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Abstract. We introduce a correspondence principle (analogous to the Fursten-
berg Correspondence Principle) that allows one to extract an infinite random graph
or hypergraph from a sequence of increasingly large deterministic graphs or hy-
pergraphs. As an application we present a new (infinitary) proof of the hypergraph
removal lemma of Nagle-Schacht-Rödl-Skokan and Gowers, which does not re-
quire the hypergraph regularity lemma and requires significantly less computation.
This in turn gives new proofs of several corollaries of the hypergraph removal
lemma, such as Szemerédi’s Theorem on arithmetic progressions.

1 Introduction

It is an interesting phenomenon in mathematics that certaintypes of problems can
be treated both by finitary means (e.g., using combinatorialanalysis of finite sets),
and by infinitary means (e.g., using constructions involving the axiom of choice),
thus giving parallel but distinct ways to prove a single result. One particularly strik-
ing example of this isSzemerédi’s Theorem (see Theorem 2.1) on arithmetic
progressions. This difficult and important theorem now has several proofs, both
finitary and infinitary, using fields of mathematics as diverse as Fourier analysis,
ergodic theory, graph theory, hypergraph theory, and elementary combinatorics;
the finitary and infinitary arguments are connected by the beautiful Fursten-
berg Correspondence Principle (see Section 2). These proofs have different
strengths and weaknesses; generally speaking, the infinitary proofs are cleaner,
shorter, and more elegant, but require significantly more machinery, whereas the
finitary proofs are more elementary and provide more quantitative results, but tend
to be messier and longer in nature. One particularly visibledifference is that
finitary proofs often require a number of small parameters (such asε, δ) or large
parameters (such asN, M ), whereas in the infinitary analogues of these proofs, the
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small parameters often have become zero and the large parameters have become
infinite, which can lead to cleaner (but more subtle) arguments.

Some progress has been made in reconciling the finitary and infinitary ap-
proaches1, as it has been increasingly realized that ideas and methodsfrom the
infinitary world can be transferred to the finitary world, andvice versa; see, for in-
stance, [30] for a finitary version of the infinitary ergodic approach to Szemerédi’s
Theorem. Such a fusion of ideas from both sources proved to beparticularly cru-
cial in the recent result [14] that the primes contained arbitrarily long progressions;
this argument was almost entirely finitary in nature, yet at the same time it relied
heavily on ideas from the infinitary world of ergodic theory (see [18], [16] for
further discussion of this connection).

In this paper, we investigate a transference in the other direction, taking results
from the finitary world of combinatorics (and, in particular, graph theory and hy-
pergraph theory) and identifying them with a correspondingresult in the infinitary
world, which in this case turns out to be the world of probability theory2 (or mea-
sure theory). In particular, we present acorrespondence principle, analogous
to the Furstenberg Correspondence Principle, which shows how any sequence of
increasingly large graphs or hypergraphs has a “weak limit,” which we view as
an infinitely largerandom graph or hypergraph3. This principle is slightly more
complicated than the Furstenberg Correspondence Principle but does not use the
full power of deep results such as the Szemerédi Regularity Lemma or its extension
to hypergraphs; indeed, we do not explicitly state or use such a regularity lemma
in this work here, although ideas from that lemma are certainly involved in several
components of the argument.

The main advantage of passing from a deterministic finite graph to a random
infinite graph is that one now obtains a number offactors (σ-algebras) in the
probability space which enjoy some very useful invariance and relative indepen-
dence properties. One can think of the presence of these factors as being analogous
to the partitions obtained by the Szemerédi Regularity Lemma that make a graph

1From a proof-theoretical perspective, one can use quantifier-elimination methods (such as Her-
brand’s theorem) to automatically convert a large class of infinitary arguments to finitary ones; this
was for instance carried out for the Furstenberg-Weiss infinitary proof of van der Waerden’s theorem
via topological dynamics; see [11]. However, such methods do not seem to shed much light on the
connection between the infinitary proofs and the existing finitary proofs in the literature.

2This is actually not all that surprising, given thatfinitary probability theory has already proven to
have a major role to play in graph theory.

3This is related to, but slightly different from, a differentconcept of graph limit developed by Lovász
and Szegedy in [19], in which the limiting object becomes a “continuous weighted graph,” or, more
precisely, a symmetric measurable function from[0, 1]× [0, 1] to [0, 1]. Such a concrete limiting object
is particularly useful for computations such as counting the number of induced subgraphs of a certain
shape; it also can be used to establish results such as the triangle removal lemma (Szegedy, personal
communication).
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ε-regular, but with the distinction that the partition is nowinfinite and theε param-
eter set to zero (so one now has perfect regularity). This sending of the epsilon
parameters to zero turns out to be extremely useful in cleaning up proofs of certain
statements which previously could only be proved via a regularity lemma. In
particular, we give an infinitary proof here of thetriangle removal lemma of
Ruzsa and Szemerédi [25], as well as the substantially more difficulthypergraph
removal lemma of Nagle, R̈odl, Schacht, and Skokan [20], [21], [23], [24] and
Gowers [13] (as well as a later refinement in [31]). As this lemma is already strong
enough to deduce Szemerédi’s Theorem on arithmetic progressions (as well as a
multidimensional generalisation due to Furstenberg and Katznelson [9]), we have
thus presented yet another proof of Szemerédi’s Theorem here. These lemmas have
some further applications; for instance, they were used in [32] to show that the
Gaussian primes contain arbitrarily shaped constellations. In Appendix Appendix
B., we discuss the connections (or lack thereof) between these infinitary removal
lemmas and the recurrence theorems of Furstenberg and laterauthors.

The setting of this paper was deliberately placed at a midpoint between graph
theory and ergodic theory, and the author hopes that it illuminates the analogies
and interconnections between these two subjects.

The author thanks Balász Szegedy for many useful discussions, Timothy Gow-
ers for suggesting the original topic of investigation, Vitaly Bergelson for encour-
agement, and Olivier Gerard and Henry Towsner for corrections. The author is
especially indebted to the anonymous referees for many corrections and sugges-
tions. The author is supported by a grant from the Packard Foundation.

2 Motivation: the Furstenberg Correspondence Prin-
ciple

To motivate the correspondence principle for graphs and hypergraphs, we first
review the Furstenberg Correspondence Principle, which connects results such
as Szemeŕedi’s Theorem with recurrence results in ergodic theory. Let us recall
Szemeŕedi’s Theorem in a quantitative (finitary) form.

Theorem 2.1 (Szemeŕedi’s Theorem, quantitative version, [27]). Let 0<δ≤1

and k ≥ 1. Let A be a subset of a cyclic group ZN := Z/NZ whose cardinality |A|

is at least δN . Then there exist at least c(k, δ)N2 pairs (x, r) ∈ ZN × ZN such that

x, x + r, . . . , x + (k − 1)r ∈ A, where c(k, δ) > 0 is a positive quantity depending
only on k and δ.

This result is easily seen to imply to Szemerédi’s Theorem in its traditional
(infinitary) form, which asserts that every set of integers of positive upper density
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contains arbitrarily long progressions. The converse implication also follows
from an argument of Varnavides [34]. This particular formulation of Szemeŕedi’s
Theorem played an important role in the recent result [14] that the primes contain
arbitrarily long arithmetic progressions.

In 1977, Furstenberg obtained a new proof of Szemerédi’s Theorem by deducing
it from the following result in ergodic theory.

Theorem 2.2 (Furstenberg Recurrence Theorem, [7], [10]). Let (Ω,Bmax,P)

be a probability space (see Appendix Appendix A. for probabilistic notation).

Let T : Ω → Ω be a bi-measurable map which is probability preserving; thus
P(T nA) = P(A) for all events A ∈ Bmax and n ∈ Z. Then for all k ≥ 1 and all

events A ∈ Bmax with P(A) > 0, we have

lim inf
N→∞

1

N

N
∑

n=1

P(A ∧ T nA ∧ · · · ∧ T (k−1)nA) > 0.

The deduction of Theorem 2.1 from Theorem 2.2 proceeds by theFurstenberg
Correspondence Principle [7], [10], [8]. Let us give a slightly non-standard expo-
sition of this principle (in particular drawing heavily on the language of probability
theory), in order to motivate an analogous principle for graphs and hypergraphs
in later sections. We shall interpret this correspondence principle as an assertion
that any sequence(A(m),ZN(m)) of setsA(m) in a cyclic groupZN(m) can have an
asymptotic limit asm → ∞, which ends up being a probability space endowed
with a probability-preserving shiftT . To state this more precisely, we need some
notation. First, we describe a certain universal space in which it is convenient to
take limits.

Definition 2.3 (Furstenberg universal space). Let Ω := 2Z := {B : B ⊂ Z}

denote the set of all subsetsB ⊂ Z of the integersZ; one can also view this space
as the infinite cube{0, 1}Z if desired. We give this space the productσ-algebra
Bmax, generated by the events4 An := {B ∈ Ω : n ∈ B} for n ∈ Z. Indeed, one can
think of (Ω,Bmax) as being the universal event space generated by the countable
sequence of eventsAn. The spaceΩ enjoys an obvious shift actionT : Ω → Ω,
defined byTB := B + 1 := {n + 1 : n ∈ B} for all B ∈ Ω. This then induces a shift
T : Bmax → Bmax in the obvious manner; thus, for instance,T nA0 = An. We define
theregular algebra Breg of Bmax to be the algebra generated by theAn; thus the
events inBreg (which we refer to asregular events) are those events which are

4A more topological way of thinking about this proceeds by endowingΩ with the product topology,
so that it becomes a totally disconnected compact Hausdorffspace and then lettingBmax be the Borel
σ-algebra, generated by the open sets. The regular algebraBreg then consists of those events which are
simultaneously open and closed or, equivalently, those events whose indicator function is continuous.
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generated by at most finitely many of theAn (i.e., those events that only require
knowing the truth value ofn ∈ B for finitely many values ofn).

Now we embed finite objects(A(m),ZN(m)) described earlier in this universal
space.

Definition 2.4 (Furstenberg universal embedding). Let m ≥ 1, let ZN(m) be
a cyclic group withN (m) ≥ m, and letA(m) be a subset ofZN(m) . We define the
probability space(Ω(m),B

(m)
max,P(m)) as the space corresponding to sampling5 x(m)

andλ(m) uniformly and independently at random fromZN(m) and [L(m)], where
[N ] := {1, . . . , N} denotes the integers from1 to N andL(m) ≥ 1 is the integer part
of N (m)/m. We then map every pair(x(m), λ(m)) of Ω(m) to a pointB(m) ∈ Ω (i.e.,
a subset of the integersZ) by the formula

B(m) := {n ∈ Z : x(m) + nλ(m) ∈ A(m)};

one can think of this as a random lifting of the setA(m) ⊂ ZN(m) up to the integersZ.
This mapping fromΩ(m) to Ω is clearly measurable, since the inverse images of the
generating eventsAn in (Ω,Bmax) are simply the events thatx(m) + nλ(m) ∈ A(m),
which are certainly measurable inB(m)

max. This allows us to extend the probability
measureP(m) from (B

(m)
max, Ω(m)) to the product space(Bmax ×B

(m)
max, Ω×Ω(m)) in a

canonical manner6, identifying the eventsAn with the eventsx(m) +nλ(m) ∈ A(m).
We abuse notation and refer to the extended measure also asP

(m).

In more informal terms, the Furstenberg embedding has created, for eachm,
a random setB(m) ⊂ Z which captures all the important information about the
original setA(m) andZN(m) . For instance, the density ofA(m) is nothing more than
the probability that0 lies in B(m) or, equivalently, the probability of the eventA0.
One can viewx(m) andλ(m) as the “hidden variables” which generate this random
setB(m). However, in order to invoke the correspondence principle,we need to
“forget” that the random setB(m) actually came from these variables; indeed, we
are going to restrictP(m) to the common factor(Ω,Bmax) in order to take limits as
m → ∞. More precisely, we have

5The introduction of the dilation parameterλ(m) is essentially the averaging trick of Varnavides
[34]. The exact construction of this space is not important,so long as one has the independent
random variablesx(m) andλ(m); but, for sake of concreteness, one can setΩ(m) := Z

N(m) × [L(m)],

B
(m)
max := 2Ω(m)

to be the power set ofΩ(m), andP
(m) to be the uniform distribution onΩ(m).

6More precisely, we graph the measurable mapping fromΩ(m) to Ω as a measurable mapping
from Ω(m) to Ω × Ω(m), which contravariantly induces aσ-algebra homomorphism from the product
σ-algebraBmax×B

(m)
max toB

(m)
max. Pulling back the probability measureP(m) under this homomorphism

yields the extension. A similar construction applies to thegraph and hypergraph embeddings in later
sections.
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Proposition 2.5 (Furstenberg Correspondence Principle). For every m ≥ 1,

let ZN(m) be a cyclic group with N (m) ≥ m, let A(m) be a subset of ZN(m) , and let
P

(m) be as in Definition 2.4. Then there exists a subsequence 0 < m1 < m2 < · · ·

and a probability measure P
(∞) on the Furstenberg universal space (Ω,Bmax),

such that we have the weak convergence property

(1) lim
i→∞

P
(mi)(E) = P

(∞)(E) for all E ∈ Breg.

Furthermore, we have the shift invariance property

(2) P
(∞)(T nE) = P

(∞)(E) for all E ∈ Bmax, n ∈ Z.

Proof. The algebraBreg is countable. Thus the existence of the weak limit
P

(mi) follows from Lemma A.15. Now observe that the random setsB(m) and
T nB(m) = B(m) +n have the same probability distribution (becausex0 andx0−nλ

have the same distribution for any fixedλ). Thus we observe thatP(m) is shift-
invariant:

P
(m)(T nE) = P

(m)(E) for all E ∈ Bmax, n ∈ Z.

Applying (1), we obtain (2) for all regular eventsE. But sinceP(∞) is countably
additive, we see that the space of eventsE for which (2) holds for everyT is a
σ-algebra which containsBreg and thus containsBmax as claimed. �

Now we can deduce Theorem 2.1 from Theorem 2.2.

Proof of Theorem 2.1 assuming Theorem 2.2. Suppose that Theorem
2.1 fails. Then we can findk ≥ 1 and0 < δ ≤ 1, a sequenceN (m) of positive
integers, and a sequence of setsA(m) ⊂ ZN(m) of density|A(m)|/N (m) ≥ δ such
that

lim
m→∞

1

(N (m))2
|{(x, r) ∈ ZN(m) : x, x + r, . . . , x + (k − 1)r ∈ A(m)}| = 0.

