A CORRESPONDENCE PRINCIPLE
BETWEEN (HYPER)GRAPH THEORY AND PROBABILITY
THEORY, AND THE (HYPER)GRAPH REMOVAL LEMMA

By

TERENCETAO

Abstract. Weintroduce a correspondence principle (analogous tauttstén-
berg Correspondence Principle) that allows one to extractfanite random graph
or hypergraph from a sequence of increasingly large detestit graphs or hy-
pergraphs. As an application we present a new (infinitargdfof the hypergraph
removal lemma of Nagle-Schacht&-Skokan and Gowers, which does not re-
quire the hypergraph regularity lemma and requires sigmiflg less computation.
This in turn gives new proofs of several corollaries of the@érgraph removal
lemma, such as Szengeli's Theorem on arithmetic progressions.

1 Introduction

Itis an interesting phenomenon in mathematics that cetypies of problems can
be treated both by finitary means (e.g., using combinatarialysis of finite sets),
and by infinitary means (e.g., using constructions invagwuime axiom of choice),
thus giving parallel but distinct ways to prove a single tesdine particularly strik-
ing example of this isSzemer édi’s Theorem (see Theorem 2.1) on arithmetic
progressions. This difficult and important theorem now teeral proofs, both
finitary and infinitary, using fields of mathematics as dieeas Fourier analysis,
ergodic theory, graph theory, hypergraph theory, and ahang combinatorics;
the finitary and infinitary arguments are connected by theutifeih Fur sten-
berg Correspondence Principle (see Section 2). These proofs have different
strengths and weaknesses; generally speaking, the infifitaofs are cleaner,
shorter, and more elegant, but require significantly morelmmery, whereas the
finitary proofs are more elementary and provide more quativi results, but tend
to be messier and longer in nature. One particularly visilifeerence is that
finitary proofs often require a number of small parametensi{sas:, §) or large
parameters (such &§ M), whereas in the infinitary analogues of these proofs, the
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small parameters often have become zero and the large pararhave become
infinite, which can lead to cleaner (but more subtle) argusien

Some progress has been made in reconciling the finitary dirdtamy ap-
proache} as it has been increasingly realized that ideas and mefhoaisthe
infinitary world can be transferred to the finitary world, ance versa; see, for in-
stance, [30] for a finitary version of the infinitary ergodmpaoach to Szemédi’s
Theorem. Such a fusion of ideas from both sources proved patiigularly cru-
cial in the recentresult [14] that the primes containedteahly long progressions;
this argument was almost entirely finitary in nature, yehatdame time it relied
heavily on ideas from the infinitary world of ergodic theoseé [18], [16] for
further discussion of this connection).

In this paper, we investigate a transference in the othectiam, taking results
from the finitary world of combinatorics (and, in particylgraph theory and hy-
pergraph theory) and identifying them with a correspondesylt in the infinitary
world, which in this case turns out to be the world of probibtheory? (or mea-
sure theory). In particular, we presentar respondence principle, analogous
to the Furstenberg Correspondence Principle, which showsamy sequence of
increasingly large graphs or hypergraphs has a “weak 'limijch we view as
an infinitely larger andom graph or hypergraph This principle is slightly more
complicated than the Furstenberg Correspondence Prnoifildoes not use the
full power of deep results such as the SzemdeRegularity Lemma or its extension
to hypergraphs; indeed, we do not explicitly state or usé sueegularity lemma
in this work here, although ideas from that lemma are cdygtaimolved in several
components of the argument.

The main advantage of passing from a deterministic finitglyta a random
infinite graph is that one now obtains a numberfaétors (c-algebras) in the
probability space which enjoy some very useful invarianue eelative indepen-
dence properties. One can think of the presence of these$ad being analogous
to the partitions obtained by the SzemdirRegularity Lemma that make a graph

1From a proof-theoretical perspective, one can use quargifimination methods (such as Her-
brand’s theorem) to automatically convert a large classfifitary arguments to finitary ones; this
was for instance carried out for the Furstenberg-Weissitafinproof of van der Waerden'’s theorem
via topological dynamics; see [11]. However, such methanlsat seem to shed much light on the
connection between the infinitary proofs and the existinigglim proofs in the literature.

2This is actually not all that surprising, given tHatitary probability theory has already proven to
have a major role to play in graph theory.

3This is related to, but slightly different from, a differestincept of graph limit developed by Lasz
and Szegedy in [19], in which the limiting object becomes antmuous weighted graph,” or, more
precisely, a symmetric measurable function frg] x [0, 1] to [0, 1]. Such a concrete limiting object
is particularly useful for computations such as countirggribmber of induced subgraphs of a certain
shape; it also can be used to establish results such asahgl&iremoval lemma (Szegedy, personal
communication).
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e-regular, but with the distinction that the partition is nimfinite and the: param-
eter set to zero (so one now has perfect regularity). Thidiegrof the epsilon
parameters to zero turns out to be extremely useful in abgeund proofs of certain
statements which previously could only be proved via a gyl lemma. In
particular, we give an infinitary proof here of thieiangle removal lemma of
Ruzsa and Szemedi [25], as well as the substantially more diffidaitper gr aph
removal lemma of Nagle, Rddl, Schacht, and Skokan [20], [21], [23], [24] and
Gowers [13] (as well as a later refinement in [31]). As thishegris already strong
enough to deduce Szenaeli's Theorem on arithmetic progressions (as well as a
multidimensional generalisation due to Furstenberg andri&son [9]), we have
thus presented yet another proof of Szedaiés Theorem here. These lemmas have
some further applications; for instance, they were use®#} {fo show that the
Gaussian primes contain arbitrarily shaped constellatitmAppendix Appendix
B., we discuss the connections (or lack thereof) betweesethdinitary removal
lemmas and the recurrence theorems of Furstenberg andidters.

The setting of this paper was deliberately placed at a midgm#tween graph
theory and ergodic theory, and the author hopes that it ilates the analogies
and interconnections between these two subjects.

The author thanks Basz Szegedy for many useful discussions, Timothy Gow-
ers for suggesting the original topic of investigation alftBergelson for encour-
agement, and Olivier Gerard and Henry Towsner for corrastiolThe author is
especially indebted to the anonymous referees for mangcions and sugges-
tions. The author is supported by a grant from the Packarddkration.

2 Motivation: the Furstenberg Correspondence Prin-
ciple

To motivate the correspondence principle for graphs ancetgypphs, we first
review the Furstenberg Correspondence Principle, whicimeds results such
as Szemadi's Theorem with recurrence results in ergodic theoryt userecall
Szemeedi's Theorem in a quantitative (finitary) form.

Theorem 2.1 (Szemeedi’'s Theorem, quantitative version, [27])et 0 <5 <1
and k£ > 1. Let A be a subset of a cyclic group Zy := Z/NZ whose cardinality | A|
isat least §N. Then there exist at least c(k, §) N2 pairs (x,r) € Zy x Zx such that
x,x+r...,x+ (k—1r € A, wherec(k,d) > 0 is a positive quantity depending
only on k and 4.

This result is easily seen to imply to Szeidi's Theorem in its traditional
(infinitary) form, which asserts that every set of integdrpasitive upper density
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contains arbitrarily long progressions. The converse iitagibn also follows
from an argument of Varnavides [34]. This particular foratidn of Szemexdi’'s
Theorem played an important role in the recent result [14{ the primes contain
arbitrarily long arithmetic progressions.

In 1977, Furstenberg obtained a new proof of Szé&mwiés Theorem by deducing
it from the following result in ergodic theory.

Theorem 2.2 (Furstenberg Recurrence Theorem, [7], [10]¥t (2, Buax, P)
be a probability space (see Appendix Appendix A. for probabilistic notation).
Let T : Q — Q be a bi-measurable map which is probability preserving; thus
P(T"A) = P(A) for all events A € By,ax and n € Z. Then for all £ > 1 and all
events A € Bpax With P(A) > 0, we have

N
1
iminf — mAN-. A TEDR
1}\rfn1annE:1P(A/\T AN---NT A) > 0.

The deduction of Theorem 2.1 from Theorem 2.2 proceeds blyuingtenberg
Correspondence Principle [7], [10], [8]. Let us give a sligimon-standard expo-
sition of this principle (in particular drawing heavily dmet language of probability
theory), in order to motivate an analogous principle forpipand hypergraphs
in later sections. We shall interpret this correspondemiceiple as an assertion
that any sequenael™, Z vy, ) of setsA(™) in a cyclic groupZ y., can have an
asymptotic limit asn — oo, which ends up being a probability space endowed
with a probability-preserving shiff. To state this more precisely, we need some
notation. First, we describe a certain universal space iiclwih is convenient to
take limits.

Definition 2.3 (Furstenberg universal spacd)et (2 := 2% := {B : B C Z}
denote the set of all subsagsc Z of the integerZ; one can also view this space
as the infinite cubg0, 1}Z if desired. We give this space the produealgebra
Bumax, generated by the evefitd,, := {B € Q : n € B} for n € Z. Indeed, one can
think of (2, Biax) @s being the universal event space generated by the coeintabl
sequence of events,. The space) enjoys an obvious shift actiofi :  — Q,
definedbyI'B := B+1:={n+1:n € B} forall B € Q. This then induces a shift
T : Bmax — Bmax in the obvious manner; thus, for instané& A, = A,,. We define
theregular algebra B,., of B...x to be the algebra generated by thg thus the
events inB,., (which we refer to asegular events) are those events which are

4A more topological way of thinking about this proceeds byamithg Q with the product topology,
so that it becomes a totally disconnected compact Haussjmaffe and then lettinBmax be the Borel
c-algebra, generated by the open sets. The regular algfelyrthen consists of those events which are
simultaneously open and closed or, equivalently, thosetewghose indicator function is continuous.
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generated by at most finitely many of thg (i.e., those events that only require
knowing the truth value of € B for finitely many values of:).

Now we embed finite objectsd(™), Z y..,) described earlier in this universal
space.

Definition 2.4 (Furstenberg universal embeddind)et m > 1, let Z ;) be
a cyclic group withN (™ > m, and letA(™ be a subset o y.,. We define the
probability spacéQ(™, B P(™)) as the space corresponding to samplirig)
and A" uniformly and independently at random frd#, .., and[L(™)], where
[N]:={1,..., N} denotes the integers fronto N andL(™ > 1 is the integer part
of N(™) /m. We then map every pair:™), \(™)) of Q0™ to a pointB™ € Q (i.e.,
a subset of the intege® by the formula

B™ = {ne€Z:z(™ nA\™ ¢ A,

one can think of this as a random lifting of the 4ét) c Z ., up to the integerz.

This mapping fronf2(™) to Q is clearly measurable, since the inverse images of the
generating events,, in (2, Bn.,) are simply the events that™ + nA(™) ¢ A(™),
which are certainly measurable BY". This allows us to extend the probability
measurd (™ from (B{2), (™)) to the product Spac@m. x B4k, Q@ x Q™) in a
canonical mannéridentifying the events,, with the events:(™) + (™) ¢ A(™),

We abuse notation and refer to the extended measure aRR6'as

In more informal terms, the Furstenberg embedding hasemie&tr eachn,
a random seB(™ < Z which captures all the important information about the
original setA(™ andZ ,..,. For instance, the density @f™ is nothing more than
the probability thab lies in B or, equivalently, the probability of the eveng.
One can view:(™ and\(™) as the “hidden variables” which generate this random
setB(™). However, in order to invoke the correspondence principke need to
“forget” that the random s&B(™) actually came from these variables; indeed, we
are going to restridP(™ to the common factof(, B.,...) in order to take limits as
m — oo. More precisely, we have

5The introduction of the dilation paramet&f™ is essentially the averaging trick of Varnavides
[34]. The exact construction of this space is not importaat,long as one has the independent
random variables(™) andA("™); but, for sake of concreteness, one carf¥et) := Z ., x [L(™)],

B, .= 29 10 be the power set 6™, andP (™) to be the uniform distribution oft(™).

6More precisely, we graph the measurable mapping ffofft) to Q as a measurable mapping
from Q(™) to Q x (™), which contravariantly inducesaalgebra homomorphism from the product
o-algebraBmax x Bﬁrﬁl to BS,,TZ))(. Pulling back the probability measuPé™) under this homomorphism
yields the extension. A similar construction applies todgn@ph and hypergraph embeddings in later
sections.
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Proposition 2.5 (Furstenberg Correspondence PrinciplEdr every m > 1,
let Z v bea cyclic group with N(™) > m, let A(™ be a subset of Z ), and let
P(™) be asin Definition 2.4. Then there exists a subsequence0 < m; < mg < - - -
and a probability measure P(>) on the Furstenberg universal space (£, Buax),
such that we have the weak convergence property
(1) lim PM)(E) =P)(E)  for all E € Breg.

