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Abstract. We study the relationship between minimality and unique ergod-
icity for adic transformations. We show that three is the smallest alphabet size
for a unimodular “adic counterexample”, an adic transformation which is minimal
but not uniquely ergodic. We construct a specific family of counterexamples built
from (3 × 3) nonnegative integer matrix sequences, while showing that no such
(2 × 2) sequence is possible. We also consider (2 × 2) counterexamples without
the unimodular restriction, describing two families of such maps.
Though primitivity of the matrix sequence associated to the transformation implies
minimality, the converse is false, as shown by a further example: an adic trans-
formation with (2× 2) stationary nonprimitive matrix, which is both minimal and
uniquely ergodic.

1 Introduction

Adic transformations, as defined by Vershik [Ver89], offer a far-reaching general-
ization of the classical odometer (or adding machine) transformation of Kakutani
and von Neumann. Indeed, on a measure-theoretic level, they are completely
general: as Vershik showed [Ver81], [LV92], any invertible measure-preserving
transformation of a Lebesgue space has an adic model. Moreover, this can be
constructed so as to be strictly ergodic: both minimal (every orbit is dense) and
uniquely ergodic (there is a unique invariant probability measure), thus providing
a new proof of the Jewett–Krieger theorem that every ergodic transformation has
a strictly ergodic model [Jew70], [Kri70].

The focus of this paper and its companion paper [Fis08] is the relationship
between the properties of minimality and unique ergodicity for transformations of
a topological space, making use of the framework of adic transformations. In this
study, Vershik’s general theorem is of no use; as it is purely measure-theoretic in
nature, it erases other aspects of the map being studied. Instead, we find ourselves
involved with quite a different aspect of the theory of adic transformations: that
of finding adic models which are naturally adapted to the geometry or topology
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of a given transformation. In a variety of cases, one can indeed find such adic
models; examples we encounter below include cutting and stacking constructions,
substitution dynamical systems, and interval exchange transformations.

The first part of this paper concerns the construction of adic transformations
which, though minimal, are not uniquely ergodic. There is a long and interesting
history of maps with this feature, including the torus skew product of Furstenberg
[Fur61] and the Keynes–Newton and Keane interval exchange transformations
[KN76], [Kea77]. Our approach makes use of criteria for minimality and unique
ergodicity from [Fis08] and explained below.

In the final part, we study a specific adic transformation inspired by a substi-
tution dynamical system of [Fer95], which in turn is closely related to Chacon’s
famous map of the interval, constructed by cutting and stacking in [Cha69].

But first let us recall the basic framework for Vershik’s maps. Letting (Ai)i≥0

be a sequence of finite alphabets with #Ai = li and (Mi)i≥0 a sequence of (li×li+1)

nonnegative integer matrices, we construct a Bratteli diagram with vertices Ai at
level i and with (Mi)kj directed edges from symbol k ∈ Ai to j ∈ Ai+1; we call Ei

the set of edges from level i to level (i+1). We denote by Σ+,0
(M) the set of all allowed

infinite edge paths e = (.e0e1 . . . ) in this diagram; this is a Markov compactum in
Vershik’s terminology. An incoming edge order (or just order) O on the Bratteli
diagram is a total order on the collection of all edges which enter a given symbol
at some level k. We define W s(e) = {ẽ ∈ Σ+,0

(M) : ∃k ≥ 0 with ei = ẽi for all i ≥ k};

these collections partition the space.

Vershik’s transformation is defined as a map on the Markov compactum; the
orbit of a point e is its stable equivalence class or stable manifold W s(e).

Beginning with the edge order O, we next place a total order on each W s(·) as
follows: given ẽ ∈ W s(e), let k be the least integer such that ei = ẽi for all i ≥ k,
and define e < ẽ iff ek−1 < ẽk−1 in the edge order O at that level.

This is O-lexicographic order; the map TO is defined to send a path e to its
successor. Writing NS for the collection of paths with no successor and NP

for those with no predecessor, we see that TO is a bijection from Σ+
(M) \ NS to

Σ+
(M) \ NP . Define N to be the forward and backward images under iteration of

these sets; then TO is a bijection on Σ+
(M) \ N . The number of points in NP and

NS are bounded above by lim sup li if that is finite, and in any case is countably
infinite, as is N .

Although the space Σ+,0
(M) \ N on which the adic transformation is defined for

all time is noncompact, it still makes sense to speak of minimality and unique
ergodicity in this context, with the usual definitions.

One can also define related dynamics on the whole space Σ+,0
(M) and then compare
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these properties for the different actions. There are two basic ways of doing this:
by considering extensions of the map to the whole space, or by replacing the
action of the map by that of a related group of homeomorphisms defined on all
of Σ+,0

(M), the group FC of finite coordinate changes. Since N is countable, it
follows that essential minimality and essential unique ergodicity correspond for
all three actions (the adic transformation on Σ+,0

(M) \ N , any extension to Σ+,0
(M), or

the group FC) by which we mean respectively minimal off of a countable set,
and that there exists a unique invariant nonatomic probability measure; with the
assumption of primitivity (see below for the definition), the nonatomic restriction
can be removed. In particular, these properties are independent of the particular
order O placed on the diagram, and are determined solely by the matrix sequence
(Mi)i≥0. See Proposition 2.10 of [Fis08].

Regarding extensions of the map, the most natural choice is to take a continuous
extension; however, even for simple examples, this may not be possible (see the
discussion below of circle rotations and of the Chacon adic map).

Though we have termed W s(e) the “stable manifold” of a point, a priori this
makes no sense, as the nonstationary combinatorics means there is no actual
shift dynamics: a left shift map σ should send an edge path e = (e0, e1, . . . ) to
σ(e) = (e1, e2, . . . ); however σ(e) is not an element of the same Markov compactum
Σ+,0

(M). So what we do is simply to enlarge the space as follows: writing σ(M)i≥0 =

(Mi+1)i≥0 for the shifted sequence of matrices, we set Σ+,k

(M) ≡ Σ+,0
σk(M)

. We then

form the disjoint union Σ+
(M) ≡

∐∞

k=0 Σ+,k

(M), the nonstationary subshift of finite type

defined by the matrix sequence; Σ+,k

(M) is called the kth component of Σ+
(M). This

has been constructed so the map σ now takes the kth component of the nsft to the
(k+1)st component. With this definition, and with respect to a natural metric which
makes each component a Cantor set, W s(e) is indeed the “stable manifold” of that
point with respect to this mapping family or nonstationary dynamical system; see
[AF05]. The stable manifolds subdivide each component into equivalence classes,
and the map TO extends to the entire nsft, preserving each such equivalence class.

In the case when the Mi are 0− 1 matrices (so equivalently the diagram has no
multiple edges), we can replace the edge shift space defined above by a vertex shift
space, as an edge path (e0, e1, . . . ) determines a unique vertex path (x0, x1, . . . )

where xi is the “tail” of the arrow ei. The simplest situation is a stationary adic
transformation, where the alphabets, matrices and orders are constant. Thus M is
a square matrix, and the nsft Σ+

(M) factors onto its zeroth component Σ+,0
(M) which

in turn is canonically identified with the subshift of finite type (sft) Σ+
M . Note that

the Bratteli diagram then factors onto (and can be replaced by) the usual graph of
an sft, and that the sft comes in either an edge or vertex presentation (see, e.g.,
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[LM95]) depending as to whether or not this graph has multiple edges.

There is an intimate relation between the adic transformation framework and
that of substitution dynamical systems, which we now describe. This connection
led us to the final example studied below, the Chacon adic transformation.

