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Abstract. This paper is a continuation of our earlier work and focuses on the

structural and geometric properties of functions in analytic Besov spaces, primar-

ily on univalent functions in such spaces and their image domains. We improve

several earlier results.

Introduction

In this paper, we continue the study of growth properties of functions in analytic

Besov spaces Bp, 1 ≤ p < ∞, and of their image domains. The spaces Bp are con-

formally invariant and represent a natural generalization of the classical Dirichlet

space D = B2 of analytic functions in the unit disk whose image Riemann sur-

face has finite area. They are also important in view of their relationship to the

Bergman projection and Hankel operators on Bergman spaces. These spaces and

their operators were studied extensively in the mid 80’s and early 90’s in [4], [21],

[22], [38] and, more recently, in [36], [8], [11], [35], [7], and [9], especially from

a geometric point of view.

It is a well-known fact that the only Blaschke products in Bp spaces are the

finite ones. However, if the zeros of a Blaschke product lie in a Stolz angle with

vertex at z = 1 and we multiply the product by (1 − z)α, then the new function that

arises this way may belong to certain Besov spaces. We consider such “modified

Blaschke products” in Section 2. It should be noted that this question is actually

equivalent to that of membership in a weighted Bergman space of the derivative of
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the Blaschke product in question; a problem that has been of interest to a number

of authors. We also obtain analogous results for atomic singular inner functions.

In Section 3, we discuss the growth of functions in Bp spaces. It is well known

(see [21] or [38]) that a function in Bp, 1 < p <∞, satisfies the following growth

condition:

(1) | f (z)| = o

(

(

log
1

1 − |z|

)1−1/p
)

, as |z| → 1 .

This is known to be sharp in the following sense: in the proof of Theorem 24 of

[8], a univalent function was constructed in Bp, 1 < p <∞, with the property that

| f (zn)| & n−t(1−1/p)

(

log
1

1 − |zn|

)1−1/p

as n → ∞,

for t > 1/(p − 1) and infinitely many points zn in the unit disk. This has recently

been refined further in [9]. Here we show that when 2 < p < ∞, estimate (1)

is sharp even in a stronger sense: we prove that for a large class of functions

α : [0,∞) → [0,∞) satisfying α(t) ց 0 as t → ∞, there exists a univalent map

f in Bp that maps the radius [0, 1) onto the semi-axis [0,∞) in such a fashion that

f (r) & α

(

1

1 − r

)

·

(

log
1

1 − r

)1−1/p

, as r → 1− .

Estimate (1) implies that for every function f in Bp with f (0) = 0 we have

∫ 1

0

(1 − r)p−2| f (r)|p

rp−1
dr ≤ C

∫ 1

0

(1 − r)p−2
(

log 1
1−r

)p−1

rp−1
dr < ∞,

while, on the other hand, our result shows that for a certain conformal map f of

the unit disc D and a function α : [0, 1) → [0,∞) that tends to zero as r → 1−

and satisfies some additional conditions, we also have

∫ 1

0

(1 − r)p−2| f (r)|p

rp−1
dr ≥

∫ 1

0

α(r)(1 − r)p−2
(

log 1
1−r

)p−1

rp−1
dr,

meaning that the previous inequality is essentially sharp even for conformal maps

that belong to Bp. However, this can still be improved. We show this in Section 4.

Consider a univalent map f in D which fixes the origin and denote by d (r)

the length of the Jordan arc onto which the truncated diameter (−r, r) is mapped,

0 < r < 1. Trivially, | f (r)| ≤ d (r) in this case. We prove that

22−p

∫ 1

0

(1 − r2)p−2d (r)p

rp−1
dr ≤ ‖ f ‖

p
Bp .
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In particular, when f ∈ D, this reduces to the simple inequality

∫ 1

0

d (r)2

r
dr ≤ A(�),

which resembles Ahlfors’ classical length–area principle ([20], Chapter 2) and can

also be considered as yet another analogue of the classical Fejér–Riesz inequality

(see [14] or Chapter 3 of [13]). It clearly differs from the analogues obtained

earlier by Shields [33] and Holland–Walsh [21].

In Section 5, we discuss the minimal Besov space B1 and the image domains

of certain functions in this space. We also improve further some relevant examples

from [36] and [11]. In particular, we prove that a univalent function in D whose

image is a bounded convex domain belongs to B1. On the other hand, we also

prove that there exists a univalent function in D that does not belong to any of the

spaces Bp with 1 ≤ p < 2 but whose image is a bounded starlike domain.

In Section 6, we exhibit a class of non-finitely valent self-maps of the disc in Bp

that cover certain parts of the disk once, twice, three times, etc. We also make our

discussion of the univalent Besov domains from the earlier paper [11] more precise

in the case of the Dirichlet space. By improving a construction found in that

paper, we obtain a curious geometric-topological property of domains of finite area

which, to the best of our knowledge, does not seem to be well known, or at least

does not seem to have an easy or well-known proof. Namely, we prove that any

planar domain� contains a simply connected domain�′ such that�\�′ has finite

length and with the property that
∫

� dist(w, ∂�)α dA(w) ≈
∫

�′ dist(w, ∂�′)α dA(w),

for any α ≥ 0.

1 Some important function spaces

Throughout the paper, D(z, r) denotes the disk of radius r centered at z. The unit

disk D(0, 1) is denoted by D.

Let H p (0 < p < ∞) denote the Hardy space of analytic functions in D for

which the integral means

Mp(r, f ) =

(
∫ 2π

0

| f (reiθ)|p
dθ

2π

)1/p

are bounded for r ∈ (0, 1) and define the norm ‖ f ‖Hp = limr→1− Mp(r, f ) as usual.

The space H∞ consists of all bounded analytic functions in D. We use the same

letter to denote the values of an H p function in the disk and its radial limits on the

unit circle. All basic information on Hardy spaces needed here can be found in

[13].
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Let dA(z) = rdrdθ be Lebesgue area measure on C. For 0 < p < ∞,

−1 < α < ∞, denote by A
p
α the weighted Bergman space of all analytic func-

tions in the disk with the finite weighted Lp area norm

‖ f ‖
p

A
p
α

= (α + 1)

∫

D

| f (z)|p(1 − |z|2)αdA(z) <∞ .