Furthermore, we have the shift invariance property
2 PN(TE) = PN (E)  for all E € Buax,n € Z.

Proof. The algebraB,., is countable. Thus the existence of the weak limit
P(™) follows from Lemma A.15. Now observe that the random g&t8 and
7" B™) = B(™) 4 n have the same probability distribution (becaugandz, —n\
have the same distribution for any fixa)l Thus we observe th&(™ is shift-
invariant:

P"(T"E) = P™(E) forall E € Byax,n € Z.

Applying (1), we obtain (2) for all regular even&s But sinceP(>) is countably
additive, we see that the space of evelitor which (2) holds for every is a
o-algebra which contains,., and thus contains,,.. as claimed. O

Now we can deduce Theorem 2.1 from Theorem 2.2.

Proof of Theorem 2.1 assuming Theorem 2.2. Suppose that Theorem
2.1 fails. Then we can find > 1 and0 < § < 1, a sequenc& (™ of positive
integers, and a sequence of sat®) ¢ Z ., of density|A™|/N(™) > § such
that

1

mlinooWH(x,r) €Zyom ixx+r,... x4+ (k—1)reA™} =0.

By passing to a subsequenceafif desired, we can make this convergence
arbitrarily fast; for instance, we can ensure that

1 m —m
3) WH({L,T) €Znem cxx+r,... x4 (k—1)re A™} < 51007,
Observe that the left-hand side is at Ie@ﬁWM(mH > §/N(™), so we conclude
that

N™) > 100™.

In particular,N ™ > m, so we can invoke the Furstenberg Correspondence Princi-
ple and obtain a shift-invariant systém B,,..., P(>)) on the Furstenberg universal
space€, Bnax) With the stated properties.
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Now let us compute some probabilities in this system, stgntith the proba-
bility of 4y. From definition ofP(™, we have

P(m)(Ao) — pm (zo € A(m)) — |A(m)|/N(m) > 4,

so by (1) we have

P(Ao) > 6.
In particular,Ay has strictly positive probability. Next, lét< n < m and consider
the expression

P (Ag AT Ag A - A TH=D7 A7)
= pim) (Ag ANAL A A A(kq)n)
—pm) (a:(m) + A e A v < j < k)
1

= Sz (@™ ™) € Zyon x (L]

2™ 4+ inA™ e A vo < j < K}

Now observe from definition of (") that the progressions™, z(™) 4+ pX\(™) |
™ + (k—1)nA(™ are all distinct ag(™ andA(™) vary. Applying (3), we see that

P (Ag AT Ag A+~ ATHDm Ay = PO (Ag A Ay A+ A Ag_1yn)

- (m)y2 —m
< N L) (N'™)26100

< 2ml100~™
(say) for all1 < n < m. In particular,

lim PO (Ao AT " Ag A--- ATFD7 45) =0

m— 00

for each fixedh > 1; and hence by (1),
PO (Ag AT Ag A--- ATHFD"Ag) = 0

for all n» > 1. But this contradicts Theorem 2.2. This completes the diéatuof
Theorem 2.1 from Theorem 2.2. O

Remark 2.6. Note that as this proof proceeded by contradiction, it does
not obviously give any sort of quantitative lower bound fbe tquantityc(k, §)
appearing in Theorem 2.1. It is actually possible (with niefl effort) to extract
such a bound by taking the proof of Theorem 2.2 and makingéviag finitary; see
[30]. However the bounds obtained in this manner are extyepwor. The same
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remarks apply to the infinitary proofs of the triangle remdésama and hypergraph
removal lemma that we give below. Observe also that the abayenent, while
infinitary, did not require the axiom of choice, as one camglate the apparent
use of choice at the beginning of the argument by well-ordgttie objectsi, Z,

J appearing in Theorem 2.1 in some standard manner. (Nor Heesée of Lemma
A.15 require choice; see Remark A.16. The original prooftaf Furstenberg
Recurrence Theorem in [7] is also choice-free, though tlee froof in [10] is not,
as it uses Zorn's Lemma.) Indeed we do not actually need tioeraaf choice in
this entire paper, though we assume it in order to simpliéyekposition slightly.

Remark 2.7. One can also reverse the above argument, and use Theorem 2.1
to deduce Theorem 2.2, basically by applying Theorem 2.Jlatmus truncated
versions of the random s@&:= {n € Z : T"z € A}, wherez is sampled from the
sample spacf using the probability measuiz We omit the standard details.

3 Thegraph correspondence principle

We now develop an analogue of the Furstenberg Correspoaderinciple
for graphs; namely, we start with a sequence of (undirectgdphsG(™ =
(v Em) for eachm > 1 and wish to extract (after passing to a subsequence
of m’s) some sort of infinitary weak limit. This type of problem svalready
addressed in [19], with the main tool being a certain weaknfof the Szemedi
Regularity Lemma. Our approach is somewhat similar (thaumghdentical); the
regularity lemma appears only after the infinite limit isreaxted, in Lemma 3.5
below.

As before, we need a universal space in which to take limitgst as the
Furstenberg universal space consisted of infsatgof integers, the graph universal
space consists of infinitgraphs on the natural numbers. The shift (which
represents @-action) is now replac€dy the action of the permutation grosg,,
defined as the group of all permutatiansZ — Z of the integers.

Definition 3.1 (Graph universal space)etN := {1, 2,...} denote the natural
numbers, and le@ = 2(3) = {(N,Es) : Ex C (})} denote the space of all
(infinite) graphs(N, E,) on the natural numbers; thus the edge Bgt is an
arbitrary collection of unordered pairs of distinct integje On this spac€, we
introduce the eventd; ; = A;; for any unordered pair of distinct natural numbers
{i,5} € (§) by A; ; := {(N,Ex) € Q: (i,5) € Ex} and letB,,.x be thes-algebra

"We are indebted to Basz Szegedy for pointing out the analogy betweetZtaetion of a dynamical
system and th&-action on an infinite graph.
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generated by the countable sequence of evénts(We adopt the convention that
A;; = 0foralli € N; thus our graphs have no loops.) We also introduce the regula
algebraB,., generated by thd, ;; these are the events that depend only on finitely
many of the4; ;. For any permutatios : N — N of the natural numbers, we define
the associated action @h,.. by mappings : A; ; — A,@,.(;) and extending this

to ac-algebra isomorphism in the unique manner. More explicitlynaps each
graph(V, E«) to the grapi{N, 0 Ew, ), whereocE, := {{o(i),0(j)} : {#,j} € Ex}.

For any (possibly infinite) subsdtof N, we defineB; to be the factor of3,,..
generated by the events ; for i, j € I, informally speaking5; represents the
knowledge obtained by measuring the restrictiorFgf to I. Observe the trivial
monotonicityB; C B; whenevell C J.

The spac€, Bn.x) IS thus the universal event space associated to the events
A; ; and is the natural event space for studying infinite randoaplgs. (For
instance, the infinite Exis—Renyi random grapf (oo, p) for fixed 0 < p < 1,
where the vertex set 8 and any two integers are connected by an edge with an
independent probability of, would correspond to the scenario in which all the
events4; ; are independent with probabilizyeach.) The permutation groufy,
defined earlier acts on the event spé&eei.,.x) in the obvious manner. Thus, for
instanceg (B;) = B, forall o € Sc andl C N.

Next, we need a way to embed every finite graph into the uraVsgsace.

Definition 3.2 (Graph universal embedding)et m > 1, and letG(™) =
(V™) E(m) pe a finite graph. LetQ(™), i) P(™)) be the probability space
corresponding to the sampling of a countable sequenteéi.d. random vari-
ablese{™ 2{™ ... € V(™ sampled independently and uniformly at randoffo
every sequencér!™ z{™ ..} € Q(™), we associate an infinite gragkt?) =
(N, Eé?)) € Q by setting

m . e N m m m
EM .= {{z,]}e (2) {arg ),xg. )}EE( ')};

8This sequence contains the “hidden variables” that wily ke role of the parameters™) and
A(m) in the preceding section. Again, the exact constructiorisf Wiener-type probability space is
not important. The most canonical way to proceed is t@&t) be the countable produ¢y ("))N
with the productr-algebraBﬁﬁ,)( and the product uniform probability meas®é&€™) . A more concrete
way would be to identify’ (™) with [n(™)] = {1,..., n("™)} by appropriate labeling, s&X") to be the
unit interval [0,1) := {z : 0 < = < 1}, let B{) be the Boreb-algebra,P(™) be Lebesgue measure,
and letz; be thejth digit in the basex(™) expansion of: (rounding down when a terminating decimal
occurs).

90f course, for any fixear, there will be infinitely many repetitions among thaé@” sinceV (")

is finite. But in practice, we are interested in taking liniitsvhich |V (") | — oo; and so these collisions
will become asymptotically negligible.
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one can think of this as a random lifting of the gra@t® onV (™) up to an infinite
grathéT) on the natural numbe™. This mapping from(™ to Q is clearly
measurable, since the inverse images of the generatingsegnn (2, Bnax) are
simply the events tha{trgm),x;m)} lie in G(™), which are certainly measurable in
B, This allows us to extend the probability measRfe) from (B{2L, (™) to
the product spac@3.,.x x B Q x Q(™) in a canonical manner, identifying the
eventsd, ; with the eventgz{™ | x§m)} € E(™). We abuse notation and refer to the
extended measure alsoBRg™.

Remarks 3.3. Now that the spaceﬂm),Bfn”;?() is infinite, not every event
involving thexf;m) is measurable; however, any event which involves only finite
many of thexE"L) is certainly measurable (and, in particular, has a wellreefi
probability). One can vielr\"™ as the infinite random graph formed by statistically
sampling of the original finite (and deterministic) grati). This is a convenient
way to convert arbitrary graphs, on arbitrary vertex seatsa tfixed universal
(random) graph on a fixed universal vertex set, in this casaaural numbers.
The random graplEé?) turns out to capture all the relevant features we require
of the original graph; for instance, the probability tHat” lies in the event, ,
is essentiall}® the edge density o™, while the probability thatz{™ lies in
A12 A Ay 3 A Az is essentially the triangle density 8f™), and so forth. On the
other hand, it suppresses irrelevant features such as dkthiels of the original
vertex setV (™ were; in particular, applying a graph isomorphismAg® does
not affect the probability distribution at™ at all. More generally, we observe
the permutation invariance

4) P (0E)=P"™(E) forall E € Buax,0 € Seo,

which can be verified by first checking on regular evefit§.e., finite boolean
combinations of thed4; ;) and then extending as in the proof of the Furstenberg
Correspondence Principle.

Once again, we can view the random gra(pﬁ”) as being generatétlby
“hidden variables™{™, z{™ ... As before, we wish to “forget” these hidden
variables and pass to a limit. This can be achieved as follows

Proposition 3.4 (Graph Correspondence Principldjor every m > 1, let
G = (v(m) E(m) be afinite undirected graph, and let P(™ be asin Definition

10\e say “essentially” because there is a slight error termicgritom the event that(™ = z{™.
However, this error becomes negligible in limits for whighH™)| — oo.

This is, of course, the perspective taken in property tgstinis not surprising that the Szenéeli
Regularity Lemma plays a crucial role in that theory alse; [@}. Indeed, this argument suggests that
an infinitary approach to property testing theory is possibl
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3.2. Then there exists a subsequence 0 < m; < mg < --- and a probability
measure P(>) on the graph universal space (€2, B,..,) such that we have the weak
convergence property (1) and the per mutation invariance property

(5) P(®) (0E) =P (E) forall E € Buax,0 € Sso.

Proof. The algebraB,., is countable. Thus the existence of the weak limit
P() follows from Lemma A.15. From (4), we can deduce (5) by arguiractly
as in the Furstenberg Correspondence Principle. O

So far, the permutation grouf), has played the same role for graphs as the
integer groupZ played for sets of integers. However, the permutation group
is significantly more “mixing,” which allows us immediatetyg “regularise” the
system obtained in Proposition 3.4.

L emma 3.5 (Infinitary regularity lemma) Let P be a probability measure on
the graph universal space (2, Bmax) Which is permutation-invariant in the sense
of (5). ThenforanyI,I;,...,I; C NwithInI n---nNI infinite the factors B;
and \/\_, B;, arerelatively independent conditioning on \/'_, B;~; with respect to
this probability measure P. (See Appendix Appendix A. for a definition of relative
independence.)

