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Abstract. We establish new results on the dimension of the Furstenberg

measure and the regularity of the integrated density of states for the Anderson-

Bernoulli model at small disorder.

0 Summary

Let H = 1 + λV , where 1 is the lattice Laplacian on Z and V = (Vn)n∈Z are

independent random variables in {1,−1}. We assume small |λ| and restrict the

energy E to be outside of a fixed neighborhood of {0, 2,−2}. We then show that

the Furstenberg measure νE of the corresponding SL2(R)-cocycle

(

E − λVn −1

1 0

)

has dimension at least γ(λ), where γ(λ)
λ→0
−→ 1. As a consequence, we derive that

the integrated density of states (IDS) N(E) is Hölder-regular with exponent at least

s(λ)
λ→0
−→ 1.

The spectral theory of the Anderson-Bernoulli (A-B) model has been studied

by various authors. It was shown by Halperin [S-T] that for fixed λ > 0, N(E) is

not Hölder continuous of any order α larger than

(0.1) α0 =
2 log 2

Arc cosh (1 + λ)
.

Hölder regularity for some α > 0 has been established in several papers. In

[Ca-K-M], le Page’s method is used. Different approaches (including one us-

ing the super-symmetric formalism) appear in the important paper [S-V-W] that
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274 J. BOURGAIN

relies on harmonic analysis principles around the uncertainty principle. In [B1],

the author proved Hölder regularity of the IDS using the Figotin-Pastur expansion

of the Lyapounov exponent and martingale theory. We note that in both [S-V-W]

and [B1], the Hölder exponent α remains uniform for λ → 0. (In fact, [B1] gives

an explicit exponent α(λ) > 1/5 + ε as λ → 0.)

Thus, the result in this note just falls short of establishing the conjectured

Lipschitz regularity of IDS of the A-B model for small λ. Related is the ques-

tion whether the Furstenberg measure on projective space is absolutely continuous

when λ is small (or even better). As pointed out at the end of the paper, a natural

approach to these problems is through certain spectral gap properties which do not

depend on hyperbolicity. There have been recent advances (cf. [BG1, BG2, B2])

which are based on methods from arithmetic combinatorics. But at present, this

theory seems too restrictive for an application to A-B-cocycles. It does apply, how-

ever, for Schrödinger operators with single site distribution given by a measure of

positive dimension.

1 Probabilistic inequalities on the Boolean cube

The following statement is a consequence of Sperner’s Combinatorial Lemma1.

Lemma 1. Let f = f (ε1, . . . , εn) be a real valued function on {1,−1}n and

let

(1.1) I j = f |ε j =1 − f |ε j =−1

denote the j -influence, which is a function of ε j ′, j ′ 6= j .

Assume that for all j = 1, . . . , n,

(1.2) I j ≥ 0

(i.e., f is monotone increasing) and moreover

(1.3) I j ≥ κ > 0 on � j ∩�′
j ,

where � j (respectively, �′
j ) are subsets of {1,−1}n depending only on the vari-

ables ε1, . . . , ε j−1 (respectively, ε j+1, . . . , εn). Then, for any t ∈ R,

(1.4) mes

[

| f − t| <
κ

2

]

≤
1√
n

+
∑

j

(2 − mes� j − mes�′
j ).

1It was also used in [B1] and [B-K] in the context of the Anderson-Bernoulli model.
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Proof. Let

(1.5) �̃ =
⋂

1≤ j≤n

(� j ∩�′
j ),

for which

(1.6) 1 − mes �̃ ≤
∑

j

(2 − mes� j − mes�′
j ).

We claim that the set [| f −t| < κ]∩�̃ does not contain a pair of distinct comparable

elements ε = (ε j )1≤ j≤n and ε′ = (ε′j )1≤ j≤n. Assume otherwise. Let ε < ε′, i.e.,

ε j ≤ ε′j for each j . Then

f (ε′) − f (ε) =
∑

1≤ j≤n

(

f (ε1, . . . , ε j−1, ε
′
j , . . . , ε

′
n)

− f (ε1, . . . , ε j , ε
′
j+1, . . . , ε

′
n)
)

=
∑

1≤ j≤n
ε j 6=ε

′
j

I j (ε1, . . . , ε j , ε
′
j+1, . . . , ε

′
n).

(1.7)

Since ε ∈ � j , ε
′ ∈ �′

j , it follows from our assumption on � j ,� j ′ that

(ε1, . . . , ε j , ε
′
j+1, . . . , ε

′
n) ∈ � j ∩�′

j

and hence I j (ε1, . . . , ε j , ε
′
j+1, . . . ε

′
n) ≥ κ by (1.3). In particular, since ε 6= ε′,

(1.7) ≥ #{1 ≤ j ≤ n; ε j 6= ε′j }κ ≥ κ,

which is, however, impossible if | f (ε) − t| ≤ κ/2 and | f (ε′) − t| ≤ κ/2. This

establishes the claim.

Therefore, by Sperner’s lemma on the maximal size of subsets of {1,−1}n not

containing any pair of distinct comparable elements, we get

(1.8) mes (�̃ ∩ [| f − t| < κ]) .
1√
n
,

and (1.4) follows from (1.6) and (1.8). �

We use the following corollary to Lemma 1.

Lemma 2. Let f and I j be as in Lemma 1 and assume each I j ≥ 0. Assume

further κ, δ > 0 and for each 1 ≤ j < n,

(1.9) f |ε j =1,ε j+1 =1 − f |ε j =−1,ε j+1 =−1 ≥ κ for ε ∈ � j ,
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where � j ⊂ {1,−1}n is a set only depending on the variables ε j+2, . . . , εn and

such that

(1.10) mes� j > 1 − δ.