The standard (unweighted) Bergman space is Ap = A
p
0. As an important example of

a class of basic functions in Bergman spaces, we mention that (for a real parameter

α)

(2) (1 − z)−α ∈ Ap if and only if αp < 2.

This is easy to check by integrating in polar coordinates centered at z = 1, rather

than at the origin.

For a ∈ D, define the Möbius map ϕa : D → D by

ϕa(z) =
a − z

1 − az
, z ∈ D.

Then ϕa is an involutive conformal mapping from D onto itself. Let Aut(D) denote

the group of all conformal mappings from D onto itself. It is well known that

Aut(D) coincides with the set of all Möbius transformations from D onto itself:

Aut(D) = Möb(D) = {λϕa : a ∈ D, |λ| = 1}.

A space X of analytic functions in D, equipped with a semi-norm ρ, is said to

be conformally invariant or Möbius invariant if whenever f ∈ X , then also

f ◦ ϕ ∈ X for any ϕ ∈ Aut(D) and, moreover, ρ( f ◦ ϕ) ≤ Cρ( f ) for some positive

constant C and all f ∈ X .

The Bloch space B consists of all analytic functions f in D with bounded

invariant derivative:

‖ f ‖B

def
= | f (0)| + sup

z∈D

(1 − |z|2) | f ′(z)| <∞.

The little Bloch space B0 is the closure of the polynomials in the topology given

by the above norm of B and consists of all functions f analytic in D for which

lim
|z|→1

(1 − |z|2)| f ′(z)| = 0.

A classical source for Bloch functions is [3]. The Bloch space is conformally

invariant. In fact, Rubel and Timoney [32] proved that it is the largest one in the

sense that any reasonable Möbius invariant space of analytic functions in D can be

continuously injected into the Bloch space.



FUNCTIONS IN MÖBIUS INVARIANT SPACES 241

The space BMOA consists of those functions f ∈ H 1 whose boundary values

have bounded mean oscillation on the unit circle ∂D as defined by F. John and

L. Nirenberg. Equivalently, an analytic function f ∈ D belongs to BMOA if and

only if supa∈D ‖ f ◦ ϕa − f (a)‖Hp < ∞, for some (or, equivalently, for all) p ∈

(0,∞). It is well known that H∞ ⊂ BMOA ⊂ B.

The space VMOA was defined by Sarason and is the set of all analytic functions

f ∈ D that satisfy lim|a|→1 ‖ f ◦ ϕa − f (a)‖Hp = 0 for some (or, equivalently, for

all) finite positive p. Alternatively, VMOA is the closure of the polynomials in

the BMOA norm topology. The space BMOA is also conformally invariant and we

have H∞ ⊂ BMOA ⊂ B and VMOA ⊂ B0. A lot of information about the spaces

BMOA and VMOA can be found in [5] and [18].

The analytic Besov space Bp is defined for 1 < p < ∞ as the set of all

analytic functions in the disk such that

‖ f ‖Bp =

(

(p − 1)

∫

D

| f ′(z)|p(1 − |z|2)p−2dA(z)

)1/p

< ∞.

The Bp spaces are conformally invariant; i.e, ‖ f ◦ ϕ‖Bp = ‖ f ‖Bp for all disk au-

tomorphisms ϕ. A very important member of this scale of spaces is the Dirichlet

space B2 = D. The minimal Besov space B1 is defined as the space of all

functions f analytic in D for which f ′′ ∈ A1. It is well known [4] that

B1 ⊂ 3(1, 1) ⊂
⋂

1<p<∞

Bp,

where 3(1, 1) denotes the Lipschitz space of all analytic functions in D such that

f ′ ∈ H 1.

2 Modified Blaschke products

It is well known that no inner function other than a finite Blaschke product can

belong to any Bp space (see, for example, [24], [11]). For an infinite Blaschke

product B , the function |B ′|p may or may not be integrable; this depends to a

great extent on the behavior of B near its zeros. See [1], [2], [24], or [19] for

more details and further references. However, it turns out that if the zeros of a

Blaschke product B are all located in a Stolz angle with vertex at, say, z = 1,

then multiplying B by the simple outer “correction factor” (1 − z)α may place it

in the space Bp. Such results are natural in view of the well-known fact that a

Blaschke product of this kind can be extended analytically across the entire unit

circle minus the point z = 1 [16, Theorem 6.1] and also because a statement of

this type is equivalent to the problem of the membership of B ′ in the weighted
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Bergman space A
p
p−2, which again falls within the circle of problems mentioned

above.

Theorem 1. Let B be an infinite Blaschke product whose zeros belong to a

Stolz angle with vertex at 1.

(i) If α > 2, then the modified function (1 − z)αB(z) belongs to B1.

(ii) If 0 < α ≤ 2, then (1 − z)αB(z) ∈
⋂

2/α<p<∞ Bp.

The following result is used in the proof of Theorem 1.

Lemma 1. If the zeros {an}
∞
n=1 of a Blaschke product B all lie in a Stolz angle

with vertex at 1, then there exists a positive constant C such that

|1 − z|2|B ′(z)| ≤ C and |1 − z|4|B ′′(z)| ≤ C, z ∈ D.

Proof. The first inequality is explicit in the course of the proof of Theorem 2.3

in [19]. In fact, it was proved there that the constant C can be taken to be of the

form

(3) C = K

∞
∑

n=1

(1 − |an|),

where the constant K depends only on the aperture of the Stolz angle.

Let us now prove the second inequality. We argue as on pp. 676–677 of [19].

Write

bn(z) =
|an|

an

an − z

1 − anz
, B(z) =

∞
∏

n=1

bn(z), Bn(z) =
B(z)

bn(z)
.

The zero set of the Blaschke product Bn is {ak}k 6=n, trivially a subset of the zero set

of B . Thus, by applying condition (3) in the observation above to both Bn and B ,

it follows that

(4) |1 − z|2|B ′
n(z)| ≤ K

∞
∑

k =1

(1 − |ak|) = C1,

for all z ∈ D and all positive integers n. Since B ′(z) =
∑∞

n=1 b′
n(z) · Bn(z) and

B ′′(z) =

∞
∑

n=1

b′′
n(z) · Bn(z) +

∞
∑

n=1

b′
n(z) · B ′

n(z),

we have

(5) |B ′′(z)| ≤ 2

∞
∑

n=1

1 − |an|
2

|1 − anz|3
|Bn(z)| +

∞
∑

n=1

1 − |an|
2

|1 − anz|2
|B ′

n(z)|.

