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Abstract. Let A be a set of three integers and #t be the space ofr-
periodic functions with spectrum it endowed with the maximum modulus norm.
We isolate the maximum modulus pointof trigopnometric trinomialsl” € €
and prove that: is unique unles$T’| has an axis of symmetry. This enables us
to compute the exposed and the extreme points of the unibbdll, to describe
how the maximum modulus @f varies with respect to the arguments of its Fourier
coefficients and to compute the norm of unimodular relatwerier multipliers on
%x. We obtain in particular the Sidon constant/of

1 Introduction

Let A\;, A2 and )3 be distinct integers and, r, andrs; positive real numbers.
Given real numbers, t; andts, let us consider th&rigonometric trinomial

(1) T(.%') — rlei(t1+)\1w) + 7,,26i(t2+)\2w) + ,I,Bei(thr)\gI)

for z € R. The\'s are thefrequencies of the trigonometric trinomial’; ther’s
are themoduli or intensities; and thet’s are thear guments or phases of its
Fourier coefficientsrye'’t, rye'®2 andrzei’s.

The maximum modulus of a trigonometric trinomial has anrjmtetation in
plane geometry. Without loss of generality, we may assume\this between\;
and\;. Let H be the curve with complex equation

(2) z=relti=(e=2)n) 4 peiltet(Ca=d2)2) (< o).

H is ahypotrochoid: it is drawn by a point at distance to the centre of a
circle with radiusri|A2 — A1]/|\s — A2| that rolls inside another circle with radius
r1]As — A1]/|As — A2|. The maximum modulus of (1) is the maximum distance of
pointsz € H to a given point-ryei’z of the complex plane. Figure 1 illustrates the
particular cas@ (z) = 4e~12¢ 4 o't 4 ei®,
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Figure 1. The unit circle, the hypotrochaifiwith equation: = 4e~12* 4 ¢i*, the
segment from-1 to the unique point ol at maximum distance and the segments
from —ei”/3 to the two points ori{ at maximum distance.

We deduce the existence of aninterval on whidttains its maximum modulus
independently of the moduli of its Fourier coefficients (3&eorem 7.1 (a) for an
exact statement). We prove in particular the following tesu

Theorem 1.1. Letd = ged(A2 — A1, A3 — A2) and let + be the distance of

Ao — A3 A3 — A\ A1 — Ao
3) d ty + pi to + ]

to 27Z. The trigonometric trinomial T attains its maximum modulus at a unique
point modulo 27 /d, with multiplicity 2, unless = .

t3

Theorem 1.1 shows that if there are two points of the hypbwatH at
maximum distance te-r,e'f?, it is so only because rye'’2 lies on an axis of
symmetry ofH.

We obtain a precise description of those trigonometricotrirals that attain
their maximum modulus twice moduler/d (see Theorem 7.1 (c)). Theidle
becomes clear by the following result in convex geometrgytyield the exposed
points of the unit ball of the ambient normed space. Let u$ éissablish the
proper functional analytic framework. Lat= {)\;, X2, A5} be thespectrum of
the trigonometric trinomiall” and writee,: » — e**. Let %, be the space of
functions spanned bfe, : A € A}, endowed with the maximum modulus norm.
Recall that a poin® of a convex sef is exposed if there is a hyperplane that
meetsK only in P; P is extremeif it is not the midpoint of any two other points
of K.
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Theorem 1.2. Let K bethe unit ball of the spaceé, andlet P € K.

(a) Thepoint P isan exposed point of K if and only if P iseither atrigonometric
monomial ei®ey with o € R and A € A or a trigonometric trinomial that
attains its maximum modulus, 1, at two points modulo 27 /d. Every linear
functional on €, attains its norm on an exposed point of K.

(b) Thepoint P isan extremepoint of K if and only if P iseither atrigonometric
monomial e'“e, witha € Rand A € A or atrigonometric trinomial such that
1 — |P|? has four zeros modulo 27 /d, counted with multiplicities.

We describe the dependence of the maximum modulus of thentiigetric
trinomial T on the arguments. The general issue has been studied fog &riosy
[14, 22] are two early references. In particular, the follogvproblem has been
addressed: see [6, p. 2 and Supplement].

Extremal problem 1.3 (Complex Mandéshtam problem) Find the mini-
mum of the maximum modulus of a trigonometric polynomialhngiven Fourier
coefficient moduli.

It appeared originally in electrical circuit theory: “L. Mandelshtam com-
municated to me a problem on the phase choice of electrietgwith different
frequencies such that the capacity of the resulting cutcebtow (the circuit) is
minimal”, tells N. G. Chebotdv in [5, p. 396], where he discusses applications of
a formula given in Section 9 that we would like to advertise.

Our main theorem solves an elementary case of the complex®ishtam
problem.

Theorem 1.4. The maximum modulus of (1) is a strictly decreasing function
of r asdefined in Theorem 1.1. In particular,

min max|rlel(t1+)‘1w) + roeltatien) 4 rge‘(t3+)‘3m)|
ti,t2,ts

— max‘elrle”‘” + eargei® 4 63T3€1)\3w‘
xT

if €1, e2 and e3 are real signs +1 or —1 such that ¢;¢; = —1, wherei,j,k is a
permutation of 1, 2, 3 such that the power of 2 in A, — \; is greater than the power
of 2in \; — A\ andin A, — ;.

Our result shows that the maximum modulus is minimal wherptieses are
chosen in opposition, independently of the intensities, andrs.

The decrease of the maximum modulus of (1) may be boundedassh the
next result.
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Theorem 1.5. Let d and 7 be defined as in Theorem 1.1. Suppose that
Ao is between A\; and )\3;. The quotient of the maximum modulus of (1) by
[r1 + roeimd/Ms=Ml 4 4] is a strictly increasing function of 7 unless ry : 75 =
[As — A2] : |A2 — A1|, in which caseit is constantly equal to 1.

Whenry : r3 = |A3 — A2| : |A2 — A1, the hypotrochoidd with equation (2) is

a hypocycloid with |\; — A;|/d cusps: the rolling point i&n the rolling circle.
Figure 2 illustrates the particular cagér) = (1/3)e ™27 + eit + (2/3)e!”.

Figure 2. The unitcircle, the deltoid with equatiorn: = (1/3)e =12+ (2/3)el?, the
segment from-1 to the unique point o at maximum distance and the segments
from —e'™/3 to the two points orif at maximum distance.

