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Abstract. Let X be a compact Riemann surface of genus at most 1, i.e., the

Riemann sphere or a torus, and let W ( X be an arbitrary domain. We construct

a variety of examples of holomorphic functions g : W → X that satisfy Epstein’s

Ahlfors islands property and that have “pathological” dynamical behaviour. In
particular, we show that the accumulation set of any curve tending to the boundary

of W can be realized as the ω-limit set of a Baker domain of such a function. We

furthermore construct Ahlfors islands maps

• with wandering domains having prescribed ω-limit sets,

• with logarithmic singularities having prescribed asymptotic curves,

and also produce examples where X is a compact hyperbolic surface. As a corol-

lary of our method, we construct transcendental entire functions with Baker do-

mains in which the iterates tend to infinity arbitrarily slowly.

1 Introduction

The iteration theory of holomorphic functions of one complex variable has been

studied intensively over the past three decades. Originally much attention focused

on the case of polynomials and rational functions. In recent years, the dynamics of

transcendental entire and meromorphic functions has also received considerable

attention, in part due to apparently deep connections with intriguing aspects of

the rational theory. However, there are also natural and interesting dynamical

examples of functions whose range is significantly larger than their domain, such

as the parabolic renormalizations of rational functions at parabolic periodic points

studied by Lavaurs [L].

In his thesis [E1], Adam Epstein introduced the concept of “finite-type maps”;

this class includes all rational functions and all transcendental entire and meromor-

phic functions whose set of singular values is finite, but also all iterated parabolic
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renormalizations of such maps (and much more). The results in [E1] also im-

plicitly suggest a natural generalization of arbitrary meromorphic functions: the

class of Ahlfors islands maps, formally introduced in [E2] and further developed

in [EO]. This class includes all rational, transcendental entire and transcendental

meromorphic functions, and their iterates, all finite-type maps and also the class

of holomorphic functions studied in [BDH].

An Ahlfors islands map is a holomorphic function g : W → X , where W is an

open subset of a compact Riemann surface X , that satisfies a certain transcenden-

tality condition – the “Ahlfors islands property” – near the boundary of its domain

of definition (Definition 2.1). This condition ensures that the Fatou set F (g) and

its complement, the Julia set J(g) = X \ F (g), retain their usual properties. The

manuscripts [E2, EO], which develop the theory of Ahlfors islands maps, are cur-

rently unpublished, but our discussion is essentially self-contained. For further

background, the reader is referred to the short introduction in [R].

If g is an Ahlfors islands map, then – just as for non-linear entire and mero-

morphic functions – any invariant component of the Fatou set F (g) is of one of

finitely many types (see [M, Chapter 5] or [B1, Theorem 6]): an immediate basin

of attraction for a (super-) attracting or parabolic fixed point, a rotation domain,

or a Baker domain; the latter is a periodic component of F (g) in which the it-

erates converge to the boundary ∂W of the domain of definition of g. If U is a

Baker domain or a wandering domain (i.e., a component of F (g) whose for-

ward orbit is not eventually periodic), then by the ω-limit set ω(U) we mean the

set of all points w ∈ W for which there is some point z ∈ U whose orbit under g

accumulates on w.

The ω-limit set of an invariant Baker domain is necessarily connected (see

Lemma 2.8). Hence, if X \ W is totally disconnected (as in the case of transcen-

dental entire or meromorphic functions and their iterates) and g has an invariant

Baker domain U , then ω(U) consists of a single point. Otherwise, it is conceivable

that a Baker domain of g may have a nondegenerate continuum as its ω-limit set.

Epstein asked the question whether such “exotic Baker domains” can in fact exist.

Oudkerk showed that the answer is “yes” [O]. He constructed an example

where W is a simply-connected domain having a prime end with a nontrivial im-

pression, and g : W → Ĉ has a Baker domain whose ω-limit set is exactly this

prime end impression.

This example raises a number of questions, e.g., whether the boundary of the

domain of an Ahlfors islands map with an exotic Baker domain can be locally

connected and whether an Ahlfors islands map can have an exotic Baker domain

whoseω-limit set is the whole of ∂W . More generally, one can ask, given a domain
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W and a compact connected set K ⊂ ∂W , whether there is an Ahlfors islands map

with a Baker domain U such that ω(U) = K .

In this note, we give a complete answer to this question in the case where X is

of genus 0 or 1. (That is, X is the Riemann sphere, or a torus X = C/Ŵ, where Ŵ

is a period lattice.)

Theorem 1.1 (Exotic Baker domains). Let X be a compact Riemann sur-

face of genus at most 1. Let W ( X be nonempty, open and connected, and let

γ : [0,∞) → W be an injective curve with γ(t) → ∂W as t → ∞. Let K ⊂ ∂W

be the accumulation set of γ. Then there exists an Ahlfors islands map g : W → X

such that g has a Baker domain U with γ ⊂ U whose ω-limit set is exactly K .

If X = Ĉ, then g can furthermore be chosen to omit any given value a ∈ Ĉ \ γ.

Remark 1. If an Ahlfors islands map g has a Baker domain U , then ω(U) is

the accumulation set of an injective C∞ curve contained in U . (See Lemma 2.9.)

Hence Theorem 1.1 states that any potential ω-limit set is indeed realized by a

Baker domain.

Remark 2. If X = Ĉ and W ⊂ C, then the final statement of the theorem

implies that g can be chosen to be holomorphic.

Oudkerk’s example is fairly explicit, and he verifies the Ahlfors islands prop-

erty directly. Instead, we use approximation theory to construct our functions,

which gives us considerable flexibility.

In [RS] the slow escaping set of an entire (or meromorphic) function is studied,

and it is shown that the Julia set always contains points whose iterates tend to ∞

arbitrarily slowly. On the other hand, there were previously no known examples of

entire functions with Baker domains in which the iterates grow arbitrarily slowly.

We are able to answer this question by controlling the growth of orbits inside the

Baker domains we construct. Let us denote by distX distance with respect to the

spherical metric (if X = Ĉ) or with respect to the unique flat metric of area 1 (if X

is a torus).

Proposition 1.2 (Arbitrarily slow escape). Let (εn)n∈N be an arbitrary se-

quence of positive numbers with limn→∞ εn = 0. Then the function g in Theorem

1.1 can be chosen such that the Baker domain U also has the following property:

for every z ∈ U, there exists n0 ≥ 0 such that distX (gn(z), ∂W ) ≥ εn for all n ≥ n0.

Let us say a few words about the proofs of these results, beginning with Propo-

sition 1.2 in the case where g is an entire function (i.e., X = Ĉ, W = C and a = ∞).

It is well known from estimates of hyperbolic geometry that the iterates in a Baker
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domain tend to infinity very slowly provided that the domain is sufficiently “thin”.