By passing to a subsequence ofm if desired, we can make this convergence
arbitrarily fast; for instance, we can ensure that

(3)
1

(N (m))2
|{(x, r) ∈ ZN(m) : x, x + r, . . . , x + (k − 1)r ∈ A(m)}| ≤ δ100−m.

Observe that the left-hand side is at least1
(N(m))2

|A(m)| ≥ δ/N (m), so we conclude
that

N (m) ≥ 100m.

In particular,N (m) ≥ m, so we can invoke the Furstenberg Correspondence Princi-
ple and obtain a shift-invariant system(Ω,Bmax,P

(∞)) on the Furstenberg universal
space(Ω,Bmax) with the stated properties.
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Now let us compute some probabilities in this system, starting with the proba-
bility of A0. From definition ofP(m), we have

P
(m)(A0) = P

(m)(x0 ∈ A(m)) = |A(m)|/N (m) ≥ δ,

so by (1) we have
P(A0) ≥ δ.

In particular,A0 has strictly positive probability. Next, let1 ≤ n ≤ m and consider
the expression

P
(m)(A0 ∧ T nA0 ∧ · · · ∧ T (k−1)nA0)

= P
(m)(A0 ∧ An ∧ · · · ∧ A(k−1)n)

= P
(m)(x(m) + jnλ(m) ∈ A(m) ∀0 ≤ j < k)

=
1

N (m)L(m)
|{(x(m), λ(m)) ∈ ZN(m) × [L(m)] :

x(m) + jnλ(m) ∈ A(m) ∀0 ≤ j < k}|.

Now observe from definition ofL(m) that the progressionsx(m), x(m) + nλ(m), . . . ,

x(m) +(k−1)nλ(m) are all distinct asx(m) andλ(m) vary. Applying (3), we see that

P
(m)(A0 ∧ T nA0 ∧ · · · ∧ T (k−1)nA0) = P

(m)(A0 ∧ An ∧ · · · ∧ A(k−1)n)

≤
1

N (m)L(m)
(N (m))2δ100−m

≤ 2m100−m

(say) for all1 ≤ n ≤ m. In particular,

lim
m→∞

P
(m)(A0 ∧ T nA0 ∧ · · · ∧ T (k−1)nA0) = 0

for each fixedn ≥ 1; and hence by (1),

P
(∞)(A0 ∧ T nA0 ∧ · · · ∧ T (k−1)nA0) = 0

for all n ≥ 1. But this contradicts Theorem 2.2. This completes the deduction of
Theorem 2.1 from Theorem 2.2. �

Remark 2.6. Note that as this proof proceeded by contradiction, it does
not obviously give any sort of quantitative lower bound for the quantityc(k, δ)

appearing in Theorem 2.1. It is actually possible (with nontrivial effort) to extract
such a bound by taking the proof of Theorem 2.2 and making everything finitary;see
[30]. However the bounds obtained in this manner are extremely poor. The same
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remarksapply to the infinitary proofsof the triangle removal lemma and hypergraph
removal lemma that we give below. Observe also that the aboveargument, while
infinitary, did not require the axiom of choice, as one can eliminate the apparent
use of choice at the beginning of the argument by well-ordering the objectsA, ZN ,
δ appearing in Theorem 2.1 in some standard manner. (Nor does the use of Lemma
A.15 require choice; see Remark A.16. The original proof of the Furstenberg
Recurrence Theorem in [7] is also choice-free, though the later proof in [10] is not,
as it uses Zorn’s Lemma.) Indeed we do not actually need the axiom of choice in
this entire paper, though we assume it in order to simplify the exposition slightly.

Remark 2.7. One can also reverse the above argument, and use Theorem 2.1
to deduce Theorem 2.2, basically by applying Theorem 2.1 to various truncated
versions of the random setB := {n ∈ Z : T nx ∈ A}, wherex is sampled from the
sample spaceΩ using the probability measureP. We omit the standard details.

3 The graph correspondence principle

We now develop an analogue of the Furstenberg Correspondence Principle
for graphs; namely, we start with a sequence of (undirected)graphsG(m) =

(V (m), E(m)) for eachm ≥ 1 and wish to extract (after passing to a subsequence
of m’s) some sort of infinitary weak limit. This type of problem was already
addressed in [19], with the main tool being a certain weak form of the Szemeŕedi
Regularity Lemma. Our approach is somewhat similar (thoughnot identical); the
regularity lemma appears only after the infinite limit is extracted, in Lemma 3.5
below.

As before, we need a universal space in which to take limits. Just as the
Furstenberguniversal space consisted of infinitesets of integers, the graph universal
space consists of infinitegraphs on the natural numbers. The shiftT (which
represents aZ-action) is now replaced7 by the action of the permutation groupS∞,
defined as the group of all permutationsσ : Z → Z of the integers.

Definition 3.1 (Graph universal space). LetN := {1, 2, . . .} denote the natural
numbers, and letΩ := 2(N2 ) = {(N, E∞) : E∞ ⊂

(

N

2

)

} denote the space of all
(infinite) graphs(N, E∞) on the natural numbers; thus the edge setE∞ is an
arbitrary collection of unordered pairs of distinct integers. On this spaceΩ, we
introduce the eventsAi,j = Aj,i for any unordered pair of distinct natural numbers
{i, j} ∈

(

N

2

)

by Ai,j := {(N, E∞) ∈ Ω : (i, j) ∈ E∞} and letBmax be theσ-algebra

7We are indebted to Balász Szegedy for pointing out the analogy between theZ-action of a dynamical
system and theS∞-action on an infinite graph.
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generated by the countable sequence of eventsAi,j. (We adopt the convention that
Ai,i = ∅ for all i ∈ N; thus our graphs have no loops.) We also introduce the regular
algebraBreg generated by theAi,j ; these are the events that depend only on finitely
many of theAi,j. For any permutationσ : N → N of the natural numbers, we define
the associated action onBmax by mappingσ : Ai,j 7→ Aσ(i),σ(j) and extending this
to aσ-algebra isomorphism in the unique manner. More explicitly, σ maps each
graph(N, E∞) to the graph(N, σE∞), whereσE∞ := {{σ(i), σ(j)} : {i, j} ∈ E∞}.
For any (possibly infinite) subsetI of N, we defineBI to be the factor ofBmax

generated by the eventsAi,j for i, j ∈ I; informally speaking,BI represents the
knowledge obtained by measuring the restriction ofE∞ to I. Observe the trivial
monotonicityBI ⊆ BJ wheneverI ⊆ J .

The space(Ω,Bmax) is thus the universal event space associated to the events
Ai,j and is the natural event space for studying infinite random graphs. (For
instance, the infinite Erd̈os–Renyi random graphG(∞, p) for fixed 0 ≤ p ≤ 1,
where the vertex set isZ and any two integers are connected by an edge with an
independent probability ofp, would correspond to the scenario in which all the
eventsAi,j are independent with probabilityp each.) The permutation groupS∞

defined earlier acts on the event space(Ω,Bmax) in the obvious manner. Thus, for
instance,σ(BI) = Bσ(I) for all σ ∈ S∞ andI ⊆ N.

Next, we need a way to embed every finite graph into the universal space.

Definition 3.2 (Graph universal embedding). Let m ≥ 1, and letG(m) =

(V (m), E(m)) be a finite graph. Let(Ω(m),B
(m)
max,P(m)) be the probability space

corresponding to the sampling of a countable sequence8 of i.i.d. random vari-
ablesx(m)

1 , x
(m)
2 , . . . ∈ V (m) sampled independently and uniformly at random9. To

every sequence(x(m)
1 , x

(m)
2 , . . .) ∈ Ω(m), we associate an infinite graphG(m)

∞ =

(N, E
(m)
∞ ) ∈ Ω by setting

E(m)
∞ :=

{

{i, j} ∈

(

N

2

)

: {x
(m)
i , x

(m)
j } ∈ E(m)

}

;

8This sequence contains the “hidden variables” that will play the role of the parametersx(m) and
λ(m) in the preceding section. Again, the exact construction of this Wiener-type probability space is
not important. The most canonical way to proceed is to letΩ(m) be the countable product(V (m))N

with the productσ-algebraB(m)
max and the product uniform probability measureP

(m). A more concrete
way would be to identifyV (m) with [n(m)] = {1, . . . , n(m)} by appropriate labeling, setΩ(m) to be the
unit interval [0, 1) := {x : 0 ≤ x < 1}, let B(m)

max be the Borelσ-algebra,P(m) be Lebesgue measure,
and letxj be thejth digit in the base-n(m) expansion ofx (rounding down when a terminating decimal
occurs).

9Of course, for any fixedm, there will be infinitely many repetitions among thesex
(m)
i sinceV (m)

is finite. But in practice, we are interested in taking limitsin which |V (m)| → ∞; and so these collisions
will become asymptotically negligible.
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one can think of this as a random lifting of the graphG(m) onV (m) up to an infinite
graphG

(m)
∞ on the natural numbersN. This mapping fromΩ(m) to Ω is clearly

measurable, since the inverse images of the generating eventsAi,j in (Ω,Bmax) are
simply the events that{x(m)

i , x
(m)
j } lie in G(m), which are certainly measurable in

B
(m)
max. This allows us to extend the probability measureP

(m) from (B
(m)
max, Ω(m)) to

the product space(Bmax × B
(m)
max, Ω × Ω(m)) in a canonical manner, identifying the

eventsAi,j with the events{x(m)
i , x

(m)
j } ∈ E(m). We abuse notation and refer to the

extended measure also asP
(m).

Remarks 3.3. Now that the space(Ω(m),B
(m)
max) is infinite, not every event

involving thex
(m)
i is measurable; however, any event which involves only finitely

many of thex
(m)
i is certainly measurable (and, in particular, has a well-defined

probability). One can viewE(m)
∞ as the infinite random graph formed by statistically

sampling of the original finite (and deterministic) graphE(m). This is a convenient
way to convert arbitrary graphs, on arbitrary vertex sets, to a fixed universal
(random) graph on a fixed universal vertex set, in this case the natural numbersN.
The random graphE(m)

∞ turns out to capture all the relevant features we require
of the original graph; for instance, the probability thatE

(m)
∞ lies in the eventA1,2

is essentially10 the edge density ofE(m), while the probability thatE(m)
∞ lies in

A1,2 ∧ A2,3 ∧ A3,1 is essentially the triangle density ofE(m), and so forth. On the
other hand, it suppresses irrelevant features such as what the labels of the original
vertex setV (m) were; in particular, applying a graph isomorphism toE(m) does
not affect the probability distribution ofE(m)

∞ at all. More generally, we observe
the permutation invariance

(4) P
(m)(σE) = P

(m)(E) for all E ∈ Bmax, σ ∈ S∞,

which can be verified by first checking on regular eventsE (i.e., finite boolean
combinations of theAi,j) and then extending as in the proof of the Furstenberg
Correspondence Principle.

Once again, we can view the random graphG
(m)
∞ as being generated11 by

“hidden variables”x(m)
1 , x

(m)
2 , . . .. As before, we wish to “forget” these hidden

variables and pass to a limit. This can be achieved as follows.

Proposition 3.4 (Graph Correspondence Principle). For every m ≥ 1, let

G(m) = (V (m), E(m)) be a finite undirected graph, and let P
(m) be as in Definition

10We say “essentially” because there is a slight error term coming from the event thatx(m)
1 = x

(m)
2 .

However, this error becomes negligible in limits for which|V (m)| → ∞.
11This is, of course, the perspective taken in property testing. It is not surprising that the Szemerédi

Regularity Lemma plays a crucial role in that theory also; see [2]. Indeed, this argument suggests that
an infinitary approach to property testing theory is possible.
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3.2. Then there exists a subsequence 0 < m1 < m2 < · · · and a probability

measure P
(∞) on the graph universal space (Ω,Bmax) such that we have the weak

convergence property (1) and the permutation invariance property

(5) P
(∞)(σE) = P

(∞)(E) for all E ∈ Bmax, σ ∈ S∞.

Proof. The algebraBreg is countable. Thus the existence of the weak limit
P

(mi) follows from Lemma A.15. From (4), we can deduce (5) by arguing exactly
as in the Furstenberg Correspondence Principle. �

So far, the permutation groupS∞ has played the same role for graphs as the
integer groupZ played for sets of integers. However, the permutation group
is significantly more “mixing,” which allows us immediatelyto “regularise” the
system obtained in Proposition 3.4.

Lemma 3.5 (Infinitary regularity lemma). Let P be a probability measure on
the graph universal space (Ω,Bmax) which is permutation-invariant in the sense

of (5). Then for any I, I1, . . . , Il ⊂ N with I ∩ I1 ∩ · · · ∩ Il infinite, the factors BI

and
∨l

i=1 BIi
are relatively independent conditioning on

∨l
i=1 BI∩I with respect to

this probability measure P. (See Appendix Appendix A. for a definition of relative

independence.)

This result is the infinitary analogue of the Szemerédi Regularity Lemma and
plays a crucial role in establishing the proof of the triangle removal lemma (and
later, the hypergraph removal lemma) in subsequent sections.

Proof. Fix I, I1, . . . , Il. We may assumel ≥ 1, since the claim is trivial when
l = 0. To show thatBI and

∨l
i=1 BIi

are relatively independent conditioning on
∨l

i=1 BI∩Ii
with respect to the probability measureP(∞), it suffices by Lemma

A.26 to show that

∥

∥

∥

∥

P

(

EI

∣

∣

∣

∣

l
∨

i=1

BIi

)∥

∥

∥

∥

L2

=

∥

∥

∥

∥

P

(

EI

∣

∣

∣

∣

l
∨

i=1

BI∩Ii

)∥

∥

∥

∥

L2

for all EI ∈ BI. By Lemma A.18 and limiting arguments, we may assume without
loss of generality thatEI is regular. In particular, we haveEI ∈ BI′ for some finite
subsetI ′ of I. By Corollary A.20 and a limiting argument, we may assume that
the setI has an infinite complement. By another such limiting argument, we can
also assume thatIi\I is finite for all i.