We may deduce from Theorem 1.5 a less precise but handiarahigq

Theorem 1.6. Let d and T be defined asin Theorem1.1. Let
max(|Aa — A, [A3 — Ao, [Az — A1)
ged(A2 — A1, Az — Ap)
be the quotient of the diameter of A by d. Let ¢|, ¢, and ¢}, be another three real
numbersand 7’ defined correspondingly. If 7 > 7/, then

(@) D=

maX|rlei(t1+X1.’E) + r2ei(t2+)\2flf) 4 rsei(t:3+ksflf)|
cos(7/2D) it 4+ i(th+ Ao i(th+ sz
> con(r 72Dy Pe|rie TR el 4 pyel(a i),

with equallty if and Only if 71T T3 = |)\3 — )\2| : |)\3 — )\1| : |)\2 — )\1|

Figure 3 illustrates the inequalities obtained in Theordmdsand 1.6 for the
particular casé’(z) = 4e~12* + eif + ¢i”, as in Figure 1.

If we chooser’ = 0 in the last result, we get the solution to an elementary case

of the following extremal problem.
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m

m:maX|4e—12m+e1t+em|
x

\\“m =4+ e 41
I

}m = (4414 1)cos(t/2)
I

w
0 /3

t

Figure 3. LetH be the hypotrochoid with equation = 4e~12* + e¢i*. This
plot shows the maximum distanee of pointsz € H to the point—e'* and the
two estimates of this maximum distance provided by Theorgériisand 1.6 for
t€[0,7/3].

Extremal problem 1.7. Find the minimum of the maximum modulus of a
trigonometric polynomial with given spectrum, Fourier ffméent arguments and
moduli sum.

Theorem 1.8. Let+ bedefinedasin Theorem1.1 and D begivenby (4). Then

maxg |rlei(t1+)\1w) + 7,.2ei(t2+)\2w) + rsei(t3+)\3m)|
> cos(1/2D),

ry+1re 413

with equallty if and onlylf T=00rr:r9:7r3 = |)\3 — /\2| : |)\3 — )\1| : |)\2 — )\1|

The dependence of the maximum modulus of (1) on the argumesisalso
be expressed as properties of relative multipliers. Givead real numbersg,
to andts, the linear operator oy defined bye,, — elits ey, IS aunimodular
relative Fourier multiplier: it multiplies each Fourier coefficient of elements
of ¢, by a fixed unimodular number; let us denote it @y, ¢2,t3). See [9] for
general background on relative multipliers.

Theorem 1.9. Theunimodular relative Fourier multiplier (¢4, t2,t3) hasnorm
cos((m — 7)/2D) / cos(w/2D),

where 7 is defined as in Theorem 1.1 and D is given by (4), and attains its norm
exactly at functions of the form

rlei(ul+)\1m) +rzei(u2+)\2w) +r38i(U3+)\3$)

\Nith’l“l 1T T3 = |/\3 —/\2| : |)\3 —/\1| : |)\2 —/\1| and

A2 — A3 Az — A1 AL — A2
] uy + p U2 + p

us =7 mod 2.
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The maximum of the norm of unimodular relative Fourier npliéirs is the
complex unconditional constant of the canonical basi&,, ey, ex;) Of Gx.
As

T +To T3 = max‘rle’)‘” +roeia?® 4 rgel)‘3w|,
xT

this constant is the minimal constafitsuch that
r1+1ro+13 < Cmax‘rlei(“ﬁ)‘”) + rgei(“2+)‘2w) + rgei(“”)‘”)‘
xT

and is therefore th&idon constant of A. Itis also the solution to the following
extremal problem.

Extremal problem 1.10 (Sidon constant problem)rind the minimum of
the maximum modulus of a trigonometric polynomial with givepectrum and
Fourier coefficient moduli sum.

Settingr = 7 in Theorem 1.9, we obtain the following result.

Corollary 1.11. The Sdon constant of A is sec(r/2D), where D is given
by (4). 1t is attained exactly at functions of the form given in Theorem 1.9.

Finally, we would like to stress that each of the above regiiltes rise to open
questions if the set is replaced byny set of four integers.

Let us now give a brief description of this article. In Sen8® and 3, we use
carefully the invariance of the maximum modulus under fotgttranslation and
conjugation to reduce the argumentsts andt; of the Fourier coefficients of the
trigonometric trinomiall’ to the variable-. Section 4 shows how further to reduce
this study to the trigonometric trinomial

(5) rle_’m—i—rge’t—i—rge‘lm

with & and! positive coprime integers ande [0,7/(k + 1)]. In Section 5, we
prove that (5) attains its maximum modulus foe [—¢/k,t/l]. Section 6 studies
the variations of the modulus of (5) fare [—t/k,t/l]. It turns out that it attains
its absolute maximum only once on that interval; this yi€ltieorem 1.1. Sec-
tion 7 restates the results of the two previous sections g@reeral trigonometric
trinomial 7. Section 8 is dedicated to the proof of Theorem 1.2. In Se@jove
compute the directional derivative of the maximum moduluGdwith respect to
the argument and prove Theorems 1.4, 1.5, 1.6 and 1.8. In Section 10, wepro
Theorem 1.9 and show how to lift unimodular relative Founrtipliers to ope-
rators of convolution with a linear combination of two Dinameasures. Section 11
replaces our computation of the Sidon constant in a generdéxt and describes
the initial motivation for this research.
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Some of these results appeared previously, with a diffgneadf, in [19, 11.10]
and in [17].

Notation. Throughout this articlej;, A2 and A3 are three distinct integers,
A ={\, M2, A3} andd = ged (A2 — A1, A5 — A2). If Xis an integere, is the function
r — ¢’ of the real variable. A trigonometric polynomial is a linear combination
of functionse,; it is amonomial, binomial or trinomial if this linear combination
has one, two or three nonzero coefficients, respectivelye Adrmed spac®)
is the three-dimensional space of complex functions sphbge:, with A € A,
endowed with the maximum modulus norm. The Dirac measuis the linear
functionalT’ — T'(z) of evaluation at on the space of continuous functions. Given
three real numbers, ¢, andts, the linear operator oty defined bye,, — e'’iej,
is aunimodular relative Fourier multiplier denoted by(t;, to, t3).

2 Isometricrelative Fourier multipliers

The Ble of (3) is explained by the following lemma.

Lemma 2.1. Let ¢4, ¢t and t3 be real numbers. The unimodular relative
Fourier multiplier M = (t1,t2,t3) isan isometry on €, if and only if
)\2 — /\3 /\3 - )\1 /\1

W
27l
(6) d t1 + 7 to + 7 t3 € 277,

i.e., it isa unimodular multiple of a trandation: there are real numbers o and v
suchthat M f(z) = e'*f(z —v) for all f € €, andall = € R.