Then, for all t ∈ R,

(1.11) mes

[

| f − t| <
κ

2

]

.
1√
n

+ nδ.

Proof. Assume even n = 2m and write ω = (ε1, ε
′
1, . . . , εm, ε

′
m) for the

{1,−1}n-variable. With this notation, let � j refer to the set �2 j−1.

Consider the partition {1,−1}2m =
⋃

S⊂{1,...,m} VS with

(1.12) VS = {ω; ε j = ε′j if j ∈ S and ε j 6= ε′j if j 6∈ S}.

Thus

(1.13) mes

[

| f − t| <
κ

2

]

=
∑

S⊂{1,...,m}

mes

[

VS ∩ | f − t| <
κ

2

]

.

Fix S ⊂ {1, . . . ,m}.

We consider f on VS as a function of (ε j ) j∈S with the other variables (ε j , ε
′
j ) j 6∈S

fixed. Denoting this function on {1,−1}|S| by g = g(ε j ; j ∈ S)}, we have by our

assumption (1.9), for j ∈ S,

I j (g)(ε j , j ∈ S) = f (ε1, ε
′
1, . . . , ε j−1, ε

′
j−1, 1, 1, ε j+1, ε

′
j+1, . . . , εn, ε

′
n)

− f (ε1, ε
′
1, . . . , ε j−1, ε

′
j−1,−1,−1, ε j+1, . . . , ε

′
n)

≥ κ

provided

(εk)k∈S ∈ �′
j = {(εk)k∈S;

(

(εk, εk)k∈S, (εk, ε
′
k)k 6∈S) ∈ � j }

= (� j ∩ VS) (εk, ε
′
k; k 6∈ S) ⊂ {1,−1}|S|,

which depends only on (εk)k∈S,k> j . (Recall that we have fixed the variables outside

S).

Applying Lemma 1 to g (with � j = {1,−1}|S| for all j ∈ S), we obtain

#

[

ω ∈ VS ; | f (ω) − t| <
κ

2

]

≤
#VS

|S|1/2
+
∑

j∈S

∑

εk 6=ε
′
k
,k 6∈S

(

2|S| − #(� j ∩ VS)(εk, ε
′
k; k 6∈ S)

)

=
#VS

|S|
1
2

+
∑

j∈S

#(VS\� j ).(1.14)
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Summing over S ⊂ {1, . . . ,m} gives

(1.13) ≤ 2−m
∑

S⊂{1,...,m}

1

|S|1/2
+

n
∑

j =1

mes (�\� j )

.

(

m

2

)−1/2

+ nδ

(1.15)

and hence (1.11). �

2 Application to the Anderson-Bernoulli model

Consider the projective action of SL2(R) on P1(R) ≃ T = R/Z, defined for

g =

(

a b

c d

)

∈ SL2(R)

by

(2.1) eiτg(θ) =
(a cos θ + b sin θ) + i(c cos θ + d sin θ)

[(a cos θ + b sin θ)2 + (c cos θ + d sin θ)2]1/2
.

Then

(τg)′(θ) =
sin2 τg(θ)

(c cos θ + d sin θ)2

=
1

[(a cos θ + b sin θ)2 + (c cos θ + d sin θ)2]1/2

(2.2)

and

(2.3) ‖g‖2 ≥ (τg)′ ≥
1

‖g‖2
.

Consider the Anderson-Bernoulli model (A-B model)

(2.4) Hλ(ε) = λεnδnn′ +1

with ε = (εn)n∈Z ∈ {1,−1}Z at small disorder λ > 0 (Here, 1 stands for the usual

lattice Laplacian).

The corresponding transfer operators MN (E) ∈ SL2(R) are given by

MN = MN (E ; ε)

=

(

E − λεN −1

1 0

)(

E − λεN−1 −1

1 0

)

· · ·

(

E − λε1 −1

1 0

)

=

1
∏

N

g
E
(ε j ).

(2.5)
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Considering ε j (1 ≤ j ≤ N ) as a continuous variable on [−1, 1] and the corre-

sponding partial derivative ∂ j , we have for the projective action

τMN
= τg

E
(εN )···g

E
(ε j+1)o τg

E
(ε j )oτg

E
(ε j−1)···g

E
(ε1)

and

(2.6) (∂ jτMN
)(θ) = τ′g

E
(εN )···gE (ε j+1)(τgE (ε j )···gE

(ε1)(θ)).(∂ jτg
E
)(τg

E
(ε j−1)···g

E
(ε1)).

Since

(2.7) cotg τg
E

(ε)(θ) = (E − λε) −
sin θ

cos θ
,

we have

(∂ετg
E
)(θ) = λ. sin2 τg

E
(ε)(θ)

= λ
cos2 θ

cos2 θ + ((E − λε) cos θ − sin θ)2
∼ λ cos2 θ.

(2.8)

From (2.3), (2.6), and (2.8), we have

(∂ jτMN
)(θ) &

λ

‖g
E
(εN ) · · · g

E
(ε j+1)‖2

cos2 τg
E

(ε j−1)···g
E

(ε1)(θ)

=
λ

‖MN− j (E ; ε j+1, . . . , εN )‖2
cos2 τM j−1(E,ε)(θ).

(2.9)

In order to deal with the issue of cos τM j−1(E,ε)(θ) being small, note that by (2.7),

for all θ, ε,

(2.10) | cos θ| + | cos τg
E

(ε)(θ)| > c.

Hence (2.9) implies

(2.11) (∂ jτMN
)(θ) + (∂ j+1τMN

)(θ) &
λ

‖MN− j (E ; ε j+1, . . . , εN )‖2

(for all θ).