So the idea is to start with an extremely thin simply-connected domain V whose

boundary is a curve that tends to infinity in both directions, to let f : V → V

be a holomorphic map with f n|V → ∞ as n → ∞, and to approximate f by an

entire function g. The idea of using approximation theory to construct examples

of entire functions with Baker domains or wandering domains was introduced by

Eremenko and Lyubich in [EL].

Arakelian’s Approximation Theorem allows the approximation of a function

up to a prescribed euclidean error ε, but to ensure that the approximating function

g still satisfies g(V ) ⊂ V , this is not sufficient for thin domains V . On the other

hand, it is known that functions on unbounded domains cannot, in general, be

approximated by entire functions up to an arbitrary prescribed error function [G,

Satz IV.3.4].

We deal with this difficulty by proving an approximation result (Lemma 4.2)

for functions on simply-connected domains that is sufficiently precise for our pur-

pose; this lemma may be useful also in other contexts.

The same approach is used to construct Ahlfors islands maps with exotic Baker

domains; the Ahlfors islands property of the approximating function is obtained

by using the theory of normal families. In the case where X is a torus, we also need

to replace Arakelian’s theorem by its generalization for Riemann surfaces due to

Scheinberg [S].

In the same general setting as Theorem 1.1, we also produce Ahlfors islands

maps with wandering domains that have very precise “pathological” dynamics.

We note that transcendental entire and meromorphic functions can have wandering

domains of many types; see [B1] for references, and also [DS] for some non-

meromorphic examples.

Theorem 1.3 (Wandering domains). Let X be a compact Riemann surface

of genus at most 1, and let W ( X be nonempty, open and connected. Also let

K ⊂ ∂W be compact. Then there exists an Ahlfors islands map g : W → X such

that g has a wandering domain whose ω-limit set is exactly K .

If X = Ĉ, then g can furthermore be chosen to omit any given value a ∈ Ĉ.

Finally, we can also use approximation theory to produce examples of Ahlfors

islands maps with logarithmic tracts. Recall that a ∈ X is called a logarith-

mic asymptotic value of a holomorphic function g : U → X if there is a

simply-connected neighborhood D of a and a component T of g−1(D) such that

g : T → D \ {a} is a universal covering. In this case, T is called a logarithmic

tract of g.
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It was remarked in [R] that Arakelian’s theorem can be used to construct

Ahlfors functions in the unit disk having a logarithmic tract that spirals out to

the unit circle. We show that in fact any injective C1 curve tending to the bound-

ary in a domain W ⊂ X (with X as above) can occur as an asymptotic curve for

a logarithmic asymptotic value of an Ahlfors islands map g : W → X . If this

asymptotic value is itself in the accumulation set of the asymptotic curve, then by

[R, Theorem A.1] (which generalizes a result of [BKZ]), the Hausdorff dimension

of the Julia set of g is strictly greater than one.

Since the existence of logarithmic asymptotic values is a function-theoretic

rather than a dynamical property, it makes sense to state our results also for non-

iterable Ahlfors islands maps, where the domain W is a nonempty open subset of

some compact Riemann surface Y , which may or may not agree with the range X .

(See Remark 1 after Definition 2.1.)

Theorem 1.4 (Logarithmic tracts). Let X be a compact Riemann surface of

genus at most 1 and let Y be a compact Riemann surface of arbitrary genus. Let

W ( Y be nonempty, open and connected. Also let γ : [0,∞) → W be an injective

C1 curve with γ(t) → ∂W as t → ∞. Then, for any w0 ∈ X and any Jordan

neighborhood U ⊂ X of w0, there exists an Ahlfors islands map g : W → X such

that g(γ) ⊂ U \ {w0}, g(γ(t)) → w0 as t → ∞, and such that the component of

g−1(U \ {w0}) containing γ is mapped as a universal covering by g.

If X = Ĉ, then g can furthermore be chosen to omit any given value a ∈ Ĉ with

a /∈ U \ {w0}.

We note that, in particular, we obtain examples of Ahlfors islands maps with

arbitrary domains whose range is a Riemann surface of genus at most 1.

Corollary 1.5 (Examples of Ahlfors islands maps). Let X and Y be compact

Riemann surfaces, and let W ( Y be nonempty, open and connected. If X has

genus at most 1, then there exists an Ahlfors islands map g : W → X.

If the surface X is hyperbolic, then the question of which domains W can sup-

port Ahlfors islands maps with values in X is much more subtle. For example, if

W ⊂ Y is simply-connected, then any universal covering g : W → X is an Ahlfors

islands map. On the other hand, a holomorphic map taking values in a hyperbolic

surface cannot have isolated essential singularities. So if ∂W has isolated points

and X is hyperbolic, then there are no Ahlfors islands maps g : W → X .

Furthermore, let Y be a compact Riemann surface of genus at least two, and let

g : D → Y be an Ahlfors islands map (where D denotes the unit disk). Suppose

that g has an asymptotic value w0 ∈ Y and that γ is an asymptotic curve for w0.
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Then, using the universal covering of Y , we can lift g to a holomorphic function

G : D → D that also has γ as an asymptotic curve. Fatou’s theorem implies that

the accumulation set of γ on ∂D consists of a single point. (We thank Chris Bishop

for this observation.) A similar argument shows that, if D ⊂ Y is a Jordan domain

and f : D → Y is an Ahlfors islands map, then f cannot have a Baker domain

that spirals in to the boundary of D .

Hence there are obstructions to extending our theorems to the case where X is

a hyperbolic Riemann surface. However, our methods can still be used to prove

the following, slightly weaker results.

Theorem 1.6 (Ahlfors maps on hyperbolic surfaces). Theorems 1.1, 1.3 and

1.4 still hold when X is a compact hyperbolic Riemann surface, provided the

phrase “there exists an Ahlfors islands map g : W → X” is replaced by “there

exist a domain W ′ ( W and an Ahlfors islands map g : W ′ → X”.

As far as we know, these are the first known examples of Ahlfors islands maps

with Baker domains or wandering domains on surfaces of genus g ≥ 2.

2 Definitions and preliminaries

Basic notation. We denote the complex plane, the Riemann sphere, the unit

disk and the right half plane by C, Ĉ, D and H, respectively. The (euclidean) disk

of radius δ around z ∈ C is denoted by B(z, δ ). We also denote euclidean distance

by distC.

Closures and boundaries will usually be taken in an underlying compact

Riemann surface X (which X is meant should be clear from the context). Some-

times we consider relative closures, and it is convenient to denote the relative

closure of A ⊂ W in W ⊂ X by AW := A ∩ W .

We also denote hyperbolic distance on any hyperbolic Riemann surface W by

distW . Then BW (z, δ ) denotes the hyperbolic disk in W of radius δ around z. (See,

e.g., [M, Chapter 2] for basic definitions and results of hyperbolic geometry and

in particular, Pick’s theorem, which we shall use frequently.)