Given an ordered Bratteli diagram, we note that the information furnished by
the matrix sequence (Mi)i≥0 together with the orderO can instead be conveniently
specified by a sequence (ρi)i≥0 of substitutions ρi : Ai+1 → A∗i , where A∗i denotes
the finite words on that alphabet: if ρk(j) = a0a1...an, then there are n edges
entering symbol j, ordered as their tail symbols ai appear from left to right. Here
we should visualize the substitution sequence as acting from right to left in the
Bratteli diagram, the opposite of the “future” direction indicated by the directed
edges. By definition, the matrix of the substitution ρk is then the (lk × lk+1) matrix
Mk with (Mk)ij the number of occurrences of the letter i in ρk(j); note that this
gives exactly the matrix sequence used to define the Bratteli diagram.

For the case of a single substitution ρ : A → A∗, we recall how one defines from
this a substitution dynamical system; then we describe the canonical connection
between stationary adic transformations and substitution dynamical systems, first
noted by Livshits [Liv87], [Liv88].

First, we extend this map to ρ : A∗ → A∗ by concatenation; then choosing some
symbol a ∈ A and iterating, the collection of finite words ρn(j) converges either to
a fixed point (iff ρ(a) begins with a) or to a periodic orbit; for a = (.a0a1 . . . ) one
of these one-sided infinite words in Π∞i=0A, we let Ωa denote the orbit closure in
the natural sense of a for the left shift map S on the biinfinite space Π∞−∞A. Note
that if the matrix M of ρ is primitive (i.e., there exists n > 0 such that all the entries
of Mn are strictly positive), then Ωa does not depend on the choice of the letter a.

Two simple examples which already illustrate the relationship noted by Livshits
as well as various other general aspects of the theory are the odometer transforma-
tion and the Morse adic transformation. These are both stationary adic transfor-
mations, with alphabet A = {0, 1} and matrix M = [ 1 1

1 1 ], so Σ+
M is a full one-sided

Bernoulli shift space (here we take the vertex representation). For the adding
machine, we order the edges entering the symbol 0 by 00 < 10, and those entering
1 by 01 < 11, i.e., in both cases just by the natural order on the alphabet. For
the Morse transformation, we have edges ordered by: 00 < 10, but 11 < 01. The
associated substitutions are ρ(j) = 01 for all j for the odometer, and for the Morse
adic ρ(0) = 01, ρ(1) = 10.

To describe the relationship to substitution dynamical systems, we first recall
a geometric picture of the adic dynamics, given by the stable tree model [Fis08];
we describe this for a 0− 1 matrix sequence (Mi)i≥0. Choosing (.x0x1 . . . ) ∈ Σ+

(M)
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Figure 1. Stable trees for the odometer and Morse adic transformations.

(in the vertex representation, so xi ∈ Ai), we draw the edges connecting the xi as
the “trunk” of an inverted tree; edges then branch off at each level, from left to
right according to the order O. The dynamics of TO then simply sends an infinite
vertical string to the next one to the right. See Fig. 1 for the odometer and Morse
examples, and also see Figs. 8, 9 and 10 below.

Figure 1 also shows an orbit of the corresponding substitution dynamical
system: it is the very bottom row of digits, and is shifted to the left by the same
dynamics! Choosing as the trunk x0x1 · · · = 000 . . . , for the adic map this is
the periodic sequence .0101010 . . . , while for the Morse example it is the famous
Morse–Thue sequence .01101001 . . . . Taking the collection of all possible trunks,
one can show that we get the orbit closure space Ω. This gives a different way of
constructing Ω (and which easily generalizes to the nonstationary situation, where
“fixed points” may not exist!). Now we can see the precise relationship between the
adic transformation and the substitution dynamical system (Ω, S): there is always
a factor map from the adic transformation to the substitution dynamical system,
and this is a bijection exactly when we can recover all the higher information in the
tree from its “leaves” (the lowest level in the figure). This is possible for the Morse
substitution as it satisfies Mossé’s conditions of being primitive and recognizable
[Mos92], [Mos96], [Hos00], giving Livshits’ observation, but not for the odome-
ter, where the substitution dynamical system consists of a single periodic orbit of
period two. Thus the validity of the Livshits correspondence depends heavily on
the particular order on the diagram. See the end of §5 for another concrete case of
this.

As we have indicated, one can also make sense of the Livshits correspondence
in the nonstationary setting. For an example of this, studied in [AF01], we define a
pair of substitutions ρa, ρb with constant alphabet A = {0, 1} by ρa(0) = 0, ρa(1) =

10 and ρb(0) = 01, ρb(1) = 1. Choosing a sequence n = (.n0n1 . . . ) in Π∞0 N
∗

where N
∗ = {1, 2, . . .}, we define a substitution sequence (ηi)i≥0 by ηi = ρa for
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0 ≤ i ≤ n0−1, ηi = ρb for n0 ≤ i ≤ n0 +n1−1, and so on. Note that the associated
matrices are Ma = [ 1 1

0 1 ], Mb = [ 1 0
1 1 ].

One can then prove that the corresponding nonstationary substitution dynamical
system (respectively, adic transformation) is minimal and uniquely ergodic,and that
both are measure-theoretically isomorphic to the circle rotation x 7→ x + θ(mod1)

of angle θ = α/(1 + α) ∈ (0, 1/2), where

α = [n0 . . . nk . . . ] ≡
1

n0 +
1

n1 + · · ·

.

To get the angles in (1/2, 1) we begin with ρb instead of ρa. See [AF01] for the
nonstationary substitution point of view and [Fis08] for the adic version of this.

An interesting feature of this model is that #NS = 1, while #NP = 2; as a
consequence, there is no possible extension of T to a homeomorphism on the whole
space. On the other hand, a different “dual” definition of the substitutions (with
the same matrices) does permit such an extension, which topologically factors onto
the circle rotation. See [Fis08] and [Fis] for a geometrical explanation of what we
mean by duality and why this phenomenon occurs.

This representation of circle rotations is the simplest example of an adic model
for interval exchange transformations (as a circle rotation is an exchange of two
intervals); that such a model is possible is implicit in [Fer97], where it is shown
that every interval exchange can be naturally represented as a cutting and stack-
ing transformation, while each cutting and stacking transformation has an adic
model. A precise realization based on the Rauzy induction procedure is presented
in [Fis]; for minimal interval exchange transformations, the map from the adic
transformation to the interval exchange is almost surely bijective.

The difference between the stationary and nonstationary examples we have
described is highlighted by bringing in the associated shift dynamics. For the
odometer and Morse examples, the adic transformations are transverse dynamical
systems to the left shift map (Σ+

M , σ); they satisfy a similar commutation relation
σ ◦T 2 = T ◦ σ to that for the stable horocycle flow and geodesic flow on a compact
surface of constant negative curvature, for which hs ◦ gt = gt ◦ hets. See [Ver94]
regarding the general philosophy of transverse dynamics and more examples.

We note that since in the above equation T is semiconjugated to its square, it
must have entropy equal to either 0 or ∞. And indeed, for the Morse and odometer
examples, both maps are zero entropy, minimal and uniquely ergodic; this is an
immediate consequence of the fact that the maps permute the collection of cylinder
sets of each level. These three properties also hold for the horocycle flow (see
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[Fur73]) and for all stationary adic transformations with primitive matrix, as we
explain shortly.

Similarly, a general adic transformation (Σ+,0
(M), TO) can be thought of as a

transverse dynamical system, with respect to the nonstationary dynamics of the
left shift map on the nsft (Σ+

(M), σ). Considering, for example, the circle rotation
adic transformations, in fact all this can be imbedded in an appropriate flow space,
which extends Veech’s Teichmüller flow, here for the simplest (torus) case; see
[AF01].

In this nonstationary shift case, however, the three properties of zero entropy,
minimality and unique ergodicity may no longer all hold true. One can have
minimality without unique ergodicity, as described below; also, the transverse map
may have entropy in (0,∞). Indeed by Vershik’s general theorem, all ergodic maps
have adic models; we note that in the positive entropy case the alphabet sizes must,
however, be unbounded.

Now we turn to the criteria for minimality and unique ergodicity we use below.