Let A be the infinite setA := (I ∩ I1 ∩ · · · ∩ Il)\I ′, and letB be the finite
setB :=

⋃l
i=1 Ii\I. Then we can find a permutationσ which mapsA to A ∪ B

bijectively but is constant onI\A and, in particular, fixesI ′. Thusσ also fixesEI
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and mapsI ∩ Ii to (I ∩ Ii) ∪ B. Thus
∥

∥

∥

∥

P

(

EI

∣

∣

∣

∣

l
∨

i=1

B(I∩Ii)∪B

)
∥

∥

∥

∥

L2

=

∥

∥

∥

∥

P

(

EI

∣

∣

∣

∣

l
∨

i=1

BI∩Ii

)
∥

∥

∥

∥

L2

.

But asBIi
lies betweenBI∩Ii

andB(I∩Ii)∪B, the claim now follows from Lemma
A.12. �

Remark 3.6. The above proof of the regularity lemma is short but perhaps a
bit opaque. Let us informally discuss a special case of this lemma, namely that the
eventsA1,3 andA2,3 are relatively independent conditioning onB{3,4,5,...}; this is
a special case of the situation whereI = N\{2}, I1 = N\{1}, andl = 1. Passing
back to the finite graph setting (by working with the probability measuresP(m)

from Proposition 3.4), we may find this claim puzzling at first, because the events
{x

(m)
1 , x

(m)
3 } ∈ E(m) and{x(m)

2 , x
(m)
3 } ∈ E(m) can certainly be correlated: indeed,

wheneverx(m)
3 has high degree, then both events occur with high probability; and

when it has low degree, both events occur with low probability. However, if one
can somehow learn the degree ofx

(m)
3 , then these two events become relatively

independent conditioning on the degree ofx
(m)
3 . And now the purpose of the factor

B{3,4,5,...} becomes clear; by “polling” many additional verticesx
(m)
4 , x

(m)
5 , . . . , x

(m)
N

and measuring the connectivity ofx
(m)
3 with all of these additional vertices, we

can obtain a statistical prediction for the degree ofx
(m)
3 , whose accuracy and

confidence level become almost surely perfect in the asymptotic limit N → ∞.
More generally, it turns out that by polling the interconnectivity of vertices in
the infinite setI ∩ Ii for i = 1, . . . , l, one can obtain an almost surely perfectly
accurate prediction of all the “common information” held between an event inBI

and an event in
∨l

i=1 BIi
. Let us illustrate this with one further example, namely the

relative independence ofA1,2 andA2,3∧A1,3 conditioning onB{1,4,5,...}∨B{2,4,5,...};
this corresponds to the caseI = N\{3}, l = 2, andIi = N\{i} for i = 1, 2. We are
asking for the events{x(m)

1 , x
(m)
2 } ∈ E(m) and{x

(m)
1 , x

(m)
3 }, {x

(m)
2 , x

(m)
3 } ∈ E(m)

to become relatively independent once we sample all the connectivity information
betweenx(m)

2 andx
(m)
4 , x

(m)
5 , . . ., and betweenx(m)

3 andx
(m)
4 , x

(m)
5 , . . .. To see how

this works, observe that while the two events in question arenot unconditionally
independent in general, they become conditionally independent once the number
of paths of length two connectingx(m)

1 andx
(m)
2 is known, since upon freezing

x
(m)
1 andx

(m)
2 this determines the probability that the independent variable x

(m)
3

satisfies the latter event{x(m)
1 , x

(m)
3 }, {x

(m)
2 , x

(m)
3 } ∈ E(m). Sincex

(m)
3 does not

affect the former event{x(m)
1 , x

(m)
2 } ∈ E(m), we obtain relative independence. But

the number of paths of length two can be determined statistically by counting
the proportion ofj ∈ {4, 5, . . .} for which {x

(m)
1 , x

(m)
j } and{x

(m)
2 , x

(m)
j } both lie
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in E(m). This lies in the factorB{1,4,5,...} ∨ B{2,4,5,...} and is the reason for the
conditional independence12.

Remark 3.7. Similar correspondence principles exist for bipartite graphs,
directed graphs, multicolored graphs (where the color set is kept independent of
m), and so forth; for instance, a generalisation to tripartite graphs is sketched out in
Appendix Appendix B.. We do not pursue the other generalisations here, as they
are rather minor, though we do consider a hypergraph extension of this principle
in Section 7.

4 An infinitary proof of the triangle removal lemma

Let us now apply the above correspondence principle to obtain the following
triangle-removal lemma of Ruzsa and Szemerédi.

Lemma 4.1 (Triangle removal lemma). [25] Let G = (V, E) be an undirected
graph with |V | = n vertices. Suppose that G contains fewer than δn3 triangles for

some 0 < δ ≤ 1 or, more precisely,

|{(x1, x2, x3) ∈ V 3 : {x1, x2}, {x2, x3}, {x3, x1} ∈ E}| ≤ δn3.

Then it is possible to delete oδ→0(n
2) edges from G to create a graph G′ which is

triangle-free. Here oδ→0(n
2) denotes a quantity which, when divided by n2, goes

to zero as δ → 0, uniformly in n.

Previous to this paper, the only known proof of this lemma proceeded via the
Szemerédi Regularity Lemma [27]. It can be used among other things to imply the
k = 3 case of Szemerédi’s Theorem (Theorem 2.1). Based on this connection, it
is natural to ask whether there is an infinitary analogue of this lemma, similarly to
how Theorem 2.2 is an infinitary counterpart to Theorem 2.1. We deduce it from
the following substantially stronger infinitary statement.

If J is a set, we define adownset i in J to be any collection of subsetse of
J with the property that whenevere ∈ i ande′ ⊆ e, thene′ ∈ i also. In particular,
downsets are automatically closed under intersection.

12There is another way of viewing this, namely, that each vertex x
(m)
j induces a partition of the

x
(m)
1 andx

(m)
2 vertex sets, by dividing them into those vertices which are connected tox(m)

j in E(m)

and those that are not. Lettingj vary in {4, 5, . . . , N}, one obtains a partition of these vertex classes
which behaves increasingly like the partitions created by the Szemeŕedi Regularity Lemma asN → ∞,
in the sense that the graph between thex

(m)
1 andx

(m)
2 becomes increasingly “ε-regular” relative to

this partition; theε-regularity is closely related to the relative independence properties discussed here.
However, we do not pursue this approach, as it becomes somewhat complicated when we move to the
hypergraph setting, whereas the techniques we present herecarry over to hypergraphs with virtually no
changes.
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Theorem 4.2 (Hypergraph removal lemma, infinitary version). Let

(Ω,Bmax,P) be a probability space, and let Breg ⊆ Bmax be an algebra. Let J

be a finite set, and let imax be an downset in J . For each e ∈ imax, let Be be a factor

of Bmax with the following properties.

• (Regularisability) Each of the factors Be is generated by countably many

events from Breg.

• (Nesting) If e, e′ ∈ imax are such that e ⊆ e′, then Be is a factor of Be′ .

• (Independence) If e, e1, . . . , el ∈ imax, then the factors Be and
∨l

i=1 Bei
are

relatively independent conditioning on
∨l

i=1 Be∩ei
.

For each e ∈ imax, let Ee be an event in Be such that

P

(

∧

e∈imax

Ee

)

= 0.

Then for any ε > 0, there exist events Fe ∈ Be ∩ Breg for all e ∈ imax such that

P(Ee\Fe) ≤ ε for all e ∈ imax

and
∧

e∈imax

Fe = ∅.

We prove this rather strange-looking proposition in Section 6. For the pur-
poses of proving the triangle removal lemma, we only need this lemma in the
special case whenJ = {1, 2, 3}, imax := {e : |e| ≤ 2}, and Ae = Ω for all
e 6= {1, 2}, {2, 3}, {3, 1}. However, the lemma is not that much more difficult
to prove in the general case13; since it yields rather easily a hypergraph generalisa-
tion of the triangle removal lemma, we retain the proposition in the general form.
The hypothesisP(

∧

e∈imax
Ee) = 0 is the analogue in Lemma 4.1 of the hypothesis

thatG has few triangles, while the conclusion
∧

e∈imax
Fe = ∅ is the analogue of

the conclusion that the modified graphG′ is triangle-free.

Proof of Lemma 4.1 assuming Theorem 4.2. Suppose for contradiction
that Lemma 4.1 fails. Then we can find0 < η ≤ 1, a sequencen(m) of integers,

13This is in stark contrast to the finitary situation, in which the hypergraph removal lemma is
significantly more difficult than the triangle removal lemma. This is ultimately because of the need in
the finitary hypergraph setting to constantly play off epsilons of different sizes against one another; see
[20], [21], [23], [24], [13], [31] for some examples of this.However, in the infinitary asymptotic limit,
most of the epsilons have disappeared or at least been confined to individual lemmas, where they do
not interact with other epsilons. This simplifies the proof significantly, albeit at the cost of working in
an infinitary setting, as opposed to a finitary one. In the converse direction, note the proliferation of
epsilons in [30] when Furstenberg’s proof of Szemerédi’s Theorem is transferred from the infinitary
setting to the finitary one.



CORRESPONDENCE BETWEEN GRAPH THEORY AND PROBABILITY THEORY 15

and a sequence of graphsG(m) = (V (m), E(m)) with |V (m)| = n(m), such that the
G(m) have asymptotically vanishing number of triangles,
(6)

lim
m→∞

1

(n(m))3
|{(x1, x2, x3) ∈ (V (m))3 : {x1, x2}, {x2, x3}, {x3, x1} ∈ E(m)}| = 0

but such that each of theG(m) cannot be made triangle-free without deleting at
leastη(n(m))2 edges. (One could make the decay rate in (6) more rapid, as in the
proof of Theorem 2.1, but there is no need to do so here.) In particular, G(m)

contains at least one triangle, and hence the expression inside the limit of (6) is at
least1/(n(m))3. This implies that

(7) n(m) → ∞ asm → ∞.

Now let (Ω,Bmax) be the graph universal space introduced in Definition 3.1,
with the attendant eventsAn,m, regular algebraBreg, factorsBI, andS∞ group
action. LetP(m) be the probability measure on(Ω × Ω(m),Bmax × B

(m)
max) defined

in Definition 3.2, and letP(∞) be a limiting measure as constructed in the graph
correspondence principle (Proposition 3.4). From (6), we have

lim
m→∞

P
(m)(A1,2 ∧ A2,3 ∧ A3,1) = 0;

and hence by (1),
P

(∞)(A1,2 ∧ A2,3 ∧ A3,1) = 0.

We apply Theorem 4.2 on the universal space(Ω,Bmax,P
(∞)) with J := {1, 2, 3},

imax := {e : |e| ≤ 2}, Ee set equal toAi,j if e = {i, j} for someij = 12, 23, 31, and
Ee = Ω otherwise, and withBe set equal toBe∪{4,5,...} for all e ∈ imax. The nesting
and regularisability properties required for Theorem 4.2 are obvious, while the
independence properties follow from Lemma 3.5. We can thus invoke the theorem
and find regular eventsFe ∈ Be∪{4,5,...} ∩ Breg for e ∈ imax with

(8) P
(∞)(Ee\Fe) < η/100 for e ∈ imax

such that

(9)
∧

e∈imax

Fe = ∅.

It is convenient to eliminate the lower order components∅, {1}, {2}, {3} of the
downsetimax. For ij = 12, 23, 31, defineF ′

i,j := F{i,j} ∧ F{i} ∧ F{j} ∧ F∅. Then the
F ′

i,j are regular, and (by monotonicity) we haveF ′
i,j ∈ B{i,j,4,5,...}. From (8) and

the choice of theEe, we have

(10) P
(∞)(Ai,j\F

′
i,j) < η/10 for ij = 12, 23, 31,
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while from (9), we have

(11) F ′
1,2 ∧ F ′

2,3 ∧ F ′
3,1 = ∅.

Now we reinstate the “hidden variables”x
(m)
1 , x

(m)
2 , . . . by viewingP

(m) once again
as a probability measure on the product space(Ω×Ω(m),Bmax×B

(m)
max); in particular,

Ai,j is now identified with the event that{x(m)
i , x

(m)
j } lies in the graphG(m). Now

becauseAi,j andF ′
i,j are regular, the quantityP(m)(Ai,j\F ′

i,j) is the probability

of an event involving only finitely many of the random vertices x
(m)
i of V (m); let

us say that it involves only the verticesx
(m)
1 , . . . , x

(m)
N (note thatN is independent

of m, depending only on the complexity of the eventF ′
ij). By increasingN if

necessary we may assumeN > 3. Recall thatF ′
ij depends only on the vertices

x
(m)
i , x

(m)
j andx

(m)
4 , . . . , x

(m)
N . For any fixed values ofx(m)

4 , . . . , x
(m)
N , let us say that

a vertex pair{x, y} ⊂ V (m) is good if for eachij = 12, 23, 31, the eventF ′
ij holds

true wheneverx, y are substituted for eitherx(m)
i , x

(m)
j or x

(m)
j , x

(m)
i . Now define

the random subgraph(G′)(m) = (V (m), (E′)(m)) of G(m) = (V (m), E(m)) by setting
(E′)(m) to be all the good pairs{x, y} in E(m); this graph depends on the random
variablesx(m)

4 , . . . , x
(m)
N . From (10), we see that

E|E(m)\(E′)(m)| < η(N (m))2.

Also, we observe that regardless of the values ofx
(m)
3 , . . . , x

(m)
N , the graph(G′)(m)

almost surely cannot contain any triangles, as this would contradict (9). But by
the pigeonhole principle, we can find a deterministic representative of the random
graph(G′)(m) for which

|E(m)\(E′)(m)| < η(N (m))2;

and so we have madeG(m) triangle-free by removing fewer thanη(N (m))2 edges,
a contradiction that establishes Lemma 4.1. �

Remark 4.3. In fact, the same arguments give a subgraph removal lemma, in
which the triangle is replaced by another fixed subgraph. Theproof is the same;
it is only the downsetimax (and some minor numerical factors in the argument)
which change significantly. But in all these cases, the elements in the downset has
cardinality at most two. We do not give the details here, since they are subsumed
by the hypergraph removal lemma in Theorem 8.1. The higher order cases of
Theorem 4.2, involving setse of three or more elements, are not actually used in
graph theory (which is ultimately concerned only with finiteboolean combinations
of relations that involve at most two vertices at a time), andare only of importance
for hypergraph theory (in which one must now consider combinations of relations,
each of which involve three or more vertices).
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As observed in [31], there is a slightly stronger version of the triangle removal
lemma which gives some further complexity information onG′, at the expense of
conceding thatG′ need not be a subgraph ofG. More precisely, we have

Lemma 4.4 (Strong triangle removal lemma). Let G = (V, E) be an undirected

graph with |V | = n vertices. Suppose that G contains fewer than δn3 triangles
for some 0 < δ ≤ 1. Then one can find a triangle-free graph G′ with G\G′

containing fewer than oδ→0(n
2) edges. Furthermore, there exists a partition of V

into Oδ(1) components such that when restricted to the edges joining any two of

these partitions (which could be equal), G′ is either a complete graph or an empty
graph.