Ahlfors islands maps and normal families. Let X and Y be compact

Riemann surfaces and let W ⊂ Y be open and nonempty. It will be convenient to

introduce the following terminology. If V ⊂ Y is a connected open set that inter-

sects the boundary of W in Y , then we call a component U of V ∩W a boundary

neighborhood of W , provided that U is hyperbolic. The latter is always the case

if V is chosen sufficiently small to omit at least three points of Y .
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A Jordan domain in X is a simply-connected domain that is bounded by a

Jordan curve in X . If V ⊂ X is a Jordan domain and g : W → X is holomorphic,

then a simple island of g over V is a domain I ⊂ W such that g : I → V is a

conformal isomorphism.

Definition 2.1 (Ahlfors islands maps). Let X , Y , and W ⊂ Y be as above. A

holomorphic function g : W → X has the Ahlfors islands property and g is

called an Ahlfors islands map if there exists a number k such that the following

is true.

If V1, . . . ,Vk are Jordan domains in X with pairwise disjoint closures, then for

every boundary neighborhood U of W , there exists j ∈ {1, . . . , k} such that U

contains a simple island of g over V j .

Remark 1. The deinition of Ahlfors islands maps given in [R] includes the

assumption that X = Y , in which case it is possible to consider g as a dynamical

system. However, this is not required, and the above is the general definition as

introduced by Epstein. For our purposes, the additional flexibility simplifies the

discussion when constructing Ahlfors islands maps on the torus.

Remark 2. One of the key properties of the definition is that the composition

of two Ahlfors islands maps is again an Ahlfors islands map. We do not require

this fact.

If X = Y and g : W → X is an Ahlfors islands map, then the Fatou set

F (g) consists of all points z ∈ X for which there exists either some k ≥ 0 such

that gk(z) ∈ X \ W or an open neighborhood U of z in which the iterates gk|U are

all defined and form a normal family. By virtue of the Ahlfors islands property

of g, the Julia set J( f ) = X \ F ( f ) is the closure of the set of repelling periodic

points, and also retains its other well-known properties. In particular, if g is non-

elementary, i.e., not a conformal isomorphism of X , then J(g) is a nonempty,

perfect, compact set. (We do not use these facts in this article.)

The definition of Ahlfors islands maps – and their name – is inspired by the

classical Five Islands Theorem of Ahlfors, which implies that every transcendental

meromorphic function is an Ahlfors islands map (with k = 5). We will use the

following “normal families version” of this result; see e.g. [B2].

Theorem 2.2 (Ahlfors Five Islands Theorem, normal families version). Sup-

pose V1, . . . ,V5 ⊂ Ĉ are Jordan domains with pairwise disjoint closures. If

U ⊂ C is a domain, and F is a family of meromorphic functions f : U → Ĉ

that have no simple islands over any of the V j , then F is a normal family.
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Remark. If the functions in F are holomorphic – which is the case we are

interested in – the number five can be replaced by four. (An extremal example is

given by the iterates of the sine function, which has no islands over any Jordan

domain that contains 1, −1 or ∞.)

We use Theorem 2.2 to construct our examples by introducing a class of func-

tions that are not normal near any point of the boundary of W . Note that such

functions can exist only if X is an elliptic or parabolic manifold (i.e., X is the

sphere or a torus), since any family of holomorphic functions taking values in a

hyperbolic surface is normal.

Definition 2.3 (Strong non-normality). Suppose that W is a hyperbolic

Riemann surface.

We say that a holomorphic function g : W → C is strongly non-normal if

there exists a number δ > 0 with the property that whenever (wn)n∈N is a sequence

in W tending to the boundary of W and πn : D → W are universal covers with

πn(0) = wn, the family {g ◦ πn : BD(0, δ ) → Ĉ} is not normal.

Suppose that g : W → C is strongly non-normal, where W is a hyperbolic sub-

domain of a compact Riemann surface Y . Since every boundary neighborhood of

W contains a sequence of hyperbolic balls of fixed diameter tending to the bound-

ary, it follows from the normal families version of the Ahlfors Islands Theorem

that g : W → Ĉ is an Ahlfors islands map.

As our definition of strong non-normality is phrased in conformally invariant

terms, it is invariant under precomposition with a conformal map; this is why we

have chosen it among a number of other definitions that would also be suitable for

our purposes. We use the following condition to ensure that a function is strongly

non-normal.

Lemma 2.4 (Sufficient condition for strong non-normality). Let W be a hy-

perbolic Riemann surface, and let g : W → C be holomorphic. Suppose that

there are relatively closed subsets B,C ⊂ W and a positive constant 2 with the

following properties:

• for every w ∈ W, distW (w,B) ≤ 2 and distW (w,C) ≤ 2;

• g|B is bounded;

• g(c) → ∞ as c → ∂W within C.

Then g is strongly non-normal.

Proof. Set δ := 22; then every closed hyperbolic disk of radius δ/2 intersects

both B and C. Let wn and πn be as in the definition of strong non-normality. Then

there are sequences (bn)n∈N and (cn)n∈N in BD(0, δ/2) such that πn(bn) ∈ B and
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πn(cn) ∈ C, and in particular lim supn→∞ |g(πn(bn))| < ∞ and g(πn(cn)) → ∞ as

n → ∞. Clearly the sequence (g◦πn) cannot be normal on BD(0, δ ), as required.�

The Arakelian-Scheinberg Approximation Theorem. We use the fol-

lowing terminology from [G].

Definition 2.5 (Weierstrass sets). Let Y be a compact Riemann surface, and

let W ( Y be a nonempty open and connected set. A relatively closed set

A ⊂ W is called a Weierstrass set (in W ) if any continuous function f : A → C

that is holomorphic on the interior of A can be uniformly approximated, up to an

arbitrarily small error ε, by a holomorphic function g : W → C.

Theorem 2.6 (Arakelian-Scheinberg Approximation Theorem). A relatively

closed set A in W is a Weierstrass set if and only if Ŵ \ A is connected and locally

connected, where Ŵ = W ∪ {∞} is the one-point compactification of W.

Remark. The case where Y = Ĉ is Arakelian’s theorem [G, Satz IV.2.3]; the

general case is due to Scheinberg [S]. The latter more generally treats arbitrary

non-compact Riemann surfaces W . In this setting, it turns out that there is no

longer a topological characterization of Weierstrass sets, but Scheinberg gives a

sufficient condition on the topology of A under which the above criterion is still

necessary and sufficient. This condition includes the case where W has finite

genus.

We note that it follows from Theorem 2.6 that any countable disjoint union of

nonseparating compact subsets Kn ⊂ W tending to ∂W as n → ∞ is a Weierstrass

set.