Proof. If M is aunimodular multiple of a translation by a real numiaghen
‘Tlei(t1+)‘w) + Tzei(t2+)‘2v) + T3ei(t3+)\3v)| =7y +72 413,
which holds if and only if
@) t1 + Mo =ty + Av =tz + A3v  modulo2r.
There existe satisfying (7) if and only if equation (6) holds, as (7) meamest
there exist integers, andas such that
. to —t1 + 2maq . to — t3 + 2mag
N A — Ao B Az — Ay
If t1, to andts are three real numbers satisfying (6), 4ebe such that (7) holds.
Then

Tlei(tl—‘rul +)\1’I') + T2€i(t2+?l,2+k2m) + Tgei(t3+u3+)\3fl:)

— ei(tg—&-kgu) (rlei(ul—l-)\l(m—v)) + 702€i(u2+)\2(37—v)) + rgei(ug—l-)\g(m—v)))

for all real numbers;, us, uz andz.
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3 Theargumentsof theFourier coefficientsof atrigono-
metric trinomial

We have used a translation and a rotation to reduce the thyamants of the
Fourier coefficients of a trigonometric trinomial to a siaglariable. Use of the
involution f(—z) of €, allows us to restrict even further the domain of that vagabl

Lemma3.1. Lett,, t, andts; bereal numbersand let £, be the representative
of
)\2 — )\3 )\1 - )\2

t t
N — A\ 1+ 2-1—)\3_/\1

(8

t3

modulo 27T/|)\3 — )\1| in [—Wd/p\g — )\1|,7Td/|)\3 — )\1|[
(a) There are real numbers o and v such that

(9) rlei(t1+>\1z)+rzei(t2+>\2z)+rsei(t3+,\3w)

_ eia (Tleikl(m—v) + T2€i(t~2+k2(m—v)) + Tgei)\g(x—v)))

for all x.
(b) Let t = |io| be the distance of (8) to (27d/|X\s — A\1|)Z. There is a sign
e € {+1,—1} such that

}rlei(t1+)\1$) +7,,2ei(t2+)\2w) +r36i(t3+)\3w)}

_ |r1ei)\16(a:7v) + r2€i(t+)\26(I7’U)) + Tgei)\ge(a:fv))
for all .

Proof. (a). The argument, is chosen so that the relative multiplier
(t1,ts — Lo, t3) iS @an isometry.

(b). If £, is negative, take the conjugate under the modulus of the highd
side in (9).

Remark 3.2. This proves the following periodicity formula:

|rlei)\1$ +7"26i(t+2ﬂ-d/()\37)\1)+)\2w) _’_rsei)\gm}

— ‘rlei)\l(wfv) + Tgei(t+)\2(w7v)) + Tgei)\g(a:fv)‘

for all z andt, wherev satisfies\;v = 2wd/(A3 — A1) + A2v = A3v modulo2r, that

IS,
A3 — A1

2 . . 3 — A
mr with m an inverse ot)% modulo .

BV

v
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4 Thefrequencies of atrigonometric trinomial

We may suppose without loss of generality that< Xy < A\;. Letk =
(/\2 — Al)/d and! = ()\3 — /\2)/d Then

(t+A2m) ik(

dx) + rgeit + Tgeil(da:)‘.

|rlei)‘”” + et +r3ei)‘”‘ = ‘rle*

A homothety byd~! allows us to restrict our attention to the function
F(t,z) = ‘Tle—ik:m T rpelt 4 ,rgeilm|2

for z € R, with £ andl two positive coprime numbers and: [0,7/(k +1)]. We

have

(10) f(=t,z) = f(t,—x)
and Remark 3.2 shows that
(11 ft+2m/(k+1),z) = f(t,x — 2mn/(k +1))

for all z andt, wherem is the inverse of modulok+!. In particular, ift = = /(k+1),
we have the symmetry relation

(12) Flr)(k+1),2) = f(n/(k+1),2mn/(k+1) — z).

5 Location of the maximum point

The purpose of our first proposition is to deduce the exigerica small
interval on which a trigonometric trinomial attains its nram modulus. Note
that a trigonometric binomial attains its maximum modulua point that depends
only on the phase of its coefficients:

o |rie~F 4+ ryelt| attains its maximum att¢/k independently of, andr,,

o |rie i 4+ rgell?| attains its maximum atindependently of, andrs,

o |rzeit 4 r3ell®| attains its maximum ay/! independently of, andrs.

The next proposition shows that if the point at which a trigoetric trinomial
attains its maximum modulus changes with the intensities ¢noduli) of its coef-
ficients, it changes very little; we get bounds for this pewhich are independent
of the intensities.

Proposition 5.1. Let k and [ be positive coprimeintegers; let r1, 7, and r3 be
three positive real numbers; and let t € [0, 7/(k + 1)]. Set
fz) = ‘rle*”” T rpelt +T3eilz|2

for z € R.
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(a) Thefunction f attains its absolute maximum in the interval [—¢/k,t/1].

(b) If f attains its absolute maximum at a point y outside of [—t/k, ¢/I] modulo
2w, thent = n/(k+1) and 2mmn/(k+1) —yliesin [—t/k, t/l] modulo 27, where
m istheinverse of [ modulo & + I.

Proof. (a). We have

13) f(x)=r2+r2+r2+2
(rirg cos(t + kz) + rirg cos((k + 1)) + rars cos(t — lx)).

Let us prove thay attains its absolute maximum o¢nt/k,t/l]. Lety be outside
of [-t/k,t/l]) modulo2r. LetI be the set of alt: € [—¢/k,t/] such that

cos(t + kx) = cos(t + ky)
cos((k + 1)z) = cos((k +1)y)
cos(t — lx) > cos(t — ly).

Note that ifz € [—t/k,t/l], then

t+kxel0,(k+ 0t/
(k+Dx e [—(k+Dt/k, (k+1)t/1]
t—lzel0,(k+1)t/k],

and that(k + 0)t/k, (k+1)t/l € [0,7]. Let
e «a be the distance af/k + y to (27 /k)Z,
e (3 be the distance afto (27/(k + 1)) Z,
e v be the distance af/l — y to (2x/1)Z.
Then

(14) I= [_t/k7t/l] n [_t/k -G, _t/k + 0[] n [_ﬁaﬁ] n [t/l - ’Yat/l + ’Y]
Let us check thaf is the nonempty interval
(15) I = [max(—t/k,—B,t/l —~),min(t/l,—t/k + o, B)].