In order to satisfy (1.9), we need an upper bound on ‖Mn(E ; ε1, . . . , εn)‖. This

function can be analyzed using the Figotin-Pastur expansion.

Let

E = 2 cosκ, 0 ≤ κ ≤ π,(2.12)

Vn = −
εn

sin κ
,(2.13)
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where we assume δ0 < |E | < 2−δ0 and hence κ stays away from 0, π/2, π. (Here,

δ0 is a fixed constant independent of λ.)

The Figotin-Pastur formula gives

(2.14)
1

N
log ‖MN (E, ε)‖ =

1

2N

N
∑

1

log
(

1 +λVn sin 2(ϕn +κ) +λ2V 2
n sin2(ϕn +κ)

)

with

(2.15) ζn = e2iϕn

recursively given by

(2.16) ζn+1 = µζn + i
λ

2
Vn

(µζn − 1)2

1 − iλVn(µζn − 1)/2

and

(2.17) µ = e2iκ.

Note that by (2.13) and (2.16), ζn depends only on εn′ for n′ ≤ n − 1.

Expanding (2.14), we obtain

(2.14) =
λ2

8N

N
∑

1

V 2
n(2.18)

+
λ

2N

N
∑

1

Vn sin(ϕn + κ)(2.19)

−
λ2

4N

N
∑

1

V 2
n cos 2(ϕn + κ)(2.20)

+
λ2

8N

N
∑

1

V 2
n cos 4(ϕn + κ)(2.21)

+ O(λ3)

and

(2.22) (2.18) =
λ2

8 sin2 κ
=

λ2

2(4 − E2)
.

By (2.16) and (2.17),

|1 − µ|

∣

∣

∣

N
∑

1

ζn

∣

∣

∣ < 1 + O(λN )

∣

∣

∣

N
∑

1

ξn

∣

∣

∣ <
O(λN )

sin2 κ
(2.23)
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and similarly,

(2.24)
∣

∣

∣

N
∑

1

ζ 2
n

∣

∣

∣ <
O(λN )

sin2 2κ
< O(λN ).

Since 2 cos 2(ϕn +κ) = µζn + µ̄ζ̄n and 2 cos 4(ϕn +κ) = µ2ζ 2
n + µ̄2ζ̄ 2

n , (2.23) and

(2.24) imply

(2.25) (2.20), (2.21) = O(λ3).

Thus,

(2.19) =
−λ

2N sin κ

N
∑

1

εn sin(ϕn + κ)

= −
λ

2N sin κ

N
∑

1

εndn(εn′ ; n′ < n),

(2.26)

which is a martingale difference sequence, with

N
∑

1

|dn|
2 =

N
∑

1

sin2 2(ϕn + κ) <
N

2
+

1

2

∣

∣

∣

N
∑

1

µ2ζ 2
n + µ̄2ζ̄ 2

n

∣

∣

∣

<
(1

2
+ O(λ)

)

N.

(2.27)

In conclusion,

(2.28)
1

N
log ‖MN (E ; ε)‖ =

λ2

8 sin2 κ
−

λ

2N sin κ

N
∑

1

εndn + O(λ3),

and the Lyapounov exponent satisfies

(2.29) L(E) =
λ2

8 sin2 κ
+ O(λ3).

From martingale theory and (2.28), we get for a > 0 the large deviation inequality

mes
[

ε
∣

∣

∣

1

N
log ‖MN (E ; ε)‖ − L(E)

∣

∣

∣ > aL(E)
]

< e−

(

a2λ2/(16 sin2 κ)+O(λ3)
)

N

< e−

(

a2L(E)/2+O(λ3)
)

N .

(2.30)

In particular, taking a > 2 (and λ small), we have

(2.31) mes [ε| log ‖MN (E ; ε)‖ > aNλ2] < e−ca2λ2N .
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Returning to (2.11), we take

(2.32) N ∼ λ−2.

For 1 ≤ j ≤ N , it follows from (2.31) that

mes [(ε j+1, . . . , εN ); ‖MN− j (E ; ε j+1, . . . , εN )‖ > eC1(log N )1/2

]

≤ exp
{[

− cC2
1λ

2 log N

(λ2(N − j ))2
+ O(λ3)

]

(N − j )
}

< e[−cC2
1 log N + O(λ)]

< N −C1 .

(2.33)

Recalling (2.11), we see that Lemma 2 may be applied to the function of

ε ∈ {1,−1}N , f = τMN (E ;ε)(θ), with κ ∼ λe−2C1(log N )1/2

and δ < N −C1 < N −10, for

a suitable choice of constant C1.

Hence, we have proved the following result.

Lemma 3. For small λ, N ∼ λ−2, δ0 < |E | < 2 − δ0, and θ ∈ T, the

distributional inequality

(2.34) mes [ε; |τMN (ε)(θ) − t| < λe−C| logλ|1/2] ≤ Cλ

holds for all t, where C is some constant.

3 Dimension of the Furstenberg measure

Fixing E as above, denote by νE = ν the Furstenberg measure on T for the random

walk associated with the probability measure on SL2(R),

(3.1) µ =
1

2
δ3− +

1

2
δ3+ ,

where

3− =

(

E −3 −1

1 0

)

, 3+ =

(

E +3 −1

1 0

)

Thus for all N ,

(3.2)

∫

SL2(R)

ϕ(g)µ(N )(dg) =

∫

{1,−1}N

ϕ
(

MN (E, ε)
)

dε.

The measure ν is µ-stationary, i.e.,

(3.3) ν =

∫

(τg)∗[ν]µ(dg)
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and

(3.4) 〈ν, f 〉 = lim
N→∞

∫

f
(

τMN (ε)(θ)
)

dε

for all f ∈ C(T) and θ ∈ T.