Using (5), Lemma 2.1 of [19] and (4), we easily obtain |1 − z|4|B ′′(z)| ≤ C, as

claimed. �
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Proof of Theorem 1. Let us begin by observing that

[(1 − z)αB(z)]′ = −α(1 − z)α−1B(z) + (1 − z)αB ′(z)

and

(6) [(1− z)αB(z)]′′ = α(α−1)(1− z)α−2B(z)−2α(1− z)α−1B ′(z) + (1− z)αB ′′(z).

Suppose first that α > 2. Using Lemma 1, we see that

|(1−z)α−2B(z)| ≤ C, |(1−z)α−1B ′(z)| ≤
C

|1 − z|3−α
, |(1−z)αB ′′(z)| ≤

C

|1 − z|4−α

for all z ∈ D . In view of 4 − α < 2 and (2), this implies that [(1 − z)αB(z)]′′ ∈ A1,

which is the same as saying that (1 − z)αB(z) ∈ B1.

Suppose now that 0 < α ≤ 2 and p > 2/α. Since α > 0, again using (2),

we see that
∫

D
|(1 − z)α−2|dA(z) < ∞. Hence (1 − z)α ∈ B1 ⊂ Bp. This and

the fact that B is bounded imply that
∫

D
|(1 − z)α−1B(z)|p(1 − |z|2)p−2 dA(z) <∞.

Therefore, it follows that (1 − z)αB(z) ∈ Bp if and only if

∫

D

|1 − z|αp|B ′(z)|p(1 − |z|2)p−2dA(z) < ∞.

Using Lemma 1 and the Schwarz–Pick lemma, we get

|1 − z|αp|B ′(z)|p(1 − |z|2)p−2

=
(

|1 − z|2|B ′(z)|
)
αp

2

[(1 − |z|2)|B ′(z)|]p−
αp

2 · (1 − |z|2)
αp

2
−2

≤ C
αp

2 [1 − |B(z)|2]p−
αp

2 (1 − |z|2)
αp

2
−2

≤ C
αp

2 (1 − |z|2)
αp

2
−2,

and the latter function is integrable since αp/2 − 2 > −1 by assumption. �

Recall that an interpolating Blaschke product is a Blaschke product

whose zero sequence is uniformly separated (equivalently, interpolating for H∞;

see [13, Chapter 9]). It follows from a well-known paper by Newman [27] that

for those Blaschke products whose zeros belong to a Stolz angle, the following

conditions on their zeros are all equivalent:

- the zeros form an interpolating sequence,

- the zeros form a uniformly discrete sequence,

- the zeros are a finite union of exponential sequences.

Assuming any one of these conditions improves many integrability properties

of B ′ and allows us to place the function (1 − z)αB(z) into a significantly smaller

space. We prove the following result.
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Theorem 2. If the zeros of an interpolating Blaschke product B belong to a

Stolz angle with vertex at 1 and α > 0, then (1 − z)αB(z) ∈ B1.

As noted above, if B is a Blaschke product with zeros in a Stolz angle with

vertex at 1, then (1 − z)2B ′(z) and (1 − z)4B ′′(z) belong to H∞. In the following

lemma, we obtain an improved result of this kind by assuming in addition that the

sequence is interpolating. This result is used in the proof of Theorem 2.

Lemma 2. Suppose that ε > 0 and B is an interpolating Blaschke product

whose sequence of zeros is contained in a Stolz angle with vertex at 1. Then

(1 − z)1+εB ′(z) ∈ H∞ and (1 − z)2+εB ′′(z) ∈ H∞.

Proof. Let {an} be the sequence of zeros of B . Using the above-mentioned

result of Newman, we know that it is a finite union of exponential sequences. Let

us set as before

(7) bn(z) =
|an|

an

an − z

1 − anz
, B(z) =

∞
∏

n=1

bn(z), Bn(z) =
B(z)

bn(z)
.

Then

B ′(z) =

∞
∑

n=1

b′
n(z) · Bn(z),

whence

|B ′(z)| ≤

∞
∑

n=1

1 − |an|
2

|1 − anz|2
|Bn(z)| ≤

∞
∑

n=1

1 − |an|
2

|1 − anz|2
.

Applying Lemma 2.1 of [19], we obtain

(8)

|(1 − z)1+εB ′(z)| ≤

∞
∑

n=1

∣

∣

∣

∣

1 − z

1 − anz

∣

∣

∣

∣

1+ε ∣
∣

∣

∣

1 − |an|
2

1 − anz

∣

∣

∣

∣

1−ε

(1 − |an|
2)ε ≤ C

∞
∑

n=1

(1 − |an|)
ε.

The last sum is finite because ε > 0 and {an} is a finite union of exponential

sequences. Hence, we have proved that (1 − z)1+εB ′(z) ∈ H∞.

On the other hand, just as in the proof of Lemma 1, we have

(9) |B ′′(z)| ≤ 2

∞
∑

n=1

1 − |an|
2

|1 − anz|3
|Bn(z)| +

∞
∑

n=1

1 − |an|
2

|1 − anz|2
|B ′

n(z)|.

Applying (8) to Bn instead of B and with ε/2 replacing ε, we see that there exists

a positive constant A such that

|(1 − z)1+ ε
2 B ′

n(z)| ≤ A, z ∈ D, n = 1, 2, . . . .
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Using this and Lemma 2.1 of [19] in (9) yields

|(1 − z)2+εB ′′(z)| ≤2

∞
∑

n=1

∣

∣

∣

∣

1 − z

1 − anz

∣

∣

∣

∣

2+ε ∣
∣

∣

∣

1 − |an|
2

1 − anz

∣

∣

∣

∣

1−ε

(1 − |an|
2)ε

+ A

∞
∑

n=1

∣

∣

∣

∣

1 − z

1 − anz

∣

∣

∣

∣

1+ ε
2
∣

∣

∣

∣

1 − |an|
2

1 − anz

∣

∣

∣

∣

1− ε
2

(1 − |an|
2)ε/2

≤C1

∞
∑

n=1

(1 − |an|
2)ε + C2

∞
∑

n=1

(1 − |an|
2)ε/2 < ∞.