Considering first the stationary case, as shown in Lemma 2.4 of [BM77], for
an sft Σ+

M with M primitive, the stable equivalence relation on (Σ+
M , σ) is uniquely

ergodic. At the time the Bowen–Marcus paper was written, adic transformations
had not yet been defined, but in this alternative language their theorem says that any
adic transformation T defined on Σ+

M with M primitive is uniquely ergodic. The
Bowen–Marcus proof has these ingredients: first, primitivity of M implies the shift
map is mixing for invariant Markov measures whose support is the sft, hence for the
Parry measure µ (the measure of maximal entropy); see Theorem 1.31 of [Wal82].
Next, using mixing, there is a unique transverse invariant probability measure ν

equivalent to this (i.e., sharing the same null sets); this is the eigenmeasure for the
Ruelle operator with potential zero.

In [Fis08] we extend this proof to the nonstationary context as follows. First, we
define a matrix sequence (Mi)i≥0 to be primitive iff for each k ∈ N, there exists m >

0 (depending on k) such that all entries of the matrix M (k,m) ≡ MkMk+1 . . . Mm−1

are strictly positive. We say the sequence is Perron–Frobenius iff the images of the
positive cone Cm in the space of column vectors R

lm by the matrices when applied
in the following order, MkMk+1 . . .Mm−1Cm = M (k,m)Cm, nest down to a single
strictly positive ray. Next we define nonstationary Parry measure (done in the last
section of [AF01] for the special case of rotation adics), and extend mixing to the
nonstationary context in an appropriate way. Then, making use of the projective
metric, we show that the Perron–Frobenius condition is equivalent to nonstationary
mixing, and lastly we push through a Bowen–Marcus type of argument. Our
conclusion is that for a primitive sequence (Mi)i≥0, unique ergodicity is equivalent
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to the Perron–Frobenius condition.

The primitivity condition was introduced by Livshits and Vershik in the fun-
damental paper [LV92], where it was remarked that primitivity of the sequence
implies minimality of the adic transformation; the (simple) proof is given in [Fis08].
No doubt due to this fact, Livshits and Vershik choose this term (“minimality”) for
what we prefer to call primitivity; one reason for our choice of terminology is that
there are examples of minimal adic transformations with nonprimitive sequences,
as shown below by the Chacon example.

A first example of an adic transformation which is minimal but not uniquely
ergodic is the Pascal adic transformation defined by Lodkin and Vershik [LV85],
so-called because the Bratteli diagram is like the Pascal triangle laid over on its
side, with #An = n for n ≥ 0 and matrices Mn with (Mn)ij = 1 if j = i, i + 1 and
otherwise = 0. This map in fact has a continuum of invariant measures, indexed
by the collection of Bernoulli coin-tossing measures; for an in-depth study see
[MP05]. However, we shall concentrate here on a very different type of example,
which has a bounded alphabet size.

Our examples are closest in spirit to Keane’s interval exchange. In fact, any
exchange of d intervals codes in a natural way as an adic transformation on an
alphabet of d symbols, with the matrices being those that naturally appear in the
theory for a quite different purpose (that of describing the induction procedure); see
[Fer97] and [Fis]. The matrices occurring in Keane’s famous counterexample give
a (4×4) nonnegative unimodular (i.e., determinant one), primitive matrix sequence
(Mi)i≥0 for which the Perron–Frobenius property fails, so by our criterion the adic
transformation is minimal but not uniquely ergodic, as is the case for the interval
exchange.

It is known that Keane’s counterexample has the least number of intervals pos-
sible (four) for such a map; that of Keynes and Newton had five intervals. So the
question we asked ourselves is: within the much wider realm of adic transforma-
tions, what is the smallest alphabet possible for an “adic counterexample”, first, if
we require unimodularity; next, if we remove that restriction? We prove

Theorem. For the unimodular case, there are (3×3) counterexamples, but no
such (2×2) adic transformation is possible. Without the restriction of determinant

one, there are (2× 2) counterexamples as well.

We next turn to the Chacon example. This is a stationary adic transformation
with nonunimodular matrix A = [ 3 0

1 1 ] which is nevertheless both minimal and
uniquely ergodic. We call this the Chacon adic transformation because of its
relation to a well-known substitution known by that name; see [Fer95].
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For the primitive case unique ergodicity is true equivalently for the adic trans-
formation, for any extension, and for the group FC; for the nonprimitive case this
may no longer quite be true, as shown by this example. Here, minimality and
unique ergodicity hold for the adic transformation, but what is true for FC is that
the action is essentially minimal and essentially uniquely ergodic as defined above.
We then show that despite the nonprimitivity, minimality and unique ergodicity
remain true for any other adic transformation with this same matrix. See Propo-
sition 5.2. In fact, for this example N is a single point, which is a fixed point for
FC, and there is no continuous extension of the adic transformation to this point
(see Remark 5.1).

Our proof of essential minimality and unique ergodicity for the Chacon adic
goes by way of coding to a (3×3) primitive example. The proof is geometrical and
is based on the stable tree view of the adic transformations explained above. We
mention that though this is a coding from one subshift of finite type space to another,
it has the interesting feature that though it conjugates the adic transformations, it
does not (quite) conjugate the corrresponding shift maps.

Further remarks. For alphabet size one, the nontrivial examples are always
both minimal and uniquely ergodic. Indeed, the matrix sequence is then Mi = [ni]

for some integers ni, with ni ≥ 2 infinitely often to avoid a trivial path space; there
is up to permutation only one incoming edge order possible, so there is a single
adic transformation compatible with each such sequence. This is a nonstationary

odometer in that it is a nonstationary version of the Kakutani–von Neumann d-
adic odometer (or adding machine), given by constant case ni = d. The map
permutes the cylinder sets of each level, and so is both minimal and uniquely
ergodic, the only possible invariant probability measure giving equal mass to each
cylinder. (Alternatively, the (1× 1) matrix sequence is trivially both primitive and
Perron–Frobenius, so minimality and unique ergodicity follow by our criteria.)

If one wishes to prove that the Perron–Frobenius property holds for a given
matrix sequence, then a useful tool is Birkhoff’s upper bound for the projective
metric; see [Fis08]. To produce a counterexample, however, we need a lower bound
and one needs to consider more closely the combinatorics of the matrix sequence.
This is the kind of argument that occurs in [Kea75] and which we encounter here.

For background on interval exchanges, see [Kea75], [Kea77], [Vee78], [Vee82],
[Mas82] and the recent excellent exposition [Via06]. Regarding substitution dy-
namical systems, see [Fer02], [Fer95], [Hos00]; and regarding adic transforma-
tions, see [LV92], [Ver89], [Ver94], [Ver95b], [Ver95a].

After this paper and [Fis08] had been submitted, we received the preprint
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[BKMS09]. Despite its title and abstract, in fact the nonstationary case is also
addressed (see Theorem 2.8 there) and, in particular, the authors have indepen-
dently come up with a completely different proof from that of [Fis08] that the
Perron–Frobenius property implies unique ergodicity. In fact, their argument is
related to the “column stochastic matrix” method used in the study below of the
nonsymmetric (2 × 2) case, as both can be understood via a cutting-and-stacking
construction of the invariant measures. This argument can be extended to the gen-
eral primitive as well as certain nonprimitive cases, including the Chacon example
and the infinite measure example of [Fis92]; see, in particular, Remark 2.10 of
[BKMS09] regarding the infinite measure case.
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2 The unimodular (2× 2) case

First we show that a (2×2) unimodular “adic Keane counterexample” cannot exist.

Definition 2.1. We say an adic transformation is nontrivial if the space
Σ+,0

(M) \ N on which the transformation acts is nonempty.

Proposition 2.1. Let (Mi)
∞
i=0 be a sequence of (2 × 2) unimodular (i.e.,

determinant-one) nonnegative integer matrices. Then for any (nontrivial) adic
transformation defined from the matrices, minimality is equivalent to unique er-

godicity, and both are equivalent to primitivity of the matrix sequence.