This stronger version of the lemma is a by-product of the usual proof of Lemma
4.1, as the graphG′ is constructed by excluding certain bad pairs of Szemerédi
cells from the graphG. It turns out that the infinitary approach can also yield this
stronger lemma without much difficulty.

Proof. We again argue by contradiction. But this time, the contradiction
hypothesis yields a more complicated statement. More precisely, if Lemma 4.4
fails, then we find0 < η ≤ 1, a sequencen(m) of integers, a sequence of graphs
G(m) = (V (m), E(m)) with |V (m)| = n(m), and a sequenceM (m) tending to infinity
asm → ∞, such that (6) holds, but such that there does not exist any triangle-free
graphG′ for whichG\G′ has fewer thanη(n(m))2 edges, and for which there exists
a partition ofV (m) into M (m) or fewer components, such that when restricted to the
edges joining any two of these cells,G′ is either the complete graph or the empty
graph.

We now repeat all the arguments used to prove Lemma 4.1, untilwe get to
the point where we have created regular eventsF ′

i,j ∈ B{i,j,4,5,...} obeying (10) and
(11). Now we insert an additional step to lower the complexity of the eventsF ′

i,j .
Observe thatB{i,j,4,5,...} is generated by the factorB{i,4,5,...} ∨ B{j,4,5,...}, together
with the additional eventAi,j . Thus we can writeF ′

i,j ∧Ai,j = F ′′
i,j ∧Ai,j for some

F ′′
i,j ∈ B{i,4,5,...} ∨ B{j,4,5,...}. From (10), we have

P
(∞)(Ai,j\F

′′
i,j) < η/10 for ij = 12, 23, 31.

Now we argue that we still have the analogue of (11), namely

(12) F ′′
1,2 ∧ F ′′

2,3 ∧ F ′′
3,1 = ∅.

From (11), we already have

(13) (F ′′
1,2 ∧ F ′′

2,3 ∧ F ′′
3,1) ∩ (A1,2 ∧ A2,3 ∧ A3,1) = ∅.
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But the regular eventF ′′
1,2 ∧ F ′′

2,3 ∧ F ′′
3,1 is a boolean combination of finitely many

eventsAi,j , where at most one of thei, j lie in {1, 2, 3}. In other words, this
combination does not involveA1,2 ∧ A2,3 ∧ A3,1. Thus if (12) fails, so that there is
an infinite graph(N, E∞) lying in F ′′

1,2 ∧ F ′′
2,3 ∧ F ′′

3,1, we can modify the graphE∞

on the edges{1, 2}, {2, 3}, {3, 1}so that it also lies in the set in (13), a contradiction.

To summarise, we can safely replaceF ′
i,j by the lower complexity eventF ′′

i,j .
Now we continue the argument in the proof of Lemma 4.1 with this replacement,
but define the edges of(G′)(m) to be all the good pairs{x, y} in V (m), rather than in
E(m). This means that(G′)(m) is no longer a subgraph of(G)(m), but the property
of being good is determined entirely by the regular eventsF ′′

i,j, which in turn only
involve finitely many eventsAi,j with at most one of thei, j lying in {1, 2, 3}.
Inspecting the definition of a good pair, we see that for fixedx

(m)
4 , . . . , x

(m)
N for

N sufficiently large, the graph(G′)(m) has bounded complexity, in the sense that
there is a partition ofV (m) into M cells, for someM depending only on theF ′′

i,j ,
such that when restricted to the edges joining any two of these cells,G′ is either
the complete graph or the empty graph. But form sufficiently large, we have
M (m) > M ; and so we attain the same contradiction as before. �

5 The uniform intersection property

We now build the machinery necessary to prove the infinitary hypergraph removal
lemma (Theorem 4.2). Again, we are motivated by the example from ergodic
theory. In Furstenberg’sproof [7], [10], [8] of the FurstenbergRecurrenceTheorem
(Theorem 2.2), the proof proceeded by a kind of induction on factors. Let us say that
a factorB of Bmax obeys theuniform multiple recurrence (UMR) property
if the conclusion of Theorem 2.2 holds wheneverE ∈ B andP(E) > 0. Thus,
for instance, the trivial factor{∅, Ω} has the UMR property. One then shows that
the UMR property is preserved under three operations: weakly mixing extensions,
limits of chains, and compact (or finite rank) extensions. Anapplication of Zorn’s
lemma14 then allows one to conclude that the maximal factorBmax obeys the UMR
property.

We adopt a similar strategy here, based around a certain property of families of
factors which we call theuniform intersection property (UIP). This property
is again trivial for very small families, and is preserved under the same three

14Actually, to establish Theorem 2.2 for a fixedk, one need only apply the limits-of-chains step a
finite number of times (depending onk), at which point one reaches a factor which is characteristic for
the maximal factorBmax, and then one can jump directly toBmax without using Zorn’s lemma. Thus,
the proof of the Furstenberg recurrence theorem does not actually require the axiom of choice; and,
indeed, the original proof in [7] did not use this axiom.
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operations of weakly mixing extensions, limits of chains, and finite rank extensions.
Because of the finiteness ofJ in Theorem 4.2, we only need to apply these
operations finitely often and do not require Zorn’s lemma. However, it does seem
likely that there are extensions of this theorem to the case whenJ is infinite and
(more interestingly) to the case where the setse in imax can be unbounded or even
countably infinite. We do not pursue this matter here.

We begin by stating the UIP.

Definition 5.1 (Uniform intersection property). Let (Ω,Bmax,P) be a prob-
ability space, and letBreg be an algebra inBmax. We say that a tuple(Bi)i∈I of
factors has theuniform intersection property (UIP) if the following holds:
given any tuple(Ei)i∈I of eventsEi ∈ Bi with P(

∧

i∈I Ei) = 0, and given anyε > 0,
there exists a tuple(Fi)i∈I of regular eventsFi ∈ Bi ∧ Breg with P(Ei\Fi) ≤ ε for
eachi ∈ I such that

∧

i∈I Fi = ∅.

Remark 5.2. Roughly speaking, the UIP asserts that if eventsEi from separate
factorsBi have a null intersection, then this fact can be almost entirely “explained”
by regular eventsFi ∈ Bi which have empty intersection. Thus, for instance, the
conclusion of Theorem 4.2 is simply that the tuple(BI)I∈imax obeys the UIP.

Before continuing, let us illustrate the UIP with a few simple examples. All of
these examples take place in some probability space(Ω,Bmax,P) with an algebra
Breg of regular events. We say that a factorB isregularisable if it can be generated
by at most countably many regular events.

Example 5.3. The empty tuple() obeys the UIP in a vacuous sense (the
hypothesisP(

∧

i∈I Ei) = 0 is impossible to satisfy).

Example 5.4. LetB be a factor. Then the singleton tuple(B) trivially has the
UIP (indeed, one can even takeε = 0 andFB = ∅ in this case).

Example 5.5. LetB be a regularisable factor. Then the2-tuple(B,B) has the
UIP. Indeed, ifE, E′ ∈ B were such thatP(E ∧ E′) = 0, then from Lemma A.19
one can find regular events̃F , F̃ ′ ∈ B which areε/3-close toE, E′ respectively.
By the triangle inequality, this implies thatP(F̃ ∧ F̃ ′) ≤ 2ε/3. If we setF := F̃\F̃ ′

andF ′ := F̃ ′\F̃ , then we see thatF, F ′ are regular events inB with F ∧ F ′ = ∅,
while from the triangle inequalityP(E\F ),P(E′\F ′) ≤ ε, and the claim follows.
For a generalization of this argument, see Lemma 5.11 below.

Example 5.6. The trivial factor{∅, Ω} has no impact on the UIP. More pre-
cisely, a tuple(Bi)i∈I obeys the UIP if and only if(Bi)i∈I ⊎ ({∅, Ω}) also obeys the
UIP, where⊎ denotes the concatenation of tuples.
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Example 5.7. Let (B1, . . . ,Bl) be a tuple of jointly independent factors. Then
(B1, . . . ,Bl) has the UIP. Indeed, ifEj ∈ Bj, then by joint independence we have
P(

∧

1≤j≤l Ej) =
∏l

j=1 P(Ej). Thus, if
∧

1≤j≤l Ej is a null event, then one of the
Ej, sayEj0 , must also be a null event. The claim then follows by lettingFj0 = ∅

and letting all the otherFj be the full eventΩ. For a more sophisticated version of
this argument, see Lemma 5.12 below.

Example 5.8. Let Ω be the unit interval[0, 1] with Lebesgue measure, letBreg

consist of all the finite unions of intervals (open, closed, or half-open), letB1 be
the factor generated by the eventE1 := [0, 1/2], and letB2 be the factor generated
by the eventE2 := [1/2, 1]. Then(B1,B2) does not have the UIP. However, if one
modifiesB2 to be the factor generated by(1/2, 1] instead of[1/2, 1], then the UIP
is restored. Thus the UIP is sensitive to modification of the underlying factors by
null events. (On the other hand, the eventsEi themselves can be modified by null
events withinBi without any impact to the UIP.)

Example 5.9. LetB1,B2 be finiteσ-algebras, and letB be anotherσ-algebra,
such that(B1,B2,B) has the UIP. Then(B1 ∨ B2,B) also has the UIP. To see this,
let E12 ∈ B1 ∨ B2 andE ∈ B be such thatP(E12 ∨ E) = 0. SinceB1 andB2 are
finite, we can writeE12 as the union ofM events of the formE1,m ∧ E2,m for
1 ≤ m ≤ M for some finiteM and some eventsE1,m ∈ B1, E2,m ∈ B2. By the
UIP hypothesis, we can find regular eventsF1,m ∈ B1, F2,m ∈ B2, Fm ∈ B with
F1,m ∧ F2,m ∧ Fm = ∅ andP(E1,m\F1,m),P(E2,m\F2,m),P(E\Fm) ≤ ε/M . If we
then setF12 :=

∨M
m=1(F1,m ∧ F2,m) andF :=

∧M
m=1 Fm, the claim follows. For a

generalization of this argument, see Lemma 5.13 below.

Remark 5.10. If (Bi)i∈I has the UIP, then given any tuple(Ei)i∈I of events
Ei ∈ Bi such that

∧

i∈I Ei is a null event, there exists a tuple(Gi)i∈I of null events
Gi ∈ Bi which cover the null event

∧

i∈I Ei. This follows from applying the UIP
with ε = 2−n (say) to obtain events(Fi,n)i∈I with P(Ei\Fi,n) ≤ 2−n for all i ∈ I and
∧

i∈I Fi,n = ∅, and then lettingGi be the eventEi holds butFi,n fails for infinitely
many n ≥ 1. The claim

∧

i∈I Ei ⊆
∨

i∈I Gi then follows from the pigeonhole
principle, while the claim thatGi is null follows from the Borel-Cantelli lemma.
Unfortunately, theGi are not in general regular, so this consequence of the UIP,
while simple to state, is not useful for applications.

We now develop the general tools we use to deduce the UIP for complex
tuples from the UIP for simpler tuples. We first show that repetitions do not
affect the UIP so long as theσ-algebra being repeated is regularisable. We use
(Bi)i∈I ⊎ (Bj)j∈J = (Bi)i∈I⊎J to denote the concatentation of two tuples, where
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I ⊎ J is the disjoint union ofI andJ (thus one may have to relabel the index set of
I or J in order to define this concatenation).

Lemma 5.11. Let (Bi)i∈I be a tuple of σ-algebras, and letB be a regularisable

σ-algebra. Then (Bi)i∈I ⊎ (B) has the UIP if and only if (Bi)i∈I ⊎ (B,B).

Proof. First suppose that(Bi)i∈I ⊎ (B,B) has the UIP. IfEi ∈ Bi andE ∈ B

are such thatP(E ∧
∧

i∈I Ei) = 0, then by the UIP hypothesis (inserting a dummy
eventΩ for the extra copy ofB), we can find regular eventsFi ∈ Bi andF ′, F ′′ ∈ B

such thatF ′ ∧ F ′′ ∧
∧

i∈I Fi = ∅ and

P(Ei\Fi),P(E\F ′),P(F ′′) ≤ ε/2 for all i ∈ I.

The claim then follows by settingF := F ′ ∧ F ′′.

Now suppose conversely that(Bi)i∈I ⊎(B) has the UIP. IfEi ∈ Bi andE, E′ ∈ B

are such thatP(E ∧ E′ ∧
∧

i∈I Ei) = 0, then by the UIP hypothesis (replacingE

andE′ by the single eventE ∧ E′), one can find regular eventsFi ∈ Bi andF̃ ∈ B

such thatF̃ ∧
∧

i∈I Fi = ∅ and

P(Ei\Fi),P((E ∧ E′)\F̃ ) ≤ ε/3 for all i ∈ I.

Now sinceB is regularisable, we see from Lemma A.19 that every event inB

is ε-close to a regular event inB for any ε > 0. In particular, we can find
regular events̃E, Ẽ′ ∈ B which areε/3-close toE andE′, respectively. Setting
F := (Ẽ\Ẽ′) ∨ F̃ andF ′ := (Ẽ′\Ẽ) ∨ F̃ , we see from the triangle inequality that
P(E\F ),P(E′\F ′) ≤ ε and thatF ∧ F ′ ∧

∧

i∈I Fi = ∅, and the claim follows. �

Now we give the three major extendability properties of the UIP, under weakly
mixing extensions, finite rank extensions, and limits of chains. We begin with
the analogue of the weakly mixing extension property, whichsays that one can
extend any member of a tuple without destroying the UIP, as long as the extension
is relatively independent of all the other factors in the tuple.

Lemma 5.12 (Weakly mixing extensions). Let (Bi)i∈I be a tuple of σ-al-

gebras, and let B be an additional σ-algebra such that (Bi)i∈I ⊎ (B) obeys the UIP.
Let B′ be a extension of B which is relatively independent of

∨

i∈I Bi over B. Then

(Bi)i∈I ⊎ (B′) also obeys the UIP.

Proof. Let Ei ∈ Bi for i ∈ I andE′ ∈ B′ be events such that

P(E′ ∧
∧

i∈I

Ei) = 0.
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We rewrite this as

E

(

I(E′)
∏

i∈I

I(Ei)

)

= 0.