Thus (1 − z)2+εB ′′(z) ∈ H∞ as claimed. �

Proof of Theorem 2. Take ε ∈ (0, α). Bearing in mind (6) and using

Lemma 2, we deduce that

|[(1 − z)αB(z)]′′| .

(

|B(z)|

|1 − z|2−α
+

|B ′(z)|

|1 − z|1−α+ε
+

|B ′′(z)|

|1 − z|−α

)

.

(

1

|1 − z|2−α
+

1

|1 − z|2−α+ε
+

1

|1 − z|2−α+ǫ

)

.

Since 2 − α + ε < 2, the result follows readily. �

It is natural to look for analogues of our theorems 1 and 2 for an atomic singular

inner function S instead of a Blaschke product. For simplicity, we consider only

the case α = 1. Relying on a theorem of Mateljević and Pavlović [25], we prove

the following result.

Theorem 3. Let S denote the atomic singular inner function with mass con-

centrated at 1

S(z) = exp

(

z + 1

z − 1

)

.

Then the modified function (1 − z)S(z) belongs to
⋂

1<p<∞ Bp but not to 3(1, 1).

Proof. Set F (z) = (1 − z)S ′(z) (z ∈ D). It is clear that (1 − z)S(z) ∈ 3(1, 1) if

and only if F ∈ H 1 and that (1 − z)S(z) ∈ Bp if and only if F ∈ A
p
p−2 (p > 1). The

technique used in the proof of the main theorem from [25] yields

(10) M1(r,F ) ≍ log
1

1 − r
and

(11) M p
p (r,F ) ≍ (1 − r)

1
2

(1−p), 1 < p <∞.

Trivially, (10) implies that F /∈ H 1 and (11) implies that F ′ ∈ Bp whenever

1 < p < ∞. �
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3 On the rate of growth of Besov functions

A complex-valued function defined in D is said to be univalent if it is analytic

and one-to-one. We refer to [12], [28] and [30] for the theory of such functions.

Throughout the paper, U stands for the class of all univalent functions in D. It is

often useful to consider certain normalized subclasses of U such as

S = { f ∈ U : f (0) = 0, f ′(0) = 1}.

The following “big-Oh” estimate for the growth of Bp functions (1 < p < ∞)

is well known [38, Theorem 9]:

(12) | f (z)| = O
((

log
1 + |z|

1 − |z|

)1−1/p)

, as |z| → 1−.

A similar “little-oh” statement is also well known.

Proposition 1. Whenever f ∈ Bp, 1 < p <∞, we have

| f (z)| = o
((

log
1

1 − |z|

)1−1/p)

, as |z| → 1−.

The following question comes to mind immediately: can we find a function

in Bp that grows at the power-logarithmic rate times a prescribed function that

tends to zero? Our first result in this section shows that the answer is affirmative if

2 < p < ∞. In order to produce such an example, we use a construction similar

to the those used in the papers [8], [11], or [9], with one additional element. In

addition to controlling simultaneously the geometry of the domain and the growth

of the derivative of the conformal map of the disk onto it, we also control the

growth of the proper conformal map along a whole radius.

In what follows, for two positive functions of r ∈ (0, 1) we write φ(r) & ψ(r),

as r → 1, to indicate that φ(r) ≥ mψ(r) for some fixed positive m and all r

sufficiently close to 1. Likewise, φ(r) ≍ ψ(r), as r → 1, means that φ(r) & ψ(r)

and ψ(r) & φ(r), as r → 1.

Theorem 4. Let 2 ≤ p < ∞ and let α : [0,∞) → (0,∞) be a decreasing

function that satisfies the following conditions.

(i)
∫∞

e
α(t)p−1/t log t dt <∞.

(ii) There exists a positive constant C such that α(et) ≥ Cα(t), for all t > 0.

Then there exists a univalent map f in the disk such that f ∈ Bp and f (0) = 0.

Moreover, f (r) is real and positive for all positive r, and

f (r) & α

(

1

1 − r

)

·

(

log
1

1 − r

)1−1/p

, as r → 1−.
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Proof. We may assume without loss of generality that α(0) < 1. Define

β : [0,∞) → (0,∞) by β(x) = α

(

1

2
ex

)

.

Clearly, β is a decreasing function in [0,∞) and limx→∞ β(x) = 0. Also, β satis-

fies the following two conditions:

(a) β(x + 1) ≥ Cβ(x), for all x > 0;

(b)
∫∞

1
β(x)p−1/x dx < ∞.

Observe that

(13) β

(

log
2

1 − r

)

= α

(

1

1 − r

)

, 0 < r < 1.

Note also that as product of two decreasing functions, β(x)p−1/x is decreasing in

[0,∞).

Now let us consider the simply connected domain � = Q ∪�1, where

Q = {x + iy : −1 < x ≤ 1, |y| < β(1)} , �1 =

{

x + iy : x > 1, |y| <
β(x)

x1/(p−1)

}

.

Let f be the conformal mapping from the unit disk D onto� that satisfies f (0) = 0

and f ′(0) > 0. The uniqueness of f and the fact that the domain � is symmetric

with respect to the real axis readily imply that f takes on real positive values on

the radius (0, 1).

The criterion for membership of conformal maps of the disk in Bp obtained in

[36] and [8] implies that f ∈ Bp if and only if

(14)

∫

�

d
p−2
� (w)dA(w) <∞,

where d� denotes the (Euclidean) distance fromw to the boundary of�. It is clear

that, for a point w = x + iy in �,

(15) d�(w) ≤
β(x)

x1/(p−1)
.

Using the definition of �, Fubini’s theorem, and (15), we obtain

∫

�

d
p−2
� (w)dA(w) =

∫

Q

d
p−2
� (w)dA(w) + 2

∫ ∞

1

∫
β(x)

x1/(p−1)

0

(

β(x)

x1/(p−1)

)p−2

dydx

≤

∫

Q

d
p−2
� (w)dA(w) + 2

∫ ∞

1

(

β(x)

x1/(p−1)

)p−1

dx

=

∫

Q

d
p−2
� (w)dA(w) + 2

∫ ∞

1

β(x)p−1

x
dx.
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Taking into account that p ≥ 2 and condition (b), we see that the last two integrals

are finite. This shows that f ∈ Bp.

