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Abstract. A fractafold, a space that is locally modeled on a specified frac-
tal, is the fractal equivalent of a manifold. For compact fractafolds based on the
Sierpiński gasket, it was shown by the first author how to compute the discrete
spectrum of the Laplacian in terms of the spectrum of a finite graph Laplacian. A
similar problem was solved by the second author for the case of infinite blowups
of a Sierpiński gasket, where spectrum is pure point of infinite multiplicity. Both
works used the method of spectral decimations to obtain explicit description of
the eigenvalues and eigenfunctions. In this paper we combine the ideas from these
earlier works to obtain a description of the spectral resolution of the Laplacian for
noncompact fractafolds. Our main abstract results enable us to obtain a completely
explicit description of the spectral resolution of the fractafold Laplacian. For some
specific examples, we turn the spectral resolution into a “Plancherel formula”. We
also present such a formula for the graph Laplacian on the 3-regular tree, which
appears to be a new result of independent interest. At the end, we discuss periodic
fractafolds and fractal fields.
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1 Introduction

Analysis on fractals has been developed based on the construction of Laplacians on
certain basic fractals, such as the Sierpiński gasket, the Vicsek set, the Sierpiński
carpet, etc., which may be regarded as generalizations of the unit interval, in that
they are both compact and have nonempty boundary. As is well known in classical
analysis, it is often more interesting and sometimes simpler to deal with spaces like
the circle and the line, which have no boundary, and need not be compact. The
theory of analysis on manifolds is the natural context for such investigations. The
notion of fractafold, introduced in [37], is simply the fractal equivalent: a space
that is locally modeled on a specified fractal. For compact fractafolds based on
the Sierpiński gasket, it was shown in [37] how to compute the spectrum of the
Laplacian in terms of the spectrum of a Laplacian on a graph � that describes
how copies of SG are glued together to make the fractafold. On the other hand,
in [41] a similar problem was solved for the case of infinite blowups of SG. These
are noncompact fractafolds where the graph � mirrors the self-similar structure
of SG. Not surprisingly, the spectrum in the compact case is discrete, and the
eigenvalues and eigenfunctions are described by the method of spectral decimation
introduced in [11]. The surprise is that for the infinite blowups the spectrum is
pure point, meaning that there is a basis of L2 eigenfunctions (in fact compactly
supported), but each eigenspace is infinite dimensional and the closure of the set
of eigenvalues is a Cantor set. Again the method of spectral decimations allows an
explicit description of the eigenvalues and eigenfunctions.

In this paper, we combine the ideas from these earlier works [37, 41] to obtain
a description of the spectral resolution of the Laplacian for noncompact fractafolds
with infinite cell graphs �. The graph � is assumed to be 3-regular, so the fracta-
fold has no boundary. The edge graph �0 is then 4-regular, and the fractafold is
obtained as a limit of graphs obtained inductively from �0 by filling in detail (that
is, each graph triangle is eventually replaced with a copy of the Sierpiński gasket).
Our first main abstract result is Theorem 2.3, which describes how to obtain the
spectral resolution of the Laplacian on the fractafold from the spectral resolution
of the graph Laplacian on �0. This is a version of spectral decimation and uses
an idea from [27] to control the L2 norms of functions under spectral decimation.
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The second main abstract result is Theorem 3.1, which shows how to obtain the
spectral resolution of the graph Laplacian on �0 from the spectral resolution of
the graph Laplacian on � using ideas from [34, 40]. We note that the spectral
resolution on �0 may or may not contain the discrete eigenvalues equal to 6, and
the explicit determination of the 6-eigenspace and its eigenprojector must be de-
termined in a case-by-case manner. Combining the two theorems enables us to
obtain a completely explicit description of the spectral resolution of the fractafold
Laplacian to the extent that we are able to solve the following problems.

(a) Find the explicit spectral resolution of the graph Laplacian on �.
(b) Find an explicit description of the 6-eigenspace and its eigenprojector for the

graph Laplacian on �0.
The bulk of this paper is devoted to solving these two problems for some spe-

cific examples. However, we would like to highlight another problem that arises
if we wish to turn a spectral resolution into a “Plancherel formula”. Typically we
write our spectral resolutions as

(1.1) f (x) =
∫
σ(−�)

(∫
P(λ, x, y) f (y)dμ(y)

)
dm(λ),

where P(λ, x, y) is an explicit kernel realizing the projection onto the λ-eigenspace,
i.e.,

(1.2) −�
∫

P(λ, x, y) f (y)dμ(y) = λ
∫

P(λ, x, y) f (y)dμ(y)

and dm(λ) is a scalar spectral measure. (Here, neither P(λ, x, y) nor dm(λ) is
uniquely determined, since we can clearly multiply them by reciprocal functions
of λ while preserving (1.1) and (1.2).) If we write

(1.3) Pλ f (x) =
∫

P(λ, x, y) f (y)dμ(y),

then (1.1) resolves f into its components Pλ f in the λ-eigenspaces. A Plancherel
formula would express the squared L2-norm || f ||22 in terms of an integral of con-
tributions from the components Pλ f . In the case of pure point spectrum, this is
straightforward, for then the λ-integral is a discrete possibly infinite sum, and we
just have to take the L2-norm of each Pλ f , so

(1.4) || f ||22 =
∑

λ∈σ(−�)

||Pλ f ||22,

where Pλ is the eigenprojection. The spectral measure m is the counting measure
in this case.
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In the case of a continuous spectrum this is decidedly not correct, and there
does not appear to be a generic method to obtain the correct analog. So we pose
this as a third problem.

(c) Describe explicitly a Hilbert space of λ-eigenfunctions with norm || ||λ
such that ||Pλ f ||λ is finite for m − a.e. λ and

(1.5) || f ||22 =
∫
σ(−�)

||Pλ f ||2λdm(λ).

This problem is interesting essentially only when the eigenspace is infinite dimen-
sional. The resolution of this problem in some classical settings is discussed in
[35] and [14]. Here we present a solution of this problem for the graph Laplacian
on the 3-regular tree. This result appears to be new, and is of independent interest.

The first specific example we consider is the tree fractafold, discussed in Sec-
tion 4, where � is the 3-regular tree. In this case, the solution of (a) is well known
[4, 9]. We solve (b) by showing that the 6-eigenspace on �0 is infinite dimen-
sional and give an explicit tight frame for this space. We solve (c) in terms of a
mean value on the tree that is in fact different from the obvious mean value. The
fractafold spectrum in this example is a union of point spectrum and absolutely
continuous spectrum.

In Section 5, we discuss periodic fractafolds, concentrating on a honeycomb

fractafold, where � is a hexagonal lattice. In this case, the solution of (a) is
also well known. Our solution of (b) gives a basis for the infinite dimensional
6-eigenspace of compactly supported functions. Finally, in Section 6, we discuss
an example of a finitely ramified periodic Sierpiński fractal field (see [12]) which
is not a fractafold but can be treated using our methods.

Essentially all the results of this paper can be extended to fractafolds based on
the n-dimensional Sierpiński gasket, using similar methods. It seems likely that
similar results could be obtained for any p.c.f. fractal for which the method of
spectral decimation applies (see [1, 8, 10, 11, 13, 16, 18, 20, 26, 33, 39, 42, 43,
and references therein ]).

2 Set-up results for infinite Sierpiński fractafolds

2.1 Laplacian on the Sierpiński gasket. We denote by �SG the stan-
dard Laplacian on SG, and by μSG the standard normalized Hausdorff probability
measure on SG (see [17, 18, 39] for details). The Laplacian � SG is self-adjoint
on L2(SG, μSG) with appropriate boundary conditions (usually Dirichlet or Neu-
mann). The Laplacian �SG can be defined either probabilistically or analytically
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Figure 2.1. Sierpiński gasket.

using Kigami’s resistance (or energy) form and the relation

E( f, f ) = −3
2

∫
SG

f�SG fdμSG

for functions in the corresponding domain of the Laplacian. The energy is defined
by

E( f, f ) = lim
n→∞

(
5
3

)n ∑
x,y∈Vn,x∼y

( f (x) − f (y))2 .

In these formulas, Vn is a finite set of (3n+1 + 3)/2 points in SG that are at the
euclidean distance 2−n from the neighboring points, and ∼ denotes the recursively
defined graph structure on Vn. Note the normalization factor 3/2; it is inserted
here for convenience of computation. (See [39].)

2.2 Spectral decimation and the eigenfunction extension map. Both
Dirichlet and Neumann spectra of �SG are well known. (See [11, 39, 41]). To
compute the spectrum of �SG, one employs the so-called spectral decimation
method, using inverse iterations of the polynomial R(z) = z(5− z). By convention,
the eigenvalue equation is written −�SGu = λu because −�SG is a non-negative
operator. Each positive eigenvalue can be written as

(2.1) λ = lim
m→∞ 5mλm = 5m0 lim

k→∞ 5kλk+m0

for a sequence {λm}∞m =m0
such that λm = R(λm+1) and λm0 ∈ {2, 5, 6}, which can

be written as R◦k(λk+m0 ) ∈ {2, 5, 6}, where the powers R◦k of R are composition
powers. If we let Rk(z) = R◦k(5−kz), then

(2.2) R◦k(λk+m0 ) = Rk(5kλk+m0 ) = Rk

(
2
3

5−m05m05kλk+m0

)
.

Thus an important role is played by the function

(2.3) R(z) = lim
k→∞ R◦k(5−kz).

This is an analytic function, which is a classical object in complex dynamics, See
[6, 7] for more details. In the context of the Laplacian on the Sierpiński gasket, this
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function first appeared in [28, Lemma 2.1] and [5, Remark 2.5]. (See also [15, 29]
for related results). In particular, this function can be defined as the solution of the
classical functional equation

(2.4) R(R(z)) = R(5z).

