdx

)γ (∫
RN

|x|a|u|qdx
)1−γ

.

By Theorem 5.1(i) and (ii) with c replaced with d and r replaced with p (since
p = min{p, q}), there is a nonempty open interval I with one endpoint d 0 :=
p(a + N )/q − N and another endpoint between d 0 and d 1 := b − p (specifically,
b − p or −N ) such that W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lp(RN ; |x|d dx) when d ∈ I .
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When c is moved from c0 to c̃, d := σ/γ = (c(q − p) − a(r − p))/(q − r) moves
from d 0 to b − p. Therefore, d ∈ I for c in some nonempty open subinterval Ĩ
of J̃ having c0 as an endpoint. From the above, W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lp(RN ; |x|d dx)
when c ∈ Ĩ . By Corollary 2.1, this embedding is accounted for by a multiplicative
inequality of the type (2.3) (with c replaced with d and r replaced with p), namely,
||u||d,p ≤ C||∇u||θd

b,p||u||1−θd
a,q with θd := (d−d 0)/(d 1−d0). Since d = σ/γ, the sub-

stitution into (7.3) yields, when c ∈ Ĩ , the inequality ||u||c,r ≤ C||∇u||νb,p||u||1−ν
a,q

for u ∈ W 1,(q,p)
{a,b} (RN∗ ), where ν = (pγθd )/r ∈ (0, 1). In turn, this implies a corre-

sponding additive (i.e., embedding) inequality. �

Proof of part (i). If θ̄ = 0 in (7.1) (so that r = q > p∗), no c in the
open interval with endpoints c0 = a and c1 = (q(b − p + N ))/p − N satisfies
θc(p−1 − N −1 − q−1) ≤ r−1 − q−1, since θc > 0 and θc ≤ θ̄ = 0 are contradictory.
Thus, there is nothing to prove.

Lemma 7.1 ensures that if 0 < θ̄ ≤ 1, so that c̄ 
= c0, then W0 ↪→ Lr(RN ; |x|cdx)
for c in the half-open interval J with endpoints c̄ (included) and c0 (not included,
unless r = q). Meanwhile, by Theorem 4.1(i), Wrad ↪→ Lr(RN ; |x|cdx) for c in the
open interval with endpoints c0 and c1 (since θ̆ ≤ 0 when r ≤ q). Thus, by Lemma
6.2, W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) for c in the intersection of these two intervals.
By definition of θ̄ , this intersection is the set of those c in the open interval with
endpoints c0 and c1 such that θc(p−1 − N −1 − q−1) ≤ r−1 − q−1. �

Proof of part (ii). Again, it is not restrictive to assume that 0 < θ̄ ≤ 1. By
Theorem 4.1(ii), Wrad ↪→ Lr(RN ; |x|cdx) for c in the open interval with endpoints
c0 and −N (since θ̆ ≤ 0) and, by Lemma 7.1, W0 ↪→ Lr(RN ; |x|cdx) for c in the
half-open interval with endpoints c0 and c̄ (
= c0 since θ̄ > 0), including c̄ but not
c0. Hence, by Lemma 6.2, W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) for c in the intersection
of these two intervals, which is the set of those c in the open interval with endpoints
c0 and −N such that θc(p−1 − N −1 − q−1) ≤ r−1 − q−1. �

7.2 Proof of parts (iii), (iv) and (v). Since part (iii) is obvious, it remains
only to prove (iv) and (v). The proof of (iv) in the case (a + N )/q 
= (b − p + N )/p
(so that c1 
= c0) follows from Lemma 6.2, Theorem 4.1(iii), and Corollary 6.1(i)
(recall θc1 = 1 and p < r ≤ p∗). The use of Corollary 6.1(ii) instead of Corollary
6.1(i) yields (v), which in turn implies (iv) when (a + N )/q = (b − p + N )/p.
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8 Embedding theorem when r > q ≥ 1 and r ≥ p

Throughout this section, we assume that r > q ≥ 1 and r ≥ p. It follows from
Theorem 2.2 and Theorem 2.1(i) that if also (p < N and) r > p∗, then W 1,(q,p)

{a,b} (RN∗ )
is not continuously embedded into any Lr(RN ; |x|cdx). Thus, it is not restrictive to
confine attention to the case r ≤ p∗. Since q < r, it follows that q < p∗. If
(a + N )/q 
= (b − p + N )/p, the combination r > q and q < p∗ (i.e., the fact
that q−1 + N −1 − p−1 > 0) shows that the necessary condition for the embedding
W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) given in Theorem 2.2(i) is θc ≥ θ̄ > 0, where

(8.1) θ̄ =
(

1
r

− 1
q

)(
1
p

− 1
N

− 1
q

)−1

.