This result is the infinitary analogue of the Sze&wiRegularity Lemma and
plays a crucial role in establishing the proof of the trismggmoval lemma (and
later, the hypergraph removal lemma) in subsequent section

Proof. FixI,I,...,I;. We may assumg> 1, since the claim is trivial when
[ = 0. To show thatB; and\/ﬁz1 B;, are relatively independent conditioning on
\/'_, Brnr, with respect to the probability measuké>), it suffices by Lemma
A.26 to show that
l
Bml,;)
1

(e

l
V)
i=1

-[p(=
L2
forall E; € B;. By Lemma A.18 and limiting arguments, we may assume without
loss of generality thak; is regular. In particular, we havg; € ;. for some finite
subsetl’ of I. By Corollary A.20 and a limiting argument, we may assume tha
the setl has an infinite complement. By another such limiting argum&a can
also assume thdf\ [ is finite for all .

Let A be the infinite setd := (I N n---NL)\I’, and letB be the finite
setB = Uﬁzl IL\I. Then we can find a permutatienwhich mapsA to AU B
bijectively but is constant of\ A and, in particular, fixe$’. Thusc also fixesE;

L2
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and mapd NI to(INI)UB. Thus
l
\/ Bmu)
=1

1
HP<E1 \/ B([ﬁh)uB) = HP<E1
=1 L2 Z

But asB;, lies betweerB;n;, andB(;nr,)ug, the claim now follows from Lemma
A.12. O

L2

Remark 3.6. The above proof of the regularity lemma is short but perhaps a
bit opaque. Let us informally discuss a special case of émsha, namely that the
events4, 3 and A, 3 are relatively independent conditioning 6 4 5. 3; this is
a special case of the situation where- N\{2}, I, = N\{1}, and! = 1. Passing
back to the finite graph setting (by working with the probipimeasure® (™)
from Proposition 3.4), we may find this claim puzzling at filstcause the events
{z{™ 2™y € E™ and{z{™,2{™} € E(™ can certainly be correlated: indeed,
wheneverz-g’”) has high degree, then both events occur with high probgalitd
when it has low degree, both events occur with low probabilitowever, if one
can somehow learn the degreexéT), then these two events become relatively
independent conditioning on the degreeﬁf). And now the purpose of the factor
Bys.5..; becomes clear; by “polling” many additional vertieg®’, 0™, ... (™
and measuring the connectivity mf’”) with all of these additional vertices, we
can obtain a statistical prediction for the degreexé?f), whose accuracy and
confidence level become almost surely perfect in the asyiopimit N — .
More generally, it turns out that by polling the intercontimty of vertices in
the infinite set/ N I; for i = 1,...,1, one can obtain an almost surely perfectly
accurate prediction of all the “common information” heldween an event ii8;
and an event iiq/ﬁ:1 B;,. Letus illustrate this with one further example, namely the
relative independence df; » andA; 3 A A; 3 conditioning onByy 45,3V Bi2,45,.3
this corresponds to the case- N\{3}, ! = 2, and, = N\{i} fori = 1,2. We are
asking for the event§z{™, 201 € E(™ and {2{™,2{™}, {2{™,2{™} ¢ B
to become relatively independent once we sample all theesdivity information
betweencém) andxﬁm),xém), ...,and betweemgm) andxflm),xém), .... To see how
this works, observe that while the two events in questiomateunconditionally
independent in general, they become conditionally inddpethonce the number
of paths of length two connectim;:{m) and xg’”) is known, since upon freezing
xﬁm) andxgm) this determines the probability that the independent mm@m
satisfies the latter evert:\"™, z{™}, {«{™, 2™} € E(™. Sincez{™ does not
affect the former ever{tz{"™, 2{™} € E(™), we obtain relative independence. But
the number of paths of length two can be determined statistiby counting
the proportion ofj € {4,5,...} for which {x§m),x§m)} and {xém),x](-m)} both lie
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in E0™ . This lies in the factoB3; 45} V B2,45,.; and is the reason for the
conditional independente

Remark 3.7. Similar correspondence principles exist for bipartite pins
directed graphs, multicolored graphs (where the colorskept independent of
m), and so forth; for instance, a generalisation to tripagiaphs is sketched out in
Appendix Appendix B.. We do not pursue the other generaisathere, as they
are rather minor, though we do consider a hypergraph extersdithis principle
in Section 7.

4 Aninfinitary proof of thetriangle removal lemma

Let us now apply the above correspondence principle to okt following
triangle-removal lemma of Ruzsa and Szegaker

Lemma4.1 (Triangle removal lemma)[25] Let G = (V, F) bean undirected
graph with |V| = n vertices. Suppose that G' contains fewer than §n? triangles for
some 0 < § < 1 or, more precisely,

H{(z1, 22, 23) € V3. {z1, 22}, {z2, 23}, {23, 21} € E}| < on>.

Then it is possible to delete os5_.o(n?) edges from G to create a graph G’ which is
triangle-free. Here o5_.¢(n?) denotes a quantity which, when divided by n2, goes
tozeroasd — 0, uniformly in n.

Previous to this paper, the only known proof of this lemmacpealed via the
Szemerédi Regularity Lemma [27]. It can be used among other things to imply the
k = 3 case of Szemeédi's Theorem (Theorem 2.1). Based on this connection, it
is natural to ask whether there is an infinitary analogueisfldmma, similarly to
how Theorem 2.2 is an infinitary counterpart to Theorem 2.&.dé&duce it from
the following substantially stronger infinitary statement

If Jis a set, we define downset i in J to be any collection of subsetsof
J with the property that whenevere i ande’ C e, thene’ € i also. In particular,
downsets are automatically closed under intersection.

12There is another way of viewing this, namely, that each xeﬁéé") induces a partition of the

2{™ andz{™ vertex sets, by dividing them into those vertices which anenected t0c§m) in E(™)

and those that are not. Lettiggvary in {4,5,..., N}, one obtains a partition of these vertex classes
which behaves increasingly like the partitions createcheySzemedrdi Regularity Lemma a& — oo,

in the sense that the graph between atl(lfé?) andxgm) becomes increasinglye“regular” relative to
this partition; thes-regularity is closely related to the relative independepimperties discussed here.
However, we do not pursue this approach, as it becomes scmeatmplicated when we move to the
hypergraph setting, whereas the techniques we presentdémyeover to hypergraphs with virtually no
changes.
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Theorem 4.2 (Hypergraph removal lemma, infinitary version)Let
(2, Bmax, P) be a probability space, and let B,.; C Bmax be an algebra. Let J
beafinite set, and let i,,., bean downsetin J. For eache € i.., et B. be afactor
of B.x With the following properties.

¢ (Regularisability) Each of the factors 5. is generated by countably many
events from B,.,.

e (Nesting) If e, ¢’ € inax aresuchthat e C €', then B, isafactor of B...
e (Independence) If e, e1,...,¢e; € imax, then the factors 5. and \/ﬁz1 B., are
relatively independent conditioning on \/\_, Ber,.
For each e € inay, €t E. bean event in B, such that

P( A E) = 0.

€e€lmax

Then for any ¢ > 0, there exist events F, € B, N B, for all e € i, such that
P(EN\F.) <e forall e € ipax

and

/\ F.=0.
e€imax

We prove this rather strange-looking proposition in Secto For the pur-
poses of proving the triangle removal lemma, we only neesl ldinma in the
special case whed = {1,2,3}, imax = {€ : || < 2}, and A, = Q for all
e # {1,2},{2,3},{3,1}. However, the lemma is not that much more difficult
to prove in the general caSesince it yields rather easily a hypergraph generalisa-
tion of the triangle removal lemma, we retain the propositiothe general form.
The hypothesi® (A ..; E.) = 0is the analogue in Lemma 4.1 of the hypothesis
thatG has few triangles, while the conclusigy.; F. = () is the analogue of
the conclusion that the modified graghis triangle-free.

Proof of Lemma4.1 assuming Theorem 4.2. Suppose for contradiction
that Lemma 4.1 fails. Then we can find 7 < 1, a sequence™ of integers,

13This is in stark contrast to the finitary situation, in whidirethypergraph removal lemma is
significantly more difficult than the triangle removal lemn¥his is ultimately because of the need in
the finitary hypergraph setting to constantly play off epsd of different sizes against one another; see
[20], [21], [23], [24], [13], [31] for some examples of thislowever, in the infinitary asymptotic limit,
most of the epsilons have disappeared or at least been condinedividual lemmas, where they do
not interact with other epsilons. This simplifies the pragh#icantly, albeit at the cost of working in
an infinitary setting, as opposed to a finitary one. In the eos® direction, note the proliferation of
epsilons in [30] when Furstenberg’s proof of Szeeds Theorem is transferred from the infinitary
setting to the finitary one.
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and a sequence of grapf§™ = (V™ E(m)) with |[V(™)| = n(™), such that the
G™) have asymptotically vanishing number of triangles,
(6) .

A Gty L@ 02, 23) € (VO3 {an, w0}, {2, 23}, {as, 21} € EMY =0
but such that each of thé(™) cannot be made triangle-free without deleting at
leastn(n(™)? edges. (One could make the decay rate in (6) more rapid, agin t
proof of Theorem 2.1, but there is no need to do so here.) lticpéar, G(™)
contains at least one triangle, and hence the expressiole ithee limit of (6) is at
least1/(n(")3. This implies that

(7 n™ — oo asm — .

Now let (Q, Bmax) be the graph universal space introduced in Definition 3.1,
with the attendant events, ,,, regular algebra,.., factorsB;, andS.. group
action. LetP(™ be the probability measure @Rt x Q™ B, x B{%) defined
in Definition 3.2, and leP(*) be a limiting measure as constructed in the graph
correspondence principle (Proposition 3.4). From (6), axeh

lim P(m) (ALQ A\ A2’3 A\ Ag’l) =0;
and hence by (1),
P(OO)(ALQ A A273 AN A371) = 0.

We apply Theorem 4.2 on the universal Spa@es,,., P(>)) with J := {1,2,3},
imax 1= {€: |e] <2}, E, setequal t&4, ; if e = {4, j} for someij = 12,23, 31, and
E. = Q otherwise, and with8, set equal td. 4 5,..} for all e € iax. The nesting
and regularisability properties required for Theorem 4 @bvious, while the
independence properties follow from Lemma 3.5. We can thueske the theorem
and find regular events, € B.ya,5,..3 N Breg fOr € € inax With

(8) P®)(EN\F,) <7/100  for e € imayx
such that
(9) N\ F.=0.

e€imax

It is convenient to eliminate the lower order componéntd }, {2}, {3} of the
downset,.,. Forij = 12,23,31, defineFicj = Fyijy N Friy A Fiy A Fy. Then the
F}; are regular, and (by monotonicity) we hakig; € By, j45,..;. From (8) and
the choice of theZ,., we have

(10) P)(4; \F/,) <n/10  forij =12,23,31,
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while from (9), we have
1y FloANFy3 NF3q =0.

Now we reinstate the “hidden variables™  z{™ . ... by viewingP(™ once again
as a probability measure on the product SgaoeQ(™) | By, ax x B,(n”;?(); in particular,
A;; is now identified with the event that{™,z{™} lies in the grapt(™). Now
becaused; ; and F}; are regular, the quantitp(™)(4; ;\F ;) is the probability
of an event involving only finitely many of the random vertioé’”) of V(m): let
us say that it involves only the vertice%‘"), e ,ng,”) (note thatV is independent
of m, depending only on the complexity of the evdfrff). By increasingh if
necessary we may assunye> 3. Recall thatF]; depends only on the vertices
2™, 2™ ande{™ ... 2\(". For any fixed values af{™, ..., 2", let us say that
a vertex pair{z,y} c V(™ is good if for eachij = 12,23, 31, the eventt; holds
true whenever, y are substituted for either™, z{™ or +\™ 2™ . Now define
the random subgrapi@’ )™ = (V™) (E))™) of G(™) = (V™) E(™) py setting
(E")™ to be all the good pairgz, y} in E™); this graph depends on the random
variables:\™, ..., z{"". From (10), we see that

E[E\ (BN | < p(N™)2.

Also, we observe that regardless of the valuesfﬁf, e ,ng,”), the graphc”)(™)
almost surely cannot contain any triangles, as this wouldredict (9). But by
the pigeonhole principle, we can find a deterministic repnéstive of the random
graph(G")(™ for which

|ECONEN ] < (N0

and so we have mad&™ triangle-free by removing fewer thagiN (™))? edges,
a contradiction that establishes Lemma 4.1. O

Remark 4.3. Infact, the same arguments give a subgraph removal lemma, in
which the triangle is replaced by another fixed subgraph. prbef is the same;
it is only the downset,,., (and some minor numerical factors in the argument)
which change significantly. But in all these cases, the efgsia the downset has
cardinality at most two. We do not give the details here,esthey are subsumed
by the hypergraph removal lemma in Theorem 8.1. The highderocases of
Theorem 4.2, involving setsof three or more elements, are not actually used in
graph theory (which is ultimately concerned only with firbt@olean combinations
of relations that involve at most two vertices at a time), arelonly of importance
for hypergraph theory (in which one must now consider comatams of relations,
each of which involve three or more vertices).
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As observed in [31], there is a slightly stronger versiorhaf triangle removal
lemma which gives some further complexity information@nat the expense of
conceding that:’ need not be a subgraph@f More precisely, we have

Lemmad4.4 (Strong triangle removal lemma) et G = (V, E) beanundirected
graph with |V| = n vertices. Suppose that G contains fewer than én? triangles
for some 0 < § < 1. Then one can find a triangle-free graph G’ with G\G’
containing fewer than o5_.o(n?) edges. Furthermore, there exists a partition of V'
into Os(1) components such that when restricted to the edges joining any two of
these partitions (which could be equal), G’ is either a complete graph or an empty
graph.