Proof. The collection of nonnegative matrices with determinant one is the
semigroup SL(2, N) (here N = {0, 1, . . .}), which is generated freely by the matrices
P = [ 1 0

1 1 ] and Q = [ 1 1
0 1 ] (this is well known; for a proof see, e.g., Lemma 3.11

of [AF05]). Given a sequence (Mi)
∞
i=0 in SL(2, N), we factor in this way each

Mi successively, producing a new sequence (Aj)
∞
j=0 with each Aj = P or Q. This

additive sequence is clearly primitive if and only if Aj is not eventually always equal
to P or Q. In that case, we can take partial products to produce a multiplicative
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sequence of the form Âi =
[

1 0
ni 1

]
or Âi =

[
1 ni

0 1

]
, for ni positive integers, with the

choice of upper or lower triangular alternating for i even or odd. Hence in (Ai)

the pair AiAi+1 = QP = [ 2 1
1 1 ] occurs infinitely often; a simple direct argument

then shows that the cones M0M1 · · ·MkC+ nest down to a single direction, proving
the topological Perron–Frobenius condition. For a second proof, note that QP

gives a definite contraction in the projective metric and so the projective diameter
of these cones goes to zero; see [Fis08]. For a third proof, Proposition 4.1 of
[AF05] explicitly finds the unique positive right eigenvector sequence for the
matrix sequence (Âi), the existence of which is equivalent to the Perron–Frobenius
condition.

Applying these criteria, we therefore have minimality and unique ergodicity
in the case where infinitely many of both P and Q appear. And if, on the other
hand, the sequence ends with infinitely many P or Q, then the adic transformation
is trivial, as N is the whole space.

From a different perspective, the adic transformation can in either case be
extended in a unique way to all of Σ+,0

(M); it factors onto an irrational circle rotation
in the nontrivial case, and onto a finite periodic orbit in the trivial case. See the
introduction and Examples 3, 4 of [Fis08]. �

3 Nonunimodular (2× 2) counterexamples

3.1 A symmetric counterexample. We define a sequence of symmetric
(2 × 2) matrices with determinant greater than one (in fact, growing very rapidly)
and give a condition for the sequence to be primitive but not Perron–Frobenius.
These are Mi =

[
ni 1
1 ni

]
, for (ni) a sequence of positive integers. Our result is

Proposition 3.1. Any adic transformation with matrix sequence (Mi)i≥0 is

minimal; if
∑∞

i=0 1/ni < ∞, then it is not uniquely ergodic; if
∑∞

i=0 1/ni = +∞,
then it is uniquely ergodic.

Proof. The sequence (Mi)i≥0 is certainly primitive, implying minimality. For
the first statement we show first that if

∑∞

i=0 1/ni < 1, then it is not Perron–
Frobenius. We write Mi = niI + N , where I is the identity matrix and N = [ 0 1

1 0 ]

is nilpotent (i.e., N2 = I). Now,

M0M1 · · ·Mk = Πk
i=0(niI + N) =

[
ak bk

bk ak

]
= akI + bkN,
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where a0 = n0, b0 = 1 and

(1)
ak+1 =nk+1ak + bk,

bk+1 =ak + nk+1bk.

From
bk+1

ak+1
=

ak + nk+1bk

nk+1ak + bk

≤
ak + nk+1bk

nk+1ak

=
bk

ak

+
1

nk+1
,

we prove by induction that for all k ≥ 0,

bk

ak

≤
k∑

i=0

1

ni

.

So if
∑∞

i=0 1/ni = α < 1, then

lim sup
k→∞

bk

ak

≤ α < 1,

or equivalently,
lim inf
k→∞

ak

bk

≥ α−1 > 1.

The image of the positive cone, M0M1 · · ·MkC+, is a symmetric cone bounded
below by the vector

[
ak bk

bk ak

] [
1
0

]
and above by

[
ak bk

bk ak

] [
0
1

]
; these vectors have slope

≤ α < 1 and ≥ α−1 > 1, respectively, so the (nested) intersection of the cones
also has these bounds, and is nontrivial. This proves that the Perron–Frobenius
condition fails.

Next, if
∑∞

i=0 1/ni < ∞, we simply apply the argument to the matrix sequence
(Mi)i≥k, where k is such that

∑∞

i=k 1/ni < 1. Since by definition of the Perron–
Frobenius condition the cones must nest to a single ray for each k ≥ 0, this proves
the claim.

For the second statement, we follow a suggestion of Boris Solomyak and make
use of the contraction upper bounds given in [Fis08]. We know that the Perron–
Frobenius condition is satisfied iff the Birkhoff contraction coefficient for the matrix
product M0M1 · · ·Mk goes to zero; combining Corollary 7.9 and Proposition 7.3 of
[Fis08], an upper bound is given by the product of the coefficients for the individual
matrices, which is equal to

k∏

0

tanh
(

θi

4

)

where θi = log(n2
i ). So defining εi = 2/(exp(θi/2) + 1), this goes to 0 iff∑∞

0 log(1 − εi) = +∞, iff
∑∞

0 εi = +∞, iff
∑∞

0 exp(−θi/2) =
∑∞

i=0 1/ni = +∞,

as claimed. �
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3.2 A nonsymmetric counterexample. This class of examples has seve-
ral motivations: to give a quite flexible and general criterion for a (2× 2) sequence
to be a counterexample, to introduce some techniques for dealing with this non-
symmetric case, and to examine in isolation combinatorics which arose in the study
of related interval exchange counterexamples on four intervals [FZ06].

From a “purely adic” point of view, the intuition behind the choice of matrices
is similar to that for the symmetric case. Given a matrix sequence (Mi)i≥0,
if the determinant of M0 · · ·Mk is strictly positive, then equivalently the cone
C+

k = M0 · · ·MkC+ is not a single ray. For a counterexample we want this in
the limit, that the infinite intersection

⋂
k C+

k is also nontrivial; the rough idea is
to require that for k large, Mk be projectively sufficiently close to the identity
that the cones decrease by a summable amount. For the symmetric case just
treated we carried this out explicitly. But now we take a different approach,
first normalizing the matrices: we replace (Mi)i≥0 by a related stochastic matrix
sequence (Pi)i≥0. It is important for the proof that these are column-stochastic
rather than the usual row-stochastic sequences which appear in Markov chain
theory (also in the nonstationary setting, as in [Fis08]).

Our result is

Theorem 3.2. For a nonnegative integer matrix sequence (Mk)k≥0 satisfying

the four conditions which follow, any adic transformation with matrix sequence
(Mk)k≥0 is minimal but is not uniquely ergodic.

Proof. We write Mk =
[

nk nk

mk mk

]
, with strictly positive integer entries. So this

is primitive, and we are to show the sequence (Mk)k≥0 is not Perron–Frobenius.

We set, for k ≥ 0,

M0M1 · · ·Mk =

[
ak bk

ck dk

]
,

giving

(2)
ak+1 = nk+1ak + mk+1bk,

bk+1 = nk+1ak + mk+1bk,

with similar equations (which we shall not need) for (ck) and (dk).

Conditions:
[1] Let (λi)i≥1, (ξi)i≥1 be real sequences ≥ 1 such that

∑

i≥1

1

λi

and
∑

i≥1

1

ξi

< +∞.
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Defining

K = exp

(∑

i≥1

1

λi

+
∑

i≥1

1

ξi

)
,

we then define λ0 = ξ0 = K.
We have two integer sequences nk, mk ≥ 1 for k ≥ 0 (the sequences can be fixed

from the beginning, or these values can be chosen along the way), and then choose
inductively two further integer sequences nk, mk ≥ 1 so that these four sequences
satisfy:

n0m0 > n0m0[2]

(so equivalently, detM0 > 0), and so that for all k ≥ 0,

mk+1 > nk+1

(
λk

nk

nk

)
,[3]

nk+1 > mk+1

(
ξk

bk

ak

)
.[4]

Lemma 3.3. Conditions [3] and [4] guarantee that

[5]
α0

β0
≡

n1

n1
×

n0n1 + n0m1

n0n1 + n0m1
> K,

and that for all k ≥ 1,

[6] detMk = nkmk − nkmk > 0.