This formula is the same as in (7.1), but now θ̄ is the smallest value of θ ∈ [0, 1]
such that θ(p−1 − N −1 − q−1) ≤ r−1 − q−1. Note that indeed θ̄ ≤ 1, because
r ≤ p∗ (and θ̄ = 1 if and only if r = p∗). Equivalently, c must belong to the closed
interval with endpoints c̄ := θ̄c1 + (1 − θ̄)c0 (as in (7.2)) and c1.

In addition, p ≤ r < ∞ ensures that the subspace W0 in (6.1) is continuously
embedded into Lr(RN ; |x|cdx) for c in the closed interval with endpoints c̄ and c1.
This follows from part (i) of Corollary 6.1 since rθc/p+r(1−θc)/q ≥ 1 irrespective
of θc ∈ [0, 1]. We record this result for future reference.

Lemma 8.1. Let a, b, c ∈ R and 1 ≤ p, q, r < ∞ be such that r > q,
r ≥ p, and (a + N )/q 
= (b − p + N )/p. If c̄ is given by (8.1) and (7.2), then

W0 ↪→ Lr(RN ; |x|cdx) for c in the closed interval with endpoints c̄ and c1.

Lemma 8.2. Let a, b ∈ R and 1 ≤ p, r < ∞, 1 ≤ q < r ≤ p∗ be such that
(a + N )/q 
= (b − p + N )/p. If θ̆ := (1 − q/r)(q/p′ + 1)−1 and θ̄ is given by (8.1),
then 0 < θ̆ ≤ θ̄ .

Proof. The result follows from an explicit calculation using the fact that
q < p∗. �

Theorem 8.1. Let a, b, c ∈ R and 1 ≤ p, q, r < ∞, q < r ≤ p∗, and r ≥ p.

Then W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) (and hence W 1,(q,p)

{a,b} (RN∗ ) ↪→ W 1,(r,p)
{c,b} (RN∗ )) in

the following cases:

(i) a and b − p are on the same side of −N (including −N ), (a + N )/q 
=
(b − p + N )/p, c is in the open interval with endpoints c0 and c1, and

θc(p−1 − N −1 − q−1) ≤ r−1 − q−1;
(ii) a and b − p are strictly on opposite sides of −N (hence (a + N )/q 
=

(b − p + N )/p), c is in the open interval with endpoints c0 and −N , and
θc(p−1 − N −1 − q−1) ≤ r−1 − q−1;
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(iii) either a ≤ −N and b − p < −N or a ≥ −N and b − p > −N , and c = c1;

(iv) a = −N , b = p − N and c = c0 (= c1 = −N ).

Proof. (i) Since θ̆ ≤ θ̄ by Lemma 8.2, it follows from Theorem 4.1(i) that
Wrad ↪→ Lr(RN ; |x|cdx) for every c in the half-open interval J with endpoints c̄ (in-
cluded) and c1 (not included). Therefore, by Lemmas 8.1 and 6.2, W 1,(q,p)

{a,b} (RN∗ ) ↪→
Lr(RN ; |x|cdx) for c ∈ J . By definition of θ̄ , it is plain that J consists of those c
in the open interval with endpoints c0 and c1 such that θc(p−1 − N −1 − q−1) ≤
r−1 − q−1.

(ii) Once again by Lemma 8.2, θ̆ ≤ θ̄ while θc ≥ θ̄ for every c satisfying the
specified conditions. Thus, the result follows from Theorem 4.1(ii), Lemma 8.1,
and Lemma 6.2.

(iii) The result follows from Corollary 6.1(1) and (ii), Theorem 4.1(iii), and
Lemma 6.2.

(iv) The result follows from Corollary 6.1(ii), Theorem 4.1(v) and Lemma
6.2. �

9 Embedding theorem when 1 ≤ q < r < p

If q < r < p, then r < p∗ and q < p∗. Thus, as in the previous section, θ̄ in (8.1)
is the smallest θ ∈ [0, 1] such that θc(p−1 − N −1 − q−1) ≤ r−1 − q−1. Clearly,
θ̄ ∈ (0, 1).