Note that in a neighborhood of zero the inverse of the function R can be defined
by

(2.5) R(w) = lim
k→∞ 5kR−k(w),

and satisfies the functional equations

(2.6) 5R(w) = R(R(w))

in a neighborhood of zero.
One can see from (2.2) that each nonzero eigenvalue λ satisfies

λ ∈ 5m0R−1{2, 5, 6} ⊂
∞⋃

m =0

5mR−1{2, 5, 6}.

Some of the points in this union are so-called “forbidden eigenvalues”; the rest are
so-called 2-series, 5-series and 6-series eigenvalues; see [39]. A detailed analysis
shows that the spectrum of the Dirichlet Laplacian is

�D = 5
(
R−1{2, 5} ∪ 5R−1{5}

∞⋃
m0 =2

5m0R−1{3, 5}
)
,

and the spectrum of the Neumann Laplacian is

�N = {0} ∪ 5
(
R−1{3} ∪

∞⋃
m0 =1

5m0R−1{3, 5}
)
.

The multiplicities, which grow exponentially fast with k, were computed explicitly
in [11] and can also be found in [1, 39, 41]. Note that because of the functional
equations (2.4) and (2.6) and because R(2) = R(3) = 6, we have

5
(
R−1{2} ∪ R−1{3}

)
= R−1{6}.

We define

�ext = 5

(
R−1{2} ∪

∞⋃
m =0

5mR−1{5}
)

⊂ R−1{0, 6}.

and have the following.
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Proposition 2.1. For any v ∈ ∂SG and any complex number λ /∈ �ext, there

is a unique continuous function ψv,λ(·) : SG → R such that ψv,λ(v) = 1, ψv,λ van-
ishes at the other two boundary points, and the pointwise eigenfunction equation

−�ψv,λ(x) = λψv,λ(x) holds at every point x ∈ SG\∂SG.

Naturally, ψv,λ is called the eigenfunction extension map, which is explained
in [39, Section 3.2], and the proposition is essentially the same as [39, Theorem
3.2.2].

Example 2.2. (Spectral decimation for the unit interval [0, 1]). In order to
illustrate these notions, we briefly explain how they look in the more classical
case of the unit interval. The operator �[0,1] = d2/dx2 is the standard Laplacian
on [0, 1], and if μ[0,1] denotes Lebesgue measure on [0, 1], � [0,1] is self-adjoint,
and

E( f, f ) =
∫ 1

0
( f ′(x))2dx = −

∫
[0,1]

f�[0,1] fdμ[0,1]

for functions in the domain of the Dirichlet or Neumann Laplacian. The en-
ergy can also be defined by E( f, f ) = limn→∞ 2n∑

x,y∈Vn,x∼y ( f (x) − f (y))2, where
Vn = {k/2n}2n

k =0. To compute the spectrum of −�[0,1], one can use the spectral
decimation method with inverse iterations of the polynomial R(z) = z(4− z). Each
positive eigenvalue can be written as λ = limm→∞ 4mλm for a sequence {λm}∞m =m0

such that λm = R(λm+1) and λm0 ∈ {0, 4}. Then R(z) = limk→∞ R◦k(4−kz) =
2 − 2 cos(

√
z) satisfies the functional equation R(R(z)) = R(4z). In this case,

σ(−�[0,1]) ⊂ R−1{0, 4}, the multiplicity is one, and 0 is in the Neumann spec-
trum but not in the Dirichlet spectrum. The eigenfunction extension map is

ψv,λ(x) = cos(
√
λ |x−v |) − cos(

√
λ)

sin(
√
λ)

sin(
√
λ |x−v |),

where v is 0 or 1.
For further information on this example and its relation to quantum graphs, see

[30] and references therein.

2.3 Underlying graph assumptions and Sierpiński fractafolds. Let
�0 = (V0,E0) be a finite or infinite graph. To define a Sierpiński fractafold we
assume that �0 is a 4-regular graph that is a union of complete graphs of 3 vertices.
It can be said that �0 is a regular 3-hyper-graph in which every vertex belongs to
two hyper-edges. A hyper-edge in this case is a complete graph of 3 vertices; we
call it a cell or 0-cell of �0. We denote the discrete Laplacian on �0 by ��0 . (In
principle, these assumptions can be weakened; see Section 6 and Figure 6.1, for
instance.)
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Let SG be the usual compact Sierpiński gasket (see Figure 2.2). We define a
Sierpiński fractafold F by replacing each cell of �0 with a copy of SG. We call
these copies cells or 0-cells of the Sierpiński fractafold F. Naturally, the corners
of the copies of the Sierpiński gasket SG are identified with the vertices of �0.

A fractafold is called infinite if the graph �0 is infinite. Otherwise, the fracta-
fold is called finite. In particular, finite fractafolds are compact and infinite fracta-
folds are not. All the details concerning finite and infinte fractafolds can be found
in [37]. In this paper, we use the notation of [37] as much as possible. (See also
[40].) Since the pairwise intersections of the cells of the Sierpiński fractafold F are
finite, we can consider the natural measure on the Sierpiński fractafold F, which
we also denote μ. Furthermore, since �SG is a local operator, we can define a
local Laplacian� on the Sierpiński fractafold F, as explained in [37].

2.4 Eigenfunction extension map on fractafolds. For any v ∈ V0 and
λ /∈ �ext, there is a unique continuous function ψv,λ(·) : F → R such that

(1) the support of ψv,λ is contained in the union of of the cells of the Sierpiński
fractafold F that contain v ,

(2) ψv,λ(v) = 1,
(3) the pointwise eigenfunction equation −�ψv,λ(x) = λψv,λ(x) holds at every

point x ∈ F\V0.

For any function f0 on �0 (and any λ as above), we define the eigenfunction ex-
tension map by

(2.7) 	λ f0(x) =
∑
v∈V0

f0(v)ψv,λ(x).

By definition, f = 	λ f0 is a continuous extension of f0 to the Sierpiński fractafold
F which is a pointwise solution to the eigenvalue equation above for all x ∈ F\V0.
Moreover, it is known that if f0 is a pointwise solution of the eigenfunction equa-
tion −��0 f0 = λ0 f0 on �0, and λ0 /∈ {0, 6}, then f = 	λ f0 is a continuous
extension of f0 to the Sierpiński fractafold F which is a pointwise solution of the
eigenvalue equation above for all x ∈ F. Note that here λ ∈ R−1(λ0), where R is
as above. The eigenfunction extension map is explained in [39, p. 69].

It is easy to see that 	λ : 
2(V0) → L2(F, μ) is a bounded linear operator for
any λ /∈ R−1{2, 5, 6}, and its adjoint 	∗

λ : L2(F, μ) → 
2(V0) can be computed as

(2.8)
(
	∗
λg
)

(v) =
∫
F

g(x)ψv,λ(x)dμ(x).
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2.5 Spectral decomposition (resolution of the identity). Suppose that
the self-adjoint discrete Laplacian ��0 on �0 has a spectral decomposition (reso-
lution of the identity)

(2.9) −��0 =
∫
σ(−��0 )

λdE�0 (λ),

which has the form

(2.10) −��0 f0(v) =
∫
σ(−��0 )

λ
∑
u∈V0

P�0 (λ, u, v) f0(u)dm�0 (λ),

where m(·) is a spectral measure of −� which is a Borel measure on σ(−��0 ).
(See Section 3 for more detail.)

We define the function M (λ) as the infinite product

(2.11) M (λ) =
∞∏

m =1

(1 − λm/5)(1 − λm/2)
(1 − λm/6)(1 − 2λm/5)

,

where λ = limm→∞ 5mλm and λm = R(λm+1). The function M (·) is known from
[27, Lemma 2.2 and Corollary 2.4]; it appears when the L2 norm of eigenfunc-
tions on the Sierpiński gasket is computed. This function does not depend on the
fractafold, but only on the Sierpiński gasket.

We set

�∞ = 5

(
R−1{2} ∪

∞⋃
m =0

5mR−1{3, 5}
)
, �′

∞ = 5

( ∞⋃
m =1

5mR−1{3, 5}
)

⊂ �∞.

Note that �∞\�′∞ = 5R−1{2, 3, 5} ⊂ R−1{0, 6}.
Theorem 2.3. The Laplacian � is self-adjoint and

(2.12) R−1(σ(−��0 )) ∪ �′
∞ ⊂ σ(−�) ⊂ R−1(σ(−��0)) ∪ �∞.

Moreover, the spectral decomposition −� =
∫
σ(−�) λdE(λ) can be written as

(2.13) −� =
∫
R−1(σ(−��0 ))\�∞

λM (λ)	∗
λd
(

E�0 (R(λ))
)
	λ +

∑
λ∈�∞

λE{λ}.

Here E{λ} denotes the eigenprojection if λ is an eigenvalue. (The eigenprojection

is non-zero if and only if λ is an eigenvalue.)
All eigenvalues and eigenfunctions of � can be computed by the spectral

decimation method as so-called offsprings of either localized eigenfunctions on
approximating graph Laplacians or of eigenfunctions on �0. Furthermore, the



264 ROBERT S. STRICHARTZ AND ALEXANDER TEPLYAEV

spectral decomposition of the Laplacian � on the Sierpiński fractafold F has the

form

(2.14) −� f (x) =
∫
R−1(σ(−��0 ))\�∞

λ

(∫
F

P(λ, x, y) f (y)dμ(y)
)

dm(λ)

+
∑
λ∈�∞

λE{λ} f (x),

where m = m�0 ◦ R and

(2.15) P(λ, x, y) = M (λ)
∑

u,v∈V0

ψv,λ(x)ψu,λ(y)P�0(R(λ), u, v).

Proof. Let �0 = (V0,E0) be as above, and let �1 = (V1,E1) be a graph
obtained from �0 by replacing each cell of �0 with the graph

����
����
���� .