This stronger version of the lemma is a by-product of the Yswwef of Lemma
4.1, as the graph¥ is constructed by excluding certain bad pairs of Szé&miier
cells from the grapld. It turns out that the infinitary approach can also yield this
stronger lemma without much difficulty.

Proof. We again argue by contradiction. But this time, the conttot
hypothesis yields a more complicated statement. More gebgiif Lemma 4.4
fails, then we find) < n < 1, a sequence(™ of integers, a sequence of graphs
G = (V) gy with [V = n(™) and a sequendd (™ tending to infinity
asm — oo, such that (6) holds, but such that there does not exist angle-free
graphG’ for which G\ G’ has fewer than(n(™)? edges, and for which there exists
a partition of’ (™) into M (™) or fewer components, such that when restricted to the
edges joining any two of these cell@ is either the complete graph or the empty
graph.

We now repeat all the arguments used to prove Lemma 4.1, wetijet to
the point where we have created regular evéiitsc By; ; 4 5., obeying (10) and
(11). Now we insert an additional step to lower the compleaftthe events .
Observe thaBy; ; 45,..; is generated by the factdd; 45, V By 45,3, together
with the additional evend; ;. Thus we can writd"] ; A A; ; = F; A A; ; for some
Fl'; € Biias,..y VBijags,..;- From (10), we have

P)(4; \F/") <n/10  forij =12,23,31.
Now we argue that we still have the analogue of (11), namely
(12) Fl'y NFys NFS = 0.
From (11), we already have

(13) (F{'y NFY 3 NF5' )N (A2 A Az A Azq) = 0.
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But the regular eventy’, A F'3 A Fy, is a boolean combination of finitely many
events4; ;, where at most one of thej lie in {1,2,3}. In other words, this
combination does not involvé; ; A A; 3 A Az 1. Thus if (12) fails, so that there is
an infinite graph(N, E,) lying in F{’, A Fy'3 A Fy';, we can modify the graph.
onthe edge$l, 2}, {2, 3}, {3,1} so thatit also lies in the setin (13), a contradiction.
To summarise, we can safely replaice by the lower complexity event;’;.
Now we continue the argument in the proof of Lemma 4.1 witk teplacement,
but define the edges ¢6")("™ to be all the good pairgr, y} in V™), rather than in
E(™)_ This means thai’)(™ is no longer a subgraph ¢6)(™), but the property
of being good is determined entirely by the regular evéiits which in turn only
involve finitely many eventsy; ; with at most one of the, j lying in {1,2,3}.
Inspecting the definition of a good pair, we see that for fixgd, ..., 2™ for
N sufficiently large, the grapfG’)("™ has bounded complexity, in the sense that
there is a partition of’ ™ into M cells, for some\/ depending only on the’,,
such that when restricted to the edges joining any two ofetleedis,G’ is either
the complete graph or the empty graph. But #ersufficiently large, we have
M) > M; and so we attain the same contradiction as before. O

5 Theuniform intersection property

We now build the machinery necessary to prove the infinitgpeingraph removal
lemma (Theorem 4.2). Again, we are motivated by the example fergodic
theory. In Furstenberg’s proof[7], [10], [8] of the Furshbemg Recurrence Theorem
(Theorem 2.2), the proof proceeded by a kind of inductioreatdrs. Let us say that
a factorB of By,., obeys thauniform multiplerecurrence (UM R) property
if the conclusion of Theorem 2.2 holds whene¥er B andP(E) > 0. Thus,
for instance, the trivial factof, 2} has the UMR property. One then shows that
the UMR property is preserved under three operations: weakding extensions,
limits of chains, and compact (or finite rank) extensions.afplication of Zorn’s
lemma* then allows one to conclude that the maximal fa¢igs, obeys the UMR
property.

We adopt a similar strategy here, based around a certairegiyagf families of
factors which we call thenifor m inter section property (Ul P). This property
is again trivial for very small families, and is preservedlanthe same three

14Actually, to establish Theorem 2.2 for a fixégdone need only apply the limits-of-chains step a
finite number of times (depending @), at which point one reaches a factor which is characteristi
the maximal factoBmax, and then one can jump directly B, ax without using Zorn’s lemma. Thus,
the proof of the Furstenberg recurrence theorem does nadlctequire the axiom of choice; and,
indeed, the original proof in [7] did not use this axiom.
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operations of weakly mixing extensions, limits of chaing] &inite rank extensions.
Because of the finiteness df in Theorem 4.2, we only need to apply these
operations finitely often and do not require Zorn’s lemmaweeer, it does seem
likely that there are extensions of this theorem to the cdsenw is infinite and
(more interestingly) to the case where the sétsi,,., can be unbounded or even
countably infinite. We do not pursue this matter here.

We begin by stating the UIP.

Definition 5.1 (Uniform intersection property)Let (Q, B...x, P) be a prob-
ability space, and leB,., be an algebra ilf,,... We say that a tuplés;),c; of
factors has theiniform intersection property (UIP) if the following holds:
given any tuple€ £;);c; of eventst; € B; with P(A,_; E;) = 0, and given any > 0,
there exists a tupleF;);c; of regular events’; € B; A B, With P(E;\F;) < ¢ for

eachi € I such that\,_, F; = 0.

Remark 5.2. Roughly speaking, the UIP asserts that if evéfyfsom separate
factorsB; have a null intersection, then this fact can be almost dntiexplained”
by regular event$; € B; which have empty intersection. Thus, for instance, the
conclusion of Theorem 4.2 is simply that the tuphg);c;, ., obeys the UIP.

Before continuing, let us illustrate the UIP with a few simpkamples. All of
these examples take place in some probability spack,,..., P) with an algebra
B, Of regular events. We say that a fackis regularisableif it can be generated
by at most countably many regular events.

Example 5.3. The empty tuple() obeys the UIP in a vacuous sense (the
hypothesi (A, ; E£;) = 0 is impossible to satisfy).

Example5.4. Let B be a factor. Then the singleton tuple) trivially has the
UIP (indeed, one can even take- 0 andFz = () in this case).

Example5.5. Let B be aregularisable factor. Then th¢uple (B, B) has the
UIP. Indeed, ifE, E’ € B were such thaP(E A E') = 0, then from Lemma A.19
one can find regular evenfs F’ € B which arec/3-close toE, E’ respectively.
By the triangle inequality, this implies thR{F A F') < 2¢/3. If we setF := F\F’
andF’ := F'\F, then we see thal, F’ are regular events ifi with F A F' = 0,
while from the triangle inequalit(E\F), P(E’\F’) < ¢, and the claim follows.
For a generalization of this argument, see Lemma 5.11 below.

Example 5.6. The trivial factor{(, 2} has no impact on the UIP. More pre-
cisely, a tuplgB;);c; obeys the UIP if and only ifB;);c; W ({0, 2}) also obeys the
UIP, wheres denotes the concatenation of tuples.
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Example5.7. Let(By,...,B;) be atuple of jointly independent factors. Then
(Bi,...,B;) has the UIP. Indeed, if; € B;, then by joint independence we have
(/\1<J<l i) = ]‘[g 1 P(Ej). Thus, if A\, E; is a null event, then one of the
;, sayE;,, must also be a null event. The claim then follows by lettig= 0
and letting all the otheF; be the full evenf2. For a more sophisticated version of

this argument, see Lemma 5.12 below.

Example5.8. LetQ be the unit intervalo, 1] with Lebesgue measure, 18t.,
consist of all the finite unions of intervals (open, closedhalf-open), let3; be
the factor generated by the eveént:= [0,1/2], and let3; be the factor generated
by the eveniF, := [1/2,1]. Then(B;, B;) does not have the UIP. However, if one
modifies, to be the factor generated Ioy/2, 1] instead of{1/2, 1], then the UIP
is restored. Thus the UIP is sensitive to modification of thdarlying factors by
null events. (On the other hand, the evelitshemselves can be modified by null
events withinB; without any impact to the UIP.)

Example 5.9. Let B, B, be finites-algebras, and l€t be another-algebra,
such that(B;, Bs, B) has the UIP. Theis; v B2, B) also has the UIP. To see this,
let E15 € By vV By andE € B be such thaP(FE,; vV F) = 0. SinceB; andB, are
finite, we can writeE;» as the union of\/ events of the forn¥; ,,, A Es, for
1 < m < M for some finiteM/ and some eventB, ,, € B1, E2,, € B;. By the
UIP hypothesis, we can find regular evefis,, € B, F»,, € Bs, F,, € B with
Fim A Fom A Fyy =0 andP(Ey 0 \Fi.m), P(Ba.m\Fom), P(E\F,,) < /M. If we
then setFyy :== /2 (Fim A Fo,n) andF .= AYM_| F,,, the claim follows. For a

m=1

generalization of this argument, see Lemma 5.13 below.

Remark 5.10. If (B;);c;r has the UIP, then given any tupl&;),c; of events
E; € B; such that\,_; E; is a null event, there exists a tuglé;);c; of null events
G; € B; which cover the null everp,_; E;. This follows from applying the UIP
with e = 27" (say) to obtain events’, ,,);c; With P(E;\F; ,,) < 27" foralli € I and
Nicr Fin = 0, and then lettindg=; be the event; holds butF; , fails for infinitely
manyn > 1. The claimA,_; E; C \/,.; G; then follows from the pigeonhole
principle, while the claim thag; is null follows from the Borel-Cantelli lemma.
Unfortunately, theZ; are not in general regular, so this consequence of the UIP,
while simple to state, is not useful for applications.

We now develop the general tools we use to deduce the UIP foplex
tuples from the UIP for simpler tuples. We first show that téjpes do not
affect the UIP so long as the-algebra being repeated is regularisable. We use
(Bi)ier W (Bj)jes = (B:)icrws to denote the concatentation of two tuples, where
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I'y J is the disjoint union of and.J (thus one may have to relabel the index set of
I or J in order to define this concatenation).

Lemmab.11. Let(B;);c; beatupleof o-algebras, andlet B bearegularisable
c-algebra. Then (B;);c; W (B) hasthe UIP if and only if (B;);c; W (B, B).

Proof. First suppose that3;);c;r @ (B, B) has the UIP. IfE; € B, andFE € B
are such thaP(E A \,.; E;) = 0, then by the UIP hypothesis (inserting a dummy
event( for the extra copy of8), we can find regular evenis € B; andF’, F" € B
such thatt” A F” A N\, F; = 0 and

P(E\F,),P(E\F'),P(F7) <e/2 forallieI.

The claim then follows by setting := F' A F”.

Now suppose conversely th@;);c; ¥ (B) has the UIP. IfE; € B; andE, E’ € B
are such thaP(E A E' A \,c; E;) = 0, then by the UIP hypothesis (replacing
andE’ by the single evenE A E), one can find regular evenis € B; andF € B
such thatF’ A A\, F; = 0 and

P(E\F;),P(EANE')\F)<¢e/3 foralliel.