Theorem 9.1. Suppose that a, b, c ∈ R and 1 ≤ q < r < p < ∞. Then
W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) (and hence W 1,(q,p)
{a,b} (RN∗ ) ↪→ W 1,(r,p)

{c,b} (RN∗ )) in the

following cases:

(i) a and b − p are on the same side of −N (including −N ), (a + N )/q 
=
(b − p + N )/p, c is in the open interval with endpoints c0 and c1, and
θc(p−1 − N −1 − q−1) ≤ r−1 − q−1;

(ii) a and b − p are strictly on opposite sides of −N (hence (a + N )/q 
=
(b − p + N )/p), c is in the open interval with endpoints c0 and −N , and

θc(p−1 − N −1 − q−1) ≤ r−1 − q−1;

(iii) (a + N )/q = (b − p + N )/p 
= 0 and c = c0(= c1);
(iv) a = −N, b = p − N and c = c0 (= c1 = −N ).

Proof. (i) Let c̃ := ((b−p)(q−r)+a(r−p))/(q−p) as in the proof of Lemma
7.1, so that by (1.4), θ̃ := θc̃ = p(q − r)/(r(q − p)) ∈ (0, 1). If c is in the half-
open interval with endpoints c0 (not included) and c̃ (included), then 0 < θc ≤ θ̃ .
A routine verification shows that condition (i-2) of Corollary 6.1 holds. Another
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simple verification reveals that condition (i-1) holds if and only if θc ≥ θ̄ and
θ̃ > θ̄. Thus, by Corollary 6.1, W0 ↪→ Lr(RN ; |x|cdx) if c is in the closed interval
K with endpoints c̄ in (7.2) and c̃.

By Theorem 4.1(i), Wrad ↪→ Lr(RN ; |x|cdx) if c is in the half-open interval with
endpoints c̆ := θ̆c1 + (1 − θ̆)c0 (included) and c1 (not included) and, by Lemma
8.2, this interval contains K . Thus, W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) when c ∈ K ,
by Lemma 6.2.

This is not yet the desired result, but W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|c̃dx), since

c̃ ∈ K , so that W 1,(q,p)
{a,b} (RN∗ ) ↪→ W 1,(r,p)

{c̃,b} (RN∗ ). Now (c̃ + N )/r 
= (b − p + N )/p
(because θ̃ < 1), and c̃ and b − p are on the same side of −N (because the same is
true of a and b − p). Therefore, Theorem 5.1(i) with a and q replaced with c̃ and
r, respectively (use r = min{p, r}), gives W 1,(r,p)

{c̃,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) for c in
the open interval with endpoints c̃ and c1.

Altogether, W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) for c in the union of K with the

open interval with endpoints c̃ and c1, that is, the half-open interval with endpoints
c̄ and c1. By definition of θ̄, this interval is the set of those c (included) in the open
interval with endpoints c0 and c1 (not included) such that θc(p−1 − N −1 − q−1) ≤
r−1 − q−1.

(ii) If θ−N ≤ θ̄ , there is nothing to prove, since no c satisfies the required
conditions. Suppose then that θ−N > θ̄ . On the one hand, as in the proof of
(i) above, W0 ↪→ Lr(RN ; |x|cdx) if c is in the (nonempty) closed interval K with
endpoints c̄ and c̃. On the other hand, since θ̆ ≤ θ̄ by Lemma 8.2 and θ̄ < θ−N ,
it follows from part (ii) of Theorem 4.1 that Wrad ↪→ Lr(RN ; |x|cdx) if c is in
the half-open interval J̆ with endpoints c̆ := θ̆c1 + (1 − θ̆)c0 (included) and −N
(not included). Therefore, by Lemma 6.2, W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) when
c ∈ K ∩ J̆.

Since θ̆ ≤ θ̄ < θ−N , it follows that c̄ ∈ K ∩ J̆ is an endpoint of K ∩ J̆. Since
also θ̄ < θ̃ , the second endpoint can only be −N or c̃. If θ−N ≤ θ̃ , then K ∩ J̆

is the half-open interval with endpoints c̄ (included) and −N (not included). If
θ−N > θ̃ , then K ∩ J̆ is the closed interval with endpoints c̄ and c̃. Yet, once again,
W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) when c is in the half-open interval with endpoints c̄

(included) and −N (not included), as shown below. This proves the desired result
since, by definition of θ̄, this interval consists of those c in the open interval with
endpoints c0 and −N such that θc(p−1 − N −1 − q−1) ≤ r−1 − q−1.