Since α(0) < 1, it follows that β(x)/x1/(p−1) < 1 for all x > 1. Then,

using the fact that β(x)/x1/(p−1) is a decreasing function, we see that d�(x) ≥

β(x + 1)/(x + 1)1/(p−1) for all x > 1. By condition (a), this implies that

(16) d�(x) ≥ C
β(x)

x1/(p−1)
, x > 1.

Since f is a univalent map, we have d�( f (z)) ≍ (1 − |z|2)| f ′(z)| (see, e.g,

[31, Corollary 1.4]). As mentioned above, f maps the radius [0, 1) to the posi-

tive part of the real axis and it is obvious that f is an increasing positive function

when restricted to this radius. Using (15) and (16), we have

d� ( f (r)) ≍
β ( f (r))

f (r)1/(p−1)
, as r → 1.

Using the properties mentioned above, the fact that f fixes the origin, the crude

estimate (12), and integration by parts, we get

f (r) =

∫ r

0

f ′(s)d s

≍

∫ r

0

d�( f (s))

1 − s2
d s

≍

∫ r

0

β( f (s))

p(1 − s) f (s)1/(p−1)
d s

≥

∫ r

0

β( f (s))

p(1 − s)(log 1
1−s

)1/p
d s

=β( f (r))

(

log
1

1 − r

)1−1/p

−

∫ r

0

(

log
1

1 − s

)1/p

d (β ◦ f )(s)

≥β( f (r))

(

log
1

1 − r

)1−1/p

,

(17)

taking into account that both β and β ◦ f are decreasing.

Now, because β(1) < π/2, it follows that � is contained in the strip

{z ∈ C : | Im z| < π
2
}. This means that f is subordinate to the function F (z) =

log((1 + z)/(1 − z)) (see [13, Chapter 1]); and it then follows (see, e.g, [30, Chap-

ter 2]) that

f (r) ≤ log
1 + r

1 − r
≤ log

2

1 − r
, 0 < r < 1.

Using this observation, (17), and the fact that β is decreasing, and keeping in mind

(13), we deduce that

f (r) & α

(

1

1 − r

)(

log
1

1 − r

)1/p

, as r → 1.



FUNCTIONS IN MÖBIUS INVARIANT SPACES 249

�

In particular, for each ε > 0, one can take α(x) = (log x)−ε (x > 2) in Theo-

rem 4 to obtain the following.

Proposition 2. Suppose that 2 ≤ p < ∞ and 0 < λ < 1 − 1/p. Then there

exists a univalent map f in the disk such that f ∈ Bp. Moreover, f (r) is real and

positive for all positive r and

f (r) &

(

log
1

1 − r

)λ

, as r → 1−.

In a short note on the Dirichlet space [37], Yamashita improved an earlier ob-

servation by Cowling [10] by showing that for each constant λ ∈ (0, 1/2), there

exists a function f ∈ D such that

(18) lim inf
r→1−

(

log
1

1 − r

)−λ

M (r, f ) ≥ 1,

where M (r, f ) = max{| f (z)| : |z| = r}. We note that this is implied by our Propo-

sition 2 in the case p = 2.

Note that if we argue as in the proof of Theorem 4, but take α(t) = 1 for all t,

we obtain the following result.

Theorem 5. There exists a univalent map f defined in the disk such that

f ∈
⋂

2<p<∞ Bp, f (0) = 0, f (r) is real and positive for all positive r, and

f (r) &

(

log
1

1 − r

)1/2

, as r → 1−.

Next, we extend Proposition 2 to the spaces Bp with 1 < p < 2.

Proposition 3. Suppose that 1 < p ≤ 2 and 0 < λ < 1 − 1/p. Then, there

exists a univalent function f in Bp such that f (r) is real and positive for all positive

r and

f (r) &

(

log
1

1 − r

)λ

, as r → 1−.

Proof. Set F (z) = log(e/(1 − z)), (z ∈ D). Then F is univalent in D and

Re F (z) > 0 for all z ∈ D. Take λ with 0 < λ < 1 − 1/p. It then follows that the

function

f (z) =

(

log
e

1 − z

)λ

, z ∈ D,

is also univalent. It is also easily seen that f ∈ Bp. �

The natural question of obtaining an analogue of Theorem 4 for 1 < p ≤ 2

remains open.
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4 A length–area analogue of the Fejér–Riesz inequality

4.1 The area function. Given a conformal map f of D onto a simply con-

nected planar domain �, denote by L(r) the length of the image by f of the circle

{z : |z| = r}. Consider also the area function

(19) a(r) =

∫

D(0,r)

| f ′|2dA =

∫ r

0

∫ 2π

0

| f ′(ρeiθ)|2dθρdρ

associated with a conformal map f of D onto a simply connected domain �. The

following estimate is known as the length–area principle:

(20)
1

2π

∫ r

0

L(ρ)2

ρ
dρ ≤ a(r),

with equality when f is the identity map and� = D (see [20], Theorem 2.1, Chap-

ter 1 of [17], or the proof of Proposition 2.2 of [31]). The length-area principle was

first proved by Ahlfors in 1930 and later exploited in the works of M. Cartwright.

4.2 The Féjer–Riesz inequality. The classical (sharp) inequality of Fejér

and Riesz
∫ 1

−1

| f (x)|pdx ≤
1

2

∫ 2π

0

| f (eiθ )|pdθ = π‖ f ‖
p
Hp

states that the injection map H p ⊂ Lp ((−1, 1), dx) is bounded and its norm is

π1/p. The inequality is of particular interest in the following special case. Let F

map the disk onto a Jordan domain. If the boundary of the domain is rectifiable

(equivalently, if F ′ ∈ H 1), then the length of the image of the diameter (−1, 1) of

the disk is at most half the length of the image of the boundary (cf. Chapter 3 of

[13] or the original source [14]).

It is of some interest is to obtain analogous statements for the Dirichlet space

or, more generally, for analytic Besov spaces. Since, for a function f ∈ D, the

integral
∫ 1

−1
| f ′(x)|2dx need not be convergent, any correct analogue of Fejér–Riesz

must have a different form. The following was obtained by A. L. Shields [33]:

If f ∈ D, then

∫ 1

0

| f (r)|2
r2

1 − r

(

log
1

1 − r

)−2

dr ≤ c

∫

D

| f ′|2dA,

for some universal constant c > 0.
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Holland and Walsh ([21], Theorem 4) improved this estimate by showing that

if f ∈ D and f (0) = 0, then

∫ 1

0

(
∫ r

0

M∞(ρ, f ′)dρ

)2 1

1 − r

(

log
1

1 − r

)−2

dr ≤ c

∫

D

| f ′|2dA,

where c is a concrete value and M∞(ρ, f ′) stands for the maximum modulus of f ′

over the circle of radius r centered at the origin. They actually obtained a more

general Bp version, 1 < p < ∞.