The three vertices of the biggest triangle replace the three vertices of each cell
of �0. We repeat this procedure recursively to define a sequence of discrete ap-
proximations Vn to the Sierpiński fractafold F. On each Vn we consider a discrete
energy form; they converge as n → ∞ with the same normalization as in Subsec-
tion 2.1. In the limit, we obtain a resistance form E of the Sierpiński fractafold F,
and one can use the theory of resistance forms of Kigami (see [18, 19]) to define
the weak Laplacian� on the Sierpiński fractafold F.

More precisely, by [19, Theorem 8.10], the resistance form is a regular Dirich-
let form on L2(F, μ), for which a self-adjoint Laplacian� is uniquely defined (see
[19, Proposition 8.11].) One sees easily that in this case, the set of continuous
compactly supported functions in Dom� such that � f is also continuous (and
compactly supported) form a core. For any such function f the Laplacian � f can
be approximated by discrete Laplacians; that is� f (x) = limn→∞ 5n�n f (x), where
�n is the graph Laplacian on Vn. The limit is pointwise for each x ∈ V∗ =

⋃
Vn

and is uniform on compact subsets of the Sierpiński fractafold F, provided � f

is continuous with compact support. The pointwise and uniform convergence of
discrete Laplacians in this case is justified in the same as way in the case of the
Laplacian on the Sierpiński gasket.

Using the notation of Subsections 2.1 and 2.2, we let mn = m�0 ◦ Rn and

Pn(λ, x, y) = Mn(λ)
∑

u,v∈V0

ψv,λ(x)ψu,λ(y)P�0(R(λ), u, v),

where Mn(λ) is defined as the partial product in the definition of M (λ). Set
�n = 5

(
R−1

n {2} ∪⋃n−1
m =0 5mR−1

m {3, 5}) and let Enλ be the eigenprojection of −�n
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corresponding to λ. Then we have the discrete version of formula (2.14) because
of the computation in [1, Theorem 3.3]. (See also Sections 3 and 4 below, where
P�0 (λ, u, v) is denoted by P̃λ(u, v).) Note that in [1, Theorem 3.3], the normaliza-
tion factor is 1/(φR′), where φ(z) = (3−2z)/

(
(5−4z)(1−2z)

)
and R(z) = z(5−4z).

This produces the normalization factor

(5 − 4z)(1 − 2z)
(3 − 2z)(5 − 8z)

=
1
3

(1 − 4z/5)(1 − 4z/2)
(1 − 4z/6)(1 − 8z/5)

,

which is the same as in (2.11). Here 4z replaces λm because of the distinction be-
tween probabilistic and graph Laplacians, and the extra factor 1/3 appears because
of the integration in (2.14).

Let u and f be continuous functions on the Sierpiński fractafold F with com-
pact support and let v = (−� + 1)−1 f . The usual energy and L2 estimates imply
that v ∈ Dom(�) is continuous and square integrable and that −�v = f − v . The
discrete approximations imply that the inner product 〈u, v〉L2 equals

∫
R−1(σ(−��0 ))\�∞

1
λ + 1

〈
u,
∫
F

P(λ, x, y) f (y)dμ(y)
〉

L2

dm(λ)

+
∑
λ∈�∞

1
λ + 1

〈u,E{λ} f 〉L2 ,

and so 〈u, v〉L2 =
∫
σ(−�)〈u, dE(λ) f 〉L2/(λ + 1) when u, f are continuous functions

with compact support. The theorem then follows by the general theory of self-
adjoint operators. (See [32, Section VIII.7].) �

2.6 Infinite Sierpiński gaskets. As a collection of first examples, we con-
sider the infinite Sierpiński gaskets, where the spectrum was analyzed in [3, 41,
31].

First, note that up to a natural isometry there is exactly one infinite Sierpiński
gasket with a distinguished boundary point (and which hence is not a fractafold),
and there are uncountably many non-isometric infinite Sierpiński gaskets which
are fractafolds. (See [41] for more detail.)

If an infinite Sierpiński gasket fractafold is build in a self-similar way, as de-
scribed in [36, 41], then the spectrum on �0 is pure point with two infinite series of
eigenvalues of infinite multiplicity. One series of eigenvalues consists of isolated
points which accumulate to the Julia set JR of the polynomial R, and the points of
the other series are located on the edges of the gaps of this Julia set (the Julia set
in this case is a real Cantor set of one dimensional Lebesgue measure zero). The
set of eigenvalues �0 on �0 consists of 6 and all the pre-images of 5 and 3 under
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Figure 2.2. A part of an infinite Sierpiński gasket.

0

3

5

6

�

�

Figure 2.3. An illustration of the computation of the spectrum on the infinite
Sierpiński gasket. The curved lines show the graph of the function R(·), the ver-
tical axis contains the spectrum of σ(−��0) and the horizontal axis contains the
spectrum σ(−�).

the inverse iterations of R. In this case formula (2.14) is the same as the formulas
for eigenprojections in [41]. An illustration of the computation of the spectrum in
Theorem 2.3 is shown in Figure 2.3, where the graph of the function R is shown
schematically and the locations of eigenvalues are denoted by small crosses. The
spectrum σ(−�) is shown on the horizontal axis and the set of eigenvalues �0 of
−��0 is shown on the vertical axis.

A different infinite Sierpiński gasket fractafold can be constructed using two
copies of an infinite Sierpiński gasket with a boundary point and joining these
copies at the boundary. This fractal was first considered in [2] and has a natu-
ral axis of symmetry between left and right copies. Therefore, we can consider
symmetric and anti-symmetric functions with respect to these symmetries. It was
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proved in [41] that the spectrum of the Laplacian restricted to the symmetric part
is pure point, with a complete set of eigenfunctions with compact support. For the
anti-symmetric part, the compactly supported eigenfunctions are not complete,
and it was proved in [31] that the Laplacian on �0 has a singular continuous com-
ponent in the spectrum, supported on JR, of spectral multiplicity one. As a corol-
lary of these and our results, we have the following proposition.

Proposition 2.4. On the Barlow-Perkins infinite Sierpiński fractafold the

spectrum of the Laplacian consists of a dense set of eigenvalues R−1(�0) of infi-
nite multiplicity and of a singularly continuous component of spectral multiplicity

one supported on R−1(JR).

3 General infinite fractafolds and the main results

Consider a fractafold with cell graph�, so� is an arbitrary infinite 3-regular graph.
The spectrum of −�� is contained in [0,6], and by the Spectral Theorem, there
exist projection operators EI corresponding to intervals I ⊆ [0, 6]. Because we are
in a discrete setting we can say a lot more. There is a kernel function EI on �× �

such that

(3.1) EI f (a) =
∑
b∈�

EI (a, b) f (b),

and I → EI (a, b) is a signed measure for each fixed a, b. Since there are countably
many such measures, we can find a single positive measure μ on [0,6] such that

(3.2) EI (a, b) =
∫

I
Pλ(a, b)dμ(λ)

for a function Pλ(a, b) defined almost anywhere with respect to μ (so Pλ(a, b) is
just the Radon-Nikodym derivative of EI (a, b) with respect to μ). In fact, by a
theorem of Besicovitch,

(3.3) Pλ(a, b) = lim
ε→0

E[λ−ε,λ+ε](a, b)
μ([λ− ε, λ + ε])

for μ− a.e. λ. (If μ is absolutely continuous, this is just the Lebesgue differential
of the integral theorem.) It follows from (3.3) that

(3.4) −��Pλ(·, b) = λPλ(·, b)

for μ− a.e. λ. Thus, if we define the pointwise projections

(3.5) Pλ f (a) =
∑
b∈�

Pλ(a, b) f (b),
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the spectral resolution is

(3.6) f =
∫
�

Pλ fdμ(λ),

with

(3.7) −��Pλ f = λPλ f,

where � ⊆ [0, 6] is the spectrum. In other words, (3.6) represents a general
function f (we may take f ∈ 
2(�), or more restrictively, a function of finite
support) as an integral of λ-eigenfunctions. Note that typically Pλ f is not in 
2(�).
Also, the measure μ and the kernel Pλ are not unique, since one may be multiplied
by g(λ) and the other divided by g(λ) for any positive function g. We are not aware
of any way to make a “canonical” choice to eliminate this ambiguity.

We also observe that the measure μ does not have a discrete atom at λ = 6. In
other words, there are no 
2(�) 6-eigenfunctions. Indeed, for a 3-regular graph,
there exist 6-eigenfunctions if an only if the graph is bipartite, in which case the 6-
eigenfunction alternates ±1 on the two parts. Since we are assuming � is infinite,
this eigenfunction is not in 
2(�).

Let �0 denote the edge graph of �. Then �0 is 4-regular. Let ��0 denote its
Laplacian. Define

(3.8) P̃λ(x, y) =
1

6 − λ

∑
a∈x

∑
b∈y

Pλ(a, b)

(there are 4 terms in the sum). Let E6 denote the space of 6-eigenfunctions in

2(�0) (this may be 0), and write P̃6 for the orthogonal projection of 
2(�0) onto
E6.

Theorem 3.1. The spectral resolution of −��0 is given by

(3.9) F = P̃6F +
∫
�

P̃λFdμ(λ),

where

(3.10) −��0 P̃λF = λP̃λF

for μ− a.e. λ, and

(3.11) P̃λF (x) =
∑
y∈�0

P̃λ(x, y)F (y).

In particular, spect(−��0) = � (if E6 = 0) or � ∪ {6}.
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For the proof, we require some lemmas.

Following [40], we define the two sum operators S1 : 
2(�) → 
2(�0) and
S2 : 
2(�0) → 
2(�) by

(3.12) S1 f (x) = f (a) + f (b) if x is the edge (a, b)

and

(3.13) S2F (a) = F (x) + F (y) + F (z) if x, y, z are the edges containing a.

Lemma 3.2. S2S1 = 6I + �� and S1S2 = 6I + ��0 . In particular, S2S1 is

invertible, S1 is one-to-one, and S2 is onto.

Proof. The formulas for S2S1 and S1S2 are simple computations. Since there
are no 6-eigenfunctions in 
2(�), we obtain the invertability of S2S1 (see also
[40]). �

It follows from Lemma 3.2 that E6 = (ImS1)⊥ and 
2(�0) = ImS1 ⊕ E6.