To complete the proof, note that by (1.6), θ−N > θ̃ implies that (c̃ + N )/r and
(a + N )/q and hence also c̃ + N and a + N have the same (nonzero) sign, so that
c̃ and b − p are strictly on opposite sides of −N . As in the proof of (i) above, but
now by Theorem 5.1(ii) with a and q replaced with c̃ and r, respectively, it follows
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that W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) when c is in the union of the closed interval

with endpoints c̄ and c̃ with the open interval with endpoints c̃ and −N , that is, the
half-open interval with endpoints c̄ (included) and −N (not included), as claimed.

(iii) This follows Theorem 4.1(iv), Corollary 6.1(ii), and Lemma 6.2.

(iv) The argument is the same as in the proof of Theorem 8.1(iv). �

10 Generalized CKN inequalities

If W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx), then r ≤ max{p∗, q} by Theorem 2.2, and c is

in the closed interval with endpoints c0 and c1 by Theorem 2.1(i). It was shown in
Corollary 2.1 that if, in addition, (a + N )/q 
= (b − p + N )/p, then the embedding
is accounted for by the multiplicative inequality

(10.1) ||u||c,r ≤ C||∇u||θc
b,p||u||1−θc

a,q ,

with θc given by (1.4). When a, b, c > −N and u ∈ C∞
0 (RN ), such inequalities

coincide with some of the CKN inequalities proved in [6].

Using variational methods, Catrina and Costa [7] (see also [8]) recently ob-
tained (10.1) with best constant C in the case p = q = r = 2, c = (a + b)/2 − 1
(so that θc = 1/2) and u ∈ C∞

0 (RN∗ ) under no a priori limitation on a and b. Their
result does not imply (10.1) for u ∈ W 1,(2,2)

{a,b} (RN∗ ) or that the best constant is the
same; see Subsection 11.3.

The CKN inequalities also incorporate the limiting case (a + N )/q =
(b − p + N )/p (when θc in (1.4) is not defined). It is therefore natural to ask
whether the embedding W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) can be characterized by
similar multiplicative inequalities when (a + N )/q = (b − p + N )/p, so that c = c0

(= c1) is the only possible value.

The next lemma is, roughly speaking, a “multiplicative” analog of Lemma 6.2.
Recall the definition (6.1) of the subspace W0, as well as the shorthand Wrad for
the subspace of radially symmetric functions of W 1,(q,p)

{a,b} (RN∗ ).

Lemma 10.1. Let a, b, c ∈ R and 1 ≤ p, q, r < ∞. If for some

θ ∈ [0, 1], ||u||c,r ≤ C||∇u||θb,p||u||1−θ
a,q for every u ∈ Wrad ∪ W0, then ||u||c,r ≤

C||∇u||θb,p||u||1−θ
a,q (with a possibly different C) for every u ∈ W 1,(q,p)

{a,b} (RN∗ ).

Proof. Let u ∈ W 1,(q,p)
{a,b} (RN∗ ). Then u = uS + (u − uS), where uS ∈ Wrad and

u − uS ∈ W0. By Lemma 3.4(ii), ||uS ||a,q ≤ ||u||a,q and ||∂ρuS||b,p ≤ ||∂ρu||b,p ≤
||∇u||b,p. Becasue of the fact that ||∂ρuS||b,p = ||∇uS ||b,p, the inequality ||uS ||c,r ≤
C||∇uS ||θb,p||uS ||1−θ

a,q yields ||uS ||c,r ≤ C||∇u||θb,p||u||1−θ
a,q .
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Also, ||u − uS ||a,q ≤ ||u||a,q + ||uS ||a,q ≤ 2||u||a,q and ||∇(u − uS)||b,p ≤
||∇u||b,p + ||∇uS||b,p ≤ M ||∇u||b,p for some M > 0 independent of u. Thus,
||u − uS||c,r ≤ C||∇u||θb,p||u||1−θ

a,q . As a result, ||u||c,r ≤ ||uS||c,r + ||u − uS ||c,r ≤
2C||∇u||θb,p||u||1−θ

a,q . �

Theorem 10.1. Let a, b ∈ R and 1 ≤ p, q, r < ∞ be such that (a + N )/q =
(b − p + N )/p 
= 0 and let c = c0 = c1.