Proof of Lemma 3.3. We start by proving [5]. From [3] and [4], for k = 0,
since λ0 = ξ0 = K, we have

m1 > K
n0

n0
n1 and m1 <

n0

n0K
n1.

Hence

α0

β0
≡

n1

n1
×

n0n1 + n0m1

n0n1 + n0m1
=

n1

n1

(
n1 + n0

n0
m1

n1 + n0

n0
m1

)
>

1 + K

1 + 1
K

= K.

We next prove [6]. Multiplying [3] and [4] gives, for all k ≥ 0,

nk+1mk+1 > nk+1mk+1

(
λkξk

nk

nk

bk

ak

)
≥ nk+1mk+1

(
nk

nk

bk

ak

)
.

So if we can show that

(3)
nk

nk

bk

ak

≥ 1,
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then indeed detMk+1 > 0 for any k ≥ 0. We prove (3) by induction. Recalling that
a0 = n0 and that b0 = n0, it is true for k = 0. Assuming (3) holds for k we prove it
for (k + 1). To this end, we define the following function on the reals:

fk(t) =
nk + mkt

nk + mkt
.

Its derivative is
f ′k(t) =

detMk

(mkt + nk)2

(indeed fk is a fractional linear transformation!). By the induction hypothesis this
is > 0, so fk(·) is a strictly increasing function. Since bk−1/ak−1 > 0 for all k ≥ 1,
we arrive at

bk

ak

= fk

(
bk−1

ak−1

)
> fk(0) =

nk

nk

,

which delivers (3) and hence [6], as desired. �

Proof of Theorem 3.2. We define an associated sequence (Pk)k≥0 which
is column-stochastic, that is, the column sums are one. This sequence of matrices
will be easier to work with than the original sequence (Mk). Choosing the initial
row vector h

t
−1 = [ 1 0 ], we define h

t
k = h

t
−1M0M1 · · ·Mk = [ ak bk ]; this is a left

eigenvector sequence with eigenvalue one, i.e.,

h
t
k = h

t
k−1Mk for k ≥ 1;

the entries of h
t
k are strictly positive for k ≥ 0.

We then write Hk, k ≥ 0, for the diagonal matrix with entries given by h
t
k , so

Hk =

[
ak 0

0 bk

]
,

and we define our new matrix sequence by

Pk = HkMk+1H
−1
k+1, k ≥ 0.

Writing 1
t for the row vector

1
t =

[
1 1

]
,

we note that

1
tPk = 1

tHkMk+1H
−1
k+1 = h

t
kMk+1H

−1
k+1 = h

t
k+1H

−1
k+1 = 1

t.

Thus 1
t defines a (constant) left eigenvector for Pk with eigenvalue one, so the Pk

are column-stochastic (with strictly positive entries).
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We write Pk =
[

pk pk

1−pk 1−pk

]
; then

P0P1 · · ·Pk = H0M1 · · ·Mk+1H
−1
k+1 ≡

[
αk βk

1− αk 1− βk

]
,

which is also column-stochastic. (One checks that for k = 0 the previous definition
of α0/β0 in Lemma 3.3 agrees with this.) We now explain the strategy of the
proof. Letting C+ denote the positive cone in the space of column vectors R

2, then
C+

k = P0P1 · · ·PkC+ is the cone spanned by the two column vectors
[

αk

1− αk

]
and

[
βk

1− βk

]
.

We wish to show that C+
∞ =

⋂
k≥0 C+

k is nontrivial.
By [6] of Lemma 3.3, detM1M2 · · ·Mk+1 > 0; this is equivalent to

detP0P1 · · ·Pk = αk − βk > 0, so βk < αk for all k ≥ 0.

We claim that (αk) is a decreasing and (βk) an increasing sequence. Indeed,
βk+1 = βk + (αk − βk)pk+1 with βk < αk and pk > 0 for all k ≥ 0; the argument for
(αk) is similar.

We write α = limk→∞ αk = infk≥0 αk and β = limk→∞ βk = supk≥0 βk. Note
that 0 < α ≤ β < 1. Therefore,

lim
k→∞

P0 · · ·Pk = lim
k→∞

[
αk βk

1− αk 1− βk

]
=

[
α β

1− α 1− β

]
.

Now the cone C+
∞ is spanned by the columns of this limiting matrix. We claim

that it is nontrivial if and only if the cone
⋂

k≥0 M0M1 . . .MkC+ is.
Indeed, M0M1 . . .Mk+1C

+ = M0H
−1
0 P0 · · ·PkHk+1C

+ = M0H
−1
0 P0 · · ·PkC+,

since Hk+1C
+ = C+. So

⋂
k≥0 M0M1 . . . Mk+1C

+ =
⋂

k≥0 M0H
−1
0 C+

k =

M0H
−1
0 C+

∞.
As a result, C+

∞ is nontrivial if and only if β < α.
The rest of the proof of Theorem 3.2 is devoted to showing that β < α.
To this end, we define

[
Ak+1 Bk+1

Ck+1 Dk+1

]
= P0P1 · · ·PkHk+1 = (P0P1 · · ·Pk−1Hk)Mk+1,

so for k ≥ 1, just as in (2),

(4)
Ak+1 = nk+1Ak + mk+1Bk,

Bk+1 = nk+1Ak + mk+1Bk.
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On the other hand, we have
[
Ak+1 Bk+1

Ck+1 Dk+1

]
= P0 · · ·PkHk+1 =

[
αk βk

1− αk 1− βk

][
ak+1 0

0 bk+1

]
,

so

(5) Ak+1 = αkak+1 and Bk+1 = βkbk+1.

From the second equation in (4),

Ak =
Bk+1 −Bkmk+1

nk+1
.

Substituting into the first equation in (4) for k and (k + 1) gives

Bk+2 −Bk+1mk+2

nk+2
=

Bk+1 −Bkmk+1

nk+1
· nk+1 + Bkmk+1,

so
Bk+2

nk+2
+

(
nk+1mk+1

nk+1
−mk+1

)
Bk =

(
mk+2

nk+2
+

nk+1

nk+1

)
Bk+1.

By [6], detMk+1 > 0, so the quantity in parentheses on the left is > 0. Therefore,
for all k ≥ 0,

(6) Bk+2 <

(
mk+2 +

nk+1nk+2

nk+1

)
Bk+1.

Now from (2), bk+1 > mk+1bk and βk = Bk+1/bk+1 from (5).

This, in conjunction with (6) (with index lowered by one) together with [3],
leads to

βk <
mk+1 +

nknk+1

nk

mk+1

Bk

bk

=

(
1 +

nknk+1

nkmk+1

)
βk−1 ≤

(
1 +

1

λk

)
βk−1.

Thus

(7) βk < β0

k∏

i=1

(
1 +

1

λi

)
, k ≥ 1.

We next find a lower bound for αk, and equivalently an upper bound for 1/αk.
From (5) and (4), αkak+1 = Ak+1 > Aknk+1 = αk−1aknk+1, so using the first
equation in (2), we obtain

1

αk

<
ak+1

ak

1

nk+1

1

αk−1
=

(
1 +

bk

ak

mk+1

nk+1

)
1

αk−1
<

(
1 +

1

ξk

)
1

αk−1
.
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Therefore, for all k ≥ 1,

(8)
1

αk

<
1

α0

k∏

i=1

(
1 +

1

ξi

)
.