Lemma 3.3. For any λ �= 6, −�� f = λ f if and only if −��0S1 f = λS1 f . In

particular, sp(−��0) = sp(−��) ∪ {6}.

Proof. Suppose −�� f = λ f . Since −�� = 6I − S2S1, −S2S1 f = (λ− 6) f .
Apply S1 to this identity and use −��0 = 6I − S1S2 to obtain −��0 S1 f = λS1 f .
Similarly, we can reverse the implications. Note that the condition λ �= 6 implies
that S1 f is not identically zero (see also [40]). �

Lemma 3.4. Let F ∈ 
2(�0) be orthogonal to E6 (if E6 is nontrivial). Then

F = S1 f for

(3.14) f = (6I +��)−1S2F1.

Moreover,

(3.15) P̃λ =
1

6 − λ
S1PλS2.

Proof. For f defined by (3.4), we have S2S1 f = S2F by Lemma 3.2. Since S2

is injective on E⊥
6 and S1 f ∈ E⊥

6 , we conclude that S1 f = F .

By definition, P̃λF (x) =
∑

y∈�0

(∑
a∈x

∑
b∈y Pλ(a, b)F (y)

)
/(6 − λ), and this is

equivalent to (3.15) by the definition of S1 and S2. �
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Proof of Theorem 3.1. It suffices to establish (3.9) for F ∈ E ⊥
6 . For f

defined by (3.14), we apply S1 to (3.6), to obtain

F =
∫

S1Pλ fdμ(λ) =
∫

S1Pλ(6I +�G)−1S2Fdμ =
∫

1
6 − λ

S1PλS2Fdμ(λ),

since Pλ(6I +��)−1 = Pλ/(6 −λ). Then (3.9) follows by (3.15). We obtain (3.10)
from (3.7) and Lemma 3.3. �

In order to give an explicit form of the spectral resolution for any particular �,
we need to solve two problems.

(a) Find an explicit formula for Pλ(a, b).
(b) Give an explicit description of E6 and the projection operator P̃6.

In addition, there is one more problem we would like to solve in order to obtain
an explicit Plancherel formula. We can always write

(3.16) || f ||2
2(�) =
∫
�
< Pλ f, f > dμ(λ)

and

(3.17) ||F ||2

2(�0) = ||P̃6F ||22 +

∫
�
< P̃λF,F > dμ(λ)

for a reasonable dense space of functions f and F (certainly finitely supported
functions will do). What we would like is to replace < Pλ f, f > and < P̃λF,F >

with expressions only involving Pλ f and P̃λF and some inner product on a space
of λ-eigenfunctions. Note that from (3.2) and the fact that EI is a projection oper-
ator, we have

(3.18) < Pλ f, f >= lim
ε→0

μ([λ− ε, λ + ε])
∣∣∣∣
∣∣∣∣ 1
μ([λ− ε, λ + ε])

E[λ−ε,λ+ε] f

∣∣∣∣
∣∣∣∣
2

2

for μ− a.e. λ. This suggests the following conjecture,

Conjecture 3.5. For μ a.e. λ there exists a Hilbert space of λ-eigenfunctions

ξλ with inner product<,>λ such that Pλ f ∈ ξλ for μ−a.e. λ for every f ∈ 
2(�),
and

(3.19) < Pλ f, f >=< Pλ f,Pλ f >λ .

Moreover, a similar statement holds for < P̃λF,F > .

Our last problem is then
(c) Find an explicit description of ξλ and its inner product, and transfer this to

ξ̃λ of �0.
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4 The tree fractafold

In this section, we study in detail the spectrum of the Laplacian on the tree fracta-
fold TSG (Figure 4.1) whose cell graph � is the 3-regular tree. In a sense, this

Figure 4.1. A part of the infinite Sierpiński fractafold based on the binary tree.

example becomes the “universal covering space” of all the other examples if we
“fill in” all copies of SG with triangles.

We begin by solving problem (b).

Lemma 4.1. For any fixed z in �0, define Fz(x) = (−1/2)d(x,z)/
√

3. Then
Fz ∈ 
2(�0), ||Fz||
2(�0) = 1, and Fz ∈ E6.

Proof. Note that z has 4 neighbors {y1, y2, y3, y4} in �0 with d(y j , z) = 1, so

−��0Fz(z) = 4Fz(z)−
4∑

j =1

F (y j ) =
1√
3

(
4
(

− 1
2

)0

−4
(

− 1
2

)1)
=

6√
3

= 6Fz(z),

verifying the 6-eigenvalue equation at z.
On the other hand, if x �= z, the 4 neighbors {y1, y2, y3, y4} of x may be per-

muted so that d(y1, z) = d(x, z) − 1, d(y2, z) = d(x, z), and d(y3, z) = d(y4, z) =
d(y, z) + 1. It follows that

−��0Fz(x) = 4Fz(x) −
4∑

j =1

Fz(y j ) = Fz(x)
(

4 −
(

− 2 + 1 − 2 · 1
2

))
= 6Fz(x),
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verifying the 6-eigenvalue equation at x. Finally,

||Fz||2
2(�0) =
1
3

(
1 + 4 ·

(
1
2

)2

+ 8 ·
(

1
4

)2

+ . . .
)

=
1
3

(
1 + 1 +

1
2

+
1
4

+ . . .
)

= 1.

(See Figure 4.2). �
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Figure 4.2. Values of
√

3Fz (the center point is z).

Remark 4.2. It is easy to see from the 6-eigenvalue equation that Fz is the
unique (up to a constant multiple) function in E6 that is radial about z (a function
of d(x, z)).

Lemma 4.3.
∑

x Fz(x)Fy(x) =
√

3Fz(y).

Proof. Fix z. Then the left side is a 6-eigenfunction of y and is radial about z,
so it must be a constant multiple of Fz(y). To compute the constant, set y = z; the
left side is 1, while Fz(z) = 1/

√
3. �

Definition 4.4. Let P̃6(x, y) = Fx(y)/
√

3 = (−1/2)d(x,y)/3 and define the op-
erator

(4.1) P̃6F (x) =
∑

y

P̃6(x, y)F (y).

Theorem 4.5. P̃6 is the orthogonal projection 
2(�0) → E6.

Proof. Lemma 4.3 shows that P̃6Fz = Fz. Now we claim that the functions
Fz span E6. Indeed, if F is in E6 and is orthogonal to Fz, then we can radialize
F about z to obtain a function F̃ that is still in E6 and orthogonal to Fz. Since F̃
must be a multiple of Fz, it follows that it is identically zero. Since F̃ (z) = F (z), it
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follows that F (z) = 0. Since this holds for every z, the orthogonal complement of
the span of Fz is zero. This shows that P̃6 is the identity on E6. Also, P̃6E⊥

6 = 0,
by the orthogonality of different parts of the spectrum. �

Note that {Fz} is not an orthonormal basis of E6, since < Fz,Fy >=
√

3Fz(y)
by Lemma 4.3. The next result shows that it is a tight frame.

Theorem 4.6. For any F ∈ E6,

(4.2)
∑

z

| < F,Fz > |2 = 3||F ||2
2(�0)

Proof. We may write F =
∑

y a(y)Fy. Then

||F ||2
2(�0) =
∑

y

∑
z

a(y) ¯a(z)
√

3Fz(y).

But < F,Fz >=
∑

y a(y)
√

3Fz(y), and so∑
z

| < F,Fz > |2 = 3
∑

z

∑
y

∑
y′

a(y)a(y′)Fy(z)Fy′(z)

= 3
∑

y

∑
y′

a(y)a(y′)Fy′(y) = 3||F ||2

2(�0).

(4.3)

�

It follows from polarizing (4.3) that we may also write

P̃6F =
1
3

∑
z

< F,Fz > Fz.

The solution of problem (a) is due to Cartier [4]. We outline the solution fol-
lowing [9].

Definition 4.7. Let z ∈ C with 22z−1 �= 1. Let

c(z) =
1
3

21−z − 2z−1

2−z − 2z−1 , c(1 − z) =
1
3

2−z − 2z

2−z − 2z−1

and ϕz(n) = c(z)2−nz + c(1 − z)2−n(1−z).

Remark 4.8. Note that c(z) and c(1 − z) are characterized by the identities
c(z) + c(1 − z) = 1 and c(z)2−z + c(1 − z)2z−1 = c(z)2z + c(1 − z)21−z, which imply
ϕz(0) = 1 and ϕz(1) = ϕz(−1).

Theorem 4.9. For any fixed y ∈ �, let fy(x) = ϕz(d(x, y)). Then

(4.4) −�� fy = (3 − 2z − 21−z) fy,

and fy may be characterized as the unique (3 − 2z − 21−z)-eigenfunction which is
radial about y and satisfies fy(y) = 1.
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Proof. Uniqueness follows from the eigenvalue equation. To verify the eigen-
value equation, we do the computation separately for x �= y and x = y. For x �= y,
note that x has two neighbors, x1 and x2, with d(x1, y) = d(x2, y) = d(x, y) + 1
and one neighbor x3, with d(x3, y) = d(x, y) − 1; so the eigenvalue equation is
immediate. On the other hand, y has three neighbors, x1, x2, x3, with d(x j , y) = 1,
and the eigenvalue equation follows from ϕz(1) = ϕz(−1). �

Note that there is no choice of z that makes fy belong to 
2(�). However, the
choice z = 1/2+it gets close. Indeed, |ϕ1/2+it(d(x, y))|2 ≈ ∑

n 2n ·2−n just diverges.
So it is natural to conjecture that these eigenfunctions give the spectral resolution
of −�� on 
2(�). In fact, the following proposition is the content of [9, p. 61].

Proposition 4.10. Let 0 ≤ t ≤ π/ log 2, λ(t) = 3 − 2
√

2 cos(t log 2), and∑
= [3 − 2

√
2, 3 + 2

√
2]. Define

(4.5) Pt f (x) =
∑

y

ϕ1/2+it(d(x, y)) f (y).