Now sinceB is regularisable, we see from Lemma A.19 that every everfi in
is e-close to a regular event i8 for anye > 0. In particular, we can find
regular events, £’ € B which ares/3-close toE and E’, respectively. Setting
F:= (E\E')V F andF’ := (E'\E) V F, we see from the triangle inequality that

P(E\F),P(E'\F') < cand thatF A F' A \,.; Fi = 0, and the claim follows. O

Now we give the three major extendability properties of the,Wnder weakly
mixing extensions, finite rank extensions, and limits ofiocka We begin with
the analogue of the weakly mixing extension property, wtsafis that one can
extend any member of a tuple without destroying the UIP, ag &s the extension
is relatively independent of all the other factors in theléup

Lemma 5.12 (Weakly mixing extensions)Let (B;);c; be a tuple of o-al-
gebras, and let B be an additional o-algebra such that (B;);c; @ (B) obeysthe UIP.
Let B’ be a extension of B which isrelatively independent of \/, _, B; over B. Then
(B)ier @ (B') also obeysthe UIP.

i€l

Proof. LetE; € B; fori € I andE’ € B’ be events such that

P(E'A \ Ei) =0
i€l
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We rewrite this as

E(I(E’) HI(Ei)) =0.

i€l

The firstfactor is measurablef#, while the second factor is measurablg/in ; ;.
Since these twe-algebras are relatively independent oBewe may use (16) and
conclude thaP(E'|B) [[,c; I(E;) = 0 almost surely. LeE < B be the support of
P(E'|B) (which is determined only up to a null eventf); thenE A A, E; is a
null event. Applying the UIP hypothesis, we can find regulargsF, < 3; for
i € I and aregular everit € B such thaP(E;\F;), P(E\F) < ¢ and

FA /\ F, = 0.
i€l
We then sef” := F. We are done as soon as we check #hg’\ F’) < ¢, which
follows if we can show thaP(E’\E) = 0. But

P(E'\E) = P(I(E')(1 - I(E))) = P(P(E'|B)(1 - I(E))),

sincel — I(E) is B-measurable. But this vanishes by the definitioraf O

Next we turn to the preservation of the UIP under compacieitas (or, more
accurately, “finite rank extensions”), which asserts thrag oan extend any given
element of a tuple by finite factors of other elements in tidetydestroying those
elements in the process).

Lemma 5.13 (Finite rank extensions)Let B, be a o-algebra, let By,...,B;

be factors of By, and let 51, ..., B] befinite o-algebras for some ! > 1. Let (5;);cr

be an additional tuple of o-algebras. Then if (Bi)ig W (B Vv B,...,B VB, Bo)
has the UIP, then (B;);c; W (Bo vV B} V - - - v B;) also has the UIP.

Proof. Write B, := By VB, V---VB,. LetE, be an eventi,, and letE; € 5;,
i € I, be such thaP (E. A \,¢; E;) = 0. SinceBj,--- , B, are finite, we can write
E, as the finite union of events

E.=FE.1V---VE, u
for someM > 1, where eaclE, ,, has the form
Eim=Eym NExm N NEpm
for some eventg) ,, € B, andE;,, € B; for1 < j <I. Foreach <m < M, we

haveP (E. ., A \,c; E;) = 0; hence

P(E07m/\E17m/\---/\El7m A /\E) =0.
i€l
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Observe thats; ,, € B; v B for 1 < j < I; hence, by the UIP hypothesis, we may
find regular eventsy ,,, € Bo, Fjm € B; VB C B, for1 < j <1, andF; ,, € B; for
1 € I such that

3

P(EO,m\FO,m)v P(Ej;m\Fjrm)’ P(Ei\ﬁi’m) = m

for1 <j<land:e I, and

/\ Fim A Fom A\ Fim = 0.
el
Thus, if we seff, := \/f”le(/\lj:1 Fjm A Fom) andF; .= AM_| F;,,, fori e I, then

F, € B, andF; € B; are regular events, ard A A\, F; = 0; moreover,

P(E.\F.) ZP( *,m\(/l\Fj,mAFo,m» gM(z+1)m=g;

j=1

and

M
g
PE Em <M-———<e.
mz::l A\ Mi+1) =

The claim follows. O

Finally, we consider the preservation of the UIP under Broitchains assuming
a certain relative independence property.

Lemmab5.14 (Limits of chains) Let A beatotally ordered set, let I be afinite
index set, and for each o € A, let (B,,:)icr be a tuple of o-algebras obeying the
UIP which isincreasing in the sense that B, ; is a factor of Bz ; whenever a < 3
andi € I. Let B; := \/, ., Ba,i, and suppose that whenever i ¢ I and o € A,
the o-algebras B; and \/jel\{i} B..; arerelatively independent over B, ;. Thenthe
tuple (B;);cr also obeysthe UIP.

Proof. Let E; ¢ B; fori € I be such thaP(A,.; £;) = 0. From Corollary
A.20, we see that for eadhe I, there exists an € A such that?; is e/4(|I| + 1)2-
close to an event iB, ;. Since there are only finitely many we can make
this a uniform in <. This implies, in particular, thafI(E;) — P(E;|Ba)|L2 <
e/2/2(|1)1+1) for all i € I, since the orthogonal projectid(E;| B, ;) is the nearest
B, ;-measurable random variableld;) in the L? metric

Let E,; € B, denote the event th&(E;|B,;) > T | 1 (this event is only
defined up to null events i, ;). Then by Chebyshev’s inequality, we have

P(EAE.) < P (IE) ~ P(BIB.| > s ) <2/2
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for eachi € I. Now let A denote the evemt := A, E, ;. SinceP(A\,.; E;) =0,

el

(14) P(4) < S P(A\E)).

iel

On the other hand,

P(A\E;) = EX(E.\E;) [] 1(Ea,)
JeI{i}

Using the relative independence hypothesis, we conclude

P(A\E;) = E(P(Ea\Ei|Bai) [[ 1(Ea,))
JeI\{i}

But by definition ofE, ;,

1

P(Fai\FilBas) =1(Fai)(1 = P(EilBas)) < 7y

and hence

1 1
P(A\E;) < |ﬂTE(I(Ea,i)jJ‘\[{i}I(Ea,j)) =P

Inserting this back into (14), we conclude tiit4) < L5 P(4) and hence that

is a null event. By definition oft and the UIP hypothesis, we may thus find regular
eventsr, ; € B, for all i € I with P(E,;\F.,;) < /2 such that)\,_, F,; = 0.
Thus, by the triangle inequalit® (E;\F.;) < £/2. The claim now follows by

settingF; := F, ;. O

6 Proof of theinfinitary hypergraph removal lemma

We are now ready to prove the hypergraph removal lemma. Ebpthbability
space(, Bmax, P), the algebra,., of regular events, the finite sét the downset
imax, and the factor®B; for I € iy.. Obeying the hypotheses in Theorem 4.2.
For any sub-downsétof in.., let B(i) denote the factoB(i) := \/,; Bs; thus
B(i) is a regularisable factor. For arye i..., define theprincipal downset

(I) == {I' : I' C I}, from the nesting property, we see th&{(I)) = B; for all

I € imax. Thus our task is to show that the tugle((I))),c;, .. obeys the UIP.
For inductive purposes, we derive this claim from the foilogvmore general
statement. For any downsgtdefine theheight h(i) of i to be the quantity
h(i) := sup{le| : e € i}, with the convention that the empty downset has heiglt
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Proposition 6.1. Let the hypothesesand notation be asabove. Letd > 0, and
let (i;);er be any finite tuple of sub-downsets of i,,., (possibly with repetitions),
such that every downset i; has height at most d. Then thetuple (B(i;));c; obeysthe
UIP.

By takingd sufficiently large (e.g4 = |J|), we obtain Theorem 4.2.

Proof. We prove Proposition 6.1 by induction @n First consider the base
cased = 0. Then the only downsets available are the empty dowfiseind
the singleton downsefd}; these correspond to the trivial factdd, @} and the
regularisable factoB;. The claim now follows from Examples 5.3, 5.4, 5.6 and
Lemma 5.11.

Now suppose that > 1, and that Proposition 6.1 has already been proved for
d — 1. First observe from Lemma 5.11 that we may remove dupliGatdsassume
that all the downsets are distinct.

Given anye € inax With |e] = d, we know thatB, is regularisable; hence we
may write B, = \/,,», Be,, for some increasing sequentg; C B., C --- of
regularisable finiter-algebras. In particular, we hawi;) = \/,~, Bn(i;) for all
i € I, where -

B.(i):= \/ BenVB()
e€i:|e|=d
andi is the downset := {e € i : |¢/| < d}; note that this downset has height strictly
less thani.

We need some relative independence properties of the §&8tgr We begin

with

Lemma 6.2. Let i, i’ be sub-downsets of i,,., height at most d which do not
have any common elements of order exactly d. Then B(i) and B(i’) are relatively
independent over B(i).

Proof. We argue by induction on the quantity := |{e € i : |e|] = d}|, the
number of top-order elementsiinlf m = 0, theni = i and the claim follows. Now
suppose that, > 1 and the claim has already been establishedferl. Lete, be
an element of with |e4| = d, and lefi := i\{e4}. From the induction hypothesis, we
already know thas(i) andB(i’) are relatively independent ovs(i). Also, from
the UIP hypothesis, we know th&t(e,)) andB(i) v B(i’) are relatively independent
overB(i). Applying the gluing property (Proposition A.27(i)), weradude that
the factorsB(i) v B((eq)) andB(i’) are relatively independent ov8(i). Since the
former factor is nothing more thas(i), the claim follows. O

As a consequence, we have
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Lemma6.3. Leti € Iandn > 1. Then B(i;) and \/
independent over 5,,(i;).

B, (i,) arerelatively

jelj#i

Proof. Observethal/,.; ;. B.(i;) is afactor ofB,(i;) v B(i’), wherei’ is the
downseti’ := (U;c;i;)\{e € i; : || = d}. Thus by monotonicity and absorption
(Proposition A.27(i), (ii)) it suffices to show th&ti;) and5(i’) are relatively inde-
pendentoveB,, (i;). Since factors do not affect relative independence (Piitbpos
A.27(iv)), it suffices to show thaB(i;) andB(i’) are relatively independent over
B(i;). But this follows from Lemma 6.2. O

From the above lemma and Lemma 5.14, we see that to closedhetiion
hypothesis it suffices to show th@, (i;));c; obeys the UIP for ath > 1.

Let k denote the number of downsétsvhose height is exactly. First suppose
that all the downsets have height strictly less thahh ThenB,,(i;) = B(i;), and
the claim follows from the induction hypothesis.

Now suppose that all the downséi®ither have height strictly less thanor
are principal downsets (this is a “weakly mixing” case). Vée induction on the
number of principal downsets of heigiit If there are no such downsets, then
we are done by the preceding paragraph. Since we have rerdopéidates, we
know that no two principal downsets present have any comnemaeants of top
orderd. Thus ifi; is a principal downset, theB, (i;) is relatively independent of
Ver.jzi Bn(is) overB(i;). Applying Lemma 5.12, we see that for the purposes of
checking the UIP, it suffices to replagg (i;) with 5, (i;). But this follows from
the (inner) induction hypothesis.

Finally, we consider the general case. ketenote the number of downsets
of heightd which are not principal. We have already dealt with the dase0, so
suppose inductively that > 1 and the claim has already been proven#or 1.
Leti;,, be an downset of heigltwhich is not principal, and let;, ..., e; be the
elements of;, of orderd. We can then split

Bn(iio) = Bn(<el>) VeV Bn(<el>) \ B(E)

Also, observe that for < j < I, we haveB,,((e;)) = B, » VB({(e;)) and that3({e;))
is a factor of3(i;). Thus we may apply Lemma 5.13 and conclude that in order to
prove the UIP for 5, (i;)):cr, it suffices to do so for the tuple

(Bn(ii))ier\ioy @ (Bu((e1)), - -, Bu((e)), B(ii))-

This tuple has one fewer non-principal degregownset than the original tuple,
and so the claim now follows from the (inner) induction hypegis. O
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7 A hypergraph correspondence principle

We now generalise the graph correspondence principle algeelin Section 3 to
hypergraphs. To simplify the exposition, we restrict oteation to the principle
for a singled-uniform hypergraphs; there would be no difficulty extergthis
principle to systems of hypergraphs of varying unifornsitend partite-ness. The
material here is quite analogous to Section 3. Indeed, wkldwmye deleted that
section as being redundant; however, for pedagogical gegdt seems better to
start with graphs before moving on to hypergraphs.

Definition 7.1 (Hypergraphs) Letd > 0. If V is a set, let

(Z) —{eCV:le|=d}

denote thei-element subsets 6f. A d-uniform hypergraphis a pairG = (V, E),
whereV is a non-empty set anél C (V).

Note that a2-uniform hypergraph is the same object as an undirectedhgrap
We fix d > 2, and consider the question of extracting an infinitary lifnitm a
sequence& ™) = (V™) E(M) of d-uniform hypergraphs. As before, we require
a universal space, an embedding into that space, and a poncence principle.
We begin with the universal space.

Definition 7.2 (Hypergraph universal spaceffix d > 2. Let( := 2(%) =
{(N,Ex) : Ex c (%)} denote the space of all infinité-uniform hypergraphs
(N, E~) on the natural numbers. On this spdzewe introduce the eventd,
forall e € (1(‘}) by A. := {(N,E) € Q : e € E,} and letB,,.x be thes-algebra
generated by the.. We also introduce the regular algel#fa, generated by the
A.; thus, these are the events that depend only finitely mangeafit. For any
o € S, we define the associated action 8. by mappings : A. — A, () and
extending this to a-algebra isomorphism in the unique manner. For any (pgssibl
infinite) subsetl of N, we defineB; to be the factor of3,,.. generated by the
eventsA, fore € (%).