Thus multiplying (7) and (8), and then taking the limit as k →∞, we arrive at

β

α
≤

β0

α0

∞∏

i=1

(
1 +

1

λi

)(
1 +

1

ξi

)
≤

β0

α0
exp

( ∞∑

i=1

1

λi

+

∞∑

i=1

1

ξi

)
=

β0

α0
K < 1,

where we have used [1] in deriving the first inequality, then the fact that log(1+x) ≤

x for all x > −1 in writing the second one, and then finally condition [5]. So β < α

and we are done with the proof of Theorem 3.2. �

4 A (3× 3) unimodular counterexample

This class of examples is inspired by the combinatorics of the (4× 4) matrices

Lj =




0 0 1 1

mj − 1 mj 0 0

nj nj nj − 1 nj

1 1 1 1




which appear in [Kea77]. They can be used to define an adic transformation which
is isomorphic to the interval exchange; see [Fis] (though these matrices play a
different role in Keane’s paper).

The idea is to remove a row and column from the above matrices, followed by
a permutation of the columns, with everything chosen in such a way as to allow
the rest of Keane’s argument to still go through.

Our matrix sequence (Mi)i≥0 is

Mj =




mj 0 mj − 1

nj nj − 1 nj

1 1 1


 .

As in the last case detMj = −1, and again we replace it by the sequence
(M2jM2j+1)j≥0 to get a sequence with determinant one.

On R
3 we use the norm |x| =

∑3
i=1 |xi|. Writing C+ for the positive cone of

R
3, then C+ projects to the unit simplex ∆ = {x ∈ C+ : |x| = 1} by π : x 7→ x/|x|.

We normalize the linear map Mj on the cone to a nonlinear map M̃j on the simplex
by M̃j(x) = π ◦Mj(x) = Mj(x)/|Mj(x)|.
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◦

◦

e3

e1 e2

e
(0)
1 e

(0)
2

Figure 2. For each k, the image simplex ∆k contains points which belong to
disjoint subsimplices of ∆.

Theorem 4.1. Suppose that for i ≥ 0, mi, ni are positive integers satisfying

n0 ≥ 6 and, for all k ≥ 0,

(3nk + 1) ≤ 2mk ≤ nk+1.

Then the sequence (Mi)i≥0 is not Perron–Frobenius,and so any adic transformation
defined by taking the Mi as edge matrices and then fixing an incoming edge order

is minimal (since the sequence is primitive) but is not uniquely ergodic.

First, we need some lemmas. Fixing k, and given a vector x
(k+1) ∈ ∆, we

define inductively for 0 ≤ j ≤ k

x
(j) = M̃jx

(j+1),

so x
(0) = M̃0 ◦ M̃1 ◦ · · · ◦ M̃k(x(k+1)). What we will show is that there are two

disjoint subsimplices in ∆ such that, for any k, (e1)
(0) and (e2)

(0) are in these
subsimplices; see Fig. 2.

Lemma 4.2. For any j ≥ 0, for any x ∈ ∆, (M̃j(x))3 ≤ 1/nj.

Proof. We have (Mjx)3 = 1 while |Mj(x)| = nj +(mj +1)x1 +mjx3 ≥ nj . �

Lemma 4.3. Taking x
(k+1) = e2, fixing k ≥ 1, then for any 0 ≤ j ≤ k + 1,

x
(j)
1 ≤ 1/nj.

Proof. For (k + 1) this is true, since x
(k+1)
1 = (e2)1 = 0. For the (decreasing)

induction step, assuming x
(j+1)
1 ≤ 1/nj+1 we shall prove that then x

(j)
1 ≤ 1/nj.

Now we know that x
(j+1)
3 ≤ 1/nj+1 for any j ≤ k; this is true for j = k since
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x
(j+1)
3 = 0, while for all j < k we apply Lemma 4.2. Now since

(9) x
(j)
1 =

mjx
(j+1)
1 + (mj − 1)x

(j+1)
3

nj + (mj + 1)x
(j+1)
1 + mjx

(j+1)
3

,

this will certainly be smaller than 1/nj if mjx
(j+1)
1 + (mj − 1)x

(j+1)
3 ≤ 1. And this

follows from the condition mj ≤ nj+1/2 together with x
(j+1)
3 , x

(j+1)
1 ≤ 1/nj+1. �

Lemma 4.4. For x
(k+1) = e2, for k ≥ 0, x

(0)
2 ≥ 1− 2/n0.

Proof. This follows from the previous two lemmas, since

x
(0)
2 = 1− x

(0)
1 − x

(0)
3 ≥ 1− (1/n0 + 1/n0).

�

Lemma 4.5. Taking now x
(k+1) = e1, then for all k ≥ 0, x

(0)
1 = (e

(0)
1 )1 ≥

1
3 .

Proof. We prove in fact that for all j ≤ k + 1, x
(j)
1 ≥ 1

3 , again proceeding by
induction. For j = k + 1, x

(k+1)
1 = 1 ≥ 1

3 ; for the induction step we assume that
x

(j+1)
1 ≥ 1

3 and prove it for j.

Now again x
(j)
1 satisfies equation (9). We must prove that

3mjx
(j+1)
1 + 3(mj − 1)x

(j+1)
3 ≥ nj + (mj + 1)x

(j+1)
1 + mjx

(j+1)
3

or, equivalently, that

(2mj − 1)x
(j+1)
1 ≥ (3 − 2mj)x

(j+1)
3 + nj

or

2mj(x
(j+1)
1 + x

(j+1)
3 ) ≥ (x

(j+1)
1 + x

(j+1)
3 ) + nj + 2x

(j+1)
3 .

Using the assumption that mj ≥ (3nj + 1)/2, it is enough to show that

3nj(x
(j+1)
1 + x

(j+1)
3 ) ≥ nj + 2x

(j+1)
3

or, equivalently,

3njx
(j+1)
1 ≥ nj − (3nj − 2)x

(j+1)
3 .

But since x
(j+1)
1 ≥ 1

3 while −1/nj+1 ≤ −x
(j+1)
3 (also for the initial case x

(k+1)
3 = 0)

and (3nj − 2) > 0, this is true. �
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0
a //
d //b // 0

a //
d //b // 0

a //
d //b // 0 · · ·

1 //

c����

@@����

1 //

c����

@@����

1 //

c{{{{

=={{{{

1 · · ·

Figure 3. Bratteli diagram for the Chacon adic transformation; the edge paths form
the space Σ+

A; the substitution maps from right to left.

Proof of Theorem 4.1. Since Mi has entries all > 0, the sequence Mi is
certainly primitive, hence any adic transformation defined from it by choosing an
incoming edge order on the Bratteli diagram is minimal.

But the image simplex ∆k ≡ M̃0 ◦ M̃1 ◦ · · · ◦ M̃k(∆) contains the points e
(0)
1 =

e
(0)
1 (k), with first coordinate ≥ 1/3, and e

(0)
2 = e

(0)
2 (k) whose second coordinate

is > 1 − 2/n1 ≥ 2/3; these conditions define two subsimplices which meet at a
single point on the boundary of ∆. By primitivity, there exists a > 0 such that
the third coordinate of each is > a for all k, so these points are in fact in disjoint
subsimplices; see Fig. 2. Hence the image simplices ∆ ⊇ ∆1 ⊇ · · ·∆k+1 · · · cannot
nest down to a single point. �

5 A nonprimitive uniquely ergodic adic transformation

We call this example the Chacon adic transformation because of its connection to a
substitution dynamical system of [Fer95], [Fer02], which in turn is closely related
to Chacon’s transformation, a well-known map of the unit interval constructed by
cutting and stacking [Cha69]. The matrix which defines the Bratteli diagram is

A =

[
3 0

1 1

]
.

As described in the introduction, we think of the substitution ρ : 0 7→ 0010, ρ : 1 7→ 1

as mapping from right to left on the Bratteli diagram, so defining an incoming edge
order; see Fig. 3.

We claim that both minimality and unique ergodicity hold for the adic trans-
formation (Σ+

A \ N , TO). We give a self-contained and “purely adic” proof of this,
not making use of the substitution dynamical system (see Remark 5.2). In this
proof we compare this map to two related adic transformations, also given by
substitutions.