Then

(4.6) f (x) =
∫ π/ log 2

0
Pt f (x)dm(t)

for the measure

(4.7) dm(t) =
log 2
3π

∣∣∣∣c
(

1
2

+ it
)∣∣∣∣

−2

dt =
(3 log 2) sin2(t log 2)

π(1 + 2 sin2(t log 2))
dt.

Note that Pt f of (4.5) satisfies −��Pt f = λ(t)Pt( f ) and that, because of peri-
odicity, choosing t ∈ [0, π/ log 2] imposes no restriction.

It is convenient to change notation so that the eigenvalue λ rather than t is the
parameter. We easily compute that for λ as in Proposition 4.10,

t =
1

log 2
cos−1

(
3 − λ

2
√

2

)
.

Note that dλ = 2
√

2 log 2 sin(t log 2)dt, sin2(t log 2) = (−λ2 + 6λ− 1)/8, and
1 + 2 sin2(t log 2) = (−λ2 + 6λ + 3)/4. If we write Pλ = Pt, the spectral resolu-
tion becomes

f (x) =
∫ 3+2

√
2

3−2
√

2
Pλ f (x)dm(λ) for dm(λ) =

3
√−λ2 + 6λ− 1√
2π(−λ2 + 6λ + 3)

dλ.

Now suppose F ∈ 
2(�0) ∩ E⊥
6 . Then we may write

F = S1 f for f = (6I +��)−1S2F ∈ 
2(�).
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Indeed,we know that 6 is in the resolvent of −��; so f is well defined, and then
S2S1 f = S2F by Lemma 3.2. Since S2 is injective on E⊥

6 and S1 f ∈ E⊥
6 , we

conclude that S1 f = F .
By Proposition 4.10, we have

(4.8) S1 f =
∫
�

S1Pλ fdm(λ),

and of course −��0S1Pλ f = λS1Pλ f by Lemma 3.3; so we define P̃λF = S1Pλ f

and obtain the spectral resolution

(4.9) F =
∫
�

P̃λFdm(λ).

Note that Pλ(6I +��)−1 = Pλ/(6 − λ), so P̃λF = S1PλS2F/(6 − λ).
We may write this quite explicitly, as follows.

Lemma 4.11. Define

(4.10) ψz(n) = c̃(z)2−nz + c̃(1 − z)2−n(1−z)

for c̃(z) = (2 + 2−z + 2z)c(z). Then

(4.11) S1PλS2F (x) =
1
3

∑
y

ψ1/2+it(d(x, y))F (y).

Note that ψz(n) = 2ϕz(n) + ϕz(n + 1) + ϕz(n − 1).

Proof. S2F (b) =
∑

y∼b F (y). There are three terms in the sum, and y ∼ b

means the edge y joins b and one of its neighbors in �. We compute

(4.12) PλS2F (a) =
∑
b∈�

∑
y∼b

ϕ 1
2 +it(d(a, b))F (y)

and

(4.13) S1PλS2F (x) =
∑
a∼x

∑
b∈�

∑
y∼b

ϕ 1
2 +it(d(a, b))F (y),

where a ∼ x means that a is one of the vertices in the edge x.
Suppose x �= y, and let n = d(x, y) with n ≥ 1, (Figure 4.3 shows the �0

graph for n = 2). Then x ∼ a1 and x ∼ a2, while y ∼ b1 and y ∼ b2, with
d(a1, b2) = d(a2, b1) = n, d(a1, b1) = n − 1, and d(a2, b2) = n + 1. The result
follows in this case.

If x = y, then d(x, y) = 0 and a1 = b1, a2 = b2; so d(a1, b2) = d(a2, b1) = 1 and
d(a1, b1) = d(a2, b2) = 0. The result follows because ϕ1/2+it(−1) = ϕ1/2+it(1). �
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Figure 4.3. Graph �0

Theorem 4.12. Any F ∈ 
2(�0) has the explicit spectral resolution

(4.14) F = P̃6F +
∫
�

P̃λFdm(λ)

for

(4.15) P̃λF (x) =
1

3(6 − λ)

∑
y

ψ1/2+it(d(x, y))F (y).

The Theorem follows by combining Lemma 4.11 and Proposition 4.10. We
note that the proof of Proposition 4.10 involves an explicit computation of the
resolvent (λI +��)−1 for λ outside the spectrum of −��, followed by a contour
integral to obtain the spectral resolution from the resolvent. We sketch some of
these ideas and then show how to carry out a similar proof for Theorem 4.12.

On 
2(�) we define

(4.16) Hz f (a) =
∑

b

2−zd(a,b) f (b).

A direct computation shows that

(4.17) (λI +��)Hz f = (2−z − 2z) f

for λ = 3 − 2z − 2 · 2−z.
Note that (3 − λ)/(2

√
2) = cosh((z − 1/2) log 2), and that in order to have

Hz bounded on 
2(�) we need �z > 1/2. This shows that spect(−��) = � and
(λI +��)−1 = Hz/(2−z − 2z) for z /∈ �.

On 
2(�0) we define

(4.18) H̃zF (x) =
∑

y

2−zd(x,y)F (y).
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Lemma 4.13. spect(−��0)
−1 = �∪{6} and (λI +�)−1 = H̃z/(2·2−z−2z−1)

for z /∈ spect(−��0).

Proof. Note that H̃z is bounded on 
2(�0) for �z > 1/2. Also λ = 6 corre-
sponds to z = 1 + πi/ log 2, for which 2 · 2−z − 2z − 1 = 2(−1/2) − (2) − 1 = 0.
Now fix x and consider its four neighbors, x1, x2, x3, x4 (so d(x, x j ) = 1). For
any fixed y �= x, we may order them so that d(x1, y) = d(x2, y) = d(x, y) + 1,
d(x3, y) = d(x, y), d(x4, y) = d(x, y) − 1. It follows that

(λI +��0 )H̃zF (x) = (λ− 4)H̃zF (x) +
∑

j

H̃zF (x j )

= (λ− 4)F (x) +
∑

j

2−zF (x)

+ (λ− 4)
∑
y�=x

2−zd(x,y)F (y) +
∑

j

∑
y�=x

2−zd(x,y)F (y)

= (2 · 2−z − 2z − 1)F (x),

(4.19)

and the result follows. �
For f ∈ 
2(�), we have

(4.20) f =
1

2πi

∫
γ
(λI +��)−1 fdλ

for any contour γ that circles� once in the counterclockwise direction. We choose
γ as shown in Figure 4.4 and take the limit as δ → 0+. The contribution from the
vertical segments goes to zero, so

��
�
�

� �

����

0 6Σ
γ

δ
δ

Figure 4.4. The contour γ for integration in (4.20).

(4.21) f = lim
δ→0+

1
2πi

∫
�

(
(λ− iδ +��)−1 − (λ + iδ +��)−1

)
fdλ.

If z = 1/2 + ε + it for ε > 0 then (3 − λ)/(2
√

2) = cos(t log 2 − iε log 2) and

(4.22) λ = 3 − 2
√

2 cos(t log 2) cosh(ε log 2) − i2
√

2 sinh(ε log 2) sin(t log 2).
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For t > 0, we have λ ≈ 3 − 2
√

2 cos(t log 2) − iδ , while for t < 0, we have
λ ≈ 3 − 2

√
2 cos(t log 2) + iδ with δ > 0. Thus

(4.23) lim
δ→0+

(
(λ− iδ +��)−1 − (λ + iδ +��)−1

)
f

=
1

2−1/2−it − 21/2+it
H1/2+it f − 1

2−1/2+it − 21/2−it
H1/2−it f,

so we obtain

(4.24)

f =
1

2πi

∫ π/ log 2

0

(
1

2−1/2−it − 21/2+it
H1/2+it f − 1

2−1/2+it − 21/2−it
H1/2−it f

)

2
√

2 log 2 sin(t log 2)dt.

This is the same as f =
∫ π/ log 2

0 Pt fdm(t).
For F ∈ 
2(�0),

(4.25) F =
1

2πi

∫
γ
(λI +��0 )

−1Fdλ +
1

2πi

∫
γ′

(λI +��0)
−1Fdλ,

where γ is as before and γ′ is a small circle about 6. Taking the limit, we obtain

(4.26) F = lim
δ→0+

1
2πi

∫
�

(
(λ− iδ +��0 )

−1F − (λ + iδ +��0 )
−1F

)
dλ

+ lim
δ→0+

1
2πi

∫ 2π

0
(6 + δeiθ +��0 )

−1Fiδeiθdθ.

As before, we can write the first term as
√

2 log 2
πi

∫
�

(
1

21/2−it − 21/2+it − 1
H̃1/2+itF

− 1
21/2+it − 21/2−it − 1

H̃1/2−itF
)

sin(t log 2)dt,

(4.27)

which we identify with
∫
� P̃λFdm(λ), while the second term is P̃6F .

Next we discuss an explicit Plancherel formula on �, given in terms of the
modified mean inner product

(4.28) < f, g >M = lim
N→∞

1
N

∑
d(x,x0)≤N

f (x)g(x).

We deal with eigenspaces for which the limit exists and is independent of the
point x0. Note that this is not the usual mean on �, since the cardinality of the
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ball {x : d(x, x0) ≤ N } is O(2n); but it is tailor made for functions of growth rate
O(2−d(x,x0)/2), which is exactly the growth rate of our eigenfunctions.

We expect that analogous results are valid for k-regular trees for all k; but to
keep the discussion simple we deal only with the case k = 3, which we need for
our applications.

Lemma 4.14. For all n and t,

(4.29) ϕ1/2+it(n) =
1
3

(
3 cos(nt log 2) +

sin(nt log 2)
tan(t log 2)

)
2−n/2.

Proof. From the definition,

ϕ1/2+it(n) =
(

2�
(
c(

1
2

+ it)
)
)2−itn

)
2−n/2.