Our goal is to show that for small λ, the dimension of νE is close to 1.

The main inequality is the following.

Lemma 4. Let h ∈ SL2(R) be such that ‖h‖ ∼ λ−1/10. Let N ∼ λ−1 and

I ⊂ T an interval of size |I | < λ. Then

(3.5)

∫

(τMN (ε)h)∗[ν](I )dε ≤ eC| log λ|1/2
{

max
|J|<λ1/10|I |

ν(J) + λ1/30 max
|J|≤|I |

ν(J)

+ max
λ−1/10<D<λ−1/5

1

D
max

|J|<D.|I |
ν(J)

}

,

where J is an interval.

Proof. Write

(3.6)

∫

(

MN (ε)h
)

∗
[ν](I )dε =

∑

0≤k.N

∫

[‖MN (ε)‖∼2k ]

ν(τh−1τM (ε)−1(I )
)

dε.

From (2.31),

(3.7) mes [‖MN (ε)‖ ∼ 2k] < e−ck2

and, if ‖MN (ε)‖ ∼ 2k, then τh−1τMN (ε)−1 (I ) is contained in an interval J ∈ T of size

at most ‖h‖24k|I |. Thus the kth summands in (3.6) are certainly bounded by

(3.8) e−ck2

max
|J|<4k‖h‖2|I |

ν(J).

Next, restrict k . (log N )1/2 and ε to [‖MN (ε)‖ ∼ 2k].

Let R1, . . . ,RM be a partition of T into intervals of size 1/M ∼ λ. We have the

estimates

∫

[‖MN (ε)‖∼2k ]

ν
(

τh−1τMN (ε)−1 (I )
)

dε ≤

M
∑

m =1

∫

[‖MN (ε)‖∼2k ]

ν
(

τh−1(τMN (ε)−1 (I ) ∩ RM )
)

dε

≤

M
∑

m =1

mes
[

ε; ‖MN (ε)‖ ∼ 2k and τMN (ε)(Rm) ∩ I 6= ∅
]

· max{ν(J), |J| ≤ 4kDm|I |},

(3.9)



FURSTENBERG MEASURE FOR THE ANDERSON-BERNOULLI MODEL 283

where

(3.10) Dm = max
θ∈Rm

|τ′h−1(θ)|.

Fix θm ∈ Rm and ψ ∈ I . Then τMN (ε)(Rm) is contained in an 4k/M -neighborhood

of τMN (ε)(θm), and hence

(3.11) |τMN (ε)(θm) − ψ| .
4k

M
+ |I | .

4k

M

since τMN (ε)(Rm) ∩ I 6= φ. In view of Lemma 3, mes [ε; (3.11)] < 4keC(log N )1/2

/M

by (2.34) and a suitable partition of the interval [ψ− 4k/M, ψ + 4k/M ]. Hence, for

k as above,

(3.12) mes [ε; ‖MN (ε)‖ ∼ 2k and τMN (ε)(Rm) ∩ I 6= ∅] < eC(log N )12

λ.

Let

h−1 =

(

a b

c d

)

.

By (2.2), τ′
h−1(θ) =

(

(a cos θ + b sin θ)2 + (c cos θ + d sin θ)2
)−1

and

(3.13)
1

‖h‖2
. τ′h−1(θ) . min

( 1

‖h‖2‖θ − θh‖2
, ‖h‖2

)

for some θh ∈ T. Thus

(3.14)
1

‖h‖2
. Dm . min

[ 1

‖h‖2‖θm − θh‖2
, ‖h‖2

]

.

Hence, given D > 0,

(3.15) #{1 ≤ m ≤ M ; Dm ∼ D} . 1 +
M

‖h‖D1/2
.

From (3.12) and (3.15), we obtain the estimate

(3.9) < eC(log N )1/2

λ(log N )
{

max
‖h‖−2<D<‖h‖2

M

‖h‖D1/2

(

max
|J|<4k D|I |

ν(J)
)

}

< eC ′(log N )1/2(

max
‖h‖−2<D<‖h‖2

1

D1/2‖h‖
max

|J|<D|I |
ν(J)

)

,

(3.16)

since k . (log N )1/2 and J is a union of 4k intervals of size at most D.|I |.

We distinguish several contributions.

(i) For D < ‖h‖−1, estimate (3.16) by

(3.17) eC ′(log N )1/2

max
|J|<|I |/‖h‖

ν(J) < eC ′| logλ|1/2 max
|J|<λ1/10|I |

ν(J).
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(ii) For 1 > D > ‖h‖−1, we have D1/2‖h‖ > ‖h‖1/2 & λ−1/20, and we may

bound (3.16) by

(3.18) λ1/30 max
|J|≤|I |

ν(J).

(iii) For 1 ≤ D ≤ ‖h‖, bound (3.16) by

(3.19) eC ′| logλ|1/2 D1/2

‖h‖
max
|J|≤|I |

ν(J) ≤ λ1/30 max
|J|≤|I |

ν(J).

(iv) For ‖h‖ < D < ‖h‖2, estimate by

(3.20)
eC| logλ|1/2

D
max

|J|<D|I |
ν(J).

Collecting the contributions (3.17) - (3.20) gives (3.5). �

Next, we return to (3.3). Writing µ = δg1
/2 + δg2

/2, we make the following

construction. Assume

(3.21) ν =

∫

(τg)∗[ν]µ1(dg),

where µ1 is some discrete probability measure on SL2(R) such that

(3.22) ‖g‖ < 2λ−1/10 for g ∈ supp µ1.

If g ∈ supp µ1 and ‖g‖ < λ−1/10, by (3.3), (τg)∗[ν] = (τgg1
)∗[ν]/2 + (τgg2

)∗[ν]/2.