Next, we need a way to embed every finite hypergraph into thestsal space.

Definition 7.3 (Hypergraph universal embeddingdjix d > 2. Letm > 1, and
let G(m = (V(m) E(m) be a finited-uniform hypergraph. Let(™), B{m), P(m)
be the probability space corresponding to the sampling oLatable sequence of
iid random variables!™  2{™ ... € V(™) sampled independently and uniformly
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at random. To every sequentd™ . z{™,...) € Q(™), we associate an infinite
d-uniform hypergrapt@é’f) = (N, Eé?)) € Q by setting

EM™ = {e € <1§) : {;L'E"L) (i Ee} € E(m)}.

This mapping from(™ to Q is clearly measurable, since the inverse images of
the generating events. € (Q, Bimax) are the events thaitrgm) ;i €e}liein G(m),
which are certainly measurable BY". This allows us to extend the probability
measur@ (™ from (B{7, ™) to the product Spac@.ax x Bk, Q x Q™)) in a
canonical manner, identifying the eventswith the eventgz\™ :i € ¢} € E(™).

We abuse notation and refer to the extended measure alR6'as

As before, we can verify the permutation invariance (4). &yaating the proof
of the graph correspondence principle (Proposition 3mpat word-for-word, we
obtain its counterpart for hypergraphs.

Theorem 7.4 (Hypergraph correspondence principl&ix d > 2. For every
m > 1, let G™ = (V™) E(™) pe a finite d-uniform hypergraph, and let P(")
be as in Definition 7.3. Then there exists a subsequence 0 < m; < mg < ---
and a probability measure P(>) on the hypergraph universal space (2, Byax) Such
that we have the weak convergence property (1) and the permutation invariance
property (5). Furthermore, we have the following relative independence property:
foranyI,1,...,I; € Nwith InI, N---N1; infinite, thefactors B; and \/._, B;, are
relatively independent conditioning on \/ii;1 Brnr,,» with respect to this probability
measure P(>),

Similarly, by repeating the proof of Lemma 3.5 almost wondviord we obtain

Lemma 7.5 (Infinitary hypergraph regularity lemmalix d > 2, and let P
be a probability measure on the hypergraph universal space (Q, Bi.x) Which is
permutation-invariant in the sense of (5). Then for any I,1,...,I; € N with
INnnL n---nI infinite, the factors B; and \/ﬁz1 B;, are relatively independent
conditioning on \/\_, Brny,.

Remark 7.6. We should emphasise just how easily the regularity lemma has
extended to the hypergraph case here. This is in contrabetdevelopment of
the finitary hypergraph regularity lemma, which has beeniabkd in satisfactory
form only quite recently [20], [21], [13], [31] (with prelimary work in [5], [3],

[6]). Inthe author’s view, this is because the regularitytea is a relatively “soft”
component of the theory; in the infinitary framework, thertiacomponents of the
theory are now isolated in the three fundamental extensiopgsties in Lemma
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5.12, Lemma 5.13, and Lemma 5.14 (and, to a lesser extentenmma 5.11).
These three lemmas are roughly analogous to the “countmmbg components
of the hypergraph theory (although Lemma 5.14 also capsoe® of the nature
of the “regularity lemma” component and is the step which @shresponsible
for the extremely poor quantitative bounds in this theorynsurprisingly, it is
also these three lemmas where one does the most non-traipoiation of small
quantities such as Fortunately, the infinitary setting allows one to isoldiede
epsilons from one another, despite the fact that all threkesfe basic lemmas are
used repeatedly in the proof of the infinitary hypergraphaeathlemma (Theorem
4.2). If instead we expanded out all of these lemmas withémpttoof of Theorem
4.2, and allowed the various epsilons to mix together (Withdrder of quantifiers,
etc. being carefully recorded), one would eventually endvith a complicated
situation roughly analogous to those in the finitary pro@@]] [21], [23], [24],
[13], [31] of the hypergraph removal lemma. Thus the infinifgerspective allows
for a powerfulencapsulation of distinct components of the argument which greatly
cleans up and clarifies the high-level structure of the prtnfugh the low-level
components are, at a fundamental level, essentially thee smmin the finitary
approach.

8 Aninfinitary proof of the hypergraph removal lemma

We can now repeat the arguments from Section 4 to obtain tlesviog triangle-
removal lemma of Nagle, Schachtdp&, and Skokan [20], [21], [23], [24] (and,
independently, Gowers [13]; see also [31] for a later proof)

Theorem 8.1 (Hypergraph removal lemmalix d > 2, and let Gy = (Vp, Ep)
bead-uniformhypergraph. Let G = (V, E) bead-uniformhypergraphwith |[V| = n
vertices. Supposethat G containsfewer than n!"ol copiesof G, for some0 < § < 1
or, more precisely,

{(x:)iev, € VYO : {a; ;i e} € Eforall e e Ey}| < onl"ol.

Then it is possible to delete o5_.0.6,.4(n?) edges from G to create a d-uniform
hypergraph G’ which has no copies of G, whatsoever. Here the subscripting of
the o() notation by Gy, d indicates that the quantity os_.o.c,.4(n?), when divided by
nd, goesto zero as ¢ — 0 for each fixed Gy, d, but the decay rate is not uniformin
G, d.

Remark 8.2. As with the triangle removal lemma, this lemma had previpusl
been proved only via a hypergraph regularity lemma, folldviay a counting
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lemma. This is rather complicated; the shortest proof kngwrj31]) is about

25 pages long and requires some rather delicate compwgat@hile this current
proof is arguably longer than the proof in [31], and certalaks elementary, there
are far fewer computations involved; and we believe the meu here is more
conceptually clear. This theorem has a number of applicatimost notably giving
aproof notonly of Szemédi’'s Theorem (Theorem 2.1) but also a multidimensional
version due to Furstenberg and Katznelson [9]; see, e4],,[[B], [32] for further
discussion of this connection and [22] for some more apfdina of this theorem.

A variant of this theorem was also used in [32] to establisihttiie Gaussian primes
contain arbitrarily shaped constellations; we shall disaihis variant shortly.

Proof. (Sketch) This is basically a repetition of the proof of Lem#a, so
we sketch the main points only. Fik Go. We can relabelj to be{1,...,n}
for some integem,; we can also easily assume thaf is non-empty. If the
theorem fails, we argue much as in the proof of Lemma 4.1, With.. ng}
playing the role of{1,2,3} (and thus{no + 1,n0 + 2,...} playing the role of
{4,5,...}). We apply the hypergraph correspondence principle tombiainfini-
tary limiting system, Bu,.x, P(>)), and apply Theorem 4.2 with:= {1,...,n0},
imax := {€: e C ¢ forsomee’ € V;}, E. set equal ta4, if e € Vp andE, = Q
otherwise (the latter happens precisely whan< d), and with 5. set equal to
BeU{no+1,n0+2,...} for all e € ina. One then continues the argument as in Lemma
4.1 (with the factorl00 in (8) replaced by at least'd!|E,|); the remainder of the
proof proceeds with only the obvious minor changes. O

Remark 8.3. These results have analogues for partite hypergraphs3&pe [
and are proven similarly, but we shall not do so here; the rdidfarence is that
instead of sampling all vertices from a single vertex clasg, samples countably
many vertices from each vertex class (which also leads to i@ momplicated
symmetry group tharb,). Just as the triangle removal lemma, Lemma 4.1,
has a stronger version in Lemma 4.4 which gives a complexaynd on the
approximating grapks’, the hypergraph removal lemma given above also comes
with a stronger version, in which the approximating hypapdrG’ is no longer a
subhypergraph aff, but can be described using a partitior(g};fl) into Os.c,,q(1)
components. We neither state nor prove this stronger versoe (the proof is
much the same as Lemma 4.4), but see [31] for an extremelyasistatement
(in the setting of partite hypergraphs rather than nonipanypergraphs). This
version plays an important role in the result [32] that thei€ssan primes contain
arbitrarily shaped constellations.
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Appendix A. Review of probability theory

In this appendix, we review the notation and tools from plolits that we need.
There are two matters here of particular importance: theepnofrelative
independence of two or more factors in a probability space and the abildty t
approximate complicated events or random variables by gmatibns of more
elementary events or random variables.

A.1 Thealgebraof events. A probability space has two major structures:
the set-theoretic structure of its events and the meabe@¢tic structure of the
probability measur®. Because we deal with multiple event spaces with a single
probability measure, or multiple probability measures @ingle event space, it
is conceptually clearer if we treat these two structuresussply. We begin with
the structure of the event spaces. For technical reasaagdhvenient to restrict
attention to countably generated spaces.

Definition A.2 (Event spaces)An event space is a pair(Q, Bin.x), where
thesample space (2 is a non-empty set (possibly infinite) aBid .. is ac-algebra
on (), i.e., a collection of subsets ©f which are closed under countable unions,
intersections, and complements, and which contains theayesgh and. We
also require that the-algebraB,,.x be countably gener ated; thus, there exists
a countable sequence of eveRBts Es, . .. € By such thaf3,,., is the minimalo-
algebra containing all these events. We refer to elemeirfig gfas(measur able)
events, we abuse notation and identify propertiegr) of pointsz € Q with the
associated everjt: € ) : P(z) is true}, and refer to the event simply &5 If A
andB are eventsd v B denotes the event that at least onelandB is true (i.e.,
AV B is the union ofA andB), andA A B denotes the event thdatand B are both
true (i.e.,A A B is the intersection oft and B). We denote by the event thati
is not true (thusA = Q\ A).

Example A.3. If Qis at most countable, th@ower-set event space (€2, 2%)
of a setf) is obtained by setting,,,.. := 2 := {E : E C Q} to be the power set of
Q. (If Q is uncountable2® is no longer countably generated.)

Definition A.4 (Factors) Let (Q, Binax) be an event space. factor is a
subsets of B,,.x Which is also a countably generatedilgebra. More generally,
we say that3; is afactor of B, (or B, extends B3,) if By, Bs are boths-algebras
in Bnax andB; C By. We say that a factor iinite if it consists of only finitely
many events; thus, for instance, thrévial factor {0, Q} is finite. An event isB3-
measur ableifit lies in B. A random variableis any functionf :  — R with
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the property that the evenfsc V areB,,.x.-measurable for all open séts if these
events are in fadé-measurable, we say that the random varigh5-measurable
also. In particular, if an everdt is B-measur able, then itsindicator variable
I(E), defined to equal whenF is true and) otherwise, is als@&-measurable. If
& C Bmax is any collection of events, we 18] denote the factogener ated by
these events (i.e., the intersection of all factors thataiog). In particular, if £

is a single event3[E] = {0, E, E,Q} denotes the (finite) factor generated By
Similarly, if X is a random variable taking finitely many values, we B§E] to
denote the factor generated by the evefits ¢, wherec ranges over the range of
X. We write B, Vv Bs for B[B; U Bs]; thus,B; V B, is the least common extension
of B, andB,. More generally, we can define the least common extengjon, B.,

of any at most countable collection of factdts.

Example A.5 (Finite factors) Let A,,..., A, be a partition of the sample
space into disjoint non-empty events. Théh= B[A4, ..., 4,] is the finite factor
consisting of all events which are the union of zero or morthef4; (and all finite
factors are of this form). We refer td; as theatomsof B. Leti: Q — {1,...,n}
be the random variable which indexes which atom one lieshust € A4;(, for
all z € Q. A random variable’ is B-measurable if and only if it is determined by
i; thus f(z) = F(i(z)) for some functionF' : {1,...,n} — R. One finite factor
B; extends anothes, if the partition into3;-atoms is finer than the partition into
By-atoms (thus everg,-atom is the union of;-atoms).

We also need the notion of(@oolean) algebra, namely a subseé? of B,,.x
which is closed undefinite intersections, unions, complements, and cont@ins
and(). Thus every factor is an algebra, but not conversely. Theoreae need to
deal with algebras rather than factors is that the algelmargéed by a countable
sequence of events remains countable (indeed it is nothimg than the collection
of finite boolean combinations of events from that sequenebgreas the factor
generated by the same sequence can be uncountable. Thipdstamt when
applying the Arzela-Ascoli diagonalisation argument (seemma A.15 below).

Example A.6. LetQ = [0,1)?, and letB,,.. be the Boreb-algebra (i.e., the
algebra generated by the open sets). &gt be the space adlementary sets,
defined as the finite unions of half-open rectangled x [c, d), wherea, b, ¢, d are
rational. ThenB,., is an algebra but not a factor and is countable; furthermore,
Bmax 1S generated bys,,.