The result follows from the explicit formula for c(1/2+ it) and some trigonometric
identities. �

In what follows, we write ϕ for ϕ1/2+it to simplify the notation.

Lemma 4.15. Let

(4.30) b(λ) = 8 +
1

sin2(t log 2)
= 8

( −λ2 + 6λ
−λ2 + 6λ− 1

)
.

Then for any integers k and j ,

lim
N→∞

1
N

N∑
n=1

2n+ k
2ϕ(n)ϕ(n + k) = lim

N→∞
1
N

N∑
n=1

2n+ j+ k
2ϕ(n + j + k)ϕ(n + j )

=
1

18
b(λ) cos(kt log 2).(4.31)

Proof. It is easy to see that (4.31) is independent of j , so we take j = 0. Then
by (4.29),

2n+ k
2ϕ(n)ϕ(n+k) =

1
9

(
3 cos(nt log 2)+

sin(nt log 2)
tan(t log 2)

)(
3 cos(nt log 2) cos(kt log 2)

−3sin(nt log 2) sin(kt log 2)+
sin(nt log 2) cos(kt log 2)

tan(t log 2)
+

cos(nt log 2) sin(kt log 2)
tan(t log 2)

)
.

Now use the identities limN→∞
(∑N

n=1cos2 nα
)
/N = limN→∞

(∑N
n=1 sin2 nα

)
/N =

1/2 and limN→∞
(∑N

n=1 cos nα sin nα
)
/N = 0 to see that the limit in (4.31) equals

1
18

(
9 cos(kt log 2) +

3 sin(kt log 2)
tan(t log 2)

− 3 sin(kt log 2)
tan(t log 2)

+
cos(kt log 2)
tan2(t log 2)

)

=
1

18
b(λ) cos(kt log 2).�
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Lemma 4.16. For any λ in the interior of � and x1 ∈ �, < Pλδx1 ,Pλδx1 >M

exists and is independent of the base point x0, and

(4.32) < Pλδx1 ,Pλδx1 >M =
1

12
b(λ).

Proof. Pλδx1 (x) = ϕ(d(x, x1)) and ϕ(n) = O(2−n/2) by (4.29). It follows easily
that the limit, if it exists, is independent of the choice of x0. Indeed, if d(x0, x′

0) = k,
then Bn−k(x′

0) ⊆ Bn(x0) ⊆ Bn+k(x′
0), and the division by N in (4.28) makes the

difference go to zero as N goes to infinity. We prove the existence of the limit by
computing (4.32) with x0 = x1.

Note that there are exactly 3 · 2n−1 points x with d(x, x0) = n for n ≥ 1, and we
can ignore the point x = x1 in computing the limit. Thus

< Pλδx1 ,Pλδx1 >M = lim
N→∞

3
2N

N∑
n=1

2nϕ(n)2 =
1

12
b(λ)

by Lemma 4.15. �

Lemma 4.17. Suppose d(x1, x2) = k and λ is in the interior of �. Then

< Pλδx1 ,Pλδx2 >M exists and is independent of the base point x0, and

(4.33) < Pλδx1 ,Pλδx2 >M =
1

12
b(λ)ϕ(k).

Proof. The proof of independence of the base point is the same as in Lemma
4.16, so we compute the limit for x0 = x1. Except for a few points when n is small
that don’t enter into the limit, we may partition the points with d(x, x1) = n as
follows:

2n points with d(x, x2) = n + k,
2n− j−1 points with d(x, x2) = n + k − 2 j for 1 ≤ j ≤ k − 1,
2n−k points with d(x, xk) = n − k.

This implies

< Pλδx1 ,Pλδx2 >M

= lim
N→∞

1
N

N∑
n=1

(
2nϕ(n)ϕ(n + k) +

1
2

k−1∑
j =1

2n− jϕ(n)ϕ(n + k − 2 j )

+ 2n−kϕ(n)ϕ(n − k)
)

=
1

18
b(λ)2−k/2

(
cos(kt log 2) +

1
2

k−1∑
j =1

cos(k − 2 j )t log 2 + cos(kt log 2)
)
,
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�

� � � � � � � d(x, x2) = n− kd(x, x2) = n+ k

d(x, x2) = n+ k − 2 d(x, x2) = n− k + 2

x1 x2

Figure 4.5. Partition of points x with d(x, x1) = n.

by Lemma 4.15.

However, the trigonometric identity sin(a)
∑k−1

j =0 cos(k − 2 j )a = sin(ka) cos(a)
implies

2 cos(kt log 2) +
1
2

k−1∑
j =1

cos(k − 2 j )t log 2

=
3
2

cos(kt log 2) +
1
2

k−1∑
j =0

cos(k − 2 j )t log 2

=
3
2

(
cos(kt log 2) +

1
3

sin(kt log 2)
tan(t log 2)

)
=

3
2
ϕ(k)2k/2

by Lemma 4.14, which implies (4.33). �

Theorem 4.18. Suppose f has finite support. Then

(4.34) < Pλ f, f >= 12b(λ)−1 < Pλ f,Pλ f >M .

Proof. Since < Pλδx1 , δx2 >= ϕ(d(x1, x2)), we can rewrite (4.33) as

< Pλδx1 , δx2 >= 12b(λ)−1 < Pλδx1 ,Pλδx1 >M ,

and (4.34) follows by linearity. �

Corollary 4.19. Let f ∈ 
2(�). Then for μa.e. λ, < Pλ f,Pλ f >M exists, and

(4.35) || f ||2
2(�) =
∫
�
< Pλ f,Pλ f >M 12b(λ)−1dμ(λ).

Proof. For f of finite support, (4.35) follows from (4.34) and (3.16). It then
follows for f ∈ 
2(�) by routine limiting arguments. �
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To complete the solution of problem (c) for this example, we need to transfer
the result from � to �0. Define the modified mean inner product on �0 by (4.28)
again, where f and g are functions on �0 and x and x0 vary in �0.

Lemma 4.20. For any integers k and j ,

lim
N→∞

1
N

N∑
n=1

2n+ k
2ψ(n)ψ(n + k) = lim

N→∞
1
N

N∑
n=1

2n+ j+ k
2ψ(n + j )ψ(n + j + k)

=
(6 − λ)2

36
b(λ) cos(kt log 2).

(4.36)

Proof. As in the proof of Lemma 4.15, it is clear that (4.36) is independent of
j , so we may take j = 0. Since ψ(k) = 2ϕ(k) +ϕ(n − 1) +ϕ(n + 1), we may reduce
(4.36) to (4.31) as follows:

lim
N→∞

1
N

N∑
n=1

2n+k/2ψ(n)ψ(n + k)

= lim
N→∞

1
N

N∑
n=1

2n+k/2(2ϕ(n) + ϕ(n−1) + ϕ(n+1)
)

× (
2ϕ(n+k) + ϕ(n+k−1) + ϕ(n+k+1)

)
=

b(λ)
18

[(
4 + 2 +

1
2

)
cos(kt log 2) + 2

(√
2 +

1√
2

)
(log(k + 1)t log 2

+ log(k − 1)t log 2) + cos(k + 2)t log 2 + cos(k − 2)t log 2
]

=
b(λ)
18

cos kt log 2
[(

4 + 2 +
1
2

)
+ψ

(√
2 +

1√
2

)
cos t log 2 + 2 cos 2t log 2

]

=
b(λ)
18

cos kt log 2
(

3√
2

+ 2 cos t log 2
)2

.

Now (4.36) follows, since 3/
√

2 + 2 cos t log 2 = (6 − λ)/
√

2. �

Lemma 4.21. For any λ in the interior of � and x1 ∈ �0, < P̃λδx1 , P̃λδx1 >M

exists and is independent of the base point x0, and

(4.37) < P̃λδx1 , P̃λδx1 >M =
b(λ)
162

.

Proof. The proof that the limit is independent of the base point is the same
as in Lemma 4.16, so we compute (4.36) with x0 = x1. Note that for n ≥ 1, there
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are exactly 4 · 2n−1 points x in V0 with d(x, x1) = n. For such points, P̃λδx1 (x) =
ψ(n)/

(
3(6 − λ)

)
=
(
2ϕ(n) + ϕ(n−1) + ϕ(n+1)

)
/
(
3(6 − λ)

)
. Thus

< P̃λδx1 , P̃λδx1 >M =
1

(6 − λ)2 · 2
9

lim
N→∞

1
N

∞∑
n=1

2n (2ϕ(n) + ϕ(n − 1) + ϕ(n + 1))2 ,

and (4.37) follows from (4.36). �

Lemma 4.22. Suppose d(x1, x2) = k and λ is in the interior of �. Then

< P̃λδx1 , P̃λδx2 >M exists and is independent of the base point, and

(4.38) < P̃λδx1 , P̃λδx2 >M =
b(λ)
36

· 1
3(6 − λ)

ψ(k).

Proof. As before we can take the base point x0 = x1. For n > k, we can sort
the 2n+1 points x with d(x, x1) = n as follows:

2n points with d(x, x2) = n + k,
2n− j points with d(x, x2) = n + k − 2 j + 1 for 1 ≤ j ≤ k, and
2n−k points with d(x, x2) = n − k.

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

. . .
d(x, x2) = n+ k

d(x, x2) = n+ k − 3

d(x, x2) = n+ k − 1

x1
� � �

d(x, x2) = n− k + 1

d(x, x2) = n− k

x2
� �

�
�

�
�

�
�
�
�

Figure 4.6. Partition of points x with d(x, x1) = n.

Thus we have

< P̃λδx1 , P̃λδx2 >M =
1

(6 − λ)2
· 1

9
lim

N→∞
1
N

N∑
n=1

ψ(n)

(
2nψ(n + k) +

k∑
j =1

2n− jψ(n + k − 2 j + 1) + 2n−kψ(n − k)
)

=
b(λ)
9 · 36

2−k/2
[

cos(kt log 2) +
1√
2

k∑
j =1

cos(k − 2 j + 1)t log 2

+ cos(kt log 2)
]
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by (4.36).
To complete the proof, we need to show

2−k/2

9

[
2 cos(kt log 2) +

1√
2

k∑
j =1

cos(k − 2 j + 1)t log 2
]

=
1

3(6 − λ)
(2ϕ(k) + ϕ(k − 1) + ϕ(k + 1)).