In fact, we have the following triangular inequalities:
e —3< —t/k+a, because/k is the distance oft/k +y) —y to (27 /k(k+1))Z;
e t/l—v < —t/k+ «, because/l + t/k is the distance oft/k + y) + (t/l — y)
to (2n/kl)Z;
e t/l — v < 3, because/! is the distance oft/! — y) + y to 2x/l(k +))Z.
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The other six inequalities that are necessary to deducdrdrh)(14) are obvious.

(b). We have provedin (a) that there exists [—t/k, t/l] such thatos(t+ kx) >
cos(t + ky), cos((k + 1)z) > cos((k + 1)y) andcos(t — lz) > cos(t — ly). In fact, at
least one of these inequalities is strict unless there greséje,n € {—1,1} such
thatt + kx = 6(t + ky), t — lz = e(t — ly) and(k + 1)z = n(k + 1)y modulo2x. Two
of these three signs are equal, and the corresponding tvatiegs imply the third
one with the same sign. This system is therefore equivatent t

k(x—y)=0 klx+y)=-2t
or
l(lz—y)=0 lz+y) =2t
modulo2r. The first pair of equations yields= y modulo2r becausé and! are

coprime. Letn be an inverse afmodulok + [; then the second pair of equations
is equivalent to

20k+Dt=0
{ x4y =2mt
modulo2r. Therefore,g does not attain its absolute maximumgyatinlesst =
w/(k+1)and2mn/(k+1) —y € [-t/k,t/]].

Remark 5.2. This proposition is a complex counterpart to Lemgngai) in
[21], where cosine trinomials are investigated.

6 Uniqueness of the maximum point

Note that
rle*”” + Tzeit + Tgeil:r _ ,rgefil(fgc) + Tzeit + Tleik(fw)
= r’le_iklml +roelt 4 rgeil/’”/
with ] = r3, 5 =7, k' =1, I' = k anda’ = —z. We may therefore suppose

without loss of generality thatr, < irs.

Our second proposition studies the points at which a trigmetdac trinomial
attains its maximum modulus. Note thatkif= | = 1, the derivative of f|° has
at most4 zeros, so that the modulus ¢thas at most two maxima and attains its
absolute maximum in at most two points. Proposition 6.1 shihat this is true
in general and that if it attains its absolute maximum in twings, it is so only
because of the symmetry given by (12).

Proposition 6.1. Let k and [ be positive coprimeintegers; let r1, 7, and r3 be
three positive real numbers such that kr; < lrs; andlett €10, 7/(k +1)]. Set

fz) = ‘Tle—ik:m T rpelt +T3eilx|2
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for « € [—t/k,t/1].
(a) Thereisapoint 2* € [0,t/]] suchthat df/dx > 0on]—t/k,z*[and df/dz < 0
onJz*, t/1].
(b) There arethree cases:
1. f attainsits absolute maximum at 0 if and only if kry = irs;
2. f attainsits absolute maximumat ¢/l ifandonlyif i =1,t =n/(k + 1)
and k%ryrg + (k + 1)%rir3 — ror3 < 0;
3. otherwise, f attains its absolute maximumin 0, ¢/1].
(c) Thefunction f attains its absolute maximum with multiplicity 2 unlessi = 1,
t =7/(k+1)and k*r1re + (k + 1)%r1r3 — mr3 = 0, in which case it attains
its absolute maximum at = /(k + 1) with multiplicity 4.

Proof. (a). By Proposition 5.1, the derivative gfhas a zero in—t/k,t/1].
Let us study the sign of this derivative. Equation (13) yseld

1df
2 dx
We wish to comparein(¢ + kz) with sin(t — Iz). Note that

(16 (z) = —krirosin(t + kz) — (k + U)rirgsin((k + 1)x) + Irorg sin(t — ).

sin(t + kz) — sin(t — lz) = 2sin((k + )z/2) cos(t + (k — )z /2),
and that ifz € [—t/k,t/l], then

/2 < —7w/2k < —(k+D)t/2k < (k+Dx/2 < (B+1)t/20 < /20 < 7/2

t+(—k)t/2k=(k+1t/2k if k<l
+ (L= kt/2k = (k+ D)t/ .
<

0<t+(kz—l)a:/2<{ )
t+(k—Dt/2l=(k+Dt/20  ifl<k

Suppose that € [-t/k,0[. Then it follows thatin(t + kz) < sin(t — lz) and
alsosin((k + 1)z) < 0, with equality if and only ift = 1 and—z = ¢t = «/(1 + 1).
Sincekr; < Irs, this yields
1df
2dx
with equality if and only ift =1 and—z =t =x/(1 4+ 1).

Suppose that € [0,¢/1]. If I > 2, then

a7 () = —(k+Drirs sin((k + l)x) >0,

t+kxelt,(k+Dt/l] C [t /2]
(k+ Dz e[0,(k+0)t/l] C [t,m/2]
t—Ilx €0,t] C[0,7/3],

so that the second derivative ¢fis strictly negative orj0,¢/!]; its derivative is
strictly decreasing on this interval, and (a) is proved. H 1, letg(z) = f(t — x)
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for z € [0,t]. We have to prove that there is a poitit such thatlg/dz > 0 on
10,z*[ anddg/dxz < 0 on]z*,t[. Puta = (k + 1)¢; then
1dg
2dx
and it suffices to prove that

(z) = krirgsin(o — kz) + (k + 1)rirgsin(a — (k + 1)) — rorgsina,

1 31 - i —(k+1
(18) - %(az) = kmmM + (k+1)rirs sm(a ( + )x) — Tars
2sinx dz sinx sinx
is a strictly decreasing function afon |0, «/(k + 1)]. Let us study the sign of
d sin(a — kx) _ —kcos(a — kx) sina — sin(a — k) cosz
dr sinz B sin? 2

for o €10, 7] andx € 10, a/k]. If k=1, then
—kcos(a — kz)sinz — sin(a — kz) cosx = —sina < 0,

and the inequality is strict unless= 7. We conclude the proof of (a) by showing
by induction onk that

kcos(a — kx) sinx + sin(a — kx) cosx > 0
forall k > 2, « € ]0,7] andz € ]0, a/k]. Letk > 1 andxz € ]0,«/(k + 1)]. Then

(k+1)cos(a — (k+ 1)z) sinz + sin(a — (k + 1)z) cosz
=(k + 1) cos(av — kx) coszsinz + (k + 1) sin(a — kz) sin® z
+ sin(a — kx) cos?  — cos(a — k) sinz cos x
=(k cos(a — kz)sinz + sin(a — kz) cosz) cosz + (k + 1) sin(a — kz) sin® z
>(k 4 1) sin(a — kz)sin® z > 0

(b). 1. By Proposition 5.1 and (a},attains its absolute maximum @if and
only if 0 is a critical point forf. We have

%%(O) = (Irs — kr1)resint > 0,
and equality holds if and only #ry = irs.
2. We have
1df

55(1?/1) = (—krirg — (k + Drirg) sin((k + 1)t/1) <0,
and equality holds ifand only if= 1 andt = n/(k+1). Leti = 1andt = n/(k+1).
Using the notation introduced in the last part of the proof(af, we need to
characterise the case in whiglhas a maximum at. As a« = = and

1 dg
2sinz do

(19)

(x) = E*rirg + (k4 1) r1r3 — rors 4 o(x)
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is a strictly decreasing function efon]0, 7 /(k + 1)], ¢ has a maximum atif and
OnIy if k27"17‘2 + (k+ 1)27"17‘3 —1rory < 0.