Our construction relies on approximating certain functions up to an error pre-

scribed by a given function. Nersesjan’s theorem [G, Satz IV.3.4] gives a necessary

and sufficient condition on the set A for this to be possible with an arbitrary error

function in the case where W ⊂ Ĉ. Unfortunately, this criterion excludes the case

in which A has unbounded interior components.

Instead, we make use of the following trick [G, Hilfssatz IV.3.3], which also

goes back to Arakelian.

Lemma 2.7 (Approximation up to an error function). Let Y be a compact

Riemann surface, let W ( Y be nonempty, open and connected, and let A be a

Weierstrass set in W. Furthermore, let f : A → C and E : A → C be continuous

on A and holomorphic on the interior of A.

Then there is a holomorphic function g : W → C such that

|g(z) − f (z)| ≤ | exp(E(z))| for all z ∈ A.



306 LASSE REMPE AND PHILIP J. RIPPON

Proof. Because A is a Weierstrass set, we can find a holomorphic function

H : W → C such that |H (z) − (E(z) − 1)| ≤ 1 for all z ∈ A. In particular, we have

Re H (z) ≤ Re E(z), and hence

| exp(H (z))| = exp(Re H (z)) ≤ exp(Re E(z)) = | exp(E(z))|

for all z ∈ A.

Let G be a holomorphic function on W that approximates f (z) · exp(−H (z)) up

to an error of at most 1 on A. Then the map g(z) := G(z) · exp(H (z)) satisfies

|g(z) − f (z)| = | exp(H (z))| · |G(z) − f (z) · exp(−H (z))|

≤ | exp(H (z))| ≤ | exp(E(z))|

for all z ∈ A. �

Remark. Note that Lemma 2.7 implies that approximation up to an arbitrary

error function is possible if A is a Weierstrass set that has only compact connected

components; this is a special case of the theorem of Nersesjan.

In Lemma 4.2, we use Lemma 2.7 to approximate a function given inside a

simply-connected subset of W that accumulates on ∂W .

Limit sets. For completeness, we note two simple facts about ω-limit sets.

Lemma 2.8 (Limit sets). Let X be a compact Riemann surface, let W ⊂ X

be open and nonempty, and let g : W → X be an Ahlfors islands map. Also let U

be a Baker domain or a wandering domain of g.

If z ∈ U and (nk) is a sequence such that gnk (z)→w0 ∈ ω(U), then gnk |U →w0

locally uniformly. In particular, ω(U) coincides with the set of limit points of the

sequence (gn(z)) for every z ∈ U.

If U is an invariant Baker domain, then there is a curve α ⊂ U whose accu-

mulation set is ω(U). In particular, ω(U) is connected.

Proof. Set Ũ :=
⋃

j≥0 gn(U). Then, by assumption on U , every limit function

of the normal family {gn|U } takes values in the nowhere dense set ∂Ũ , and hence

is constant. In particular, with notation as in the lemma, every limit function of the

sequence (gnk |U ) is the constant function w0. This proves the first claim.

If U is an invariant Baker domain and z ∈ U is arbitrary, then we can pick

some curve α0 ⊂ U connecting z and g(z). Then α :=
⋃

j≥0 g j (α0) is the desired

curve for the final claim. �

We can make the final part of the preceding lemma more precise as follows.
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Lemma 2.9 (Curves in Baker domains). Let X be a compact Riemann sur-

face, and let U ⊂ X be a hyperbolic domain. Let f : U → U be holomorphic,

and suppose that distX ( f n(z), ∂U) → 0 as n → ∞. Let z ∈ U and let K be the

set of limit points of the sequence ( f n(z)). Then there exists an injective C∞ curve

α : [0,∞) → U whose accumulation set is K .

Remark. We state this lemma only for completeness; it is not used in the rest

of the article.

Proof. Let C be the hyperbolic distance between z and f (z). By Pick’s theo-

rem, C is an upper bound for the hyperbolic distance between f n(z) and f n+1(z),

for all n. So V :=
⋃

n≥0 BU ( f n(z), 2C) is a connected subdomain of U . Since the

diameter of BU ( f n(z), 2C) in X tends to zero as n → ∞, we have ∂V ∩ ∂U = K .

Now pick an injective C∞ curve α : [0,∞) → V that tends to ∂U as t → ∞

and passes through all f n(z). Then the accumulation set of α is precisely K (it

contains K since it passes through all f n(z) and is contained in K by choice of V ).

(That the existence of such a curve α follows from standard methods of topol-

ogy should be plausible to the reader, but we sketch a proof for completeness. First

note that it is sufficient to prove this statement without the requirement that α be

C∞, as we can approximate any injective curve by a smooth and injective one. As

in the previous lemma, there is a curve β with the desired properties, but β is not

necessarily injective. This curve has an injective subcurve β0 that tends to ∂U , but

might not contain all the points f n(z). This is easily corrected by connecting the

missing points, one by one, to β0 using a piece of the curve β, modifying the result

so as to obtain an injective curve.) �

3 Wandering domains

Proof of Theorem 1.3. There are three different cases to consider:

(a) X = Ĉ and W is a plane or punctured plane, in which case we may assume

without loss of generality that W = C or W = C \ {0};

(b) X = Ĉ and W is a hyperbolic domain;

(c) X = C/Ŵ is a torus and W is a hyperbolic domain.

The proof is similar for all three cases, so we treat them in parallel, and remark

on differences in the appropriate places. (We note that Theorem 1.3 is well known

in case (a), when W is parabolic. We nonetheless include the proof in this case,

since many of the arguments reoccur later.)

If X = Ĉ, let π : Ĉ → Ĉ be a Möbius transformation with π(∞) = a. (Here a is

the value that our map g will omit; recall the statement of the theorem). Otherwise,
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X = C/Ŵ is a torus, and we let π : C → X be the natural projection.

The basic structure of the proof is as follows. We pick a sequence (zk)k∈N in

W , k ∈ N, that accumulates exactly on the given compact set K ⊂ ∂W (and tends

to the boundary “sufficiently quickly”). We also pick a sequence of small Jordan

domains (1k)k∈N such that zk ∈ 1k,1k ⊂ W and the1k are pairwise disjoint, and

let 1′
k ⊂ C be a component of π−1(1k). If X = Ĉ, we assume that zk and 1k are

chosen so that a /∈ 1k for all k. Thus every1′
k is a bounded Jordan domain in C.

Then we choose a function f :
⋃∞

k =11k → C with f (1k) ⊂ 1′
k+1 for all k, and

approximate this map, using Lemma 2.7, by a holomorphic function h : W → C

that still takes1k into1′
k+1. This construction is done in such a way that we ensure

that h (considered as a function W → Ĉ) is an Ahlfors islands map.

Because π is a covering map onto X , the function g := π ◦ h : W → X is

clearly also an Ahlfors islands map. We have g(1k) ⊂ 1k+1, and if zk and 1k are

suitably chosen, we can ensure that each 1k is contained in a wandering domain

of g, completing the proof. Note that, if X = Ĉ, then g omits the value a.