As we saw in the proof of Lemma 4.17,

ϕ(k) =
2
3

2−k/2(2 cos(kt log 2) +
1
2

k−1∑
j =1

cos(k − 2 j )t log 2),

so

2ϕ(k) + ϕ(k − 1) + ϕ(k + 1) =
2
3

2−k/2
(

4 cos(kt log 2) +
k−1∑
j =1

cos(k − 2 j ) log 2

+ 2
√

2 cos(k − 1)t log 2

+

√
2

2

k−2∑
j =1

cos(k − 2 j − 1)t log 2

+
√

2 cos(k + 1)t log 2

+
1

2
√

2

k∑
j =1

cos(k − 2 j + 1)t log 2
)
,

and the result follows by standard trigonometric identities. �

Theorem 4.23. Suppose F has finite support on �0. Then

(4.39) < P̃λF,F >= 36b(λ)−1 < P̃λF, P̃λF >M .

Proof. Since < P̃λδx1 , δx2 >= ψ(d(x1, x2))/
(
3(6 − λ)

)
we can rewrite (4.37)

as< P̃λδx1 , δx2 >= 36b(λ)−1 < P̃λδx1 , P̃λδx1 >M , and (4.39) follows by linearity.�

Corollary 4.24. Let F ∈ 
2(�0). Then for μ− a.e. λ in �, < P̃λF, P̃λF >M

exists, and

||F ||2
2(�0) = ||P̃6F ||22 +
∫
�
< P̃λF, P̃λF >M 36b(λ)−1dμ(λ).

Proof. The proof is the same as for Corollary 4.19. �
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Figure 4.7. A part of �1 with a 5-eigenfunction (values not shown are equal to
zero).

We end this section with a description of 5-series eigenfunctions on the graph
�1. (Note there are no 5-eigenfunctions on the graph �0). One sees easily that on
�1 there are no finitely supported 5-eigenfunctions, there are no radially symmetric
5-eigenfunctions, and that 5-eigenfunctions do not correspond to cycles. By by an
argument similar to that used in Theorem 4.5, one can show that eigenfunctions
in Figure 4.7 (with their translations, rotations and reflections) are complete in the
eigenspace E5 on �1. We do not give an explicit formula for the 5-eigenprojections
on �n. One can see that for each n > 1, there are eigenfunctions on � n that
resemble those in Figure 4.7, and also finitely supported 5-eigenfunctions. (See
Remark 5.1).

5 Periodic fractafolds

Remark 5.1. Note that on a periodic graph, linear combinations of compactly
supported eigenfunctions are dense in an eigenspace (see [23, Theorem 8], [22]
and [24, Lemma 3.5]).

The computation of compactly supported 5- and 6- series eigenfunctions is dis-
cussed in detail in [37, 41]; the eigenfunctions with compact support are complete
in the corresponding eigenspaces. In particular, [37, 41] show that any 6-series
finitely supported eigenfunction on �n+1 is the continuation of any finitely sup-
ported function on �n, and the corresponding continuous eigenfunction on the
Sierpiński fractafold F can be computed using the eigenfunction extension map on
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fractafolds; see Subsection 2.4. Similarly, any 5-series finitely supported eigen-
function on �n+1 can be described by a cycle of triangles (homology) in �n, and
the corresponding continuous eigenfunction on the Sierpiński fractafold F is com-
puted using the eigenfunction extension map on fractafolds.

Example 5.2. (The ladder fractafold). Here � is the ladder graph consisting
of two copies of Z, {ak} and {bk}, with ak ∼ bk and �0 consisting of three copies

Figure 5.1. A part of the infinite Ladder Sierpiński fractafold.

b−1 b0 b1

a−1 a0 a1

. . .. . .

Figure 5.2. � graph for the ladder fractafold

of Z, {xk+1/2}, {wk}, {yk+1/2} with wk joined to xk−1/2, xk+1/2, yk−1/2, and yk+1/2,
where xk+1/2 is the edge [ak, ak+1], xy+1/2 is the edge [bk, bk+1] and wk is the edge

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�
�

y− 3
2

y− 1
2

y 1
2

y 3
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x 1
2

x 3
2

w−1 w0 w1
. . .. . .

Figure 5.3. �0 graph for the Ladder Fractafold

[ak, bk].

It is easy to see that the spectrum of −�� is [0, 6], with the even functions
ϕθ(ak) = ϕθ(bk) = cos kθ or sin kθ, 0 ≤ θ ≤ π corresponding to λ = 2 − 2 cos θ
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in [0, 4] and the odd functions ψθ (ak) = −ψθ (bk) = cos kθ or sin kθ, 0 ≤ θ ≤ π

corresponding to λ = 4 − 2 cos θ in [2, 6].
These transfer to eigenfunctions of −��0

ϕ̃θ(xk+1/2) = ϕ̃θ(yk+1/2) = cos(k + 1/2)θ cos θ/2 or sin(k + 1/2)θ cos θ/2,

ϕ̃θ(wk) = cos kθ or sin kθ,

ψ̃θ (xk+1/2) = −ψ̃θ (yk+1/2) = cos(k + 1/2)θ or sin(k + 1/2)θ,

ψ̃θ (wk) = 0,

with the same eigenvalues. It is also easy to see that there are no 
2(�0) eigen-
functions corresponding to λ = 6 (or for any λ value whatsoever). Thus −��0 has
absolutely continuous spectrum [0, 6] with multiplicity 2 in [0, 2] and [4, 6] and
multiplicity 4 in [2, 4].

Example 5.3. (The honeycomb fractafold). Here � is the hexagonal graph
consisting of the triangular lattice L generated by (1, 0) and (1/2,

√
3/2) and

the displaced lattice L + (1/2,
√

3/6). We denote by a( j, k) the points j (1, 0) +
k(1/2,

√
3/2) of L and by b( j, k) the points a( j, k) + (1/2,

√
3/6) of the displaced

lattice, with edges a( j, k) ∼ b( j, k), a( j, k) ∼ b( j −1, k) and a( j, k) ∼ b( j, k −1).
The eigenfunctions of −�� have the form

ϕu,v (a( j, k)) = e2πi( ju+kv)

ϕu,v (b( j, k)) = γe2πi( ju+kv),

where (u, v) ∈ [0, 1] × [0, 1] and γ depends on u, v . Let 1 + e 2πiu + e2πiv = reiθ in
polar coordinates (so r and θ are functions of u, v). Note that 0 ≤ r ≤ 3. Then the
eigenvalue equation requires γ2 = e2iθ or γ = ±eiθ with corresponding eigenvalues
λ = 3 ∓ r (so the choice ± yields the intervals [0, 3] and [3, 6] in spect(−��)).

We can write the explicit spectral resolution as follows. For f ∈ 
2(�), define

f̂a(u, v) =
∑

j

∑
k

e−2πi( ju+kv) f (a( j, u))

and
f̂b(u, v) =

∑
j

∑
k

e−2πi( ju+kv) f (b( j, u)).

We can invert these, so that{
f (a( j, k))
f (b( j, k))

}
=
∫ 1

0

∫ 1

0

{
1

eiθ

}
e2πi( ju+kv) 1

2
( f̂a(u, v) + e−iθ f̂b(u, v))dudv

+
∫ 1

0

∫ 1

0

{
1

−eiθ

}
e2πi( ju+kv) 1

2
( f̂a(u, v) − e−iθ f̂b(u, v))dudv.
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Figure 5.4. A part of the infinite periodic Sierpiński fractafold based on the hexag-
onal (honeycomb) lattice.

Define λ±(u, v) by

λ±(u, v) = 3 ∓√
3 + 2 cos 2πu + 2 cos 2πv + 2 cos 2π(u − v).

For 0 ≤ λ ≤ 3, we define uθ and vθ by solving λ+(u, v) = λ; similarly for 3 ≤ λ ≤
6, we solve λ−(u, v) = λ. We then define

(5.1)

{
Pλ f (a( j, k))
Pλ f (b( j, k))

}

=
∫ 2π

0

{
1

±eiθ

}
e2πi( juθ+kvθ ) 1

2
( f̂a(uθ , vθ) ± e−iθ f̂b(uθ , vθ))

∣∣∣∣∂(uθ, vθ)∂(λ, θ)

∣∣∣∣ dθ,
to obtain f =

∫ 6
0 Pλ fdλ with −��Pλ f = λPλ f . This solves problem (a).

To solve problem (b), we identify the space E6 in 
2(�0). We may regard �0 as
an infinite union of hexagons, each vertex belonging to exactly two hexagons. For
any fixed hexagon H , define ψH to take alternate values ±1 around the vertices
of H , and to be zero elsewhere. It is easy to see that ψH in is E6. If {H j } is an
enumeration of all the hexagons in �0, then

∑
c jψH j (finite sum) is in E6.

Lemma 5.4. Suppose u ∈ E6 has compact support. Then u =
∑

c jψH j (finite
sum).

Proof. Suppose supp(u) ⊆ ⋃
j∈A H j We show that there exists j0 ∈ A and

c j0 such that supp(u − c j0ψH j0
) ⊆ ⋃

j∈A\{ j0} H j . The proof is then completed by
induction.
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Figure 5.5. A part of the Hexagonal graph
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Figure 5.6. A part of the graph �0 for the honeycomb fractafold

We choose j so that H j lies in the top row and right-most down-right slanting
diagonal of

⋃
j∈A H j . In Figure 5.7 above, j ′ = 0, and u vanishes on H1, H2, and

H3. So u(x1) = 0, u(x2) = 0, u(x3) = 0. But u(x3) + u(x4) + u(y34) = 0 because
E6 = ker(S2), and u(y34) = 0 since y34 ∈ H3. So u(x4) = 0. A similar argument
shows that u(x6) = 0. The only vertex left in H0 is x5. By subtracting off u(x5)ψH5 ,
we can make u vanish on H0.