(c). If I > 2, the second derivative dgfis strictly negative ono,¢/1]. If I =1,
the derivative of (18) is strictly negative ¢ «/(k + 1)]; it follows that the second
derivative ofg can vanish only a0. By (b) 2, ¢ has a maximum at only if
t=x/(k+1);then

1 d29 2 2
(20) 512 (0) = k*rire 4+ (k+ 1)“rirg — rars
1 d49 4 4
(21) §—dx4 (O) = —k*rirg — (k’ + 1) 173 + rors.

If (20) vanishes, then the sum of (21) with (20) yields

1d%g

5151 (0) = —k(k+ 1)1 ((k = Dkrs + (k+ 1)(k +2)rs) <0.

Remark 6.2. We were able to prove directly that the system

f(@)=f(y)

df o _df

@(x) = 5(3}) =0
2 2

L, Thw <o

impliesz = y modulo2x or ¢t = n/(k + 1) andz +y = 2mn/(k + 1), but our
computations are very involved and opaque.

Remark 6.3. This proposition is a complex counterpart to Lemma 2.1nii) i
[21].

Remark 6.4. Suppose thdt=Fk = 1. If t €]0,#/2][, it is necessary to solve a
generally irreducible quartic equation in order to compghtmaximum off. If
t = m/2, it suffices to solve a linear equation and one gets the fatigwxpression
for max, ‘rle_i‘” +ire + rgei‘”| :

(r1 +73)\/1+73/drirs if |7"1_1 — 7"3_1} <dryt
ro + |r3 — 71| otherwise.

This formula appears in [1, (3.1)]. In the first case, the mmaxn is attained at the
two pointsz* such thatin a* = ry(r3 —r1)/4r7r3.

Remark 6.5. Suppose that= 1 andk = 2. If t € ]0,7/3[, it is necessary to
solve a generally irreducible sextic equation in order tmpate the maximum of.
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If ¢t = n/3, it suffices to solve a quadratic equation and one gets thewfiolg
expression fomax, |rie™12% + ryei™3 4 rgel®| 1 if 7t — 4y < 93", then its
square is equal to

2 22, L (r_2)2+r_2+13/2_(r_2)3
g TR A \\3,) T 3r3
and the maximum is attained at the two pointsuch that
1/2
ro \2 T2 T2
2oos(r/3— o) = (22) 4 22 41) " - 22
cos(m/3 —z*) ( 3 +3r1 + )

otherwise, itis equal te-r; + 7o + r3.

7 Themaximum moduluspointsof atrigonometrictri-
nomial

If we undo all the reductions made in Sections 3 and 4 and didgganing of
Section 6, we get the following theorem.

Theorem 7.1. Let A1, Ay and A3 be distinct integers such that X, is between
A1 and \;. Let rq, 7o and r3 be positive real numbers. Given real numbersty, ts
and t3, consider the trigonometric trinomial

(22) T(x) — rlei(t1+)\1w) + 7,,26i(t2+)\2w) + ,I,Bei(thr)\gI)

for z € R. Let d = ged(\2 — A1, A3 — \2) and choose integers a; and a3 such that

A3 — A Al — A
(t1 — 2may) + 3d 1t2+ ld 2(153—271'0,3)

A2 — As
T = — ™ ™
d

satisfies |7| < 7. Lett; = t; — 2ma; and i3 = t3 — 27as.

(a) Thetrigonometrictrinomial T attainsits maximum modulus at a unique point
of the interval bounded by (#; — t2)/(A2 — A1) and (to — £3) /(A3 — X2). More
precisely,

o ifr| X2 — 1| < r3]As—\2|, thenthispoint liesbetween (£, —3) /(A3 — A1)
and (tg — 1?3)/()\3 — )\2);

o ifri|da—\i| = r3|As — A2/, thenthis point lies between (1, —3)/(A3 — A1)
and (f; — t2)/(Ma — \1);

e T attains its maximum modulus at (£, — £3)/(\s — Ay) if and only if
7‘1|)\2 — )\1| = 7‘3|)\3 — )\2| orrt=0.

(b) The function T attains its maximum modulus at a unique point modulo 2 /d,
and with multiplicity 2, unless |7| = .



386 STEFAN NEUWIRTH

(c) Supposethat |r| =, i.e,

(23) )\2;)\3t1+)\B;Alt2+)\1;)\2t3=7T mod 2.

Let s be a solution to 2t; + A\is = 2ty + Aas = 2t3 + A3s modulo 27; s is
unique modulo 27/d. Then T'(s — z) = e'=+t25)T(z) for all z. Suppose
that |A3 — A2] < |[A2 — A1|. Therearethree cases:

1. if Ay — A; = k(A3 — A\2) with & > 2 integral and

7"1_1 — k27"3_1 > (k+ 1)27"2_1,

then T attains its maximum modulus —r; + 7o + r3 only at z =
(ta — £3)/(A3 — X2) modulo 27 /d, with multiplicity 2 if the inequality
is strict and with multiplicity 4 if thereis equality;

2. if)\g—)\l = A3 — Ao and

-1_ -1 —1
‘rl — T3 |>4r2 ,

then T attains its maximum modulus r, + |r3 — r1| at a unique point
x modulo 27 /d, with multiplicity 2 if the inequality is strict and with
multiplicity 4 if there is equality. This point is (to — 13)/(A\3 — A2) if
ry <rs, and ({1 —tg)/()\g —)\1) |fT‘3 <7,

3. otherwise, T attains its maximum modulus at exactly two points x
and y modulo 27/d, with multiplicity 2, where z lies strictly between
(t1 —t2)/ (A2 — A1) and (to — £3) /(A3 — A2), and z + y = s modulo 27 /d.

Note that s — = =  modulo 27 /d in Cases 1 and 2.