(i) If p ≤ r ≤ p∗, there is a constant C > 0 such that

(10.2) ||u||c1,r ≤ C||∇u||b,p, for all u ∈ W 1,(q,p)
{a,b} (RN

∗ ).

(ii) If r = p = q or if p 
= q and min{p, q} ≤ r ≤ max{p, q}, there is a constant

C > 0 such that

(10.3) ||u||c1,r ≤ C||∇u||θb,p||u||1−θ
a,q , for all u ∈ W 1,(q,p)

{a,b} (RN
∗ ),

where θ = 0 if r = p = q and θ = p(r − q)/(r(p − q)) if p 
= q.

Proof. (i) This follows from Lemma 10.1 together with (4.6) and (6.6).
(ii) This follows from Lemma 10.1 together with (4.7) and (6.7). �

Remark 6. It follows from the estimates (10.2) and (10.3) that if (a + N )/q =
(b − p + N )/p 
= 0 and p ≤ r ≤ min{p∗,max{p, q}}, then

(10.4) ||u||c1,r ≤ C||∇u||θb,p||u||1−θ
a,q

for u ∈ W 1,(q,p)
{a,b} (RN∗ ) with θ = 1 and θ = θ, where

θ =

⎧⎨⎩p(r − q)/r(p − q) if p 
= q,

0 if p = r = q.

Hence, (10.4) holds with θ ∈ [θ, 1], and so θ is not unique if r > p 
= q or if
r = p = q. This is actually trivial if r = q ≥ p (because (10.3) is trivial), but not in
the other cases, namely, p < r < q ≤ p∗ or p < N and p < r ≤ p∗ < q.

Clearly, (10.2) is an N -dimensional weighted Hardy-type inequality, appar-
ently new when q 
= p. When q = p, so that a = b − p 
= −N , it is proved in
[22, p. 309] and was obtained earlier for u ∈ C ∞

0 (RN∗ ) by Gatto, Gutiérrez and
Wheeden [9], who showed that p ≤ r ≤ p∗ is already necessary in that setting.
A number of special cases of (10.2) for various classes of smooth functions with
compact support can be found in both the older and the recent literature ([10], [13],
[28], among others). Inequality (10.3), which is meaningless when q = p, seems
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to be known only if a, b, c > −N and u ∈ C∞
0 (RN ), when it is one of the CKN

inequalities.
By Corollary 2.1, the inequality (sharper than (10.1))

||u||c,r ≤ C||∂ρu||θc
b,p||u||1−θc

a,q , for all u ∈ W̃ (q,p)
{a,b},

holds if (a + N )/q 
= (b − p + N )/p, c is in the closed interval with endpoints c0

and c1, and W̃ (q,p)
{a,b} ↪→ Lr(RN ; |x|cdx). Necessary and sufficient conditions for this

embedding were given in Theorem 5.1 for the case r ≤ min{p, q}, where it is also
shown that W̃ (q,p)

{a,b} ↪→ Lr(RN ; |x|cdx) if (a + N )/q = (b − p + N )/p 
= 0, r = p (≤ q)
and c = c0 = c1. It follows from Theorem 4.1(iii) and Lemma 5.1 that in this case,

||u||b−p,p ≤ C||∂ρu||b,p, for all u ∈ W̃ (q,p)
{a,b}.

The only case in which the embedding W 1,(q,p)
{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx) is true

but not equivalent to a multiplicative inequality arises in Theorem 1.1(vi), when
N ≥ 2 (if u is radially symmetric, or N = 1; see (4.8)).

Theorem 10.2. If q < r ≤ p∗, then W 1,(q,p)
{−N,p−N }(RN∗ ) ↪→ Lr(RN ; |x|−N dx) for

all N but if N ≥ 2, then ||u||−N,r ≤ C||∇u||θp−N,p||u||1−θ−N,q fails to hold for any
C > 0 and θ ∈ [0, 1].