The first factor is measurable inB′, while the second factor is measurable in
∨

i∈I Bi.
Since these twoσ-algebras are relatively independent overB, we may use (16) and
conclude thatP(E′|B)

∏

i∈I I(Ei) = 0 almost surely. LetE ∈ B be the support of
P(E′|B) (which is determined only up to a null event inB); thenE ∧

∧

i∈I Ei is a
null event. Applying the UIP hypothesis, we can find regular eventsFi ∈ Bi for
i ∈ I and a regular eventF ∈ B such thatP(Ei\Fi),P(E\F ) ≤ ε and

F ∧
∧

i∈I

Fi = ∅.

We then setF ′ := F . We are done as soon as we check thatP(E′\F ′) ≤ ε, which
follows if we can show thatP(E′\E) = 0. But

P(E′\E) = P(I(E′)(1 − I(E))) = P(P(E′|B)(1 − I(E))),

since1 − I(E) is B-measurable. But this vanishes by the definition ofE′. �

Next we turn to the preservation of the UIP under compact extensions (or, more
accurately, “finite rank extensions”), which asserts that one can extend any given
element of a tuple by finite factors of other elements in the tuple (destroying those
elements in the process).

Lemma 5.13 (Finite rank extensions). Let B0 be a σ-algebra, let B1, . . . ,Bl

be factors of B0, and let B′
1, . . . ,B

′
l be finite σ-algebras for some l ≥ 1. Let (B̃i)i∈I

be an additional tuple of σ-algebras. Then if (B̃i)i∈I ⊎ (B1 ∨ B′
1, . . . ,Bl ∨ B′

l,B0)

has the UIP, then (B̃i)i∈I ⊎ (B0 ∨ B′
1 ∨ · · · ∨ B′

l) also has the UIP.

Proof. WriteB∗ := B0∨B′
1∨· · ·∨B′

l. LetE∗ be an event inB∗, and letẼi ∈ B̃i,
i ∈ I, be such thatP(E∗ ∧

∧

i∈I Ẽi) = 0. SinceB′
1, · · · ,B′

l are finite, we can write
E∗ as the finite union of events

E∗ = E∗,1 ∨ · · · ∨ E∗,M

for someM ≥ 1, where eachE∗,m has the form

E∗,m = E0,m ∧ E1,m ∧ · · · ∧ El,m

for some eventsE0,m ∈ B0 andEj,m ∈ B′
j for 1 ≤ j ≤ l. For each1 ≤ m ≤ M , we

haveP(E∗,m ∧
∧

i∈I Ẽi) = 0; hence

P

(

E0,m ∧ E1,m ∧ · · · ∧ El,m ∧
∧

i∈I

Ẽi

)

= 0.
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Observe thatEj,m ∈ Bj ∨ B′
j for 1 ≤ j ≤ l; hence, by the UIP hypothesis, we may

find regular eventsF0,m ∈ B0, Fj,m ∈ Bj ∨ B′
j ⊆ B∗ for 1 ≤ j ≤ l, andF̃i,m ∈ B̃i for

i ∈ I such that

P(E0,m\F0,m),P(Ej,m\Fj,m),P(Ẽi\F̃i,m) ≤
ε

M(l + 1)

for 1 ≤ j ≤ l andi ∈ I, and

l
∧

j=1

Fj,m ∧ F0,m ∧
∧

i∈I

F̃i,m = ∅.

Thus, if we setF∗ :=
∨M

m=1(
∧l

j=1 Fj,m ∧F0,m) andF̃i :=
∧M

m=1 F̃i,m for i ∈ I, then
F∗ ∈ B∗ andF̃i ∈ B̃i are regular events, andF∗ ∧

∧

i∈I F̃i = ∅; moreover,

P(E∗\F∗) ≤
M
∑

m=1

P

(

E∗,m

∖

( l
∧

j=1

Fj,m ∧ F0,m

))

≤ M(l + 1)
ε

M(l + 1)
= ε;

and

P(Ẽi\F̃i) ≤
M
∑

m=1

P(Ẽi\F̃i,m) ≤ M
ε

M(l + 1)
≤ ε.

The claim follows. �

Finally, we consider the preservation of the UIP under limits of chains assuming
a certain relative independence property.

Lemma 5.14 (Limits of chains). Let A be a totally ordered set, let I be a finite

index set, and for each α ∈ A, let (Bα,i)i∈I be a tuple of σ-algebras obeying the
UIP which is increasing in the sense that Bα,i is a factor of Bβ,i whenever α < β

and i ∈ I. Let Bi :=
∨

α∈A Bα,i, and suppose that whenever i ∈ I and α ∈ A,
the σ-algebras Bi and

∨

j∈I\{i} Bα,j are relatively independent over Bα,i. Then the

tuple (Bi)i∈I also obeys the UIP.

Proof. Let Ei ∈ Bi for i ∈ I be such thatP(
∧

i∈I Ei) = 0. From Corollary
A.20, we see that for eachi ∈ I, there exists anα ∈ A such thatEi is ε/4(|I|+ 1)2-
close to an event inBα,i. Since there are only finitely manyi, we can make
this α uniform in i. This implies, in particular, that‖I(Ei) − P(Ei|Bα,i)‖L2 ≤

ε1/2/2(|I|+1) for all i ∈ I, since the orthogonal projectionP(Ei|Bα,i) is the nearest
Bα,i-measurable random variable toI(Ei) in theL2 metric.

Let Eα,i ∈ Bα,i denote the event thatP(Ei|Bα,i) > |I|
|I|+1 (this event is only

defined up to null events inBα,i). Then by Chebyshev’s inequality, we have

P(Ei\Eα,i) ≤ P

(

|I(Ei) − P(Ei|Bα,i)| >
1

|I| + 1

)

≤ ε/2
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for eachi ∈ I. Now letA denote the eventA :=
∧

i∈I Eα,i. SinceP(
∧

i∈I Ei) = 0,

(14) P(A) ≤
∑

i∈I

P(A\Ei).

On the other hand,

P(A\Ei) = E(I(Eα,i\Ei)
∏

j∈I\{i}

I(Eα,j)).

Using the relative independence hypothesis, we conclude

P(A\Ei) = E(P(Eα,i\Ei|Bα,i)
∏

j∈I\{i}

I(Eα,j)).

But by definition ofEα,i,

P(Eα,i\Ei|Bα,i) = I(Eα,i)(1 − P(Ei|Bα,i)) ≤
1

|I| + 1
I(Eα,i)

and hence

P(A\Ei) ≤
1

|I| + 1
E(I(Eα,i)

∏

j∈I\{i}

I(Eα,j)) =
1

k + 1
P(A).

Inserting this back into (14), we conclude thatP(A) ≤ |I|
|I|+1P(A) and hence thatA

is a null event. By definition ofA and the UIP hypothesis, we may thus find regular
eventsFα,i ∈ Bα,i for all i ∈ I with P(Eα,i\Fα,i) ≤ ε/2 such that

∧

i∈I Fα,i = ∅.
Thus, by the triangle inequality,P(Ei\Fα,i) ≤ ε/2. The claim now follows by
settingFi := Fα,i. �

6 Proof of the infinitary hypergraph removal lemma

We are now ready to prove the hypergraph removal lemma. Fix the probability
space(Ω,Bmax,P), the algebraBreg of regular events, the finite setJ , the downset
imax, and the factorsBI for I ∈ imax obeying the hypotheses in Theorem 4.2.
For any sub-downseti of imax, let B(i) denote the factorB(i) :=

∨

I∈i
BI ; thus

B(i) is a regularisable factor. For anyI ∈ imax, define theprincipal downset
〈I〉 := {I ′ : I ′ ⊆ I}; from the nesting property, we see thatB(〈I〉) = BI for all
I ∈ imax. Thus our task is to show that the tuple(B(〈I〉))I∈imax obeys the UIP.
For inductive purposes, we derive this claim from the following more general
statement. For any downseti, define theheight h(i) of i to be the quantity
h(i) := sup{|e| : e ∈ i}, with the convention that the empty downset has height−∞.
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Proposition 6.1. Let the hypotheses and notation be as above. Let d ≥ 0, and

let (ii)i∈I be any finite tuple of sub-downsets of imax (possibly with repetitions),
such that every downset ii has height at most d. Then the tuple (B(ii))i∈I obeys the

UIP.

By takingd sufficiently large (e.g.,d = |J |), we obtain Theorem 4.2.

Proof. We prove Proposition 6.1 by induction ond. First consider the base
cased = 0. Then the only downsets available are the empty downset{} and
the singleton downset{∅}; these correspond to the trivial factor{∅, Ω} and the
regularisable factorB∅. The claim now follows from Examples 5.3, 5.4, 5.6 and
Lemma 5.11.

Now suppose thatd ≥ 1, and that Proposition 6.1 has already been proved for
d− 1. First observe from Lemma 5.11 that we may remove duplicatesand assume
that all the downsetsii are distinct.

Given anye ∈ imax with |e| = d, we know thatBe is regularisable; hence we
may writeBe =

∨

n≥1 Be,n for some increasing sequenceBe,1 ⊆ Be,2 ⊆ · · · of
regularisable finiteσ-algebras. In particular, we haveB(ii) =

∨

n≥1 Bn(ii) for all
i ∈ I, where

Bn(i) :=
∨

e∈i:|e|=d

Be,n ∨ B(i)

andi is the downseti := {e ∈ i : |e′| < d}; note that this downset has height strictly
less thand.

We need some relative independence properties of the factorsB(i). We begin
with

Lemma 6.2. Let i, i′ be sub-downsets of imax height at most d which do not

have any common elements of order exactly d. Then B(i) and B(i′) are relatively
independent over B(i).

Proof. We argue by induction on the quantitym := |{e ∈ i : |e| = d}|, the
number of top-order elements ini. If m = 0, theni = i and the claim follows. Now
suppose thatm ≥ 1 and the claim has already been established form− 1. Let ed be
an element ofi with |ed| = d, and let̃i := i\{ed}. From the induction hypothesis, we
already know thatB(̃i) andB(i′) are relatively independent overB(i). Also, from
the UIP hypothesis, we know thatB(〈ed〉) andB(̃i)∨B(i′) are relatively independent
overB(i). Applying the gluing property (Proposition A.27(i)), we conclude that
the factorsB(̃i) ∨ B(〈ed〉) andB(i′) are relatively independent overB(i). Since the
former factor is nothing more thanB(i), the claim follows. �

As a consequence, we have
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Lemma 6.3. Let i ∈ I and n ≥ 1. Then B(ii) and
∨

j∈I:j 6=i Bn(ij) are relatively

independent over Bn(ii).

Proof. Observe that
∨

j∈I:j 6=i Bn(ij) is a factor ofBn(ii)∨B(i′), wherei′ is the
downseti′ := (

⋃

j∈I ij)\{e ∈ ii : |e| = d}. Thus by monotonicity and absorption
(Proposition A.27(i), (ii)) it suffices to show thatB(ii) andB(i′) are relatively inde-
pendent overBn(ii). Since factors do not affect relative independence (Proposition
A.27(iv)), it suffices to show thatB(ii) andB(i′) are relatively independent over
B(ii). But this follows from Lemma 6.2. �

From the above lemma and Lemma 5.14, we see that to close the induction
hypothesis it suffices to show that(Bn(ii))i∈I obeys the UIP for alln ≥ 1.

Let k denote the number of downsetsii whose height is exactlyd. First suppose
that all the downsetsii have height strictly less thand. ThenBn(ii) = B(ii), and
the claim follows from the induction hypothesis.

Now suppose that all the downsetsii either have height strictly less thand, or
are principal downsets (this is a “weakly mixing” case). We use induction on the
number of principal downsets of heightd. If there are no such downsets, then
we are done by the preceding paragraph. Since we have removedduplicates, we
know that no two principal downsets present have any common elements of top
orderd. Thus if ii is a principal downset, thenBn(ii) is relatively independent of
∨

j∈I:j 6=i Bn(ij) overB(ii). Applying Lemma 5.12, we see that for the purposes of
checking the UIP, it suffices to replaceBn(ii) with Bn(ii). But this follows from
the (inner) induction hypothesis.

Finally, we consider the general case. Letk denote the number of downsetsii

of heightd which are not principal. We have already dealt with the casek = 0, so
suppose inductively thatk ≥ 1 and the claim has already been proven fork − 1.
Let ii0 be an downset of heightd which is not principal, and lete1, . . . , el be the
elements ofii0 of orderd. We can then split

Bn(ii0) = Bn(〈e1〉) ∨ · · · ∨ Bn(〈el〉) ∨ B(ii).

Also, observe that for1 ≤ j ≤ l, we haveBn(〈ej〉) = Bej ,n∨B(〈ej〉) and thatB(〈ej〉)

is a factor ofB(ii). Thus we may apply Lemma 5.13 and conclude that in order to
prove the UIP for(Bn(ii))i∈I , it suffices to do so for the tuple

(Bn(ii))i∈I\{i0} ⊎ (Bn(〈e1〉), . . . ,Bn(〈el〉),B(ii)).

This tuple has one fewer non-principal degreed downset than the original tuple,
and so the claim now follows from the (inner) induction hypothesis. �
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7 A hypergraph correspondence principle

We now generalise the graph correspondence principle developed in Section 3 to
hypergraphs. To simplify the exposition, we restrict our attention to the principle
for a singled-uniform hypergraphs; there would be no difficulty extending this
principle to systems of hypergraphs of varying uniformities and partite-ness. The
material here is quite analogous to Section 3. Indeed, we could have deleted that
section as being redundant; however, for pedagogical purposes, it seems better to
start with graphs before moving on to hypergraphs.

Definition 7.1 (Hypergraphs). Let d ≥ 0. If V is a set, let

(

V

d

)

:= {e ⊂ V : |e| = d}

denote thed-element subsets ofV . A d-uniform hypergraph is a pairG = (V, E),
whereV is a non-empty set andE ⊂

(

V
d

)

.

Note that a2-uniform hypergraph is the same object as an undirected graph.
We fix d ≥ 2, and consider the question of extracting an infinitary limitfrom a
sequenceG(m) = (V (m), E(m)) of d-uniform hypergraphs. As before, we require
a universal space, an embedding into that space, and a correspondence principle.
We begin with the universal space.