We now provide the details.

Choice of zk and1k in the hyperbolic case. First suppose that W is a hyperbolic

domain. Then we may suppose that the sequence (zk) mentioned above is chosen

such that

(3.1) distW (zk+1, {z1, . . . , zk}) → ∞ as k → ∞.

The only additional requirement on our sequence (1k) of Jordan domains in this

case is that the hyperbolic diameter of 1k should be bounded by some constant

M , independently of k.

Choice of zk and 1k in the parabolic case. If W = C or W = C \ {0}, we

require that
∣∣log |z|

∣∣ > k ·
∣∣log |w|

∣∣ whenever z ∈ 1k+1 and w ∈ 1k. This can be

ensured by letting
∣∣log |zk|

∣∣ grow sufficiently quickly and picking 1k sufficiently

small.

Choice of B and C. In addition, we choose two discrete countable subsets

sets B , C ⊂ W , disjoint from each other and all 1k, such that the accumulation

sets of B and of C in X coincide exactly with ∂W . (These sets are used to ensure

that the function h is an Ahlfors islands map.)

If W is hyperbolic, we also require that these sets are chosen such that points of

W have uniformly bounded hyperbolic distance from both B and C (as in Lemma

2.4). Note that this is possible because we required the 1k to have uniformly

bounded hyperbolic diameters.

Definition of f and approximation. We set A := B ∪C ∪
⋃∞

k =11k. Observe that

A is a Weierstrass set by Theorem 2.6.
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We now define a continuous function f : A → C as follows:

(a) f |1k
is a holomorphic function that extends continuously to ∂1k such that

f (1k) ⊂ 1′
k+1 (recall that 1′

k+1 is a component of π−1(1k+1));

(b) f |B is bounded;

(c) f (c) → ∞ as c → ∂W within C.

We also define a locally constant function e(z) : A → (0,∞) by setting e ≡ 1

on B and C, and e(z) := distC( f (1k), ∂1′
k+1) on 1k.

Now we can apply Lemma 2.7 to f and E = log e to obtain a holomorphic

function h : W → C such that |h(z) − f (z)| ≤ e(z) for all z ∈ A.

Set g := π ◦ h. We have g(1k) ⊂ π(1′
k+1) = 1k+1, so 1k is contained in

the Fatou set of g for all k. Furthermore, the iterates of g, restricted to 1k, tend to

∂W , so the Fatou component containing1k is either a Baker domain (or pre-image

component of a Baker domain) or a wandering domain.

Proof that h is an Ahlfors islands map. If W is hyperbolic, then it follows from

Lemma 2.4 and our definitions that h is strongly non-normal, and hence an Ahlfors

islands map.

If W is parabolic, then it follows from the fact that h is bounded on B and tends

to infinity on C that each point of ∂W is an essential singularity of h. Hence h is

an Ahlfors islands map by the classical Five Islands Theorem.

As noted above, g is then also an Ahlfors islands map.

Each 1k is contained in a wandering domain. First suppose that W is hyper-

bolic. If11 were contained in an eventually periodic domain, then there would be

some k ∈ N and l > k such that zk and zl can be connected by a curve in the Fatou

set F (g). Recall that the diameter of1k in the hyperbolic distance of W is at most

M . Hence we would have, by Pick’s theorem, that

distF ( f )(zk, zl) ≥ distF ( f )(g
m(zk), gm(zl)) ≥ distW (gm(zk), gm(zl))

≥ distW (zk+m, zl+m) − 2M → ∞

as m → ∞ by (3.1). This is a contradiction.

If W is parabolic, then we can likewise show that 1k must be contained in a

wandering domain. Indeed, since g(1k) ⊂ 1k+1, we have

(3.2)
∣∣log |gk+1(z)|

∣∣ ≥ k ·
∣∣log |gk(z)|

∣∣

for all z ∈ 11.

It is well known that there is a bound on the speed of escape in Baker domains

[B1, Lemma 7]. More precisely, if z is eventually mapped to a Baker domain of

period l, then for sufficiently large k and a suitable constant C, we have

∣∣log |gk+l(z)|
∣∣ ≤ C ·

∣∣log |gk(z)|
∣∣.
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But this would contradict (3.2). Thus11 is contained in a wandering domain, and

hence so is each 1k.

By construction and Lemma 2.8, the ω-limit set of these wandering domains is

exactly K , as claimed. �

4 Baker domains

To prove Theorem 1.1, we begin by forming a simply-connected domain around a

given curve γ. The following lemma shows that this is always possible. This result

is surely known, but we do not know of a reference, and therefore include a proof

in Section 7.

Lemma 4.1 (Simply-connected domain around a curve). Let W be a non-

compact Riemann surface, with a metric d on W (compatible with the topology).

Furthermore, let γ : [0,∞) → W be an injective curve such that γ(t) → ∞ as

t → ∞ (in the one-point compactification Ŵ ). Also let δ : [0,∞) → (0,∞) be

continuous. Then there exists a simply-connected domain V ⊂ W with γ ⊂ V and

a conformal isomorphism φ : H → V such that

(a) V ⊂
⋃

t≥0{z ∈ W : d (z, γ(t)) < δ (t)};

(b) φ extends continuously to a homeomorphism between the closures HC and

V W of H and V in C respectively, W;

(c) φ(z) → ∞ in Ŵ as z → ∞ in H;

(d) if α ⊂ V is any curve that tends to ∞ in Ŵ , then points of α have uniformly

bounded distance to γ, and vice versa.

If γ is C1, then furthermore the domain V can be chosen such that

(e) Reφ−1(γ(t)) → ∞ as t → ∞.

Remark 1. We do not use (e) in the proof of Theorem 1.1, but require it in

the next section to prove Theorem 1.4.

Remark 2. Suppose (under the hypotheses of Lemma 4.1) that W is a hy-

perbolic subdomain of some compact Riemann surface Y and d is the hyperbolic

metric on W . Then (d) implies that any curve α ⊂ V tending to ∂W has the same

accumulation set as γ.

Given a domain V as in the lemma, we aim to construct a holomorphic function

g : W → X that maps V into itself. To do so, we require an approximation

theorem that allows us to control the error in the (potentially very thin) strip V .

The following result provides the kind of control that we are looking for.
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Lemma 4.2 (Control of approximation on simply-connected sets). Let X be

a compact Riemann surface, let W ( X be a domain, and let A ⊂ W be a Weier-

strass set. Suppose that V ⊂ C is a simply-connected domain, let φ : H → V be

a Riemann map, and set V ′ := φ({ζ ∈ H : Re ζ ≥ 1}). Now let f : A → C be

continuous on A and holomorphic in the interior of A. Suppose furthermore that

A can be written as the disjoint union of two relatively closed subsets, A1 and A2,

and that f (A1) ⊂ V ′. Then for every ε > 0, there exists a holomorphic function

g : W → C such that

(a) | f (z) − g(z)| ≤ ε for z ∈ A2, and

(b) for all z ∈ A1, g(z) ∈ V and
∣∣φ−1( f (z)) − φ−1(g(z))

∣∣ ≤ ε.