Proof. The embedding statement is Theorem 1.1(vi). The inequality can hold
only if θ = θ̆ := (1 − q/r)(q/p′ + 1)−1. This follows by choosing u(x) = g(ln |x|)
with g ∈ C∞

0 (R) and reversing the steps of the proof of Theorem 4.1(v) (by [6],
(4.10) cannot hold with θ 
= θ̆ when g ∈ C∞

0 (R) is arbitrary).
Next, the method of proof of Theorem 2.2 with a = c = −N and b = p − N

shows that if ||u||−N,r ≤ C||∇u||θp−N,p||u||1−θ−N,q, then θ(p−1 − N −1 − q−1) ≤
r−1 − q−1. Upon substituting the only possible value θ = θ̆ , a short calculation
yields q(N − 1) ≥ r(N − 1). If N ≥ 2, this implies that q ≥ r, which contradicts
the fact that q < r ≤ p∗. �

It is easily verified that, consistent with Theorem 10.2 and its proof, when
a = b − p = c = −N , θ = θ̆ , and N ≥ 2, Lemma 10.1 is not applicable because
condition (i) of Lemma 6.1 fails, so that (6.2) cannot be used.

11 Examples

11.1 Embedding of unweighted spaces into Lr(RN ; |x|cdx). We spell
out the special case of Theorem 1.1 when a = b = 0. It is noteworthy that
W 1,(q,p)(RN∗ ) = W 1,(q,p)(RN ) = {u ∈ Lq(RN ) : ∇u ∈ (Lp(RN ))N } if N ≥ 2,
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with the same norm; see Remark 7 below. At any rate, if a = b = 0, then
θc in (1.4) is defined if and only if p−1 − N −1 − q−1 
= 0, i.e., q 
= p∗, and
then θc = ((c + N )/rN − 1/q)(p−1 − N −1 − q−1)−1. Therefore, the condition
θc(p−1 − N −1 − q−1) ≤ r−1 − q−1 in Theorem 1.1(i) and (ii) is just c ≤ 0. It
follows that W 1,(q,p)(RN∗ ) ↪→ Lr(RN ; |x|cdx) if and only if r ≤ max{p∗, q} and one
of the following conditions holds:

(i) p ≤ N, q 
= p∗, and c ≤ 0 is in the open interval with endpoints rN/q − N

and r(N − p)/p − N (a nonempty set if r < max{p∗, q});
(ii) p > N and either r ≤ q and −N < c < rN/q − N (≤ 0) or r > q and

−N < c ≤ 0;
(iii) r = q and c = 0;
(iv) p < N , p ≤ r ≤ p∗, and c = r(N − p)/p − N (≤ 0, since r ≤ p∗).

Since N/q = N/p−1 implies p < N and q > p, Theorem 1.1(v) coincides with
(iv) above. Theorem 1.1(vi) is not applicable.

If r ≤ min{p, q}, conditions (i)-(iv) are necessary and sufficient conditions
for W̃ 1,(q,p) ↪→ Lr(RN ; |x|cdx), where W̃ 1,(q,p) := W̃ 1,(q,p)

{0,0} is unweighted (Theorem
5.1). They take the simpler form

(i’) p ≤ N, q 
= p∗, and c is in the open interval with endpoints rN/q − N and
r(N − p)/p − N (hence c < 0);

(ii’) p > N and −N < c < rN/q − N (≤ 0);
(iii’) q ≤ p, r = q, and c = 0;
(iv’) p ≤ q, p < N , r = p, and c = −p.

When c = 0, conditions (i) to (iv) become

(i) p < N and r is in the closed interval with endpoints p∗ and q or
(ii) p ≥ N and r ≥ q.

This is, of course, well known, especially when p = q.

Remark 7. That W 1,(q,p)(RN∗ ) = W 1,(q,p)(RN ) with the same norm if
N > 1 can be seen as follows. First, it suffices to show that if u ∈ W 1,(q,p)(RN∗ )
has bounded support, then u ∈ W 1,(q,p)(RN ) and has the same norm. Now, if
u ∈ W 1,(q,p)(RN∗ ) has bounded support, then u ∈ W 1,min{p,q}(RN∗ ) =W 1,min{p,q}(RN ),
for example by [11, p. 52]. Thus, as a distribution on RN ,∇u is a function, so that
its restriction to RN∗ coincides with ∇u as a distribution on RN∗ . Since the latter is
in (Lq(RN ))N , the same is true of the former, which proves the claim.