A.7 Probability spaces. We now add the structure of a probability mea-
sure to an event space, to form a probability space.
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Definition A.8 (Probability spaces)A probability space is a triplet
(Q, Bmax, P), where(Q), Br.x) is an event space, aml: B,.x — [0,1] is aprob-
ability measure, i.e., a countably additive non-negative measurésgp, with
P(©2) = 1. A null event is an event of probability zero. A statement is true
almost surely if it is only false on a null event.

Remark A.9. We do not assume our event spafeB,,.,) to be complete.
Thus, itis not necessarily the case that any subset of avarités still a measurable
event. (It may help to think of the-algebras here as being like Borehlgebras
— that is, algebras generated by open sets — rather than giebesigebras.)

In the remainder of this appendix, we assume that the prbtyabpace
(Q7BmaX7 P) is fixed.

Definition A.10 (Random variables)We consider two random variables
equivalent if they are almost surely equal. flis absolutely integrable, we use
E(f) to denote the integral of with respect to the probability measuPe and
write || fllzr = || fllz1(B...p) TOr E(|f]). Thus, for instancel(I(£)) = P(E) for
any eventt. Similarly, we write(|f||z2 = ||| z2(8,....;p) fOr E(|f|?)!/? whenever

max

f is square-integrable and || L~ = || f| L(8,..;p) for the essential supremum of

f. We drop the measui, and sometimes the factr,.., from the L? (Byax; P)
notation when these are clear from context.

It is important to develop relative versions of all theseaapts with respect to
factors ofB,.x-

Definition A.11 (Conditional expectation)lf p = 1,2, 00 andB is a factor,
denote by.?(B) = L?(B; P) the space aB-measurable random variables with finite
L? norm (identifying two random variables if they are equivd)e Observe that
L?(B) is a Hilbert space with inner produ¢t, g) := E(fg); sinceB is countably
generated, we see thiat(B) is separable. We define tbenditional expectation
operator f — E(f|B) to be the orthogonal projection frofi¥ (B,,.x) to L?(B);
note thatE( f|B) is defined only up to almost sure equivalence? s an event, we
write P(E|B) for E(I(E)|B) and refer tdP(E|B) as theconditional probability
of E with respect to the factds.

We have the useful

Lemma A.12 (Pythagoras’ theorem)Let 5’ be an extension of B. Then for
any f € L?(Buax), We have

1B IB)IIZ = IE(FIB)Z: + BB — E(/IB)Z-.
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Proof. This follows sinceE(f|B’) is the orthogonal projection t6*(B’), and
E(f|B) is the orthogonal projection to the smaller spaées). O

Remark A.13. Inthis paper we deal almost exclusively with bounded random
variables (indeed, they are almost always bounded betwé&and1). Thus issues
of integrability are not a concern to us; this also means wWedo not have to
distinguish between convergenceliifn, convergence irn.?, and convergence in
measure. It is, however, crucial to keep track of the meddiiyaof our random
variables with respect to the various factors involved smdangument.

ExampleA.14 (Finite factors) LetB be afinite factor with atoma, ..., A,.
If f € L>(Bmax), the conditional expectatioB(f|B) is well-defined on all atoms
A; of non-zero probability, and is equal B f|A4;) := E(fI(4;))/P(4;)) on each
such atom. Similarly, we hav(E|B) = P(E|4;) := P(E A A;)/P(A;) on such
atoms. Of course, one can develop similar explicit formutaghe conditional
covariance of two random variables or events.

We recall some standard properties of conditional expiectaivhich we use
without further comment. The conditional expectation agpien f — E(f|B) is
linear, positivity preserving, and is a contractionidrfor p = 1, 2, co. In particular,
conditional expectation is continuous in each of fitetopologies, which allows
us to apply density arguments when verifying identitiesolming conditional
expectation (i.e., it suffices to verify such identities datense subclass of random
variables, such as simple random variables). We also haventddule property
thatE(fg|B) = fE(g|B) wheneverf € L>°(B) andg € L*°(Bax)-

In order to pass from a sequence of finitary objects to an tafinione, the
following lemma is crucial.

Lemma A.15 (Arzela-Ascoli diagonalisation argument)et P P2 .
be a sequence of probability measures on an event space (€2, Bnax). Lét B, be
a countable algebra which generates B,,.. as a o-algebra. Then there exists a
subsequence0 < k; < ko < --- Of integers and a probability measure P such that

lim P*)(F) = P(F) forall F € Breg.
In other words, P(*:) is weakly convergent to P, when tested against the algebra
of events Bieg.

Proof. We enumerat8,., asFi, F», ... (duplicating events if necessaryfif.,
happens to be finite). By using the sequential compactnehe ohit intervalo, 1]
(i.e., the Heine-Borel theorem), we can obtain a sequénce k12 < k13 < ---
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such thatP(*1:)(F;) converges as — oo to a limit, sayp; € [0,1]. Then we can
extracta subsequenkg; < k22 < k23 < --- Of that sequence such tha(t*’w)(Fg)
converges as— oo to a limit, sayp, € [0,1]. We continue in this fashion and then
extract the diagonal sequenge= k; ; to obtain a sequengg, ps, - - - € [0,1] such
thatlim; .., P*)(F;) = p; for eachj = 1,2,.... One easily verifies that the map
F; — pj; is finitely additive, non-negative, and mapt 0 and2 to 1. Invoking the
Kolmogorov extension theorem (or the Cagdlory extension theorem), we can
construct a probability measuResuch thatP (F};) = p,, and the claim follows.CI

Remark A.16. One can also obtain this lemma from the Banach-Alaoglu
theorem and the Riesz representation theorem (though anddstake care to
distinguish the notions of compactness and sequential aomess). Observe
that both the Heine-Borel theorem and the Kolmogorov extentheorem are
completely constructive, so this lemma does not use theragicchoice. See [33]
for further discussion.

A.17 Approximationlemmas. We frequently need to approximate aran-
dom variable or event in a complicated factor by linear, polyial, or boolean
combinations of random variables or events in simpler factdlo do this, we
use some very simple and standard tools, which we colleet foerthe reader’s
convenience.

Recall that a random variablesamnpleif it only takes on finitely many values
or, equivalently, if it is the finite linear combination ofditator functions or,
equivalently, if it is measurable with respect to a finitetfsc The following
lemma is standard in measure theory.

Lemma A.18. Let B be a factor and p = 1,2, 00. Then the simple random
variablesin L?(B) aredensein L?(B).

Because of this, the task of approximating random variablgskly boils
down to approximating events. Let us say that two evénts aree-close if
P(E\F) +P(F\E) <e.

Lemma A.19 (Approximation by finite complexity events) et B = B[] be
a factor generated by a (possibly infinite) collection £ of events, and let ¢ > 0.
Then every event in B ise-closeto afinite boolean combination of eventsfromé&. In
particular, if B is generated by an algebra B,., then every event in B ise-close to
an event from B,.,. If f € L'(B), then there exists a finite factor B’ of B generated
by finitely many eventsin £ such that || f — E(f|B’)| .1 (5) < €.
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Proof. LetB,, be the algebra generated&yi.e., the space of finite boolean
combinations of events frorfi). Let B. denote the collection of events which
is e-close to an element d@#,.,. One verifies easily thdf)_. , B. is a factor that
containsg, and thus containB; and the first and second claims follow. To prove
the final claim, first use Lemma A.18 to reduce to the case wh&simple, and
then use linearity to reduce to the case whgre I(FE) is an indicator function.
By the previous claims, we can find an evéiite B,., which ise/2-close toE,

Ilf —I(E")||L1 () < e/2. This E' lies in some finite factoB’ generated by; thus,
on taking conditional expectations #, we see thatE(f|B’) — I(E')| .1 (5) < €/2.
The claim now follows from the triangle inequality. O

Corollary A.20 (Limits of chains) Let A be a totally ordered set; and for
each a € A, let B, be a factor of B,,.x with the monotonicity property B, C Bg
whenever o < 3. Let B :=\/, ., Ba. Thenfor any f € L?(B), the net E(f|B,)
converges to f in L? norm (thus for every ¢ > 0, there exists 3 € A such that
1f = E(f[Ba)llz2(s) < € for al a > 3).

Proof. Lete > 0. Applying Lemma A.19 with€ = | J_., B., we can find a
finite factor’ generated by finitely many eventsiisuchthaf| f —E(f|B’)| 2(5) <
e. By monotonicity, we see thd’ is a factor ofB,, for somea € A. The claim
then follows from Pythagoras’ theorem. O

Corollary A.21 (Approximation by finite factors)Let By, . .., By be factors
and ¢ > 0. Then every event in By VvV ... V By is e-close to a finite boolean
combination of eventsin 3, U --- U By. Furthermore, given any random variable
feL>Bv---VBy),thereexist finitefactors B, of B, fori = 1, ..., k, respectively,
suchthat || f — E(f|B{ V -+ BY) | L1 (5,v--vs,) <&

Proof. The first claim follows from Lemma A.19 by settigg= 5, U- - -UBy.
To verify the second claim, first use Lemma A.19 to locate adifactor3’ gener
ated by finitely many elements By U- - -UB;, such that| f —E(f|B')|| .1 (8,v-..v5B,) <
e/2. Now observe that’ is a factor ofB; v --- v B; for some finite factorss;
of B; fori = 1,...,k. The claim now follows from the same triangle inequality
argument used to prove Lemma A.19. O

A.22 Relativeindependence. Now we come to a fundamental notion for
us, namely, that of (relative) independence of two or moceofs.

Definition A.23 (Independence)We say that two factors;, B, areuncon-
ditionally independent if

E(f1f2) = E(f1)E(f2)
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for all f; € L*°(B;) and f, € L*(B,). More generally, we say that two factors
B1, By arerelatively independent conditioning on a third factoB with respect
to the probability measure if

(15) E(f1f2|B) = E(f1|B)E(f2|B)

almost surely for allf; € L*>(B;) and fo € L*(B2). In many cases, the prob-
ability measureP is clear from context and we omit the phrase “with respect
to P”. Given an at most countable collection of factdi®,).c4, we say that
these factors arpointly unconditionally independent (resp.,jointly rela-
tively independent conditioning on a factoB) if \/ ., B, andV/ .4, B. are
unconditionally independent (resp., relatively indepamtdconditioning ori3) for

all disjoint subsets4;, A> of A. We say that a collection of events, F», . ..

is unconditionally independent (resp., relatively indegent conditioning oriB)

if their associated factoi8[E1], B[Es], ... are unconditionally independent (resp.,
relatively independent conditioning &).

Examples A.24. Two factorsB,, B, are unconditionally independent if and
onlyif P(EAF) =P(E)P(F) forall E € B; andF € Bs. In particular, two events
E and F' are unconditionally independent if and onlyH{E A F) = P(E)P(F).
Three factorsBy, By, B3 are jointly unconditionally independent if and only if
P(Ey AN Ex N E3) = P(E)P(E;)P(Es) for all E € By and F € B;. On the
other hand, in order for three everfisF, G to be jointly independent it is not
quite enough thaP(E A F A G) = P(E)P(F)P(G): one also needs, F, G to be
pairwise independent so that, for instanBPéfF A F) = P(E)P(F). If By, B2, Bs
are jointly unconditionally independent, th8nv B; andB, Vv B3 are conditionally
independent oveBs;, even though they are almost certainly not unconditionally
independent. On the other hart],andB, are both unconditionally independent
and conditionally independent oviss.

Example A.25. Let 21, 22,23 be three elements chosen uniformly and in-
dependently at random frof0,1}. Then the events; = z3 andzy = z3 are
unconditionally independent, but they are not relativalygpendent conditioning
on the facto3[z; = z»]. Thus we see that unconditional independence is neither
stronger nor weaker than relative independence.

Taking expectations in (15), we obtain
(16)  E(f1/f2) = E(E(f1(B)f2) = E(/1E(/2|B)) = E(E(f1|B)E(f2|B))

whenevers,, B, are relatively independent conditioning #n f; € L°°(5;) and
fo € L*>(B3).
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There are several equivalent formulations of relative jredelence.

LemmaA.26. Let B, By, B be factors. Then the following are equivalent.
(i) By and B, arerelatively independent conditioning on 5.
(i) E(f1|BV Bay) = E(f1|B) aimost surely for all f; € L?(B,).
(iii) [|E(f1|BV B2)| L2 = [E(f1|B)|| 12 for all fi € L?(By).
(iv) |P(E1|BV Ba)||r2 = |P(F1|B)||z: for all E, € By.

Proof. The equivalence of (ii) and (iii) follows from Lemma A.12. &h
equivalence of (iii) and (iv) follows from Lemma A.18, lingly, and a standard
limiting argument.

To see that (ii) implies (i), observe that for € L>°(B,) and f, € L>(Bs),

E(f1/2|B) = E(E(f1/2|BV B2)|B)
E(f1|BV Bz) f2|B)
E(f1]B)f2|B)
HIB)E(f2|B),
where we have used the module property twice.