Proof. Consider the function

9 : V → C \ {0}; z 7→ λ ·

(
z − φ

(
φ−1(z) +

1

2

))
,

where λ > 0. We claim that λ can be chosen such that B(z, |9(z)|) ⊂ V for all

z ∈ V ′ and furthermore

(4.1) φ−1(B(z, |9(z)|)) ⊂ B(φ−1(z), ε).

Indeed, let z ∈ V ′ and set ζ := φ−1(z). By Koebe’s theorem, there is a constant C

such that |φ(ζ ) − φ(ζ + 1/2)| ≤ C|φ′(ζ )| and

φ(B(ζ, ε)) ⊃ B
(
φ(ζ ),min(1, ε) · |φ′(ζ )|/4

)
.

Hence, if λ < min(1, ε)/4C, the claim follows.

Since V is simply-connected and9(z) 6= 0, there exists a holomorphic function

ψ : V → C such that exp(ψ(z)) = 9(z) for z ∈ V .

We define

E : A → C; z 7→




ψ( f (z)) z ∈ A1

log ε z ∈ A2.

Since A1 and A2 are relatively closed, the function E is continuous on A and holo-

morphic in the interior of A. Applying Lemma 2.7 to f and E , we obtain a holo-

morphic function g : W → C such that |g(z) − f (z)| ≤ | exp(E(z))| for z ∈ A.

So we have |g(z) − f (z)| ≤ ε on A2. Furthermore, suppose that z ∈ A1, so

f (z) ∈ V ′ by hypothesis. Then, by the above, g(z) ∈ B( f (z), |9( f (z))|) ⊂ V and

φ−1(g(z)) ∈ φ−1(B( f (z), |9( f (z))|)) ⊂ B(φ−1( f (z)), ε)

by (4.1). This completes the proof. �
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We are now ready to prove Theorem 1.1 and Proposition 1.2.

Proof of Theorem 1.1. Let π be defined as in the proof of Theorem 1.3.

Thus π : C → X is a projection when X is a torus; otherwise, π : Ĉ → X is a

Möbius transformation taking ∞ to a given point a ∈ Ĉ \ γ. Also pick discrete

sets B and C, disjoint from γ, as in the proof of Theorem 1.3.

We now apply Lemma 4.1, taking d to be a flat metric (if W is the plane or the

punctured plane) or the hyperbolic metric in W (otherwise). The function δ is any

continuous function into the positive reals with the property that d (γ(t),B ∪ C) >

δ (t) for all t ∈ [0,∞).

Let V be the simply-connected domain given by Lemma 4.1, and let

φ : H → V be the corresponding conformal isomorphism, whose continuous ex-

tension to HC we also denote by φ. Let Ṽ be a component of π−1(V ); then Ṽ ⊂ C

is a simply-connected domain and π : Ṽ → V is a conformal isomorphism. Let

φ̃ : H → Ṽ be the conformal isomorphism satisfying π ◦ φ̃ = φ.

We use Lemma 4.2 to construct a strongly non-normal function h : W → C

that maps V W into Ṽ .

To do so, set A := V W ∪B ∪C. Note that A is a Weierstrass set by Theorem 2.6.

Define a function f : A → C, continuous on A and holomorphic in the interior of

A, such that

(a) f (z) := φ̃(φ−1(z) + 2) for z ∈ V W ;

(b) f is bounded on B;

(c) f (c) → ∞ as c → ∂W within C.

Set A1 := V W and A2 := B ∪ C. Then we can apply Lemma 4.2 (with some

ε < 1), to obtain a holomorphic function h : W → C. As in the proof of Theorem

1.3, h is an Ahlfors islands map, as is g := π ◦ h.

We have h(V W ) ⊂ Ṽ by Lemma 4.2 (b). Let us define G : HC → H by

G(ζ ) := φ−1(g(φ(ζ ))) = φ̃−1(h(φ(ζ ))).

Then, for any ζ ∈ HC, we have (setting z = φ(ζ ))

(4.2) |G(ζ ) − (ζ + 2)| = |φ̃−1(h(z)) − φ̃−1( f (z))| ≤ ε < 1,

again using Lemma 4.2 (b).

In particular, Re Gn(ζ ) → ∞ as n → ∞; hence if z ∈ V , then the sequence

(gn(z)) lies in V and has no accumulation point in W . By Lemma 2.8, there is a

curve α ⊂ V whose accumulation set is exactly the accumulation set of the orbit

of z. By the choice of V , the accumulation set of α is exactly the accumulation set

K of γ (recall Remark 2 after Lemma 4.1).

Hence V is contained in a Baker domain U with ω(U) = K , as required. �
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Proof of Proposition 1.2. We now show how to modify the proof of Theo-

rem 1.1 in order to obtain the extra claim in Proposition 1.2. We use the same

notation as in the preceding proof.

First we show that the claim holds for all w in the Baker domain U such that

gk(z) ∈ V for some k ≥ 0, provided the function δ (t) was chosen sufficiently small,

depending on the sequence (εn). Then we indicate how to modify the construction

to ensure that V is an absorbing set for U , i.e., that every point of U is mapped to

V under iteration.

First note that we may assume without loss of generality that (εn) is a strictly

decreasing sequence (otherwise, we consider the sequence
(
1/n + maxk≥n εk

)
in-

stead).

Fix w0 := γ(0) as a base point. If w ∈ V , then by (4.2), the point Gn(φ−1(w))

is contained in the disk of radius nε around φ−1(w) + 2n. It follows that

(4.3) distV (w0, gn(w)) = distH(φ−1(w0),Gn(φ−1(w))) = O(log n) as n → ∞.

On the other hand, we can clearly let δ (t) tend to zero sufficiently rapidly to

ensure that, for all sufficiently large n and all v ∈ V with d (v, ∂W ) ≤ εn,

distV (w0, v) > n.

Now let w be a point such that gk(w) ∈ V for some k ∈ N. By (4.3), we have

distV (w0, gn+k(w)) < n for sufficiently large n. So d (gn+k(w), ∂W ) > εn > εn+k , as

desired.

It remains to show that we can ensure that V is an absorbing set for U . To do

so, we modify the construction of f by also requiring that there are many points

near the boundary of V that are not in the Baker domain U . This ensures that

points of U \ V have very large hyperbolic distance from the “central” part of V ,

from which it follows that the orbits of all points of U must enter V eventually.

More precisely, after picking V , B and C, we also pick a discrete closed set

Z ⊂ W \ (V ∪ B ∪ C) such that the hyperbolic metric of the set W ′ := W \ Z

satisfies

(4.4) distW ′(φ(2n),W \ V ) → ∞ as n → ∞.