11.2 Embedding of weighted spaces into Lr(RN ). The necessary and
sufficient conditions for W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ) are given by Theorem 1.1 with
c = 0. If so, θ0 = (N/r − (a + N )/q)((b − p + N )/p − (a + N )/q)−1 in (1.4)
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when (a + N )/q 
= (b − p + N )/p and these conditions become (after some work)
r ≤ max{p∗, q} plus one of the following:

(i) either −N ≤ a < N (q/r − 1), b > p + N (p/r − 1), and a(p/r − 1 + p/N ) ≤
b(q/r − 1), or

(ii) a > N (q/r − 1), b < p + N (p/r − 1) and a(p/r − 1 + p/N ) ≥ b(q/r − 1);
(iii) r = q and a = 0;
(iv) p ≤ r ≤ p∗, b = p + N (p/r − 1) (≤ p) and a ≥ −N ;
(v) r ≥ min{p, q}, a = N (q/r − 1) and b = p + N (p/r − 1).

In (i)-(ii) above, the condition θ0(p−1 − N −1 − q−1) ≤ r−1 − q−1 is accounted for
by a(p/r −1 + p/N ) ≤ b(q/r −1) or its reverse, as the case may be. By Remark 1,
this condition holds if r ≤ min{p∗, q}, which of course is corroborated by a direct
verification.

11.3 Embedding when p = q. If p = q, then r ≤ max{p∗, q} is simply
r ≤ p∗ and (a + N )/q 
= (b − p + N )/p if and only if a 
= b − p. The condition
θc(p−1 − N −1 − q−1) < r−1 − q−1 in Theorem 1.1(i) and (ii) transforms into
θc ≥ N/p − N/r, which is not a restriction when r ≤ p. Also, part (v) is now a
special case of part (iv).

If, in addition, p = q = r, Theorem 5.1 is applicable to the larger space W̃ 1,(p,p)
{a,b} .

Furthermore, c0 = a and c1 = b − p, and so W̃ 1,(p,p)
{a,b} ↪→ Lp(RN ; |x|cdx) if and only

if either

(i) a and b − p are on the same side of −N , not both equal to −N , and c is in
the closed interval with endpoints a and b − p, or

(ii) a and b − p are strictly on opposite sides of −N , and c is in the half-open
interval with endpoints a (included) and −N (not included).

These are also necessary and sufficient conditions for

W 1,(p,p)
{a,b} (RN

∗ ) ↪→ Lp(RN ; |x|cdx).

When p = q = r = 2 and c = (a + b)/2 − 1, it follows from [7] that

C∞
0 (RN

∗ ) ↪→ L2(RN ; |x|cdx),

unless a = b − 2 = −N . If (for example) a < −N and b > −a + 2 − 2N ,
then b − 2 > −N , so that a and b − 2 are on opposite sides of −N ; but, since
c = (a + b)/2 − 1 > −N , condition (ii) above does not hold when p = 2, and so
W 1,(2,2)

{a,b} (RN∗ ) is not continuously embedded into L2(RN ; |x|cdx). This shows that
C∞

0 (RN∗ ) cannot be dense in W 1,(2,2)
{a,b} (RN∗ ). Hence, in general, the embedding or

other inequalities for W 1,(p,q)
{a,b} (RN∗ ) are not implied by those for C∞

0 (RN∗ ).
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11.4 A generalization. Let B ⊂ RN be an open ball centered at the origin.
If the space {u ∈ W 1,(q,p)

{a,b} (RN∗ ) : Supp u ⊂ B} is continuously embedded into
Lr(RN ; |x|cdx), it is also continuously embedded into Lr(RN ; |x|d dx) when d ≥ c.
Likewise, if {u ∈ W 1,(q,p)

{a,b} (RN∗ ) : Supp u ⊂ RN \B} is continuously embedded into
Lr(RN ; |x|cdx), it is also continuously embedded into Lr(RN ; |x|d dx) when d ≤ c.

With this remark and a cut-off argument, Theorem 1.1 can be extended to more
general weighted spaces. Let x1, . . . , xk ∈ RN be distinct points, a1, . . . , ak, a∞,
b1, . . . , bk, b∞ ∈ R, and 1 ≤ r ≤ p, q < ∞. For a, b ∈ R, call J(a, b) :=
{c ∈ R : W 1,(q,p)