Define µ2 =
∑

‖g‖≥λ−1/10 µ1(g)δg + (1/2)
∑

‖g‖<λ−1/10 µ1(g)(δgg1
+ δgg2

), which still

satisfies (3.21).

From the positivity of the Lyapounov exponent, an iteration of this process

clearly produces a discrete probability measure µ̃ on SL2(R) such that

(3.23) ν =

∫

(τg)∗[ν]µ̃(dg)

and

(3.24) λ−1/10 < ‖g‖ < 2λ−1/10 for g ∈ supp µ̃.

Also, by (3.2), ν =
∫

(τMN (ε))∗[ν]dε. Thus, taking N ∼ λ−2 in (3.23) gives

(3.25) ν =

∫

[

∫

(τMN (ε)h)∗[ν]dε
]

µ̃(dh).

From (3.25) and Lemma 4, we obtain the following inequality.



FURSTENBERG MEASURE FOR THE ANDERSON-BERNOULLI MODEL 285

Lemma 5. For an interval I ⊂ T of size at most λ,

(3.26) ν(I ) ≤ eC| logλ|1/2
[

max
|J|<λ1/10|I |

ν(J) + max
λ−1/10<D<λ−1/5

1

D
max

|J|<D|I |
ν(J)

]

.

If we iterate (3.26) r times, assuming λ−r/5|I | < λ, we obtain

(3.27) ν(I ) ≤ 2reC| logλ|1/2r 1

D1

ν(J)

for some interval J of size |J| < D1δ1|I |, where D1 > 1, 0 < δ1 < 1, and

D1δ
−1
1 > λ−r/10.

Theorem 1. For δ0 < |E | < 2−δ0, the dimension of the Furstenberg measure

ν
(λ)
E for the A-B model is at least α(λ)

λ→0
−→ 1.

It is known from random matrix product theory that the Furstenberg measure ν

has positive dimension α > 0. Hence the right side of (3.27) is at most

. Cr| logλ|1/2 1

D1

|J|α < Cr| logλ|1/2 δα1
D1−α

1

|I |α

< Cr| logλ|1/2λ(r/20) min(α,1−α)|I |α.

(3.28)

With a constant γ > 0 (independent of λ = o(1)) satisfying

(3.29) γ < α < 1 − γ,

(3.28) and the restriction on r would imply for λ < λ(γ),

ν(I ) < (C | logλ|1/2λγ/20)r |I |α < λγr/30|I |α

and

(3.30) ν(I ) <
( |I |

λ

)γ/6

|I |α . |I |α+γ/6.

But (3.30) would imply that ν has dimension at least α + γ/6, a contradiction.

Thus, in order to prove Theorem 1, it suffices to have a uniform lower bound in λ

for dim ν
(λ)
E . This is what we establish next.

Lemma 6. Under the assumption of Theorem 1, dim ν(λ)
E > γ > 0 for some γ

independent of λ.

Proof. Write M = MN (E ; ε) as

(3.31) M =
(v⊥

− ⊗ v+)λ+ + (v⊥
+ ⊗ v−)λ−1

+

〈v+, v⊥
− 〉
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with v+ (respectively, v−) the expanding (respectively, contracting) direction.

Then

(3.32) ‖M‖ ∼
|λ+|

|v+ ∧ v−|
.

For unit vectors u, w ∈ R
2, we deduce from (3.31) that

‖Mu‖

‖M‖
= ‖〈v⊥

− , u〉v+ + λ−2
+ 〈v⊥

+ , u〉v−‖

= (1 + λ−2
+ )|〈v⊥

− , u〉| + O
( |v+ ∧ v−|

λ2
+

)

(3.32)
≤ (1 + λ−2

+ )|〈v⊥
− , u〉| + O

( 1

‖M‖

)

(3.33)

and

|〈Mu, w〉|
‖M‖

= |〈v⊥
− , u〉〈v+, w〉 + λ−2〈v⊥

+ , u〉〈v−, w〉|

≥ (1 + λ−2)|〈v⊥
− , u〉| |〈v+, w〉| − 2λ−2

+ |v+ ∧ v−|

≥ |〈v⊥
− , u〉| |〈v+, w〉| + O

( 1

‖M‖

)

.

(3.34)

Hence, given an arc I of size η centered at ν, we have

P

[

ε; v− ∈ I where v− is contracting direction of MN (ε)
]

(3.33)
≤ P

[

ε;
‖MN (ε)u‖

‖MN (ε)‖
< 2η + O

( 1

‖MN (ε)‖

)]

≤ P
[

ε; ‖MN (ε)‖ < eλ
2N/20

]

(3.35)

+ P

[

ε;
‖MN (ε)u‖

‖MN (ε)‖
< 3η

]

,(3.36)

provided

(3.37) η > e−λ2N/20.

Recalling (2.29) and (2.30), we have

(3.38) mes
[

ε
∣

∣

∣

1

N

log ‖MN (ε)‖

L(E)
− 1

∣

∣

∣ > a
]

< e

(

−(a2/2)L(E)+O(λ3)
)

N

with λ2/8 < L(E) < O(λ2).

Hence,

(3.39) (3.35) < e−(λ2/50+O(λ3))N < e−λ2N/60
(3.37)
−→< η1/3
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for λ small enough.