Also let 1 ⊂ W be a disk whose closure is disjoint from the sets V , B , C and Z ,

and let 1̃ ⊂ C be another disk with π(1̃) ⊂ 1.

Instead of letting the set A from the construction of h consist only of V W , B

and C, we now set A := V W ∪ B ∪ C ∪1 ∪ Z . We define f as before on the first

three sets, and such that f (1) ⊂ 1̃ and f (Z) ⊂ 1̃.
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If we choose ε sufficiently small in our application of Lemma 4.2, the approx-

imating map h also has the above properties. Thus g = π ◦ h satisfies g(1) ⊂ 1,

so 1 is contained in the basin of an attracting fixed point of g. Since g(Z) ⊂ 1,

all points of Z are also attracted to this fixed point, and in particular U ⊂ W ′.

Recall that, by (4.2), the orbit of the point w1 := φ(0) satisfies

|φ−1(gn(w1)) − 2n| ≤ n

for all n ≥ 0. Hence, for n ≥ 1, the hyperbolic distance distV (gn(w1), φ(2n)) is

bounded by some constant C. If w ∈ U , then distU (gn(w), gn(w1)) ≤ distU (w,w1)

by Pick’s theorem. So if w ∈ U , then distU (φ(2n), gn(w)) 6→ ∞ as n → ∞.

Hence, by (4.4), we have gn(w) ∈ V for sufficiently large n, as claimed. �

5 Logarithmic tracts

Proof of Theorem 1.4. If X = Ĉ, let us assume that a 6= w0. (The case a = w0

is similar, but actually slightly simpler. We comment on this at the end of the

proof.)

Once again we pick π : C → X to be a projection when X is a torus, and

otherwise a Möbius transformation with π(∞) = a; we also require that π be

chosen such that π(0) = w0. Again we additionally pick discrete sets B and C as

in the proof of Theorem 1.3.

Use Lemma 4.1 to pick a simply-connected domain V around γ whose clo-

sure is disjoint from B and C, and let φ : H → V be the corresponding Riemann

map. Additionally, let U ′ be the component of π−1(U) containing 0; then U ′ is

a Jordan domain in C. Also let O′ ⊂ C be a Jordan domain containing U ′, but

sufficiently close to U ′ to ensure that π is still injective on O′. (That this is pos-

sible follows from the “plane separation theorem”; see [W, Chapter VI, Theorem

(3.1)].) Finally, set O := π(O′). Set K := supz∈O′ |z|.

We now let f : V → O′ \ {0} be a universal covering with f (∂V ∩ W ) = ∂O′.

Since φ−1(γ) is bounded away from ∂H (see Lemma 4.1(e)), we may also assume

that f is chosen such that f (γ) ⊂ U ′. As usual, we denote the extension to V W by

f also. Define f on B and C as in the proof of Theorems 1.3 and 1.1.

Using Lemma 2.7, we approximate f by a holomorphic function h : W → C

such that |h − f | is uniformly bounded on B ∪ C, and such that

(5.1) |h(z) − f (z)| < ε · | f (z)|

for z ∈ V W , where ε < 1/2 is chosen so small that ε < distC(∂U ′, f (γ))/K and

ε < distC(∂O′,U ′)/K .
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Then we have h(γ) ⊂ U ′ and h(z) 6= 0 for all z ∈ V . Furthermore, the com-

ponent T of h−1(U ′) containing γ does not intersect ∂V , and hence is completely

contained in V . By the maximum principle, T is simply-connected.

We can thus form a logarithm H := log h : T → C. Likewise, we can take

a logarithm F := log f : V → C. Note that F : V → F (V ) is a conformal

isomorphism by definition, and that H (T ) ⊂ F (V ).

The approximation condition (5.1) implies that there is some C > 0 such that

(5.2) |H (z) − F (z)| < C

for all z ∈ T . Consequently, it follows that H (z) → ∞ as z → ∂T ∩ ∂W in T .

We also have H (z) → ∂U ′ as z → ∂T ∩ W ⊂ V . Hence H is a proper map, and

therefore has a degree d ≥ 1.

We claim that d = 1. It suffices to show that H has no critical points in T .

So let c ∈ T , and pick some simple closed curve α ⊂ H (T ) that does not pass

through any of the – finitely many – critical values of H and such that α surrounds

both H (c) and a disk D(z0,C) of radius C around some point z0 ∈ H (T ). This is

possible because H (T ) contains a left half plane.

The component β of H−1(α) that surrounds c is a simple closed curve. By

choice of α, and by (5.2), the curves H ◦ β and F ◦ β (where we fix some

parametrization of β) have the same winding number N 6= 0 around z0. Since

F is a conformal isomorphism, we must have N = 1, so c is not a critical point of

H , as required.

So we have seen that H is a conformal isomorphism, and hence h maps T as

a universal covering map over U ′, as claimed. Because Reφ−1(γ(t)) → ∞ as

t → ∞, we also have h(γ(t)) → 0 as t → ∞. Hence the map g := π ◦ h has the

stated properties.

In the case where X = Ĉ and a = w0, the proof proceeds essentially as above

except that now π(∞) = a = w0. In this case, U ′ and O′ are neighborhoods of ∞.

Also, we require the approximation to satisfy |h(z) − f (z)| < ε instead of (5.1);

thus, we can actually apply Theorem 2.6 directly instead of using Lemma 2.7. �

6 Hyperbolic surfaces

Proof of Theorem 1.6. The proofs of the three statements in the case where

X is hyperbolic are entirely analogous to those in the case of genus ≤ 1, except

that here we choose the map π to be a universal covering map from a subset of the

complex plane to X , e.g. π : D → X .
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The constructions then proceed as before. The composition g := π ◦ h is again

an Ahlfors islands map and has the desired properties, but the domain of definition

W̃ ⊂ W of g is almost certainly not connected.

To obtain also the claim in Theorem 1.6 that g can be chosen with W ′ con-

nected, we can simply restrict g to the component of W̃ containing γ in the case

of Baker domains or logarithmic tracts (Theorems 1.1 and 1.4). However, in the

case of wandering domains (Theorem 1.3), it is possible that different components

of the orbit of the wandering domain belong to different components of W̃ . To

prevent this from happening, we need to modify the construction from the proof

of Theorem 1.3 slightly.

This is easy to do: Indeed, choosing the sets B and C as well as the domains

1k as before, we connect the disks 1k by arcs to form a “tree” T ⊂ W \ (B ∪ C),

which is a Weierstrass set whose interior coincides precisely with
⋃∞

k =11k. We

can then carry out the approximation in a way that ensures that h(T ) ⊂ D (recall

that D is the domain of definition of π), and hence such that all domains 1k are

contained in the same component of the domain of definition of g. �

7 Proof of Lemma 4.1

Proof of Lemma 4.1. We begin by noting that we will construct V with the

additional property that

(d’) if α ⊂ V is any curve that tends to ∞ in Ŵ , then d (α, γ(t)) < δ (t) for all

sufficiently large t.