We can systematically go across the top row in supp(u) from right to left and
remove each hexagon, only changing u on the row below it. Eventually, u is
supported on just one row, and u(x) = 0 unless x is one of the dotted points in
Figure 5.8.

Let H0 be the right most hexagon, where u is not identically zero; u |H1 = 0
implies u(x1) = u(x2) = u(x6) = 0. Considering the triangle below the row, we
get u(x5) = 0, and similarly, u(x3) = 0. Considering the triangle above x4, we get
u(x4) = 0. So u |H0 = 0. �
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Figure 5.7. Labels of hexagons and points
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Figure 5.8. A row of hexagons

Corollary 5.5. A function of compact support is in E6 if and only if

u(x1) + u(x2) + u(x3) = 0

for every triangle {x1, x2, x3} in �0.

Proof. The identity clearly holds for each ψH , hence for all compactly sup-
ported functions in E6. Conversely, every point x in �0 lies in exactly two triangles.
Summing the identity for those two triangles yields the 6-eigenvalue equation at
the point x. �

The functions {ψH j } do not form a tight frame, and it seems unlikely that they
even form a frame (the lower frame bound is doubtful), so they do not seem well
suited for describing P̃6. We can, however, find an orthonormal basis of E6 that
consists of translates of a single function, but we pay the price that the function is
not compactly supported.

We change notation to index the hexagons in Figure 5.6 by the lattice

[ j, k] = j

{
0
1

}
+ k

{
1/2√
3/2

}
.
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Note that hexagon H[ j,k] has six neighbors H[ j ′,k′] for

[ j ′, k′] = [ j, k] + {[1, 0], [−1, 0], [0, 1], [0,−1], [1,−1], [−1, 1]}.
To describe a function

(5.2) F =
∑
Z2

f ([ j, k])ψH[ j,k],

it suffices to give the discrete Fourier transform f̂ (a, b) for (a, b) ∈ [0, 1] × [0, 1]
given by

(5.3) f̂ (a, b) =
∑
Z2

f ([ j, k])e−2πi(a j+bk),

for then

(5.4) f ([ j, k]) =
∫ 1

0

∫ 1

0
e2πi(a j+bk) f̂ (a, b)dadb.

In fact, we construct f̂ (a, b) directly; then we substitute this into (5.4) and finally
into (5.2) to obtain our function in E6.

The basic observation is that each point in �0 lies in exactly two neighboring
hexagons, and the values of ψH for those two hexagons are ±1. Thus

< F,F >
2(�0) =
∑ | f ([ j, k]) − f ([ j ′, k′])|2

for f of the form (5.2), where the sum is over all neighboring pairs, and by polar-
ization, we have

(5.5) < F,G >
2(�0) =
∑(

f ([ j, k]) − f ([ j ′, k′])(g([ j, k]) − g([ j ′, k′]))
)

if F and G are of the form (5.2). Now we substitute (5.4) into (5.5), to obtain

(5.6) < F,G >
2(�0) =
∫ 1

0

∫ 1

0

∑
Z2

e2πi(a j+bk) f̂ (a, b)[6−e2πia−e−2πia−e2πib

−e−2πib−e2πi(a−b)−e2πi(b−a)]g([ j, k])dadb

because of the form of the neighboring relation between [ j, k] and [ j ′, k′]. But
then we can evaluate the sum in (5.6) using (5.3), to obtain

(5.7) < F,G >
2(�0) =
∫ 1

0

∫ 1

0
2(3− cos(2πa)− cos(2πb)− cos(2π(a − b)))

f̂ (a, b) f̂ (a, b)dadb.
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Lemma 5.6. The functions τp,qF =
∑

Z2 f ([ j, k] + [p, q])ψH[ j,k] form an or-

thonormal basis of E6 for [p, q] ∈ Z2 if and only if

(5.8) | f̂ (a, b)| =
1√

2(3 − cos(2πa) − cos(2πb) − cos(2π(a − b)))
.

Proof. We note that for τp,q f ([ j, k]) = f ([ j, k] + [p, q]), we have

(5.9) (τp,q f )̂(a, b) = e2πi(ap+bq) f̂ (a, b)

from (5.3), so

(5.10) < F, τp,qF >
2(�0) =
∫ 1

0

∫ 1

0
e−2πi(ap+bq)2(3 − cos(2πa) − cos(2πb)

− cos(2π(a − b)))| f̂ (a, b)|2dadb

by (5.9) and (5.7). But the right side of (5.10) is δ (p, q) if and only if

2 (3 − cos(2πa) − cos(2πb) − cos(2π(a − b))) | f̂ (a, b)|2

is identically one, and this is equivalent to (5.8). �

We are free to choose any phase in (5.8); since it is not clear what is to be
gained, we simply choose f̂ (a, b) to be positive. Note that the only singularity
of f̂ is near (0, 0), where it behaves like (a2 + b2)−1/2, so the singularity is inte-
grable, but not square integrable. Thus (5.4) is everywhere finite and decays as
O
(
( j 2 + k2)−1/2

)
. Although f is not in 
2(Z2), we do have F ∈ 
2(�0).

Theorem 5.7. Let

(5.11) f̃ ([ j, k]) =
∫ 1

0

∫ 1

0

e2πi(a j+bk)

√
2 (3 − cos(2πa) − cos(2πb) − cos(2π(a − b)))

dadb.

Then
{∑

Z2 τp,q f̃ ([ j, k])ψH[ j,k]

}
is an orthonormal basis of E6, and

(5.12) P̃6F (x) =
∑

[p,q]∈Z2

(∑
y∈�0

∑
[ j,k]∈Z2

τp,q f̃ ([ j, k])ψH[ j,k] (y)F (y)
)

∑
[ j ′,k′]∈Z2

τp,q f̃ ([ j ′, k′])ψH[ j ′ ,k′ ] (x).

Proof. This is an immediate consequence of Lemma 5.6. �



SPECTRAL ANALYSIS ON INFINITE SIERPIŃSKI FRACTAFOLDS 293

6 Non-fractafold examples

Theorem 2.3 can be applied to examples which are not fractafolds. We assume that
�0 = (V0,E) is a finite or infinite graph which is a union of complete graphs of 3
vertices. (It can be said that �0 is a 3-hyper-graph.) In principle, we can allow �0

to have unbounded degrees as well as loops and multiple edges; but in this section,
we keep everything simple and assume that �0 is a regular graph. As before, we
call each of these complete 3-graphs a cell, or 0-cell, of �0. We denote the discrete
Laplacian on �0 by ��0 . We define a finitely ramified Sierpiński fractal
field F by replacing each cell of �0 with a copy of SG. We call these copies cells,
or 0-cells, of F. Naturally, the corners of the copies of the Sierpi ński gasket SG
are identified with the vertices of �0. See [12] for fractal fields, not necessarily
finitely ramified. Since the pairwise intersections of the cells of F are finite, we
can consider the natural measure on F, which we also denote by μ. Furthermore,
since �SG is a local operator, we can define a local Laplacian � on F in the

Figure 6.1. A part of the periodic triangular lattice finitely ramified Sierpiński
fractal field. This fractal field is not a fractafold.
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Figure 6.2. A part of the infinite triangular lattice, the �0 graph for the fractal field
in Figure 6.1.
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same way as explained in [37]. (This means that the sum of normal derivatives is
zero at every junction point.) Most of our results can be easily generalized for the
finitely ramified Sierpiński fractal fields. For instance, Theorem 2.3 is essentially
still valid. One change needed is that on the graph �, we have to consider the
probabilistic Laplacian (which is explained in [26, 33]) and multiply it by 4 to
align with the normalization of the Laplacian on the Sierpiński gasket.

In the example shown in Figure 6.2, the spectrum on �0 is [0, 8] for the
adjacency matrix Laplacian, and the spectrum is [0, 4/3] for the probabilistic
Laplacian. Thus �0 = [0, 16/3]. In this particular case, the spectrum is absolutely
continuous by the classical theory. (See [21, 22, 23, 24, 25] and the references
within for a sample of relevant recent results on periodic Laplacians.) Combining
the methods described in this paper, we obtain the following proposition (see also
Figure 6.3).

0

Σ0

16
3

6

�

�

Figure 6.3. Computation of the spectrum on the triangular lattice finitely ramified
Sierpiński fractal field.

Proposition 6.1. The Laplacian on the periodic triangular lattice finitely

ramified Sierpiński fractal field consists of absolutely continuous spectrum and

pure point spectrum. The absolutely continuous spectrum is R−1[0, 16/3]. The
pure point spectrum consists of two infinite series of eigenvalues of infinite mul-

tiplicity. The series 5R−1{3} � R−1{6} consists of isolated eigenvalues, and the
series 5R−1{5} = R−1{0}\{0} is at the gap edges of the a.c. spectrum. The eigen-

function with compact support are complete in the p.p. spectrum. The spectral
resolution is given by (2.14).

It is straightforward to generalize such a result for other finitely ramified
Sierpiński fractal fields (see, in particular, Remark 5.1).
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[17] J. Kigami, A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math. 6 (1989), 259–290.

[18] J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001.

[19] J. Kigami, Harmonic analysis for resistance forms, J. Funct. Anal. 204 (2003), 399–444.

[20] B. Krön and E. Teufl, Asymptotics of the transition probabilities of the simple random walk on
self-similar graph, Trans. Amer. Math. Soc. 356 (2003), 393–414.

[21] P. Kuchment, On the Floquet theory of periodic difference equations, Geometrical and Alge-
braical Aspects in Several Complex Variables (Cetraro, 1989), EditEl, Rende, 1991, pp. 201–209.

[22] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser Verlag, Basel, 1993.
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