We call elements of the alphabet vertices and label edges by pairs of vertices
separated by letters in {a, b, c, d}; a symbol is a vertex or a letter. To specify an edge
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Figure 4. Diagram for the intermediate transformation, giving the space Σ+
B;

incoming orders for vertices 0 and 2 are shown.

path we could list the sequence of edges, but usually we write it in a shorter form
as a single string of symbols, consisting of the corresponding vertex sequence with
letters inserted when necessary to specify an edge unambiguously.

In the Chacon adic space Σ+
A there are four incoming edges to the vertex 0,

ordered as 0a0 < 0b0 < 1c0 < 0d0, and one edge 11. We use a bar to indicate
infinitely repeated symbols, such as (.0d) = (.0d0d . . . ). The set of points (i.e., edge
paths) with no successor is NSA = {(.0d), (.1)} and those with no predecessor is
NPA = {(.0a), (.1)}.

Remark 5.1. This gives an example of an adic transformation with no con-
tinuous extension to all of Σ+

A. Indeed, no such definition is possible at the point
(.0d), since the successor of (.0d0d . . . 0d0b0) is (.11 . . . 10) while the successor of
(.0d0d . . . 0d0a0) is (.0a0a . . . 0a0b0).

Next, we define two related stationary adic transformations, both with alphabet
A = {0, 1, 2}; see Figs. 4 and 5. For the first of these, the intermediate transforma-
tion, the matrix is

B =




2 0 1

1 1 1

1 0 2


 with substitution ρB : 0 7→ 0012, 1 7→ 1, 2 7→ 2012.

In this diagram there are 9 edges. Those entering vertex 0 are ordered 0a0 <

0b0 < 1c0 < 2d0 and those entering 1 are ordered 2a2 < 0b2 < 1c2 < 2d2,
while there is one edge 11 entering the vertex 1. Here, NSB = {(.2d), (.1)} and
NPB = {(.0a), (.2a), (.1)}.

Next we define the final transformation, given by matrix

C =



2 0 1

1 1 1

1 1 1


 , with substitution ρC : 0 7→ 0012, 1 7→ 12, 2 7→ 012.
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Figure 5. Diagram for the final transformation on Σ+
C , showing incoming orders

for vertices 0, 2 and 1.

For this space, there are again 9 edges, with four entering vertex 0 ordered as
0a0 < 0b0 < 1c0 < 2d0 (as before), then three entering 2 ordered as 0b2 < 1c2 < 2d2,
and lastly two entering 1 ordered by 11 < 2a1. Now, NSC = {(.2d2d2d . . . )} and
NPC = {(.0a0a0a . . . ), (.111 . . . )}. We write W s((.1)) for the stable equivalence
class of (.1): all sequences of the form (. ∗ ∗ · · · ∗ 111 . . . ), where ∗ means “any
symbol”, and note that this is a countable set.

We note that the successor of (.1) is now defined and equals (.2a1), which in
turn maps to (.0b2a1), then (.1c2a1), and so on.

We shall prove

Theorem 5.1. There exist injective continuous maps Φ : Σ+
A → Σ+

B and

Ψ : Σ+
B → Σ+

C , such that Φ is onto all of Σ+
B minus a countable set and preserves

the lexicographic orders, while Ψ is a bijection, which is order-preserving after

a single point has been removed from both spaces. The dynamics of the adic

transformations TA on Σ+
A \NA, TB on Σ+

B \NB and TC on Σ+
C \NC are conjugated

by the maps. The shift transformations are also conjugated by Φ, but this is not

true for Ψ.
These maps conjugate the actions of FCA restricted to Σ+

A \ {.1}, of FCB on

Σ+
B \ ({1} ∪W s(.2a)) and of FCB on Σ+

B \W s(.1).

Proof. We define Φ : Σ+
A → Σ+

B.
Given x = (xi) ∈ Σ+

A, where the symbol sequence xi ∈ {0, 1, a, b, c, d} specifies
an edge path, we determine the image Φ(x) as follows. If we see a block consisting
entirely of 0d or 0a and ending with 0d, we change each 0 to 2. In particular, if the
string x ends in an infinite string of 0a and 0d, which contains infinitely many 0d,
then we change each 0 to 2 there.

We note that by this definition Φ is a well-defined map from Σ+
A to Σ+

B. It is also
shift-invariant, since the code only depends on what happens to the right, so cutting
off an edge on the left does not affect this. We claim next that Φ is in fact a bijection
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Figure 6. How a path maps from Σ+
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Figure 7. How the exceptional edge path (.111 . . . ) is mapped; ∗ indicates there is
no preimage for the map Φ.
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0
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0 0 0 0 0 0

0 0 0 0 0 0

1

1 1

1 1

1

1

b c da

Figure 8. A stable tree for the Chacon adic; 0th coordinate is lowest; the adic
transformation maps paths from left to right following these lowest vertices.

from Σ+
A to Σ+

B, and that it preserves lexicographic order. It will follow that Φ is a
bijection on the sets NS,NP and N of the two spaces, and that it conjugates the
successor maps TA : Σ+

A \ NSA → Σ+
A \ NPA and TB : Σ+

B \ NSB → Σ+
B \ NPB

and hence the adic transformations on Σ+
A \ NA, Σ+

B \ NB .

For this one can give a combinatorial proof, checking all cases, but contributing
little to the understanding of what is going on. So instead we give a geometrical
proof based on the pictures which underlie the combinatorial argument. These are
pictures of infinite trees which, rather being infinite towards the branches as often
occurs in mathematics, are infinite towards the root (drawn upwards!); see Fig. 8.
Each tree represents an equivalence class W s(x) for some x = (xi) ∈ Σ+

A; this is
the stable tree of x, as described in the introduction. To construct the stable tree
of a given string x, we write the vertices as nodes of the tree and the letters as
edges, ordered from left to right; the 0th vertex is at the bottom, the first above
that, with the infinite trunk representing x extending upwards and all the paths in
W s(x) branching off to the left and right. The adic transformation then has a purely
geometrical description, as shifting from right to left along the ending nodes at the
bottom of this tree.

Our map Φ is now easily described. It takes a stable tree in Σ+
A to a stable tree

in Σ+
B as follows: we leave all the edges in place, but change some of the vertex

labels from 0 to 2. The substitution maps in the downwards direction; this change
is made so as to agree with the new substitution rule ρB, and leads to the coding
description just given. This proves that we have a bijection which does preserve
the lexicographic order, as claimed. The figure shows a finite part of a stable tree,
ending on top with edge 0b0. The situation depicted is typical for any such tree.
Note that the code after (above) this location does not change this part of the code,
and so this proof is valid no matter what are the previous symbols.

The figure shown covers only the case where some 0b appears. There are thus



26 S. FERENCZI, A. M. FISHER AND M. TALET

two cases not covered. The first is where the string ends in 111 . . . (which means
it is necessarily (.11 . . . )). Now Φ(.11 . . . ) = (.11 . . . ), handling that case. The
second case is where it ends in a sequence of 0a and 0d; this subdivides into the
cases with finitely or infinitely many 0d. If there are finitely many 0d, then this
is just like the figure but with a 0a on the top replacing the 0b; nothing above that
is changed. Lastly, if we have infinitely many 0d, then any subtree below a given
0d behaves as if it were the 0d branch below 0b in the figure shown. The trees
are nested as we go upwards, so the bijectivity and order-preservation hold here as
well.

We have shown bijectivity and order-preservation from any stable tree in the
first space to a corresponding tree in the second. To check surjectivity, we have
to be sure that no stable tree in Σ+

B has been entirely missed—but that is just what
has happened! We have already covered all cases where 0 or where 2d occurs
infinitely often, so the only possibility is a string which ends in all 2a. And indeed,
the path (.2a) has no preimage under Φ. This point is in NPB, and its stable tree
is W s((.2a)) = {(.2a), (.0b2a), (.1c2a), . . . }, listed in dynamical order of T n

B((.2a)).