While such results are of interest in themselves and for p = 2 also have a

relationship with the multipliers of the Dirichlet space, it still seems reasonable to

look for a statement more suited for the context of the length of the image of a

segment under a conformal map, more along the lines of the original Fejér–Riesz

theorem. We now prove such a statement, which at the same time resembles the

length–area principle (20) and gives us a concrete value of the constant.

4.3 Some new inequalities for Bp functions. Denote by d (r) the length

of the image under F of the truncated diameter (−r, r). By applying first the Fejér–

Riesz inequality and then the length–area principle, we obtain

∫ R

0

d (r)2

r
dr ≤

1

4

∫ R

0

L(r)2

r
dr ≤

π

2
a(R).

However, this bound can be improved and also generalized to the case of arbitrary

analytic Besov space Bp (1 < p <∞), as follows.

Theorem 6. Let f be a conformal map in D and let d (r) denote the length of

the Jordan arc f ((−r, r)). If f ∈ Bp, then

22−p(p − 1)

∫ 1

0

(1 − r2)p−2d (r)p

rp−1
dr ≤ ‖ f ‖

p
Bp .

In particular, for a conformal map f of D onto a domain � of finite area,

∫ 1

0

d (r)2

r
dr ≤ A(�).

Proof. Start off with a function g which is simply analytic in D. Apply the

standard Fejér–Riesz inequality to the dilations gr(z) = g(rz), 0 < r < 1 to obtain

(21)

∫ r

−r

|g(x)|pdx ≤
r

2

∫ 2π

0

|g(reiθ)|pdθ.

Also, the Hölder inequality yields

(22)

∫ r

−r

|g(x)|pdx ≥ (2r)1−p

(
∫ r

−r

|g(x)|dx

)p

.
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By putting together (21) and (22) and integrating over (0, 1) with respect to

(1 − r2)p−2dr, we get

22−p

∫ 1

0

(1 − r2)p−2

rp−1

(
∫ r

−r

|g(x)|dx

)p

dr ≤

∫

D

|g(z)|p(1 − |z|2)p−2dA(z).

Now multiply both sides by p−1 and then replace g by f ′ where f is a conformal

map to obtain the desired statements. �

It would be interesting to determine the best possible bound in the inequality

∫ 1

0

d (r)2

r
dr ≤ cA(�).

Theorem 6 tells us that c ≤ 1, while the function F (z) ≡ z shows that c ≥ 2π−1.

The best constant issue here seems more difficult than for the Fejér–Riesz inequal-

ity, as we have to control d (r) for each value of r ∈ (0, 1).

5 Some special univalent functions in Besov spaces

5.1 Univalent lacunary series in Besov spaces. As usual, by a lacu-

nary series (also called power series with Hadamard gaps) we mean a

power series of the form
∑∞

k =0 akznk , where nk+1/nk ≥ q > 1 for all k. A char-

acterization of the lacunary series in the space Bp (1 ≤ p < ∞) is well known

(see [21] or [11], for example). Namely, Theorem D on p. 55 of [11] asserts that

if 1 ≤ p < ∞ and f is an analytic function in D given by a lacunary power series
∑∞

k =0 akznk , then f ∈ Bp if and only if

∞
∑

k =0

nk|ak|
p <∞.

A result of Pommerenke [29] and Fuchs [15] (see also Theorem 5.13 on p. 152

of [30]) asserts that if f is a univalent function in the disk, f (z) =
∑∞

n=0 anzn, and

f has Hadamard gaps, then an = O(n−1) as n → ∞. We improve this result by

showing that lacunary series which are univalent functions actually belong to the

smallest conformally invariant space B1. In the proof, we use a deep theorem of

Murai [26], which asserts that if f is given by a lacunary power series, f (z) =
∑

k akznk and also
∑

k |ak| = ∞, then f takes on every complex value infinitely

often in D.

Theorem 7. If f is a univalent function in D given by a power series with

Hadamard gaps, f (z) =
∑∞

k =0 akznk , then f ∈ B1 and
∑∞

k =0 nk|ak| <∞.
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Proof. Observe that f ′(z) =
∑

k nkakznk−1 is also given by a power series with

Hadamard gaps. Since f is univalent in D, f ′ does not vanish there. Hence Murai’s

theorem implies that
∑

k nk|ak| < ∞. By [11, Theorem D, p. 55], it follows that

f ∈ B1. �

5.2 Univalent maps, geometric properties, and Besov spaces. We

now consider some very special univalent maps (those that map the disk onto a

bounded convex or a bounded starlike domain) and discuss their membership in

Besov spaces. Recall that a domain � is called starlike if there exists a point

p ∈ � such that, for every other point w ∈ �, the segment [p, w] is contained in

�.

Theorem 8. If f is univalent in D and f (D) is a bounded convex domain,

then f ∈ B1.

Proof. Without loss of generality, we may suppose that f ∈ S; otherwise,

subtract f (0) and divide by f ′(0), which does not change any of the properties of

f (D). Since the boundary of a bounded convex domain is rectifiable [31, p. 65],

it follows by the classical theorem of Riesz that f ′ ∈ H 1. By [30, Corollary 2.4,

p. 46], we know that z f ′(z) is a starlike function and hence univalent. It is clearly

also an H 1 function. Hence (z f ′(z))′ ∈ A1, which implies that f ∈ B1. Here we

have used a result due to Pommerenke [28] (see also [6]) which states that if g ∈ U

and g ∈ H 1, then g′ ∈ A1. �

The natural question arises whether Theorem 8 remains true for starlike do-

mains. In [11, Theorem 2.3], by improving an example due to Walsh and Camp-

bell from [36], we constructed a Jordan domain such that a univalent map of the

disk onto it is not in
⋃

1<p<2 Bp. Here we prove that this can actually be improved

even further. We may ask in addition that the domain be starlike. In particular, this

shows that the answer to our question is negative in a very strong sense.