Next, we point out that in the analysis from (2.14) to (2.28), the formula (2.28)

is equally valid for (1/N ) log‖MN (E ; ε)(u)‖ with u ∈ S1 arbitrary (as a conse-

quence of the argument). Thus, we can write

(3.40)
1

N
log ‖MN (ε)‖ = L(E) −

λ

2N sin κ

N
∑

1

εndn + O(λ3)

and

(3.41)
1

N
log ‖MN (ε)(u)‖ = L(E) −

λ

2N sin κ

N
∑

1

εnd ′
n + O(λ3),

so that

(3.42) log
‖MN (ε)‖

‖MN (ε)(u)‖
=

λ

2 sin κ

N
∑

1

εn(d ′
n − dn) + O(Nλ3),

where dn, d ′
n depend on ε1, . . . , εn−1.

Letting 1 > t > 0 be a parameter, write

(3.36) < (3η)t

∫

( ‖MN (ε)‖

‖MN (ε)(u)‖

)t

dε

< (3η)teO(Nλ3t)

∫

eλt
∑N

1 εn(d ′
n−dn)/(2 sin κ)dε

< (3η)teO(Nλ3t)eCλ2t2N ,

(3.43)

where the constant C only depends on E .

Choosing N such that

(3.44) η ∼ e−λ2N/103

,

we satisfy (3.37), and it follows from (3.43) and appropriate choice of t that

(3.36) < (3η)t−C(λt+t2) < ηc1

(again for λ small enough) with c1 > 0 independent of λ.

Hence, we have shown that with N satisfying (3.44),

(3.45) mes [ε; v− ∈ I where v− is contracting vector of MN (ε)] < ηc1 .

Since v+ is the contracting vector of MN (ε)−1, we obtain a similar statement for

the expanding vector. Therefore, we have proved that for any pair of η-intervals

I+, I− in S1,

(3.46) mes [ε; v+ ∈ I+ or v− ∈ I− with v+ (respectively, v−) expanding

(respectively, contracting) direction of MN (ε)] < 2ηc1
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for N satisfying (3.44).

Returning to (3.34), we have

P[ε;
|〈MN (ε)u, w〉|

‖MN (ε)‖
< η1]

≤ P[ε; ‖MN (ε)‖ < 1/η1] + P[ε; |〈v⊥
− , u〉| . √

η1]

+ P[ε; |〈v+, w〉| .
√
η1].

(3.47)

Taking η = η
1/2
1 and N as in (3.44), we find by (3.46) that the last two terms

in (3.47) are at most O(η
c1/2
1 ), and by (3.38) that the first term is bounded by

mes [ε; ‖MN (ε)‖ < eλ
2N/500 < e−λ2N/60 < η1.

Hence

(3.48) (3.47) . η
c1/2
1 with η1 ∼ e−λ2N/500.

Returning to the Furstenberg measure ν = ν
(λ)
E , we have for I ⊂ T a small arc of

size η1, by (3.4),

ν(I ) = lim
N ′→∞

P

[

ε
∣

∣

∣

MN ′ (ε)e1

‖MN ′(ε)e1‖
∈ I

]

.

Take N as in (3.48) and N ′ > N . If w denotes the center of I , then

(3.49)
|〈MN ′e1, w

⊥〉|
‖MN ′e1‖

< η1.

Fix ε1, . . . , εN ′−N and let

u =
MN ′−N (ε1, . . . , εN ′−N )(e1)

‖MN ′−N (ε1 . . . , εN ′−N )(e1)‖
.

We have
MN ′e1

‖MN ′e1‖
=

MN (εN ′−N +1, . . . , εN ′)(u)

‖MN (εN ′−N +1, . . . , εN ′)u‖
.

Thus (3.49) implies

(3.50)
|〈MN (· · · )u, w⊥〉|

‖MN (· · · )‖
< η1

for which, by (3.48), the measure in ε
N ′−N +1

, . . . , εN ′ is at most η
c1/2
1 . Therefore

(3.51) ν(I ) . |I |c1/2.

This proves that dim ν ≥ c1/2, uniformly in λ. �

This also completes the proof of Theorem 1.
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4 Density of states

Let u, w ∈ S1, η > 0 small. It follows from (3.34) that

lim
N→∞

mes
[

ε;
|〈MN (ε)u, w〉|

‖MN (ε)‖
< η

]

≤ lim
N→∞

mes
[

ε; |〈v+, w〉|.|〈v⊥
− , u〉| < η with v+, v− the

eigenvectors of MN (ε)
]

(4.1)

= lim
N→∞

mes
[

(ε, ε′); |〈v+, w〉|.|〈v ′
+, u⊥〉| < η with v+ (respectively, v ′

+)

expanding direction of MN (ε), (respectively, MN (ε′))
]

. log
1

η
. max
η1.η2 =η

νE (Iη1
(w⊥)).νE(Iη2

(u)) ≪ ηγ,

where we have used (3.4) and the independence of v+, v− as functions of ε as

N → ∞. Here, γ < dim ν
(λ)
E and γ = γ(λ) → 1 as λ → 0.

It is easily seen that (4.1) implies that for given K > 1 and large enough N

(depending on K ),

(4.2) max
u,w∈S1

E

[ ‖MN ‖

|〈MN u, w〉| ∧ K
]

< K 1−γ.

Here, MN = MN (E) and (4.2) clearly remains valid for unit vectors u, w ∈ C
2 and

E replaced by z = E + iy with 0 < y < yN small enough (depending on N ). Next,

take N ′ > N and consider

(4.3)
‖M[0,N ′](z; ε)‖.‖M]N ′,2N ′](z; ε)‖

‖M[0,2N ′](z, ε)‖
.

Fixing εN ′+1, . . . , ε2N ′ , we obtain a unit vector ζ ∈ C
2 (depending on these vari-

ables) such that

(4.4) (4.3) =
‖M[0,N ′](z, ε)‖

‖M[0,N ′](z, ε)(ζ )‖

and

(4.4) .
∑

i, j =1,2

|〈M[0,N ′](z, ε)ei, e j 〉|)
|〈M[0,N ′′](z, ε)ζ, e j 〉|

.