8 Exposed and extreme points of the unit ball of €,

The characterisation of the maximum modulus points of airggnetric trino-
mial allows us to compute the exposed and the extreme pdinite ainit ball of
G-

Lemma8.1. (a) A trigonometric trinomial with a given spectrum that at-
tains its maximum modulus at two given points modulo 27 /d is determined
by its value at these points.

(b) Thetrigonometrictrinomialswithagiven spectrumthat attaintheir maximum
modulus with multiplicity 4 at a given point and have a given value at this
point lie on a parabola.

Proof. We use the notation of Theorem 7.1. Without loss of gengralie
may suppose that; = —k, A» = 0 and A3 = [ with £ and! positive coprime
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integers. Letr andy be real numbers that are different modatg'd, let ¥ and¢
be real numbers and lgthe a positive real number.

(a) Let us prove that at most one trigonometric trinorfialtains its maximum
modulus atz andy and satisfied'(z) = pe!? andT(y) = oei¢. Translatingl’
by (z + y)/2, we may suppose that+ y = 0. Dividing T by ¢!(?+%)/2 we may
suppose that + ¢ = 0. AsT attains its maximum modulus at the two poimtand
y, We haves = z +y = 0 and2t; — ks = 2ty = 2t3 +1s = ¢ + ¢ = 0 modulo2x.
Thereforet; = t; = t3 = 0 modulor. Letp; = eilir;, then thep; are non-zero
real numbers. We have

T(],‘) _ ple—ikm +p2 +pgeil:r _ Qeiﬂ’
so that, multiplying bye =¥ and taking real and imaginary parts, we have
(24) p1 cos(? + kx) + p3 cos(¥ — la) = o — pa cos ¥
(25) p1sin(d + kz) + pssin(¢ — lz) = —pa sind.

The computation

14|77 ——dT ke il
3 |dx| (z) = %(T(z)a(x)) = %(T(w)(—ﬂfple ko 4 jlpgel! ))
yields
(26) kpy sin(¥ + kx) — Ips sin(d — lz) = 0.

Equations (25) and (26) yiefd andp; as linear functions gf; becausein(J+ kx)
sin(¢ — lz) # 0; otherwise, both factors would vanish, so thiat = = 0 modulor
andz = y modulo2xw. As ¢ # 0, Equation (24) has at most one solutiorpn

(b) We are necessarily in Case 1 or 2 of Theorem¢f,1so that we may
suppose thdt= 1. Let us determine all trigonometric trinomialsthat attain their
maximum modulus at with multiplicity 4 and satisfyl’(z) = ge'”. Translatingl’
by z, we may suppose that= 0. Dividing 7' by ¢'V: we may suppose that= 0.
As T attains its maximum modulus awith multiplicity 4, we haves — 0 = 0 and
2t1 — ks = 2ty = 2t3 + s = 29 = 0 modulo2x. Thereforet; = t, = t3 = 0 modulo
7. Letp; = e''ir;; then thep, are non-zero real numbers which satisfy the system

{pl +p2+p3=20
k*pips + (k +1)*pips + paps = 0,
that is
bP2=0—pP1—P3
{%m—mfzmﬁm+m)
This is the equation of a parabola.



388 STEFAN NEUWIRTH

Remark 8.2. The equality
(27) max|r1ei(t1+>‘lw) + 7-2ei(t2+>\2$)‘ =7 + 79

shows that the exposed points of the unit ball of the sgage,,, are the trigono-
metric monomialg'“e,, ande!“e,, with o € R and that no trigonometric binomial
is an extreme point of the unit ball &f,.

Proof of Theorem 1.2 (a). A linear functional ong, extends to a linear
functional on the space of continuous functions, that is toeasure:, with the
same norm. A measugeattains its norm only at functions with constant modulus
on its support. If attains its norm on a trigonometric binomial, then it atsaiis
norm on a trigonometric monomial, because this trigonoimbinomial is a convex
combination of two trigonometric monomials with same nonyr(®7). If 1, attains
its norm on a trigonometric trinomidl, there are two cases by Theorem (,%).

e T attains its maximum modulus at a unique point modii@gd. Then the
support ofu has only one point moduler/d, so thaty is a multiple of a
Dirac measure and attains its norm on any trigonometric mmailo

e T attains its maximum modulus at two points modetgd.

Conversely, the trigonometric monomigle, is exposed to the linear form

1 27 .
P —/ P(m)e_’((’+>‘m)dx.
271— 0

A trigonometric trinomialT" that attains its maximum modulusat two points
x} andzi modulo2x/d is exposed, by Lemma 8.1 (a), to any non-trivial convex

combination of the unimodular multiples of Dirac measures)Jd,» andT’(x5)d;.

Remark 8.3. This is a complex counterpart to Lemma 2.3 in [21], dealing
with the exposed points of the unit ball of the three-dimenal space spanned by
the functionsl, cos x andcos kx in the space of continuous functions.

Proof of Theorem 1.2 (b). Let K be the unit ball of§,. Straszewicz’s
Theorem [26] asserts that the exposed poinfs afe dense in the set of its extreme
points. LetP be a limit point of exposed points df. If P is a trigonometric
monomial, P is exposed. IfP is a trigonometric binomialP is not an extreme
point of K by Remark 8.2. IiP is a trigonometric trinomial, it is the limit point of
trigonometric trinomials that attain their maximum modutwice modul®r/d,
so that eitheP also attains its maximum modulus twice modedgd or, by Rolle’s
Theorem P attains its maximum modulus with multiplicity, Let us prove that if
a trigonometric trinomial” attains its maximum modulus with multiplicity at a
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point z, thenT is an extreme point ofk. Suppose that is the midpoint of two
points4 andB in K. Then|A(z)| < 1, |B(z)| < 1 and(A(z) + B(z)) /2 = T(z), SO
thatA(z) = B(z) = T'(z). Furthermore,

|A(:L‘+h)|—|2—|B(;L'+h)| SSpaL

2 2 2
IT(z + h)| < U (d 4] @15

e )+ e @) + olh?),

so that, asT'(z + h)| = 1 + o(h?),

d?|A]
dz?

d?|B| d?| A d?|B|
< - < _ _ >
(z) <0, 0 (z) <0 and u? (z) + T2 (£) =0

and therefored and B also attain their maximum modulus with multiplicityat
x. As this implies thatd and B are trigonometric trinomials, Lemma 84 yields
thatT, A andB lie on a parabola. This implie$ =B =T. O

Remark 8.4. The set of extreme points of the unit ball gf is not closed.
For example, ifA; lies betweem; and )3, every absolutely convex combination
of e), ande,, is a limit point of exposed points.