Clearly we may assume without loss of generality that δ is bounded from above,

say δ (t) ≤ 1, so (d’), together with (a), does indeed imply part (d) of the lemma.

Furthermore, we may assume (modifying the function δ as necessary) that d is a

natural conformal metric on W (i.e., the hyperbolic metric if W is hyperbolic, or

the euclidean metric if W = C or W = C/Z). Let us denote balls with respect to

this metric by Bd (z, r).

We may furthermore assume for simplicity that δ is non-increasing, and that

the closed ball Bd (γ(t), δ (t)) is homeomorphic to the closed unit disk (i.e., the

injectivity radius of W at γ(t) is larger than δ (t)).

We now define a function δ̂ (t) as follows. For t0 ∈ [0,∞), let

t− := min
{

t ∈ [0, t0] : γ
(
(t, t0]

)
⊂ Bd (γ(t0), δ (t0)/2)} and

t+ := max
{

t ∈ [t0,∞) : γ
(
[t0, t)

)
⊂ Bd (γ(t0), δ (t0)/2)}.

We define

δ̂ (t0) :=
1

2
· inf

t/∈[t−,t+]
d (γ(t), γ(t0)) > 0.
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Note that δ̂ (t0) ≤ δ (t0)/4 because d (γ(t+), γ(t0)) = δ (t0)/2.

Let us set V1 :=
⋃

t≥0 Bd (γ(t), δ̂(t)) and study the set Ṽ1, where Ũ denotes the

union of a set U and its compact complementary components. The construction

ensures that

(1) Ṽ1 is simply-connected;

(2) Ṽ1 ⊂
⋃

t≥0{z ∈ W : d (z, γ(t)) < δ (t)};

(3) if t3 ≫ t2 ≫ t1, then γ(t1) and γ(t3) belong to different connected compo-

nents of Ṽ1 \ Bd (γ(t2), δ (t2)).

Property (3) implies, in particular, that Ṽ1 – and hence any subset V of Ṽ1 – satisfies

(d′). Now let φ : H → Ṽ1 be a conformal isomorphism, which we can assume

normalized so that φ−1(γ) accumulates at ∞. Then (3) ensures – e.g., by using the

theory of prime ends – that φ(z) → ∞ in Ŵ iff z → ∞ in H, and in particular that

φ−1(γ) accumulates only at ∞. Thus the domain Ṽ1 has all the properties required

in the statement of the theorem, apart possibly from (b). However, we can choose

a domain H ⊂ H such that ∂H ∩ C is a simple curve contained in H and such that

φ−1(γ) ⊂ H . Then V := φ(H ) has the desired properties.

Now let us suppose that the curve γ is C1, and use a different construction to

obtain a domain also satisfying (e). First we extend γ to be a C1 curve on (−1,∞)

and reparametrise if necessary to ensure that γ is ‘unit speed’. For t > −1, let

I (t) denote the line segment with centre at γ(t), length 2ε(t) and normal to the

curve γ at γ(t). Here ε : (−1,∞) → (0,∞) is a sufficiently rapidly decreasing

convex function. The fact that γ is locally uniformly C1 implies that, if ε is cho-

sen sufficiently small, then V =
⋃

−1<t<∞ I (t) forms a simply-connected tubular

neighbourhood of γ|[0,∞) in W . It is easy to check that V satisfies parts (a), (b), (c)

and (d) if we choose the function ε small enough.

To prove part (e), let z+(t) and z−(t) denote the endpoints of I (t), and let

∂+V =
⋃

−1<t<∞

z+(t) and ∂−V =
⋃

−1<t<∞

z−(t).

We claim that, provided the function ε was chosen sufficiently small, there

exists an absolute constant c, 0 < c < 1, such that, for all t ≥ 0,

(7.1) ω(γ(t), ∂+V,V ) ≤ c, and ω(γ(t), ∂−V,V ) ≤ c,

where ω(z,E,V ) denotes the harmonic measure in V of the set E ⊂ ∂V at the

point z ∈ V . The inequalities (7.1) imply that for large t, the point φ−1(γ(t)) lies

in a set of the form {ζ : Re ζ ≥ C|ζ |}, where C > 0, which proves part (e).

To prove (7.1), note that for each t > 0, the line segment I (t) lies on the

symmetric axis of a right-angled isosceles triangle, 1(t) say, with vertex at z+(t),
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height 4ε(t) and base outside the domain V . Hence, by the maximum principle,

ω(γ(t), ∂+V,V ) is dominated by the harmonic measure in 1(t) of the union of the

two equal-length sides of 1(t) at γ(t), and this value is an absolute constant in

(0, 1). This proves (7.1). �

Remark. Note that the proof shows that, provided γ is C1, the domain V can

be chosen such that φ−1(γ(t)) → ∞ nontangentially. It is not difficult to see that,

without a regularity assumption on γ, this cannot always be achieved.

For the conclusion of the lemma, we only require that φ−1(γ) eventually enters

every right half plane; i.e. that it tends to ∞ horocyclically. This can be achieved

under much weaker conditions; e.g. it is sufficient to assume that there is a se-

quence (t j ) with t j → ∞ such that γ is differentiable at t j for all j .
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boliques, doctoral thesis, Université de Paris-Sud, Orsay, France, 1989.

[M] John Milnor, Dynamics in One Complex Variable, third ed., Princeton University Press, Prince-
ton, NJ, 2006.

[O] Richard Oudkerk, Ahlfors functions with exotic Baker domains, manuscript, 2004.

[R] Lasse Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions, Proc.

Amer. Math. Soc. 137 (2009), 1411–1420.

[RS] Philip J. Rippon and Gwyneth M. Stallard, Slow escaping points of meromorphic functions,
Trans. Amer. Math. Soc. 363 (2011), 4171–4201.



EXOTIC BAKER AND WANDERING DOMAINS 319

[S] Stephen Scheinberg, Uniform approximation by functions analytic on a Riemann surface, Ann.

of Math (2) 108 (1978), 257–298.

[W] Gordon T. Whyburn, Analytic Topology, American Mathematical Society, New York, 1942.

Lasse Rempe

DEPARTMENT OF MATHEMATICAL SCIENCES

UNIVERSITY OF LIVERPOOL, L69 7ZL UK

email: l.rempe@liverpool.ac.uk

Philip J. Rippon

DEPARTMENT OF MATHEMATICS AND STATISTICS

THE OPEN UNIVERSITY

WALTON HALL

MILTON KEYNES MK7 6AA UK

email: p.j.rippon@open.ac.uk

(Received February 8, 2011)