Definition 7.2 (Hypergraph universal space). Fix d ≥ 2. Let Ω := 2(Nd) =

{(N, E∞) : E∞ ⊂
(

N

d

)

} denote the space of all infinited-uniform hypergraphs
(N, E∞) on the natural numbers. On this spaceΩ, we introduce the eventsAe

for all e ∈
(

N

d

)

by Ae := {(N, E∞) ∈ Ω : e ∈ E∞} and letBmax be theσ-algebra
generated by theAe. We also introduce the regular algebraBreg generated by the
Ae; thus, these are the events that depend only finitely many of the Ae. For any
σ ∈ S∞, we define the associated action onBmax by mappingσ : Ae 7→ Aσ(e) and
extending this to aσ-algebra isomorphism in the unique manner. For any (possibly
infinite) subsetI of N, we defineBI to be the factor ofBmax generated by the
eventsAe for e ∈

(

I
d

)

.

Next, we need a way to embed every finite hypergraph into the universal space.

Definition 7.3 (Hypergraph universal embedding). Fix d ≥ 2. Letm ≥ 1, and
let G(m) = (V (m), E(m)) be a finited-uniform hypergraph. Let(Ω(m),B

(m)
max,P(m))

be the probability space corresponding to the sampling of a countable sequence of
iid random variablesx(m)

1 , x
(m)
2 , . . . ∈ V (m) sampled independently and uniformly
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at random. To every sequence(x
(m)
1 , x

(m)
2 , . . .) ∈ Ω(m), we associate an infinite

d-uniform hypergraphG(m)
∞ = (N, E

(m)
∞ ) ∈ Ω by setting

E(m)
∞ :=

{

e ∈

(

N

d

)

: {x
(m)
i : i ∈ e} ∈ E(m)

}

.

This mapping fromΩ(m) to Ω is clearly measurable, since the inverse images of
the generating eventsAe ∈ (Ω,Bmax) are the events that{x(m)

i : i ∈ e} lie in G(m),
which are certainly measurable inB(m)

max. This allows us to extend the probability
measureP(m) from (B

(m)
max, Ω(m)) to the product space(Bmax ×B

(m)
max, Ω×Ω(m)) in a

canonical manner, identifying the eventsAe with the events{x(m)
i : i ∈ e} ∈ E(m).

We abuse notation and refer to the extended measure also asP
(m).

As before, we can verify the permutation invariance (4). By repeating the proof
of the graph correspondence principle (Proposition 3.4) almost word-for-word, we
obtain its counterpart for hypergraphs.

Theorem 7.4 (Hypergraph correspondence principle). Fix d ≥ 2. For every

m ≥ 1, let G(m) = (V (m), E(m)) be a finite d-uniform hypergraph, and let P
(m)

be as in Definition 7.3. Then there exists a subsequence 0 < m1 < m2 < · · ·

and a probability measure P
(∞) on the hypergraph universal space (Ω,Bmax) such

that we have the weak convergence property (1) and the permutation invariance
property (5). Furthermore, we have the following relative independence property:

for any I, I1, . . . , Il ∈ N with I ∩I1∩· · ·∩Il infinite, the factors BI and
∨l

i=1 BIi
are

relatively independent conditioning on
∨l

i=1 BI∩Ii
, with respect to this probability

measure P
(∞).

Similarly, by repeating the proof of Lemma 3.5 almost word for word we obtain

Lemma 7.5 (Infinitary hypergraph regularity lemma). Fix d ≥ 2, and let P

be a probability measure on the hypergraph universal space (Ω,Bmax) which is

permutation-invariant in the sense of (5). Then for any I, I1, . . . , Il ∈ N with
I ∩ I1 ∩ · · · ∩ Il infinite, the factors BI and

∨l
i=1 BIi

are relatively independent

conditioning on
∨l

i=1 BI∩Ii
.

Remark 7.6. We should emphasise just how easily the regularity lemma has
extended to the hypergraph case here. This is in contrast to the development of
the finitary hypergraph regularity lemma, which has been obtained in satisfactory
form only quite recently [20], [21], [13], [31] (with preliminary work in [5], [3],
[6]). In the author’s view, this is because the regularity lemma is a relatively “soft”
component of the theory; in the infinitary framework, the “hard” components of the
theory are now isolated in the three fundamental extension properties in Lemma
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5.12, Lemma 5.13, and Lemma 5.14 (and, to a lesser extent, in Lemma 5.11).
These three lemmas are roughly analogous to the “counting lemma” components
of the hypergraph theory (although Lemma 5.14 also capturessome of the nature
of the “regularity lemma” component and is the step which is most responsible
for the extremely poor quantitative bounds in this theory).Unsurprisingly, it is
also these three lemmas where one does the most non-trivial manipulation of small
quantities such asε. Fortunately, the infinitary setting allows one to isolate these
epsilons from one another, despite the fact that all three ofthese basic lemmas are
used repeatedly in the proof of the infinitary hypergraph removal lemma (Theorem
4.2). If instead we expanded out all of these lemmas within the proof of Theorem
4.2, and allowed the various epsilons to mix together (with the order of quantifiers,
etc. being carefully recorded), one would eventually end upwith a complicated
situation roughly analogous to those in the finitary proofs [20], [21], [23], [24],
[13], [31] of the hypergraph removal lemma. Thus the infinitary perspective allows
for a powerfulencapsulation of distinct components of the argument which greatly
cleans up and clarifies the high-level structure of the proof, though the low-level
components are, at a fundamental level, essentially the same as in the finitary
approach.

8 An infinitary proof of the hypergraph removal lemma

We can now repeat the arguments from Section 4 to obtain the following triangle-
removal lemma of Nagle, Schacht, Rödl, and Skokan [20], [21], [23], [24] (and,
independently, Gowers [13]; see also [31] for a later proof):

Theorem 8.1 (Hypergraph removal lemma). Fix d ≥ 2, and let G0 = (V0, E0)

be a d-uniform hypergraph. Let G = (V, E) be a d-uniform hypergraph with |V | = n

vertices. Suppose that G contains fewer than δn|V0| copies of G0 for some 0 < δ ≤ 1

or, more precisely,

|{(xi)i∈V0 ∈ V V0 : {xi : i ∈ e} ∈ E for all e ∈ E0}| ≤ δn|V0|.

Then it is possible to delete oδ→0;G0,d(n
d) edges from G to create a d-uniform

hypergraph G′ which has no copies of G0 whatsoever. Here the subscripting of
the o() notation by G0, d indicates that the quantity oδ→0;G0,d(n

d), when divided by

nd, goes to zero as δ → 0 for each fixed G0, d, but the decay rate is not uniform in
G0, d.

Remark 8.2. As with the triangle removal lemma, this lemma had previously
been proved only via a hypergraph regularity lemma, followed by a counting
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lemma. This is rather complicated; the shortest proof known(in [31]) is about
25 pages long and requires some rather delicate computations. While this current
proof is arguably longer than the proof in [31], and certainly less elementary, there
are far fewer computations involved; and we believe the argument here is more
conceptually clear. This theorem has a number of applications, most notably giving
a proof not only of Szemerédi’s Theorem (Theorem 2.1) but also a multidimensional
version due to Furstenberg and Katznelson [9]; see, e.g., [24], [13], [32] for further
discussion of this connection and [22] for some more applications of this theorem.
A variant of this theorem was also used in [32] to establish that the Gaussian primes
contain arbitrarily shaped constellations; we shall discuss this variant shortly.

Proof. (Sketch) This is basically a repetition of the proof of Lemma4.1, so
we sketch the main points only. Fixd, G0. We can relabelV0 to be{1, . . . , n0}

for some integern0; we can also easily assume thatE0 is non-empty. If the
theorem fails, we argue much as in the proof of Lemma 4.1, with{1, . . . , n0}

playing the role of{1, 2, 3} (and thus{n0 + 1, n0 + 2, . . .} playing the role of
{4, 5, . . .}). We apply the hypergraph correspondence principle to obtain an infini-
tary limiting system(Ω,Bmax,P

(∞)), and apply Theorem 4.2 withJ := {1, . . . , n0},
imax := {e : e ⊆ e′ for somee′ ∈ V0}, Ee set equal toAe if e ∈ V0 andEe = Ω

otherwise (the latter happens precisely when|e| < d), and withBe set equal to
Be∪{n0+1,n0+2,...} for all e ∈ imax. One then continues the argument as in Lemma
4.1 (with the factor100 in (8) replaced by at least2dd!|E0|); the remainder of the
proof proceeds with only the obvious minor changes. �

Remark 8.3. These results have analogues for partite hypergraphs (see [31])
and are proven similarly, but we shall not do so here; the maindifference is that
instead of sampling all vertices from a single vertex class,one samples countably
many vertices from each vertex class (which also leads to a more complicated
symmetry group thanS∞). Just as the triangle removal lemma, Lemma 4.1,
has a stronger version in Lemma 4.4 which gives a complexity bound on the
approximating graphG′, the hypergraph removal lemma given above also comes
with a stronger version, in which the approximating hypergraphG′ is no longer a
subhypergraph ofG, but can be described using a partition of

(

V
d−1

)

into Oδ,G0,d(1)

components. We neither state nor prove this stronger version here (the proof is
much the same as Lemma 4.4), but see [31] for an extremely similar statement
(in the setting of partite hypergraphs rather than non-partite hypergraphs). This
version plays an important role in the result [32] that the Gaussian primes contain
arbitrarily shaped constellations.
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Appendix A. Review of probability theory

In this appendix, we review the notation and tools from probability that we need.
There are two matters here of particular importance: the concept of relative
independence of two or more factors in a probability space and the ability to
approximate complicated events or random variables by combinations of more
elementary events or random variables.

A.1 The algebra of events. A probability space has two major structures:
the set-theoretic structure of its events and the measure-theoretic structure of the
probability measureP. Because we deal with multiple event spaces with a single
probability measure, or multiple probability measures on asingle event space, it
is conceptually clearer if we treat these two structures separately. We begin with
the structure of the event spaces. For technical reasons, itis convenient to restrict
attention to countably generated spaces.

Definition A.2 (Event spaces). An event space is a pair(Ω,Bmax), where
thesample space Ω is a non-empty set (possibly infinite) andBmax is aσ-algebra
on Ω, i.e., a collection of subsets ofΩ which are closed under countable unions,
intersections, and complements, and which contains the empty set andΩ. We
also require that theσ-algebraBmax becountably generated; thus, there exists
a countable sequence of eventsE1, E2, . . . ∈ Bmax such thatBmax is the minimalσ-
algebra containing all these events. We refer to elements ofBmax as(measurable)
events; we abuse notation and identify propertiesP (x) of pointsx ∈ Ω with the
associated event{x ∈ Ω : P (x) is true}, and refer to the event simply asP . If A

andB are events,A ∨ B denotes the event that at least one ofA andB is true (i.e.,
A∨B is the union ofA andB), andA∧B denotes the event thatA andB are both
true (i.e.,A ∧ B is the intersection ofA andB). We denote byA the event thatA
is not true (thusA = Ω\A).

Example A.3. If Ω is at most countable, thepower-set event space (Ω, 2Ω)

of a setΩ is obtained by settingBmax := 2Ω := {E : E ⊆ Ω} to be the power set of
Ω. (If Ω is uncountable,2Ω is no longer countably generated.)

Definition A.4 (Factors). Let (Ω,Bmax) be an event space. Afactor is a
subsetB of Bmax which is also a countably generatedσ-algebra. More generally,
we say thatB1 is afactor of B2 (or B2 extends B1) if B1,B2 are bothσ-algebras
in Bmax andB1 ⊆ B2. We say that a factor isfinite if it consists of only finitely
many events; thus, for instance, thetrivial factor {∅, Ω} is finite. An event isB-
measurable if it lies in B. A random variable is any functionf : Ω → R with
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the property that the eventsf ∈ V areBmax-measurable for all open setsV ; if these
events are in factB-measurable, we say that the random variablef isB-measurable
also. In particular, if an eventE is B-measurable, then itsindicator variable
I(E), defined to equal1 whenE is true and0 otherwise, is alsoB-measurable. If
E ⊆ Bmax is any collection of events, we letB[E ] denote the factorgenerated by
these events (i.e., the intersection of all factors that contain E). In particular, ifE
is a single event,B[E] = {∅, E, E, Ω} denotes the (finite) factor generated byE.
Similarly, if X is a random variable taking finitely many values, we useB[X ] to
denote the factor generated by the eventsX = c, wherec ranges over the range of
X. We writeB1 ∨ B2 for B[B1 ∪ B2]; thus,B1 ∨ B2 is the least common extension
of B1 andB2. More generally, we can define the least common extension

∨

α∈A Bα

of any at most countable collection of factorsBα.

Example A.5 (Finite factors). Let A1, . . . , An be a partition of the sample
spaceΩ into disjoint non-empty events. ThenB = B[A1, . . . , An] is the finite factor
consisting of all events which are the union of zero or more oftheAi (and all finite
factors are of this form). We refer toAi as theatoms of B. Let i : Ω → {1, . . . , n}

be the random variable which indexes which atom one lies in; thusx ∈ Ai(x) for
all x ∈ Ω. A random variablef is B-measurable if and only if it is determined by
i; thusf(x) = F (i(x)) for some functionF : {1, . . . , n} → R. One finite factor
B1 extends anotherB2 if the partition intoB1-atoms is finer than the partition into
B2-atoms (thus everyB2-atom is the union ofB1-atoms).

We also need the notion of a(boolean) algebra, namely a subsetB of Bmax

which is closed underfinite intersections, unions, complements, and contains∅

andΩ. Thus every factor is an algebra, but not conversely. The reason we need to
deal with algebras rather than factors is that the algebra generated by a countable
sequence of events remains countable (indeed it is nothing more than the collection
of finite boolean combinations of events from that sequence), whereas the factor
generated by the same sequence can be uncountable. This is important when
applying the Arzela-Ascoli diagonalisation argument (seeLemma A.15 below).

Example A.6. Let Ω = [0, 1)2, and letBmax be the Borelσ-algebra (i.e., the
algebra generated by the open sets). LetBreg be the space ofelementary sets,
defined as the finite unions of half-open rectangles[a, b)× [c, d), wherea, b, c, d are
rational. ThenBreg is an algebra but not a factor and is countable; furthermore,
Bmax is generated byBreg.

A.7 Probability spaces. We now add the structure of a probability mea-
sure to an event space, to form a probability space.
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Definition A.8 (Probability spaces). A probability space is a triplet
(Ω,Bmax,P), where(Ω,Bmax) is an event space, andP : Bmax → [0, 1] is aprob-
ability measure, i.e., a countably additive non-negative measure onBmax with
P(Ω) = 1. A null event is an event of probability zero. A statement is true
almost surely if it is only false on a null event.