Fix also ε1, . . . , εN ′−N and let ζ1 be a unit vector in C
2 parallel to M∗

[0,N ′−N ](z, ε)e j .

Then

(4.5)
|〈M[0,N ′](z, ε)ei, e j 〉|
|〈M[0,N ′](z, ε)ζ, e j 〉|

≤
‖M[0,N [(z, ε)‖

|〈M[0,N [(z, ε)ζ, ζ1〉|
,
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where ζ, ζ1 do not depend on ε0, . . . , εN−1. Thus

(4.6) min
(

(4.3),K
)

. min
(

(4.5),K
)

.

The expectation of (4.6) in ε0, . . . , εN−1 (with other variables fixed), (4.2), and

the subsequent remark give the estimate

(4.7) Eε0,...,εN−1
[(4.6)] . K 1−γ.

Hence, also

(4.8) E[min
(

(4.3),K
)

] . K 1−γ

holds for z = E + iy with y > 0 small enough (depending on K ) and N ′ > N ′(K ).

Denoting by N the IDS, recall that ∂̄N(z) = E[G(0, 0, z)], z = E + iy, where

G(z) = (H − z)−1 is the Green’s function and N(z) is the harmonic extension of N

to Im z > 0.

Fix z with Im z > 0. Then from the resolvent identity and the positivity of the

Lyapounov exponent, we obtain

G(0, 0, z) = lim
3=[−a,b]
a,b→∞

G3(0, 0, z) a.s.

and, by Cramer’s rule,

(4.9) |G(0, 0, z)| ≤ limN ′→∞

‖M[−N ′,0](z, ε)‖ ‖M[0,N ′](z, ε)‖

‖M[−N ′,N ′](z; ε)‖
.

Hence by (4.8),

(4.10) E[|G(0, 0, z)| ∧ K ] ≤ limN ′→∞E[· · · ∧ K ] . K 1−γ

if y > 0 is small enough (depending on K ). Letting y → 0, we get

(4.11) E[|G(0, 0,E + io)| ∧ K ] < K 1−γ.

It follows from (4.11) that for 0 < γ1 < γ,

(4.12) E[|G(0, 0,E + io)|γ1] < C.

Recall that we have assumed δ0 < |E | < 2 − δ0. Using the subharmonicity of

|G(0, 0, z)|γ1 on Im z > 0, we deduce from (4.12) that for fixed z = E + iy, y > 0,

(4.13) |∂̄N(z)| ≤ E[|G(0, 0, z)|] <
1

y1−γ1
E[|G(0, 0, z)|γ1] <

C

y1−γ1
.

Hence N is γ1-Hölder for all γ1 < γ.

This proves the following result.

Theorem 2. For δ0 < |E | < 2−δ0, the IDS of the A-B model with λ-disorder

is s-Hölder regular, with s → 1 as λ → 0.
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5 Further comments

If one aims at going further and proving the Lipschitz regularity of the IDS, it

seems reasonable to prove that the Furstenberg measures on the projective line

P1(R) ≃ T are at least absolutely continuous. This is far from an obvious issue. In

fact, it was conjectured in [K-L] that if ν is a finitely supported probability mea-

sure on SL2(R), then its Furstenberg measure on P1(R) is always singular. This

conjecture was disproved in [B-P-S] using a probabilistic construction reminis-

cent of random Bernoulli-convolutions. An explicit example was given recently in

[B2, B-Y], based on a construction from [B3] (which relies on an extension of the

spectral gap theory for SU(2) from [BG1] to SL2(R)). A rough description is as

follows. One produces a finite subset G ⊂ SL2(R)∩Mat2×2(q), q a fixed large inte-

ger, such that log(#G) ∼ log q, G generates freely the free group on #G generators,

and moreover G is contained in a small neighborhood of the identity (depending

on q). It is shown that there is a spectral gap for the projective representation ρ, in

the following sense. Denote the probability measure on SL2(R) by

(5.1) ν =
1

(#G)

∑

g∈G

δg,

Let f ∈ L2(T), ‖ f ‖2 = 1 and assume f̂ (n) = 0 for |n| > K , where K = K (q) is a

sufficiently large constant. Then

(5.2)
1

(#G)

∥

∥

∥

∑

g∈G

ρg f
∥

∥

∥

2
<

1

2
,

where ρg f = (τ′g)−1/2( f ◦ τg) and τg the action on T defined for

g =

(

a b

c d

)

by

(5.3) eiτg(θ) =
(a cos θ + b sin θ) + i(c cos θ + d sin θ)

[(a cos θ + b sin θ)2 + (c cos θ + d sin θ)2]
1
2

.

Since g ∈ G are close to identity, (5.2) clearly implies that for f as above

(5.4)
1

(#G)

∥

∥

∥

∑

g∈G

( f ◦ τg)
∥

∥

∥

2
<

3

4
.

From (5.4), one may then derive easily that ν has an a.c. Furstenberg measure with

Ck-density, where k can be made arbitrarily large.
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It should be pointed out that the contractive properties (5.2) and (5.4) do not

exploit hyperbolicity (at least in the usual sense), as the Lyapounov exponent of

the random matrix product corresponding to ν is small.