{a,b} (RN∗ ) ↪→ Lr(RN ; |x|cdx)} the interval of admissible c charac-
terized in Theorem 1.1, with endpoints c−(a, b) ≤ c+(a, b) and let c1, . . . , ck,
c∞ be such that ci > c−(ai, bi), 1 ≤ i ≤ k, and c∞ < c+(a∞, b∞) (the end-
points may be included if they are in the admissible interval). If wa, wb and6 wc

are positive weights on RN \{x1, . . . , xk} such that wa(x) = |x − xi |ai , wb(x) =
|x − xi |bi , wc(x) = |x − xi |ci for x near xi, i = 1, . . . , k and wa(x) = |x|a∞, wb(x) =
|x|b∞, wc(x) = |x|c∞ for large |x|, then the space W 1,(q,p)

{wa,wb}(R
N\{x1, . . . , xk}) :=

{u ∈ L1
loc(R

N \{x1, . . . , xk}) : u ∈ Lq(RN ;wa(x)dx),∇u ∈ (Lq(RN ;wb(x)dx))N } is
continuously embedded into Lr(RN ;wc(x)dx).

A somewhat heuristic yet compelling reason that such conditions should be
optimal is simple. As pointed out above, membership in Lr(RN ; |x|cdx) of func-
tions with support in a closed ball B about the origin is unaffected by increasing
c. Thus, the value of the upper end c+(a, b) can only be dictated by the behavior
of functions with support bounded away from 0. The optimality of the lower end
c−(a, b) is justified by a similar argument. However, this rationale is meaningless
when J(a, b) = ∅. The simplest way around the difficulty in this case is to rely on
the related fact that for functions with support in B , membership in W 1,(q,p)

{a,b} (RN∗ )
is unaffected by increasing a or b. Thus c−(a, b) can be defined by inceasing a
or b until J(a, b) becomes nonempty. Likewise, a or b can be decreased to define
c+(a, b). This may or may not produce the best possible conditions. Because of
space limitations, a more detailed investigation of the optimality issue by more
sophisticated procedures (elaboration on Remark 5) is not attempted here.

Naturally, the weights need only to “look like” (not coincide with) power
weights in the vicinity of the points xi (or infinity). This remark clarifies two
things. First, wa, wb and wc need not actually have power-like singularities at
the same points: This case is reduced to the previous one by adding points as
needed and setting the corresponding ai, bi or ci equal to 0. Next, the cut-off
argument is technically simplified, and nothing is changed, if it is assumed that
wa(x) = |x − x1|a∞, wb(x) = |x − x1|b∞, wc(x) = |x − x1|c∞ for large |x| (otherwise,

6Here, a, b and c are just indices.
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the origin plays a technical role even when it is not one of the points xi). Theorem
1.1 is recovered when k = 1, x1 = 0, and a1 = a∞, b1 = b∞, c1 = c∞.

If only k = 1 and x1 = 0, Theorem 4.1 too can be generalized to obtain the em-
bedding of the subspace Wrad of radially symmetric functions in W 1,(q,p)

{wa,wb}(R
N∗ ) into

Lr(RN ;wc(x)dx) under the conditions c1 > crad− (a1, b1) and c∞ < crad
+ (a∞, b∞),

where crad± (a, b) denote the endpoints of the admissible interval in Theorem 4.1.
Once again, crad− (a1, b1) and crad

+ (a∞, b∞) may be included if they are in the ad-
missible interval and can also be defined when the admissible interval is empty.

When 1 < p = q < N and wb = 1 (so that b1 = b∞ = 0), the embedding into
Lr(RN ;wc(x)dx) of the closure Crad of the space of radially symmetric functions in
C∞

0 (RN )∩Lp(RN ;wa(x)dx) equipped with the W 1,(p,p)
{wa,1} (RN∗ ) norm, has recently been

investigated by Su et al. [28, Theorems 1 and 2]. They assume that a1, c1, a∞, c∞
are given and find the admissible values of r under the implicit assumption r ≥ p.
The reformulation in terms of lower (upper) bounds about c1 (c∞) given a1, a∞ and
r is conceptually trivial, but quite messy and technical in practice. Accordingly, we
do not elaborate beyond the remark that, because Crad is usually smaller than Wrad ,
the embedding may be true under conditions more general than c1 ≥ crad− (a1, 1)
and c∞ ≤ crad

+ (a∞, 1). On the other hand, the case 0 < r < p and all others
(p = 1, p ≥ N, q 
= p, b1 
= 0, b∞ 
= 0) can be handled by the method outlined
above.

Acknowledgements. I am grateful to Professor V. Maz’ya for valuable in-
formation about the early historical development of the subject and other connec-
tions with the existing literature.
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