Remark A.9. We do not assume our event space(Ω,Bmax) to be complete.
Thus, it is not necessarily the case that any subset of a null event is still a measurable
event. (It may help to think of theσ-algebras here as being like Borelσ-algebras
— that is, algebras generated by open sets — rather than Lebesgueσ-algebras.)

In the remainder of this appendix, we assume that the probability space
(Ω,Bmax,P) is fixed.

Definition A.10 (Random variables). We consider two random variables
equivalent if they are almost surely equal. Iff is absolutely integrable, we use
E(f) to denote the integral off with respect to the probability measureP, and
write ‖f‖L1 = ‖f‖L1(Bmax;P) for E(|f |). Thus, for instance,E(I(E)) = P(E) for
any eventE. Similarly, we write‖f‖L2 = ‖f‖L2(Bmax;P) for E(|f |2)1/2 whenever
f is square-integrable and‖f‖L∞ = ‖f‖L∞(Bmax;P) for the essential supremum of
f . We drop the measureP, and sometimes the factorBmax, from theLp(Bmax;P)

notation when these are clear from context.

It is important to develop relative versions of all these concepts with respect to
factors ofBmax.

Definition A.11 (Conditional expectation). If p = 1, 2,∞ andB is a factor,
denote byLp(B) = Lp(B;P) the space ofB-measurable random variables with finite
Lp norm (identifying two random variables if they are equivalent). Observe that
L2(B) is a Hilbert space with inner product〈f, g〉 := E(fg); sinceB is countably
generated, we see thatL2(B) is separable. We define theconditional expectation
operator f 7→ E(f |B) to be the orthogonal projection fromL2(Bmax) to L2(B);
note thatE(f |B) is defined only up to almost sure equivalence. IfE is an event, we
write P(E|B) for E(I(E)|B) and refer toP(E|B) as theconditional probability
of E with respect to the factorB.

We have the useful

Lemma A.12 (Pythagoras’ theorem). Let B′ be an extension of B. Then for
any f ∈ L2(Bmax), we have

‖E(f |B′)‖2
L2 = ‖E(f |B)‖2

L2 + ‖E(f |B′) − E(f |B)‖2
L2.
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Proof. This follows sinceE(f |B′) is the orthogonal projection toL2(B′), and
E(f |B) is the orthogonal projection to the smaller spaceL2(B). �

Remark A.13. In this paper we deal almost exclusively with bounded random
variables (indeed, they are almost always bounded between−1 and1). Thus issues
of integrability are not a concern to us; this also means thatwe do not have to
distinguish between convergence inL1, convergence inL2, and convergence in
measure. It is, however, crucial to keep track of the measurability of our random
variables with respect to the various factors involved in the argument.

Example A.14 (Finite factors). LetB be a finite factor with atomsA1, . . . , An.
If f ∈ L∞(Bmax), the conditional expectationE(f |B) is well-defined on all atoms
Ai of non-zero probability, and is equal toE(f |Ai) := E(fI(Ai))/P(Ai)) on each
such atom. Similarly, we haveP(E|B) = P(E|Ai) := P(E ∧ Ai)/P(Ai) on such
atoms. Of course, one can develop similar explicit formulaefor the conditional
covariance of two random variables or events.

We recall some standard properties of conditional expectation, which we use
without further comment. The conditional expectation operation f 7→ E(f |B) is
linear, positivity preserving, and is a contraction onLp for p = 1, 2,∞. In particular,
conditional expectation is continuous in each of theLp topologies, which allows
us to apply density arguments when verifying identities involving conditional
expectation (i.e., it suffices to verify such identities fora dense subclass of random
variables, such as simple random variables). We also have the module property
thatE(fg|B) = fE(g|B) wheneverf ∈ L∞(B) andg ∈ L∞(Bmax).

In order to pass from a sequence of finitary objects to an infinitary one, the
following lemma is crucial.

Lemma A.15 (Arzela-Ascoli diagonalisation argument). Let P
(1),P(2), . . .

be a sequence of probability measures on an event space (Ω,Bmax). Let Breg be
a countable algebra which generates Bmax as a σ-algebra. Then there exists a

subsequence 0 < k1 < k2 < · · · of integers and a probability measure P such that

lim
i→∞

P
(ki)(F ) = P(F ) for all F ∈ Breg.

In other words, P
(ki) is weakly convergent to P, when tested against the algebra

of events Breg.

Proof. We enumerateBreg asF1, F2, . . . (duplicating events if necessary, ifBreg

happens to be finite). By using the sequential compactness ofthe unit interval[0, 1]

(i.e., the Heine-Borel theorem), we can obtain a sequencek1,1 < k1,2 < k1,3 < · · ·



CORRESPONDENCE BETWEEN GRAPH THEORY AND PROBABILITY THEORY 35

such thatP(k1,i)(F1) converges asi → ∞ to a limit, sayp1 ∈ [0, 1]. Then we can
extract a subsequencek2,1 < k2,2 < k2,3 < · · · of that sequence such thatP

(k2,i)(F2)

converges asi → ∞ to a limit, sayp2 ∈ [0, 1]. We continue in this fashion and then
extract the diagonal sequenceki := ki,i to obtain a sequencep1, p2, · · · ∈ [0, 1] such
that limi→∞ P

(ki)(Fj) = pj for eachj = 1, 2, . . .. One easily verifies that the map
Fj 7→ pj is finitely additive, non-negative, and maps∅ to 0 andΩ to 1. Invoking the
Kolmogorov extension theorem (or the Carathéodory extension theorem), we can
construct a probability measureP such thatP(Fj) = pj, and the claim follows.�

Remark A.16. One can also obtain this lemma from the Banach-Alaoglu
theorem and the Riesz representation theorem (though one should take care to
distinguish the notions of compactness and sequential compactness). Observe
that both the Heine-Borel theorem and the Kolmogorov extension theorem are
completely constructive, so this lemma does not use the axiom of choice. See [33]
for further discussion.

A.17 Approximation lemmas. We frequently need to approximate a ran-
dom variable or event in a complicated factor by linear, polynomial, or boolean
combinations of random variables or events in simpler factors. To do this, we
use some very simple and standard tools, which we collect here for the reader’s
convenience.

Recall that a random variable issimple if it only takes on finitely many values
or, equivalently, if it is the finite linear combination of indicator functions or,
equivalently, if it is measurable with respect to a finite factor. The following
lemma is standard in measure theory.

Lemma A.18. Let B be a factor and p = 1, 2,∞. Then the simple random

variables in Lp(B) are dense in Lp(B).

Because of this, the task of approximating random variablesquickly boils
down to approximating events. Let us say that two eventsE, F are ε-close if
P(E\F ) + P(F\E) ≤ ε.

Lemma A.19 (Approximation by finite complexity events). Let B = B[E ] be
a factor generated by a (possibly infinite) collection E of events, and let ε > 0.

Then every event in B is ε-close to a finite boolean combination of events from E . In
particular, if B is generated by an algebra Breg, then every event in B is ε-close to

an event from Breg. If f ∈ L1(B), then there exists a finite factor B′ of B generated
by finitely many events in E such that ‖f − E(f |B′)‖L1(B) ≤ ε.
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Proof. LetBreg be the algebra generated byE (i.e., the space of finite boolean
combinations of events fromE). Let Bε denote the collection of events which
is ε-close to an element ofBreg. One verifies easily that

⋂

ε>0 Bε is a factor that
containsE, and thus containsB; and the first and second claims follow. To prove
the final claim, first use Lemma A.18 to reduce to the case wheref is simple, and
then use linearity to reduce to the case wheref = I(E) is an indicator function.
By the previous claims, we can find an eventE′ ∈ Breg which is ε/2-close toE,
‖f − I(E′)‖L1(B) ≤ ε/2. ThisE′ lies in some finite factorB′ generated byE; thus,
on taking conditional expectations inB′, we see that‖E(f |B′)− I(E′)‖L1(B) ≤ ε/2.
The claim now follows from the triangle inequality. �

Corollary A.20 (Limits of chains). Let A be a totally ordered set; and for
each α ∈ A, let Bα be a factor of Bmax with the monotonicity property Bα ⊆ Bβ

whenever α ≤ β. Let B :=
∨

α∈A Bα. Then for any f ∈ L2(B), the net E(f |Bα)

converges to f in L2 norm (thus for every ε > 0, there exists β ∈ A such that

‖f − E(f |Bα)‖L2(B) ≤ ε for all α ≥ β).

Proof. Let ε > 0. Applying Lemma A.19 withE =
⋃

α∈A Bα, we can find a
finite factorB′ generated by finitely many events inE such that‖f−E(f |B′)‖L2(B) ≤

ε. By monotonicity, we see thatB′ is a factor ofBα for someα ∈ A. The claim
then follows from Pythagoras’ theorem. �

Corollary A.21 (Approximation by finite factors). Let B1, . . . ,Bk be factors

and ε > 0. Then every event in B1 ∨ . . . ∨ Bk is ε-close to a finite boolean
combination of events in B1 ∪ · · · ∪ Bk. Furthermore, given any random variable

f ∈ L∞(B1∨· · ·∨Bk), there exist finite factors B′
i of Bi for i = 1, . . . , k, respectively,

such that ‖f − E(f |B′
1 ∨ · · · B′

k)‖L1(B1∨···∨Bk) ≤ ε.

Proof. The first claim follows from Lemma A.19 by settingE := B1∪· · ·∪Bk.
To verify the second claim, first use Lemma A.19 to locate a finite factorB′ gener-
ated by finitely many elements inB1∪· · ·∪Bk such that‖f−E(f |B′)‖L1(B1∨···∨Bk) ≤

ε/2. Now observe thatB′ is a factor ofB′
1 ∨ · · · ∨ B′

k for some finite factorsB′
i

of Bi for i = 1, . . . , k. The claim now follows from the same triangle inequality
argument used to prove Lemma A.19. �

A.22 Relative independence. Now we come to a fundamental notion for
us, namely, that of (relative) independence of two or more factors.

Definition A.23 (Independence). We say that two factorsB1,B2 areuncon-
ditionally independent if

E(f1f2) = E(f1)E(f2)
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for all f1 ∈ L∞(B1) andf2 ∈ L∞(B2). More generally, we say that two factors
B1,B2 arerelatively independent conditioning on a third factorB with respect
to the probability measureP if

(15) E(f1f2|B) = E(f1|B)E(f2|B)

almost surely for allf1 ∈ L∞(B1) andf2 ∈ L∞(B2). In many cases, the prob-
ability measureP is clear from context and we omit the phrase “with respect
to P”. Given an at most countable collection of factors(Bα)α∈A, we say that
these factors arejointly unconditionally independent (resp.,jointly rela-
tively independent conditioning on a factorB) if

∨

α∈A1
Bα and

∨

α∈A2
Bα are

unconditionally independent (resp., relatively independent conditioning onB) for
all disjoint subsetsA1, A2 of A. We say that a collection of eventsE1, E2, . . .

is unconditionally independent (resp., relatively independent conditioning onB)
if their associated factorsB[E1],B[E2], . . . are unconditionally independent (resp.,
relatively independent conditioning onB).

Examples A.24. Two factorsB1,B2 are unconditionally independent if and
only if P(E ∧F ) = P(E)P(F ) for all E ∈ B1 andF ∈ B2. In particular, two events
E andF are unconditionally independent if and only ifP(E ∧ F ) = P(E)P(F ).
Three factorsB1,B2,B3 are jointly unconditionally independent if and only if
P(E1 ∧ E2 ∧ E3) = P(E1)P(E2)P(E3) for all E ∈ B1 and F ∈ B2. On the
other hand, in order for three eventsE, F, G to be jointly independent it is not
quite enough thatP(E ∧ F ∧ G) = P(E)P(F )P(G): one also needsE, F, G to be
pairwise independent so that, for instance,P(E ∧ F ) = P(E)P(F ). If B1,B2,B3

are jointly unconditionally independent, thenB1∨B3 andB2∨B3 are conditionally
independent overB3, even though they are almost certainly not unconditionally
independent. On the other hand,B1 andB2 are both unconditionally independent
and conditionally independent overB3.

Example A.25. Let x1, x2, x3 be three elements chosen uniformly and in-
dependently at random from{0, 1}. Then the eventsx1 = x3 andx2 = x3 are
unconditionally independent, but they are not relatively independent conditioning
on the factorB[x1 = x2]. Thus we see that unconditional independence is neither
stronger nor weaker than relative independence.

Taking expectations in (15), we obtain

(16) E(f1f2) = E(E(f1|B)f2) = E(f1E(f2|B)) = E(E(f1|B)E(f2|B))

wheneverB1,B2 are relatively independent conditioning onB, f1 ∈ L∞(B1) and
f2 ∈ L∞(B2).
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There are several equivalent formulations of relative independence.

Lemma A.26. Let B1,B2,B be factors. Then the following are equivalent.

(i) B1 and B2 are relatively independent conditioning on B.
(ii) E(f1|B ∨ B2) = E(f1|B) almost surely for all f1 ∈ L2(B1).

(iii) ‖E(f1|B ∨ B2)‖L2 = ‖E(f1|B)‖L2 for all f1 ∈ L2(B1).

(iv) ‖P(E1|B ∨ B2)‖L2 = ‖P(E1|B)‖L2 for all E1 ∈ B1.

Proof. The equivalence of (ii) and (iii) follows from Lemma A.12. The
equivalence of (iii) and (iv) follows from Lemma A.18, linearity, and a standard
limiting argument.

To see that (ii) implies (i), observe that forf1 ∈ L∞(B1) andf2 ∈ L∞(B2),

E(f1f2|B) = E(E(f1f2|B ∨ B2)|B)

= E(E(f1|B ∨ B2)f2|B)

= E(E(f1|B)f2|B)

= E(f1|B)E(f2|B),

where we have used the module property twice.
Finally, we show that (i) implies (iv). We observe from (i) and the module

property that
E(f1f2h|B) = E(f1|B)E(f2h|B)

wheneverf1 ∈ L∞(B1), f2 ∈ L∞(B2), andh ∈ L∞(B). Taking linear combinations
and using limiting arguments, we conclude that

E(f1g|B) = E(f1|B)E(g|B)

wheneverg ∈ L∞(B ∨ B2). Taking expectations, we have

E(f1g) = E(E(f1|B)E(g|B)).