Returning to the A-B-model with small λ, let

(5.5) µ =
1

2
δ3− +

1

2
δ3+ ,

where

3− =

(

E −3 −1

1 0

)

, 3+ =

(

E +3 −1

1 0

)

.

and let ν(ℓ)
λ,E be its ℓ-fold convolution. It seems reasonable to believe that

(5.6)
∥

∥

∥

∑

g

ν
(ℓ)
λ,E (g)( f ◦ τg)

∥

∥

∥

2
≤

1

2
‖ f ‖2

for f ∈ L2(T), f̂ (n) = 0, |n| > K (λ), where ℓ is some positive integer independent

of λ, or at least ℓ = o(λ−2). Such a property would then again imply a.c. and a cer-

tain smoothness of the Furstenberg measure. Unfortunately, available technology

to establish spectral gaps (as developed in [BG1]) so far requires algebraic matrix

elements of bounded height, and hence does not apply to (5.5).

One may however combine the methods from [BG1] with those of [S-T] to

prove the following result, which seems new. (Compare also with the results from

[K-S].)

Theorem 3. Let H = 1 + V be a random Schrödinger operator on Z, where

V = (Vn)n∈Z are i.i.d.’s with distribution given by a compactly supported measure

β on R of positive dimension; thus there exists κ > 0 such that

(5.7) β(I ) . |I |κ for intervals I ⊂ R.

Then H has C∞ density of states.

We sketch the proof.

For fixed E , let µE be the probability measure on SL2(R) obtained as image

measure of β under the map

(5.8) v 7→
(

E − v −1

1 0.

)

In light of [S-T], it suffices to show that for some fixed convolution power ℓ, the

measure µ1 = µ
(ℓ)
E on SL2(R) gives a smoothing convolution operator on P1(R).

Thus there exists α > 0 such that for f ∈ H s(T) and s ≥ 0,

(5.9)

∥

∥

∥

∥

∫

( f ◦ τg)µ1(dg)

∥

∥

∥

∥

H s+α

. ‖ f ‖H s ,
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where H S denotes the usual Sobolev space with norm

‖ f ‖H s =
(

∑

(1 + |n|)2s| f̂ (n)|2
)1/2

.

Letting x = E − v , one has

(5.10)

(

x −1

1 0

)(

y −1

1 0

)(

z −1

1 0

)

=

(

xyz − x − z 1 − xy

yz − 1 −y

)

,

and recalling (5.7), one sees that µ
(3)
E certainly has the property that

(5.11) µ
(3)
E (Sδ ) . δ κ

′

for all δ > 0

if S is a proper algebraic subvariety of SL2(R) of bounded degree and Sδ is a

δ -neighborhood of S. Here, κ′ > 0 depends on the degree bound.

Let Pδ , δ > 0, denote an approximate identity on SL2(R). Using (5.11), an

extension of the ‘Flattening Lemma’ from [BG1] to SL2(R) (note that, up to com-

plexification, SU(2) and SL2(R) have the same Lie-algebra, and our analysis is

local), permits us to conclude the following.

Lemma 7. Fix 0 < ε < 1. There exits ℓ = ℓ(ε) ∈ Z+ such that for all δ > 0,

(5.12) ‖µ
(3ℓ)
E ∗ Pδ‖∞ < δ−ε.

In particular, µ
(3ℓ)
E has dimension at least 3 − ε.

Lemma 7 is the crucial step in the proof and depends on “arithmetic combina-

torics” in groups. (See [BG1] and related references for more details.)

Taking ε = 10−3 and ℓ = ℓ(ε) given by Lemma 7, we can now prove that

µ1 = µ
(3ℓ)
E satisfies (5.9). This is clearly a consequence of the following statement.

Lemma 8. Let f ∈ L2(T), ‖ f ‖2 = 1 and supp f̂ ⊂ [2k, 2k+1] ∪ [−2k+1,−2k]

with k sufficiently large. Then

(5.13)

∥

∥

∥

∥

∫

( f ◦ τg)µ1(dg)

∥

∥

∥

∥

2

< 2−kκ

for some κ > 0.

Proof. We summarize the argument from [B2].

Let G = SL2(R) and take δ = 4−k, so that, by assumption on f , the left side of

(5.13) can be replaced by

(5.14)

∥

∥

∥

∥

∫

( f ◦ τg)(µ1 ∗ Pδ )(dg)

∥

∥

∥

∥

2

.
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Using (5.12), one obtains

(5.14)2 . δ−2ε

∫∫

G×G

|〈 f ◦ τg1
, f ◦ τg2

〉|�(g1)�(g2)dg1dg2,

where 0 ≤ � ≤ 1 is a suitable compactly supported function on G (depending on

the support of β). Next, the Cauchy-Schwarz inequality gives

(5.15) (5.14)4 . δ−4ε

∫∫∫∫

G×G×T×T

f (τg1
x) f̄ (τg2

x) f̄ (τg1
y) f (τg2

y)

�(g1)�(g2)dg1dg2dxdy.

To estimate (5.15), we proceed as follows. Fix x, y ∈ T and g1 ∈ G, and consider

the integral in g2

(5.16)

∫

f̄ (τgx) f (τgy)�(g)dg.

The point here is that if one specifies τgx ∈ T, there remains an average in τgy to

be exploited, when integrating in g (unless x and y are very close). More precisely,

if ‖x − y‖ < 2−h/10, then |(5.16)| < 2−k‖ f ‖2
1 and the contribution in (5.15) is at

most δ−4ε2−k‖ f ‖4
1 < 2−k/2. The contribution of ‖x − y‖ < 2−k/10 in (5.15) is

easily estimated by

∫∫

‖x−y‖<2−k/10

[

∫

G

| f (τgx)| | f (τgy)|�(g)dg
]2

dxdy

≤

∫∫

‖x−y‖<2−k/10

[

∫

G

| f (τgx)|2�(g)dg
][

∫

G

| f (τgy)|2�(g)dg
]

dxdy

. 2−k/10‖ f ‖4
2,

and (5.13) follows. �
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