We recall from §2.2 of [Fis08] that the group FC on the space Σ+
A is generated

by the collection of maps γ which interchange two cylinder sets of equal length that
end in the same edge. From the stable tree picture just described, we see that the
cylinder sets in Σ+

A ending with 0d at some fixed level n correspond bijectively to
those in Σ+

B ending on 2d, so these generating maps correspond via the conjugacy.
The point (.1) is a fixed point for FC in both spaces. Hence (Σ+

A,FCA) is conjugate
to the restricted action (Σ+

B \W s(.2a),FCB).

Next we define Ψ : Σ+
B → Σ+

C .

We search in a string y until we find the first occurrence of 2d0 or 2d2. We
code the maximal block 2a2a . . .2a2d0 to 2a1 . . .1c0, and the maximal block
2a2a . . .2a2d2 to 2a1 . . .1c2; in this definition we also allow no a’s. We also
code a maximal infinite string 2a which follows some finite string to 2a1. All other
strings are left unchanged. For some examples, 2d0 is mapped to 1c0, 2a2a2a2d0

is mapped to 2a111c0, and (.1c2a2d) is mapped to (.1c2a1c). We claim this defines
an order-preserving map from Σ+

B to Σ+
C .

For the proof see Figs. 9 and 10: we depict what happens for a finite tree below
an edge 2d0, the case of 2d2 being similar. The map may remove an edge and replace
it elsewhere, as indicated, but as the location in the tree is unchanged, this gives a
bijection between the two finite stable trees which, moreover, is order-preserving
since the lexicographic orders have been represented geometrically from left to
right. Note that the new tree faithfully represents the new substitution rule ρC .

The map on such a finite tree is well-defined, as knowing further edges above
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Figure 9. The corresponding stable tree for the intermediate adic.
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Figure 10. The corresponding stable tree for the final adic, showing branches
erased and added by the map Ψ.

this will not change this part of the code (i.e., the tree pictures are nested). This
implies that there is an order-preserving bijection between two stable trees when
the string y ∈ Σ+

B contains infinitely many vertices 0 or infinitely many occurrences
of 2d. The only other possibility in the domain of Ψ is a string (.1) or a string
ending in 2a. But by definition Ψ(.1) = (.1) and the end of a string of the form 2a

is coded to 2a1. This concludes the proof that Ψ is well-defined on all of Σ+
B and

is injective.

It remains to check surjectivity. Points of the following type have preimages,
as we have seen, those with vertex 0 or 2d occurring infinitely often. Also, any
tree below 1c2 has a well-defined preimage, as one sees from the figure. A path
ending in 2a1 is the image of one ending in 2a, covering that case. The image of
(.1) is (.1). This covers all cases, so the map is onto and hence is a bijection from
Σ+

B onto Σ+
C .

To complete the verification of order-preservation there is one more tree to
check in Σ+

C , the tree containing (.11 . . . ). In Σ+
B this tree contains that one path,

but in Σ+
C the stable tree of Ψ(.11 . . . ) = (.11 . . . ) has countably many paths. This

string is in NSB ∩ NPB and in NPC but not NSC , as there it has a successor,
Ψ(.2a) = (.2a1 . . . ). The adic orbit then follows the images of T n

B applied to this
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point; see Fig. 7. So Ψ is an order-preserving bijection from Σ+
B \ {(.11 . . . )} onto

Σ+
C \ {(.11 . . . )}.

Interestingly, this time the map is not shift-invariant. For an example,
Ψ(.2a2d0b0) = (.2a1c0b0) but Ψ(σ(.2a2d0b0)) = Ψ(.2d0b0) = (.2d0b0) 6= (.1c0b0) =

σ(.2a1c0b0). One can also see this in the tree picture: whether or not one of the
new branches is used depends on the final edge, so if this is removed no change is
made.

Finally, we consider the actions of FCB and FCC . By similar reasoning as
before, the action of FCB restricted to Σ+

B \ (W s(.2a) ∪ {.1}) is conjugate to the
action of FCC on Σ+

C \W s(.1). The statement in the theorem follows. �

We then conclude:

Proposition 5.2. (i) The action of the group FCC on Σ+
C is minimal and

uniquely ergodic. While this is false for FCA on Σ+
A and FCB on Σ+

B, both of

these actions are essentially minimal and essentially uniquely ergodic.
(ii) Any adic transformation on (Σ+

M \NM , TM,O) for M = A, B or C and for any

order O is both minimal and uniquely ergodic.

Proof. (i) Since the matrix C is primitive, by Lemma 2.4 of [BM77] the action
of FCC is uniquely ergodic. (Alternatively, one can apply the criterion of [Fis08]
to the constant sequence C, as the “Perron–Frobenius property” follows of course
from the Perron–Frobenius theorem.) Minimality follows easily from primitivity,
as shown for the nonstationary case in [Fis08].

The invariant probability measure is nonatomic, and is taken by the conjugacies
of Theorem 5.1 to nonatomic invariant probability measures for FCB and FCA.
Conversely, any nonatomic measure on those spaces gives zero mass to NB,NA

and so transports to an invariant probability measure for FCC . Minimality for FCC

implies essential minimality for FCB,FCA since NB,NA are countable sets.
(ii) Given one of the adic transformations (Σ+

M \ NM,O, TM,O), we know from
(i) that FCM is essentially minimal and essentially uniquely ergodic. A nonatomic
invariant measure for FCM is invariant for TM,O, showing existence, while any
invariant probability measure µ for TM,O on Σ+

M \ NM,O is invariant for FCM (one
checks this on cylinder sets; see Proposition 2.9 of [Fis08]), showing uniqueness.
Hence (Σ+

M \ NM,O, TM,O) is uniquely ergodic.
The orbits ofFCA are identical to the stable equivalence classes; we know these

are all dense except for the equivalence class of (.1), which is a fixed point forFCA.
The same holds for FCB. Thus both these actions are essentially minimal. �

Hence, in particular, the Chacon adic transformation (Σ+
A \ NA, TA) is both

minimal and uniquely ergodic.
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Remark 5.2. The substitution defining the “final adic” above comes from
[Fer02], where the Chacon substitution dynamical system was compared to that
substitution dynamical system. Our proof here is essentially an “adic version” of
that idea.

A point that we find interesting in the above construction is that, though the
map Φ conjugates the adic transformations, it does not congugate the shift maps.
We note that this is a one-sided phenomenon, as the corresponding block code on
the two-sided spaces does conjugate the shifts as well. A geometrical view of this
will be given in a later paper.

We mention that a quick (but not self-contained) proof of the minimality and
unique ergodicity of the Chacon adic transformation can be given which is based
on the following three facts: Mossé’s recognizability theorem ([Mos92], [Mos96],
[Hos00]); the canonical correspondence between stationary adic transformations
and substitution dynamical systems for the primitive, recognizable case, first noted
by Livshits [Liv87], [Liv88]; and the known fact (proved in any of several known
ways [Fer02]) that the Chacon substitution dynamical system is minimal and
uniquely ergodic. In brief, there is always a canonical factor map from the edge
path space Σ+

A \ N to the biinfinite substitution dynamical system (Ω, S) with left
shift map S; this is bijective iff the substitution is recognizable, which is implied by
aperiodicity via Mossé’s theorem. In contrast to our purely adic proof, the validity
of this approach depends on the order O, as recognizability is not independent
of the particular substitution chosen. For an example of this, the Thue–Morse
substitution ρ(0) = 01, ρ(1) = 10 and the substitution ρ̃(0) = 01, ρ̃(1) = 01 have the
same matrix [ 1 1

1 1 ]; yet while the first is recognizable, the second is not. Indeed,
as an adic transformation, ρ̃ gives the adding machine, but the corresponding
substitution dynamical system consists of a factor of this, a space with two points
which are interchanged by the map.
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