Remark 8.5. If Ay is between\; and )3, and; — X\ is not a multiple of
A3 — A2 NoOr vice versa, then every extreme point of the unit ba#’’pfs exposed.

Remark 8.6. In particular, compare our description of the extreme oint
of the unit ball of %} o, with the characterisation given by K. M. Dyakonov
in [7, Theorem 1]. He shows in his Example 1 that it is falsd timorder to
recognize the extreme points”, “one only needs to know ‘héierd [the modulus
of a trigonometric polynomial] takes the extremal valueWe show that it is true

in our elementary framework with the exception of trigondmeebinomials.

Remark 8.7. This is a complex counterpartto [16], dealing with the extee
points of the unit ball of the three-dimensional space spdry the functiong,
z™ andz™ in the space of real valued continuous functions-en 1].

9 Dependence of the maximum modulus on the argu-
ments

We wish to study how the maximum modulus of a trigonometricotmial
depends on the phase of its coefficients. We use the follofeimgula, established
in [4], which gives an expression for the directional detiiv@ of a maximum
function. Elementary properties of maximum functions atdrassed in [20, Part
Two, Problems 223-226].



390 STEFAN NEUWIRTH

N. G. Chebotarév’sformula ([6, Theorem VI.3.2, (3.6)]) Let I c R bean
open interval and K a compact space. Let f(¢,«) be defined and continuous on

I x K along with %(t,x). Let

fH(t) = max f(t, ).

rzeK

Then for eacht € I,

(28) Fh) =+ max (b)) +olb)

( N\ ot

Proposition 9.1. Let k£ and | be positive coprime integers and 1, . and rs
positive real numbers. Then

max‘rlefim + roelt + 7"36”“|

isan even 2r/(k+1)-periodic function of ¢ which decreasesstrictly on [0, 7/ (k +1)].
In particular,

—ikx

mtinmax|7"16 + roelt 4+ rge’l””‘ = max|rle*’k‘/” + roel™/ (k) 4 rgellm|.
xT xT

Proof. Let
(29) flt,x) = |rie ™™ 4 rpelt + rgeilm|2.

By (10) and (11),/* is an ever2w/(k + [)-periodic function.
Let ¢t € |0,n/(k + I)[, and choose:* such thatf(¢,z*) = f*(t). Then
x* € [-t/k, /1] by Proposition 5.1, so that

2—7‘25(@% ) = —rysin(t + kz*) — rgsin(t — 1z¥) < 0
because + kz* € [0, (k + 1)t/l] andt — lz* € [0, (k + 1)t/k] do not vanish simulta-

neously. By Formula (28);* decreases strictly o, =/ (k + 1)].

Proposition 9.2. Let k& and [ be positive coprime integers and r1, r, and r3
positive real numbers. Then

maxm|rle’ikm + roelt 4+ rge”w}

(30)

‘rl + roeit r3|

isanincreasing function of ¢t € [0, 7/(k + 1)]. If kry = Irs, it is constantly equal to
1; otherwise, it is strictly increasing.
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Proof. Let f(t,z) be as in (29). Then the expression (30)i&)!/? with
AT
W0 = oy
If kry = Irs, thenf(¢,0) = f*(¢), so thatg*(¢) = 1. As shown at the beginning
of Section 6, we may suppose without loss of generality that< Ir;. Let
t € 10,7/(k + )] and choose* such thatf(¢,2*) = f*(t). Thenz* € ]0,t/I[ by
Propositions 5.1 and 6.1, and
[0 dg, . 1 (0f N
27“2 8t (t,.’t ) - 27“2 8t (t,!l? )f(t,O) f(tvx ) 8t (t,O)
= (—rysin(t + k) — rgsin(t — lz*)) f(£,0) + f*(t)(r1 + 73) sint
= h(0)f*(t) — h(z")f(t,0)

with
h(z) = rysin(t + kx) + rgsin(t — lz).
Let us show thak is strictly decreasing of, ¢/]. In fact, if x € ]0,t/],

dh
dz
As f*(t) > f(t,0) andh(0) > h(z*), (0g/0t)(t,x*) > 0. By N. G. Chebotav’s
formula,¢* increases strictly ofo, =/ (k + 1)].
It is possible to describe the decrease of the maximum medfla trigono-
metric trinomial independently of thés as follows.

(x) = kry cos(t + kx) — lrg cos(t — lz) < (kry — lrg) cos(t — lz) < 0.

Proposition 9.3. Let k and | be positive coprime integers and 1, . and r3
positive real numbers. Let0 <t <¢ < w/(k+1). Then

cos(t'/2)
cos(t/2)

with equality ifandonly ifry :ry:rs =1:k+1: k.

(31) max|rie " 4 roelt 4 rye'™| < max|rie”* 4 rpelt 4 rgel|,
Proof. Applying Proposition 9.2, we have

gl 2
|11+ rae't + 7y _ 2r9(r1 + 73)(cost’ — cost)

‘T1+7‘2€it+7‘3|2 (r1 +13)2 + 2ro(r1 + r3) cost + r3

cost’ — cost
1+ 3 5
cost + (r3 + (r1 +13)?) /2ra(r1 + 13)
cost’ —cost  cost’ 41
cost+1  cost+1

~

by the arithmetic-geometric mean inequality, with equyalitand only if r, =
r1 + r3. Thus, (31) holds, with equality if and only ff, = Ir3 andry = 1 + 73.
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We may now find the minimum of the maximum modulus of a trigoetin
trinomial with given spectrum, Fourier coefficient argurteeand moduli sum.
Proposition 9.3 yields witlf =0

Corollary 9.4. Let k and [ be positive coprime integers and ry, . and 3
positive real numbers. Let ¢ €10, 7/(k +1)]. Then

maxm‘me_lk‘” 4 ,r2e1t 4 T3e11x|

> cos(t/2),
ry+17r9+1;3 (/)

with equality ifandonly ifry :ro:r3 =1:k+1: k.

Remark 9.5. There is a shortcut proof to Corollary 9.4:

maxm|rle’ikf”+r2eit+r3e”w‘ N ‘r1+r2eit+r3|

T+ 1o+ 73 T o e s
4
=1 A Ern G )
(ri+mre+r3)

> y/1 —sin?(t/2) = cos(t/2),

and equality holds if and only {f- e ~1%* + ryeit + r5e’®| is maximal forz = 0 and

T+ 13 =1ro.

10 The norm of unimodular relative Fourier multipli-
ers

We may now compute the norm of unimodular relative Fourieltipliers.