Applying this withf1 := I(E1) andg = P(E1|B ∨ B2), we obtain

‖P(E1|B ∨ B2)‖
2
L2 = E(I(E1)P(E1|B ∨ B2)) = E(P(E1|B)E(P(E1|B ∨ B2)|B))

= ‖P(E1|B)‖2
L2,

and (iv) follows. �

Now we can observe the following stability properties concerning relative
independence.

Proposition A.27. Let B1,B2 be two factors which are relatively independent
conditioning on another factor B.



CORRESPONDENCE BETWEEN GRAPH THEORY AND PROBABILITY THEORY 39

(i) (Monotonicity) If B′
1 is a factor of B1 and B′

2 is a factor of B2, then B′
1 and B′

2

are relatively independent conditioning on B.
(ii) (Absorption) B1∨B and B2∨B are relatively independent conditioning on B.

(iii) (Gluing) Let B3 be a σ-algebra which is relatively independent of B1 ∨ B2

conditioning on B. Then B1 is relatively independent of B2 ∨B3 conditioning

on B.
(iv) (Factors do not affect relative independence) If B′

1 is a factor of B1 and B′
2

is a factor of B2, then B1 and B2 are relatively independent conditioning on
B ∨ B′

1 ∨ B′
2.

(v) (Independent information does not affect relative independence) Let B3 be
a σ-algebra which is independent of B ∨ B1 ∨ B2. Then B1 is relatively

independent of B2 ∨ B3 conditioning on B.

Proof. The claim (i) is trivial. To prove (ii), observe from symmetry and
iteration that it suffices to show thatB1 ∨ B andB2 are relatively independent
conditioning onB. But this follows from two applications of Lemma A.26.

To prove (iii), it suffices by Lemma A.26 (and symmetry) to show that

E(h|B ∨ B1) = E(h|B)

for all h ∈ L∞(B2 ∨ B3). By density, it suffices to show that

E(f2f3|B ∨ B1) = E(f2f3|B)

for all f2 ∈ L∞(B2) andf3 ∈ L∞(B3). But this follows from the relative indepen-
dence hypothesis and the module property:

E(f2f3|B ∨ B1) = E(E(f2f3|B ∨ B1 ∨ B2)|B ∨ B1)

= E(f2E(f3|B ∨ B1 ∨ B2)|B ∨ B1)

= E(f2E(f3|B)|B ∨ B1)

= E(f2|B ∨ B1)E(f3|B)

= E(f2|B)E(f3|B)

= E(f2f3|B).

Now we prove (iv). By symmetry and iteration, it suffices to show thatB1

andB2 are relatively independent conditioning onB ∨ B′
1. From Lemma A.26, we

already have
‖E(f2|B)‖L2 = ‖E(f2|B ∨ B1)‖L2

for all f2 ∈ L2(B2). From Lemma A.12, we conclude

‖E(f2|B)‖L2 = ‖E(f2|B ∨ B′
1)‖L2 = ‖E(f2|B ∨ B1)‖L2 ,
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and the claim follows from another application of Lemma A.26.

Finally, we prove (v). IfB3 is independent ofB ∨ B1 ∨ B2, then by the mono-
tonicity and factor properties (i), (iv), we conclude thatB3 is relatively independent
of B1 ∨B2 conditioning onB. The claim (v) then follows from the gluing property
(iii). �

Appendix B. Connection with recurrence theorems

We have just seen how infinitary probabilistic statements such as Theorem 4.2 can
imply finitary graph statements such as Lemma 4.1, later, we shall see that one can
also deduce finitary hypergraph statements in this manner. It is also well-known
(see [25], [5], [6], [23], [24], [13], [26], [32]) that thesegraph and hypergraph
statements can in turn be used to deduce density results suchas Szemeŕedi’s
Theorem. This in turn is known by the Furstenberg Correspondence Principle to be
equivalent to results such as the Furstenberg Recurrence Theorem. Concatenating
all these implications, one thus expects results such as Theorem 4.2 to be capable
of implying results such as Theorem 2.2 directly, without the need to pass back
and forth between the infinitary and finitary settings.

Somewhat surprisingly, it seems difficult to achieve this goal; the best the author
was able to do was simply to compose the various implicationsdiscussed above
to obtain a connection. For the sake of completeness, we sketch a special case of
this connection here; but it is puzzling that there seems to be so little “synergy”
between these two infinitary results, despite their similarity. As no major new
features appear to be emerging in this connection, we skip over some of the details.

One can demonstrate the connection using the FurstenbergRecurrenceTheorem
(Theorem 2.2), but it is slightly more convenient to work instead with the following
variant.

Theorem B.1 (Furstenberg-Katznelson Recurrence Theorem, special case).
[9] Let (Ω,Bmax,P) be a probability space. Let S, T : Ω → Ω be two commuting
probability-preserving bi-measurable maps. Then for all events A ∈ Bmax with

P(A) > 0, we have

lim inf
N→∞

1

2N + 1

N
∑

n=−N

P(A ∧ T nA ∧ SnA) > 0.

This theorem is equivalent to the assertion that any subset of Z
2 with posi-

tive upper density contains infinitely many right-angled triangles(x, y), (x + r, y),

(x, y+r), a result first obtained by Ajtai and Szemerédi [1]. In [26], it was observed
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that this theorem follows from the triangle removal lemma. SettingS := T 2, we ob-
tain the casek = 3 of Theorem 2.2. The full version of the Furstenberg-Katznelson
Recurrence Theorem allows for an arbitrary number of commuting shifts and can
be treated by a modification of the arguments presented here.

To transfer this theorem to a setting where Theorem 4.2 is applicable, we
have to utilize essentially the entire machinery used in thegraph correspondence
principle. It is convenient not to work with graphs onN, but rather on tripartite
graphs connecting three copies ofZ.

Definition B.2 (Tripartite graph universal space). A tripartite infinite
graph is a sextupleG = (Z,Z,Z, E12, E23, E31) where E12, E23, E31 are sub-
sets ofZ2. Let Ω∆ denote the space of all tripartite infinite graphs. On this
spaceΩ∆, we introduce the eventsAij,ki,kj

for ij = 12, 23, 31 andki, kj ∈ Z by
Aij,ki,kj

:= {G ∈ Ω : (ki, kj) ∈ Eij} and letB∆
max be theσ-algebra generated by the

Aij,ki,kj
. We also introduce the regular algebraB∆

reg generated by theAij,ki,kj
. For

any three permutationsσ1, σ2, σ3 : Z → Z, we can define an action of(σ1, σ2, σ3)

on B∆
max by mappingAij,ki,kj

to Aij,σi(ki),σj(kj). For any subsetsI1, I2, I3 of N,
we defineB∆

I to be the factor ofB∆
max generated by the eventsAij,ki,kj

, where
ij = 12, 23, 31, ki ∈ Ii, andkj ∈ Ij.

Now we embed the system in Theorem B.1 into this universal space.

Definition B.3 (Tripartite graph universal embedding). Let (Ω,Bmax,P), S,
T , A be as in Theorem B.1. LetN ≥ 1 be a natural number. We introduce the prob-
ability space(Ω(N),B

(N)
max,P(N)), defined as the space associated to sampling three

infinite sequences(ni,ki
)ki∈Z for i = 1, 2, 3 uniformly and independently at random

from [N ] = {1, . . . , N}. Thus the product space(Ω × Ω(N),Bmax × B
(N)
max,P × P

(N))

represents the independent sampling of a pointx from Ω, together the three se-
quencesni,ki

∈ [N ] for i = 1, 2, 3 andki ∈ Z. For any suchx andni,k, we associate
an infinite tripartite graphG = (Z,Z,Z, E12, E23, E31) in Ω∆ by setting

E12 := {(k1, k2) ∈ Z × Z : T n1,k1Sn2,k2 x ∈ A}

E23 := {(k2, k3) ∈ Z × Z : T n3,k3
−n2,k2 Sn2,k2 x ∈ A}

E31 := {(k3, k1) ∈ Z × Z : T n1,k1Sn3,k3
−n1,k1 x ∈ A}.

This is a measurable map fromΩ × Ω(N) to Ω∆ (the inverse image ofA12,k1,k2 is
the measurable eventT n1,k1 Sn2,k2 x ∈ A, and similarly for the other two classes of
generating events), and so we can push the measureP×P

(N) forward to a measure
on (Ω× Ω(N) × Ω∆,Bmax ×B

(N)
max ×B∆

max), which by abuse of notation we also call
P× P

(N).
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A computation (using the probability-preserving and commuting nature ofT
andS) shows that

P × P
(N)(A12,0,0 ∧ A23,0,0 ∧ A31,0,0)

=
1

N3

∑

n1,n2,n3∈[N ]

P(T n1Sn2A ∧ T n3−n2Sn2A ∧ T n1Sn3−n2A)

=
1

N3

∑

n1,n2,n3∈[N ]

P(A ∧ T n3−n2−n1A ∧ Sn3−n2−n1A)

≤
1

N

N
∑

n=−2N

P(A ∧ T nA ∧ SnA).

Thus to prove Theorem B.1, it suffices to show that

lim inf
N→∞

P × P
(N)(A12,0,0 ∧ A23,0,0 ∧ A31,0,0) > 0.

Suppose this were false. Then one can find a sequenceN (m) of N , going to infinity
asm → ∞, such that

lim
m→∞

P× P
(N(m))(A12,0,0 ∧ A23,0,0 ∧ A31,0,0) = 0.

By applying Lemma A.15, we can pass to a subsequence if necessary, and obtain a
limiting probability measureP∆ on(Ω∆,B∆

max) with the weak convergence property

lim
m→∞

P× P
(N(m))(E) = P

∆(E) for all E ∈ B∆
reg.

The individual measuresP×P
(N) can be easily verified to be invariant under triple

permutations(σ1, σ2, σ3), and so the limiting measureP∆ is also.

By adapting the arguments used to prove Lemma 3.5, one can exploit the
above invariance to establish the following relative independence property: if
Ii, Ii,1, . . . , Ii,l are subsets ofZ with Ii ∩ Ii,1 ∩ · · · ∩ Ii,l for i = 1, 2, 3 , then the
factorsBI1,I2,I3 and

∨l
j=1 BI1,j ,I2,j ,I3,j

are relatively independent conditioning on
∨l

j=1 BI1∩I1,j ,I2∩I2,j ,I3∩I3,j
, with respect to this probability measureP

∆. We omit
the details of this, as they are essentially the same as in theproof of Lemma 3.5,
except for minor notational complications.

We now apply Theorem 4.2 on(Ω∆,B∆
max,P

∆), with J := {1, 2, 3}, imax :=

{e : |e| ≤ 2}, Ee set equal toAij,0,0 if e = {i, j} for someij = 12, 23, 31, and
Ee = Ω∆ otherwise, and withBe set equal toBI1,I2,I3 , whereIi is equal toZ if
i ∈ e andZ\{0} if i 6∈ e. Thus, for instance,B{1,2} = BZ,Z,Z\{0}. The hypotheses
of the theorem are easily verified; and by arguing as in the proof of Lemma 4.1
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(or Lemma 4.4), we can find regular eventsF ′
i,j ∈ B{i,j} for ij = 12, 23, 31 obeying

(11) and

P
∆(Ai,j\F

′
i,j) < η/10 for ij = 12, 23, 31,

whereη := P(A) > 0 is the probability of the original eventA. In particular, for
all sufficiently largem we have

P× P
N(m)

(Ai,j\F
′
i,j) < η/10 for ij = 12, 23, 31.

Now recall that the variablesn1,0, n2,0, n3,0 are independently and uniformly
distributed on the interval[N (m)]. For any fixedn1,0, n2,0, the probability thatn3,0

equalsn1,0 + n2,0 equals1/N (m) approximately half the time, and 0 the other half
of the time. Since the eventA1,2\F ′

1,2 is independent ofn3,0, we conclude from
Bayes’ formula that

P × P
N(m)

(A1,2\F
′
1,2|n3,0 = n1,0 + n2,0) < η/5

for m sufficiently large. Similar arguments in fact give

P × P
N(m)

(Ai,j\F
′
i,j |n3,0 = n1,0 + n2,0) < η/5 for ij = 12, 23, 31.

On the other hand, from (11) we have15

P × P
N(m)

(F ′
1,2 ∧ F ′

2,3 ∧ F ′
3,1|n3,0 = n1,0 + n2,0) = 0.

Combining this with the preceding estimate, we see that

P × P
N(m)

(A1,2 ∧ A2,3 ∧ A3,1|n3,0 = n1,0 + n2,0) < 3η/5.

However, the left-hand side equals

P
N(m)

(P(T n1,0Sn2,0A ∧ T n3,0−n2,0Sn2,0A ∧ T n1,0Sn3,0−n1,0A)|n3,0 = n1,0 + n2,0),

which simplifies (using the shift invariance) toP(A) = η. Thus we haveη < 3η/5,
a contradiction. This proves Theorem B.1. �

15Note how important it is here that the eventF ′

1,2 ∧ F ′

2,3 ∧ F ′

3,1 be empty, rather than merely a null
event with respect toP∆. In the latter case, the event would have a small but non-zeromeasure in

P×P
N(m)

, and we would be unable to condition this event to the vanishingly small probability event
n3,0 = n1,0 +n2,0 without losing control on the conditional probability. Thepoint is that the constraint
n3,0 = n1,0 + n2,0 creates a “diagonal measure” which is singular with respectto P

∆, and so null
events inP∆ do not necessarily restrict to null events on the diagonal measure. However, events which
have empty intersection with respect toP

∆ clearly continue to have empty intersection with respect to
the diagonal measure. This robustness with respect to change of measure is what makes Theorem 4.2
(which is basically a mechanism for converting null events to empty events) so powerful.
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Remark B.4. At present, the hypergraph regularity method is known to yield
the Furstenberg-Katznelson Recurrence Theorem, but more powerful recurrence
theorems, such as the Bergelson-Leibman Polynomial Recurrence Theorem, the
Furstenberg-Katznelson IP-Szemerédi Theorem, and the Furstenberg-Katznelson
Density Hales-Jewett Theorem, have not yet been successfully obtained by this
method (in either the finitary or infinitary settings). It is not yet clear whether this
represents a fundamental limitation to the method. A possible test problem would
be the refinement of Szemerédi’s Theorem that the set of possible differences
amongst the arithmetic progressions of a given length is syndetic (has bounded
gaps); this was established in [7] by ergodic methods, but does not currently have
a non-ergodic proof.
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