Theorem 9. There exists a univalent function f that maps D onto a starlike

Jordan domain but such that f 6∈
⋃

1<p<2 Bp.

Proof. Our function f is a Riemann map of D onto a Jordan domain � ⊂ D

which is starlike with respect to the origin. The domain � is of the form

� = D \
(

∞
⋃

n=2

Sn

)

,

where each Sn is a typical Carleson box Sn defined as follows.

hn =
1

(n + 1) log2[e(n + 1)]
, n = 1, 2, . . . ;
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δn =
1

log2[e(n + 1)]
, n = 1, 2, . . . ;

θ1 = 0, θn = 2

n−1
∑

j =1

h j if (n ≥ 2);

Sn = {z = reiθ : 1 − δn < r < 1, θn < θ < θn + hn}.

We note that θn < θn + hn < θn + 2hn = θn+1 and

∞
∑

n=1

hn ≤

∫ ∞

1

dx

x log2(ex)
= 1.

It then follows easily that � is in fact a Jordan domain contained in D and starlike

with respect to 0. Set also

Tn = {z = reiθ : 1 − δn+1 < r < 1, θn + hn < θ < θn+1}.

It is clear that the area |Tn| of Tn satisfies |Tn| ≍ δn+1hn. Also, there exists C > 0

such that

w ∈ Tn ⇒ d�(w) ≤ Chn, n = 1, 2, . . . .

Then it follows that, whenever p < 2,

∫

D

d�(w)p−2dA(w) ≥ C

∞
∑

n=1

∫

Tn

d�(w)p−2dA(w) ≥ C

∞
∑

n=1

hp−1
n δn+1 = ∞.

Using Walsh’s criterion, we deduce that f /∈ Bp if 1 ≤ p < 2. �

6 Domains related to the Dirichlet space

6.1 Some non-finitely valent self-maps of the disk onto itself. It is

not difficult to see that many surjective self-maps of the disk onto itself exist.

Clearly, every finite Blaschke product has this property in view of Rouché’s theo-

rem, while no infinite Blaschke product can have it. We now give an example of

a class of maps that cover certain parts of the disk once, twice, three times, etc.,

and are, thus, neither multivalent nor infinitely valent. Similar arguments have cer-

tainly been known for some time. For the lack of an earlier reference, we mention

[23]. The added value here is that we can easily tell that such a map belongs to

an arbitrary Besov space Bp, 1 < p ≤ 2, if the image domain satisfies a certain

simple geometric condition.

If f is an analytic function in D and z ∈ D, we let d f (z) denote the radius of the

largest disk centered at f (z) which is the one-to-one image under f of a domain
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Gz with z ∈ Gz ⊂ D. Schwarz’s Lemma applied to the branch of f −1 defined in

the disk of radius d(z) about the point f(z) yields

(23) d f (z) ≤ (1 − |z|2)| f ′(z)|.

Now we can state our result.

Theorem 10. Suppose that 1 < p ≤ 2 and that we are given an increasing

sequence of real numbers 0 = r0 < r1 < r2 < · · · < 1 and a sequence of positive

integers {k j }
∞
j =1 satisfying

(24)

∞
∑

j =1

k j (r j − r j−1)p−1 < ∞.

Then there exists a function f ∈ Bp which maps D into itself and which takes on

each value in the annulus A j = {z : r j−1 < |z| < r j } exactly k j times.

Proof. Suppose that 1 < p ≤ 2. Set x j = log r j ( j ≥ 1) and

R1 = {z = x + iy : x ≤ x1, 0 ≤ y ≤ 2πk1},

R j = {z = x + iy : x j−1 ≤ x ≤ x j , 0 ≤ y ≤ 2πk j }, j ≥ 2.

Let � be the interior of the union of the sets R j , j = 1, 2, . . . . Clearly, � is a

simply connected domain contained in the quadrant {x + iy : x < 0, y > 0}. Let F

be a conformal mapping from D onto � and f (z) = exp F (z), z ∈ D. Set

A j = {z ∈ D : r j−1 < |z| < r j }.

We have F (D) = D \ {0}. The exponential maps takes R j onto the annulus A j ,

covering it k j times. Furthermore, it is easy to see that, for j ≥ 2,

• if w ∈ A j , r j−1 < |w| < (r j−1 + r j )/2 and f (z) = w, then |w| − r j−1 ≤

d f (z) ≤ (1 − |z|2)| f ′(z)|.

• if w ∈ A j , (r j−1 + r j )/2 < |w| < r j and f (z) = w, then r j − |w| ≤ d f (z) ≤

(1 − |z|2)| f ′(z)|.

Using this and the fact that 1 < p ≤ 2, we deduce that
∫

D

(1 − |z|2)p−2| f ′(z)|p dA(z)

≤C1 + C2

∞
∑

j =2

k j

(

∫ (r j−1+r j )/2

r j−1

(ρ− r j−1)p−2dρ +

∫ r j

(r j−1+r j )/2

(r j − |ρ|)p−2dρ

)

≤C1 + C2

∞
∑

j =2

k j (r j − r j−1)p−1.

(25)

Thus, (24) implies that f ∈ Bp. �
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6.2 A topological-metric theorem for domains of finite area. In [11],

we described the so-called univalent Bp domains. In order to do that, we used a

special construction of a simply connected subdomain of a given domain with

equally good integrability properties. There are, however, similar constructions

that improve the properties obtained there. The purpose of this section is to give

such a construction and prove the following result.

Theorem 11. Let� be a planar domain. Then there exists a simply connected

domain �′ ⊂ � such that � \�′ has σ-finite length.

As an immediate consequence of this, we have

Corollary 1. A planar domain contains a simply connected domain with the

same area.

Remarks.

• The domain constructed in the proof proposed here has the property that, for

every finite α ≥ 0,

∫

�

d (w, ∂�)α dA(w) ≈

∫

�′

d (w, ∂�′)α dA(w).

Consequently, this provides an alternative construction for the proof of Theo-

rem 2.1 in [11].

• The ideas in the proof of our final result are analogous to those provided in

the aforementioned result. Nevertheless, since the new statement has a dif-

ferent flavor, we present a self-contained proof, making clear exactly where

the improvements are made with respect to [11].