Corollary 10.1. Let k£ and I be two positive coprime integers and let
t € [0,7/(k+1)]. Let M be the relative Fourier multiplier (0,¢,0) that maps
the element

(32) riee_p + rpel¥ey + r3eite
of the normed space %;_j,¢,;; On

t+uz)

rel"e_y + roell eg +r3e'3e.

Then M hasnormcos(r/2(k+1)—t/2) / cos(m/2(k+1)) and attainsits normexactly
at elements of the form (32) withry : 7o :r3 =1:k+1: k and

—luy + (k4 l)ug — kus =7 mod 2.
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Proof. This follows from Proposition 9.3 and the concavitycof on [0, 7/2].

Remark 10.2. This corollary enables us to guess how toliftto an operator
that acts by convolution with a measureNote thafu is a Hahn-Banach extension
of the linear formf — M f(0). The relative multiplierM is an isometry if and
only if ¢ = 0 andy is the Dirac measure in. Otherwise,t # 0; the proof of
Theorem 1.2q) in Section 8 shows thatis a linear combinationd, + 56,, of two
Dirac measures such that the normiéfis |« + |3|. Let

flw) =1e7 % 4 (k + 1)e' ™/ D 4 feite,

M attains its norm af, f attains its maximum modulus atand2mxn/(k + 1),
andM f attains its maximum modulus &t /(k + 1), wherem is the inverse of
modulok + 1. As

(la] + 1)) max|f(x)] = max| M ()
— s £ (2m/ (6 + 1)
= |af(2m7r/(k+l)—y) —|—ﬁf(2m71'/(k—i-l)—w)|7

we must chooséy, w} = {0,2mn/(k +1)}. A computation then yields

_ it/ sin(r/(k +1) —t/2) o1 (824 / (k1) sin(t/2)
K sin(7/(k +1)) %0+ sin(m/(k +1))

If K =1=1,thisis a special case of a formula appearing in [10, pro&frop. 1].
Consult [25] on this issue.

O2mm ) (k1)

11 The Sidon constant of integer sets

Let us study the maximum modulus of a trigonometric trindmieth given
spectrum and Fourier coefficient moduli sum. The followiegult is an immediate
consequence of Corollary 9.4.

Proposition 11.1. Let k and | be positive coprime integers; let v, r» and r3
be positive real numbersand let ¢ € [0, 7/(k + 1)]. Then

max‘rle_ik’” +roelt + rgeil’”‘ > cos(ﬂ'/Z(k + l)) <(r1 +re+13)
with equality ifandonly ifry :ro:rs=1:k+1: kandt=x/(k +1).

This means that the Sidon constanf{ef, 0,1} equalssec(r/2(k +1)).
The Sidon constant of integer sets was previously known iortlye following
three instances,
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e The equality
max|r1ei(t1+k1’”) + rgei(t2+>‘2’”)‘ =7y 4179

shows that the Sidon constant of sets with one or two elenits
e The Sidon constant of—1,0,1} is v/2 and is attained foe_; + 2i + e;.
; i .-y —iz it iz|2
Let us give the original argument: ff(z) = |rie™'* + ryel’ + rzei®|”, the
parallelogram identity and the arithmetic-quadratic uedy yield

max f(z) > max —f(l) + fl@tm)
z T 2
‘rle*iw +r3el® + rgeit|2 + |T1e*im +r3el® — rgeit‘z
= max
x 2

= max ‘rle_i’” + rgei‘”|2 + |7"gei"‘|2
(7”1 + 72+ T3)2
2
e The Sidon constant di, 1,2,3,4} is 2 and it is attained fot + 2e; + 2e5 —
2es3 + ey.
These results were obtained by D. J. Newman (see [24].) Tdietfat the Sidon
constant of sets of three integers cannat had been noted with pairwise different
proofsin [24, 3, 13].

= (r —|—T3)2 —|—r§ =

Remark 11.2. The real algebraic counterpart is better understood: the ma
imal absolute value of a real algebraic polynomial of degttemostn with given
coefficient absolute value sum is minimal for multiples oé tith Chebyshev
polynomial 7;, (look up the last paragraph of [8]). As the sum of the absolute
values off,’s coefficients is the integey, nearest tq1 + v/2)" /2, we have for real
ag, i, ...,0n

max ag -+ ayz + -+ ana”| > 17" Jao] + fon] -+ [
ze|—1,

The following estimates for the Sidon constant of largegetesets are known.

e E.BellerandD. J. Newman [2] showed that the Sidon constgito,...,n}
is equivalent to/n.

e (Hadamard sets.) Let> 1 and suppose that the sequengg),>: grows
with geometric ratias: |\j1i| > ¢|);| for every;. Then the Sidon constant
of {A1, Ag,...} is finite; it is at mosu.27 if ¢ > 2 (see [11]), at mos? if
q > 3 (see [15]), and at modt+ «2/ (2¢> — 2 — «2) if ¢ > /1 + 72/2 (see
[18, Corollary 9.4] or the updated [19, Corollary 10.2.1]).

Our computations show that the last estimate of the Sidostaathas the right

order ing~—! for geometric progressions.
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Proposition 11.3. Let C be the Sdon constant of the geometric progression
{1,q,4¢°,...}, whereq > 3 isaninteger. Then

1+7°/8(q+1)* <sec(m/2(q+1)) <C < 1+7°/(2¢° —2— 7).

One initial motivation for this work was to decide whethegithare setf; };>1
with |X;11] > ¢|A;| whose Sidon constant is arbitrarily close tind to find evidence
among sets with three elements. That there are such seitsaidlgblarge albeit
finite, may in fact be proved by the method of Riesz producfd2) Appendix V,
81.11]; see also [19, Proposition 13.1.3]. The case of indiiskts remains open.

A second motivation was to show that the real and complex nditonal
constants of the basis,,, e, ex,) Of €5 are different; however, it turns out that
they coincide, and it remains an open question whether ttegyba different for
larger sets. Theeal unconditional constant of (e, ex,, €x,) IS the maximum
of the norm of the eight unimodular relative Fourier mulgps (¢, t2,t3) such
thatt, = 0 modulon. Letq,j, k be a permutation of, 2,3 such that the power
of 2in A\; — Ay and in); — )\, are equal. Lemma 2.1 shows that the four relative
multipliers satisfying; = ¢; modulo2r are isometries and that the norm of any of
the four others, satisfying # ¢; modulo2r, gives the real unconditional constant.
In general, the complex unconditional constant is bounded/h times the real
unconditional constant, as proved in [23]; in our case, dreyequal.

Corollary 11.4. Thecomplexunconditional constant of thebasis (e, ,ex,,ex;)
of € isequal to its real unconditional constant.
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