Proof of Theorem 11. As in [11], we use the family of dyadic squares

provided by the Whitney’s decomposition of � [34, p. 16]. That is, we start our

argument with a countable collection of closed dyadic squares {Qn} with pairwise

disjoint interiors and such that
⋃

Qn = �, and such that, for any two squares with

non-empty intersection, the ratio of their sides is bounded from both above and

below. We recall that such squares can be chosen such that, for each w in some

Qn, d (w, ∂�) is comparable to diam (Qn).

We say that two squares of our family are neighbors if they have more than

a single common boundary point, that is, if one side of one of these two squares

is a subset of some side of the other. Since neighboring squares have sides of

comparable length, it is clear that the number of neighbors of any square of the

decomposition is bounded by an absolute constant.
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Now, choose an arbitrary square Q∗ and refer to it as the pivoting square. Given

another square Q, as in [11], let us consider a Jordan arc γ in � connecting some

point of Q∗ to some point in Q. The selection of our squares together with a

simple compactness argument assures us that there are finitely many squares in

our decomposition which intersect γ.

On the other hand, it is clear that for each Q, we can choose a finite sequence

of our squares in such a way that the first one is Q∗, the last one is Q, and each

square is a neighbor of the preceding one. Keeping this in mind, we can assign

to each square Q the minimum of the cardinal numbers of such sequences. We

refer to this positive integer as the generation of Q, understanding that Q∗ belongs

to generation zero. With this definition, it is clear that the squares of the first

generation are precisely the neighbors of Q∗ and that if some square belongs to

generation N , then it has a neighbor of generation N − 1. Moreover, since the

number of neighbors of a square is bounded, an inductive argument allows us to

deduce that there are only finitely many squares in each generation.

Following the scheme proposed in [11], we reorder our sequence of squares

(Qn), starting with Q∗, and continue with all the squares from the first generation,

then with all the squares of the second generation, and so on. Observe that this

new sequence has the property that for a given square Qn, the square Qn+1 belongs

either to the same generation or to the next one.

Now, recall that if Qn and Qm are neighbors, they share a segment on their

boundaries. Let us denote by Cn,m a small open subsegment properly included in

Qn ∩Qm , that is, Cn,m is a segment without its endpoints, contained in both Qn and

Qm. Observe that with this selection, Int(Qn) ∪ Int(Qm) ∪ Cn,m is a domain.

We construct the domain �′ inductively. Let �1 be the interior of Q∗. In

order to construct the domain �2, consider the interior of the square Q2. Since

Q2 is a neighbor of Q1, we can consider the segment C1,2 and define �2 =

Int(Q1) ∪ Int(Q2) ∪ C1,2. In this way, our domains �n consists of the union of

the interiors of the squares Q1, . . . ,Qn and a certain union of some segments Cn,m

that connect every square Qk with one of the previous ones which must be its

neighbor and must also belong to the preceding generation. That is, if we suppose

that �n has been constructed and satisfies the properties just mentioned, in order

to construct �n+1, proceed as follows. Take Qn+1 and suppose it belongs to gener-

ation N . Then choose k with 1 ≤ k ≤ n so that Qk belongs to generation N − 1

and Qk and Qn+1 are neighbors and define �n+1 = �n ∪ Int(Qn+1) ∪ Ck,n+1.

Finally, set �′ =
⋃

�n. Observe that our domain �′ has the following proper-

ties.

• �′ contains the interiors of all squares Qn.
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• Since segments Cn,m have been chosen to be completely contained in the

intersection of Qn and Qm, every square of generation N is connected to one

square of the previous generation and to at most one of the generation N + 1.

Consequently, for each n, �n is simply connected.

• As a trivial consequence, it follows that �′ is also simply connected.

It is now clear that � \ �′ is a subset of the union of the boundaries of all

squares Qn, that is, � \�′ is contained in a countable union of segments. �

As previously mentioned, the domain �′ just constructed has the property that

for any α ≥ 0, the integrals

∫

�

d (w, ∂�)α dA(w) and

∫

�′

d (w, ∂�′)α dA(w)

are comparable, with constants depending only on α (but not on the geometry of

�!). Here is a simple proof.

Since � and�′ differ only by a set of Lebesgue measure zero and�′ ⊂ �, we

have trivially
∫

�′

d (w, ∂�′)α dA(w) ≤

∫

�

d (w, ∂�)α dA(w).

On the other hand, using the fact that for any square Q,

∫

Q

d (w, ∂Q)α dA(w) = Cα (diam Q)α+2,

and recalling the properties of the Whitney decomposition, we get

∫

�′

d (w, ∂�′)α dA(w) =

∞
∑

j =1

∫

Q j

d (w, ∂�′)α dA(w)

≥

∞
∑

j =1

∫

Q j

d (w, ∂Q j )
α dA(w) = Cα

∞
∑

j =1

(diam Q j )
α+2

≥4Cα

∞
∑

j =1

∫

Q j

(diam Q j )
α dA(w)

≥C̃α

∞
∑

j =1

∫

Q j

d (w, ∂�)α dA(w)

=C̃α

∫

�

d (w, ∂�)α dA(w).
�
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[28] Ch. Pommerenke, Über die Mittelwerte und Koeffizienten multivalenter Funktionen,

Math. Ann. 145 (1961/62), 285–296.

[29] Ch. Pommerenke, Lacunary power series and univalent functions, Michigan Math. J. 11 (1964),

219–223.

[30] Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

[31] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.

[32] L. E. Rubel and R. M. Timoney, An extremal property of the Bloch space, Proc. Amer. Math.

Soc. 75 (1979), 45–49.

[33] A. L. Shields, An Analogue of the Fejér-Riesz Theorem for the Dirichlet space, in Conference

on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, Ill., 1981), Vol. I, II, Wadsworth,

Belmont, CA., 1983, pp. 810–820.

[34] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ.

Press, Princeton, NJ, 1970.

[35] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003),

4683–4698.

[36] D. Walsh, A property of univalent functions in Ap, Glasgow Math. J. 42 (2000), 121–124.

[37] S. Yamashita, Cowling’s theorem on a Dirichlet finite holomorphic function in the disk,

Amer. Math. Monthly 87 (1980), 551–552.

[38] K. Zhu, Analytic Besov spaces, J. Math. Anal. Appl. 157 (1991), 318–336.

Juan Jesús Donaire
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