Finally, we show that (i) implies (iv). We observe from (i)cathe module
property that

(
(
(
(

[
H 0 d

E(f1f2h|B) = E(f1|B)E(f2h|B)

wheneverf; € L>(By), fo € L>(Bs), andh € L>=(B). Taking linear combinations
and using limiting arguments, we conclude that

E(f19|B) = E(f1|B)E(g|B)
whenevel € L>(BV B;). Taking expectations, we have
E(f19) = E(E(f1|B)E(g]B)).
Applying this with f; := I(E;) andg = P(E1|B V Bz), we obtain
[P(EL|BV Bs)l7> = E(I(E1)P(Er|BV B)) = E(P(E1|B)E(P(E1|B V B2)|B))
= |P(E1B)|Z,

and (iv) follows. O
Now we can observe the following stability properties canogg relative
independence.

Proposition A.27. Let B, B, betwo factorswhich arerelatively independent
conditioning on another factor B.
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(i) (Monotonicity) If By isafactor of B, and B isa factor of B,, then 5] and B},

are relatively independent conditioning on 5.

(i) (Absorption) B, v B and B- VV B arerelatively independent conditioning on B.

(iii) (Gluing) Let B3 be a s-algebra which is relatively independent of B; v Bs
conditioning on B. Then B, isrelatively independent of B, v Bs conditioning
on B.

(iv) (Factors do not affect relative independence) If B; is a factor of B; and 5}
is a factor of Bs, then B, and B, are relatively independent conditioning on
Bv BV B

(v) (Independent information does not affect relative independence) Let B3 be
a o-algebra which is independent of B v By VvV B. Then B; is relatively
independent of B, v B; conditioning on 5.

Proof. The claim (i) is trivial. To prove (ii), observe from symmgtand
iteration that it suffices to show th&; v B and B, are relatively independent
conditioning onB. But this follows from two applications of Lemma A.26.

To prove (iii), it suffices by Lemma A.26 (and symmetry) to shinat

E(h|BV B1) = E(h|B)
forall h € L°°(By V Bs). By density, it suffices to show that

E(f2f5|BV B1) = E(f2f3|B)

for all fo € L>°(B,) andf; € L*>°(B3). But this follows from the relative indepen-
dence hypothesis and the module property:
E(fof3|BV B1) = E(E(fafs|BV By V By)|BV By)

= E(f2E(f3|BV B1V B2)|BV Bi)
(f2E(fs|B)|BV B1)
(
(
(

f2|BV B1)E(f3|B)
f2|B)E(f3]B)

E
E
=E
E
E

Now we prove (iv). By symmetry and iteration, it suffices tamwshthat 53,
andB, are relatively independent conditioning B8rv 5;. From Lemma A.26, we
already have

IE(f2IB)llL> = [[E(f2|B YV Bi)|| 2
forall f, € L?(B2). From Lemma A.12, we conclude

IE(f2B)llL2 = [E(f2| BV BY)| L2 = [[E(f2lBV By)l| L2,
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and the claim follows from another application of Lemma A.26

Finally, we prove (v). IfB5 is independent oB Vv B; V B2, then by the mono-
tonicity and factor properties (i), (iv), we conclude tigtis relatively independent
of B; v B; conditioning on3. The claim (v) then follows from the gluing property
(iii). O

Appendix B. Connection with recurrence theorems

We have just seen how infinitary probabilistic statementhisis Theorem 4.2 can
imply finitary graph statements such as Lemma 4.1, laterha# see that one can
also deduce finitary hypergraph statements in this manhés.also well-known
(see [25], [5], [6], [23], [24], [13], [26], [32]) that thesgraph and hypergraph
statements can in turn be used to deduce density resultsasu&zemedrdi’'s
Theorem. This in turn is known by the Furstenberg Correspoaoé Principle to be
equivalent to results such as the Furstenberg Recurreremdiim. Concatenating
all these implications, one thus expects results such agréhe4.2 to be capable
of implying results such as Theorem 2.2 directly, withowg tteed to pass back
and forth between the infinitary and finitary settings.

Somewhat surprisingly, it seems difficult to achieve thialgtihe best the author
was able to do was simply to compose the various implicatthssussed above
to obtain a connection. For the sake of completeness, wetsketpecial case of
this connection here; but it is puzzling that there seemsetedlittle “synergy”
between these two infinitary results, despite their sintjlarAs no major new
features appear to be emerging in this connection, we skipsmme of the details.

One can demonstrate the connection using the Furstenbeugri@ece Theorem
(Theorem 2.2), but it is slightly more convenient to workieed with the following
variant.

Theorem B.1 (Furstenberg-Katznelson Recurrence Theorem, specia).cas
[9] Let (22, Bimax, P) be a probability space. Let S, T : Q —  be two commuting
probability-preserving bi-measurable maps. Then for all events A € Bp,.x With
P(A) > 0, we have

N
o 1 n n

N—oo
n=-—

This theorem is equivalent to the assertion that any sulfsét avith posi-
tive upper density contains infinitely many right-anglgdngles(z, y), (z + r,y),
(z,y+7), aresultfirst obtained by Ajtai and Szeradr[1]. In [26], it was observed
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that this theorem follows from the triangle removal lemmatti8gsS := 72, we ob-

tain the casé = 3 of Theorem 2.2. The full version of the Furstenberg-Katzoel
Recurrence Theorem allows for an arbitrary number of conmgughifts and can
be treated by a modification of the arguments presented here.

To transfer this theorem to a setting where Theorem 4.2 idicaiype, we
have to utilize essentially the entire machinery used ingttagoh correspondence
principle. It is convenient not to work with graphs df but rather on tripartite
graphs connecting three copieszf

Definition B.2 (Tripartite graph universal spacel tripartite infinite
graph is a sextupleG = (Z,Z,Z, E\2, E23, E31) where E1o, Eo3, E3; are sub-
sets ofZ2. Let Q* denote the space of all tripartite infinite graphs. On this
spaceN®, we introduce the events;; ., , forij = 12,23,31 andk;, k; € Z by
Aiji i, ={G € Q: (ki, k;) € E;;} and letBS,, be thes-algebra generated by the
Aij ki k;- We also introduce the regular algelzﬂﬁg generated by thd,;; x, »,. For
any three permutations , 2,03 : Z — Z, we can define an action ¢f;, 02, 03)
on B, by mappingA;; i, x, 10 A} . (k)0 (k;)- FOr @any subsets;, I, I3 of N,
we defineB to be the factor of32,, generated by the events; ;. ,,, where
iy =12,23,31, k; € I;, andkj S Ij.

Now we embed the system in Theorem B.1 into this universalespa

Definition B.3 (Tripartite graph universal embeddind)et (2, Buax, P), S,
T,Abeasin TheoremB.1. L&f > 1 be a natural number. We introduce the prob-
ability space ™), B, P(V)), defined as the space associated to sampling three
infinite sequence@; i, )k, cz fori = 1, 2, 3 uniformly and independently at random
from[N] = {1,..., N}. Thusthe productspac@ x Q™) By x BLL, P x POY)
represents the independent sampling of a peifrom Q, together the three se-
quences; i, € [N]fori =1,2,3 andk; € Z. For any sucl: andn; ,, we associate
an infinite tripartite graplé: = (Z, Z, Z, E1», E»3, F31) in Q2 by setting

FEis = {(kl,k‘g) €Z xXZ:TM*r S22k g € A}
Fos := {(kz,kg) €Z X7 : T3k "2k G2 k2 g A}
Bap = {(ks, k1) € Z x Z : T™#1 §moka "k g € A},

This is a measurable map fromx Q) to Q* (the inverse image aflyz 1, , iS
the measurable eveit't .+ S"2.k2 1 € A, and similarly for the other two classes of
generating events), and so we can push the me&suie("Y) forward to a measure
on (2 x Q) x QA B x Bivk x BA,.), which by abuse of notation we also call
P x PN,
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A computation (using the probability-preserving and cortingunature ofrl’
andsS) shows that

P x PPN (A1500 A A23.00 A As100)

= Y PIMSEANTSRSRANT IS A)
ni,n2,n3E[N]
- % 3 PAATISTETAN ST A)

ni,nz,n3€[N]

N
% > PAAT"AAS™A).

n=—2N

<

Thus to prove Theorem B.1, it suffices to show that
1%n inf P x P(N) (A12,O,0 A\ A2370’0 A\ A3170’0) > 0.

Suppose this were false. Then one can find a sequéfigeof NV, going to infinity
asm — oo, such that

lim P x P(N(m))(Algﬁoyo A\ A2370’0 A\ A31’070) =0.

m—00

By applying Lemma A.15, we can pass to a subsequence if reageand obtain a
limiting probability measur® on(Q4, B2,..) with the weak convergence property

max

lim P x PN")(E)=PA(E) forall E € BA,.
The individual measuré® x P(") can be easily verified to be invariant under triple
permutationgo, o2, 03), and so the limiting measui®” is also.

By adapting the arguments used to prove Lemma 3.5, one cdoitettpe
above invariance to establish the following relative ingleglence property: if
I,I;1,...,1;; are subsets d& with I, N [, N---NI;; for i = 1,2,3, then the
factorsBy, 1,.1, and \/lj:1 B, 1,15, are relatively independent conditioning on
\/lj:1 BrLnm., L, Isnis;» With respect to this probability measulPg*. We omit
the details of this, as they are essentially the same as ipridwf of Lemma 3.5,
except for minor notational complications.

We now apply Theorem 4.2 o2, B4, ,P?), with J := {1,2,3}, ipnay =
{e : le|] < 2}, E. set equal tad;; ., if e = {3, ;j} for someij = 12,23,31, and
E. = QA otherwise, and witlB. set equal ta3y, 1,.1,, wherel; is equal toZ if
i € eandZ\{0} if i ¢ e. Thus, for instance3(, 2y = Bz zz\(0}- The hypotheses
of the theorem are easily verified; and by arguing as in thefppbLemma 4.1
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(or Lemma 4.4), we can find regular evenls € By; j; forij = 12,23, 31 obeying
(11) and
P2 (A \F/;) <n/10  forij=12,23,31,

wheren := P(A) > 0 is the probability of the original event. In particular, for
all sufficiently largem we have

P x PN (A \FL;) < /10 forij =12,23,31.

Now recall that the variables, 3, n2, nso are independently and uniformly
distributed on the intervérN(”*)]. For any fixedr; o, no,0, the probability thahs o
equalsn, o + ns o equalsl /N (™) approximately half the time, and O the other half
of the time. Since the event, ;\Fj , is independent ofi; o, we conclude from
Bayes’ formula that

P x PV (A12\F] 5|n30 = n1,0 4+ na2,0) <n/5
for m sufficiently large. Similar arguments in fact give
P x PV (A, \F/jlns0 = nio +nao) <n/5  forij = 12,23,31.
On the other hand, from (11) we have
P x PN (F{, A Fj 5 A Fj1|ngo = n1o + na) = 0.
Combining this with the preceding estimate, we see that
P x PV (A15 A Ao A Asilnso = nio + nao) < 3n/5.
However, the left-hand side equals
pN (P(TT08720 A AN T™307 1206720 A A TT10GN3.0710 A) g o = ny g + Na ),

which simplifies (using the shift invariance) R{A) = . Thus we have < 35/5,
a contradiction. This proves Theorem B.1. O

15Note how important it is here that the eveft, A F} ; A F} | be empty, rather than merely a null
event with respect t®2. In the latter case, the event would have a small but non4zesasure in

P x PN , and we would be unable to condition this event to the vangiiiismall probability event
n3,0 = n1,0 +n2,0 Without losing control on the conditional probability. Tpeint is that the constraint
n3,0 = n1,0 + n2,0 creates a “diagonal measure” which is singular with respeft®, and so null
events inP~ do not necessarily restrict to null events on the diagonalsuee. However, events which
have empty intersection with respectRé clearly continue to have empty intersection with respect to
the diagonal measure. This robustness with respect to ehafrrgeasure is what makes Theorem 4.2
(which is basically a mechanism for converting null eventermpty events) so powerful.
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Remark B.4. At present, the hypergraph regularity method is known ttdyie
the Furstenberg-Katznelson Recurrence Theorem, but nwwverful recurrence
theorems, such as the Bergelson-Leibman Polynomial RemcerTheorem, the
Furstenberg-Katznelson IP-Szeraéir Theorem, and the Furstenberg-Katznelson
Density Hales-Jewett Theorem, have not yet been succhsehihined by this
method (in either the finitary or infinitary settings). It istryet clear whether this
represents a fundamental limitation to the method. A péssast problem would
be the refinement of Szengali's Theorem that the set of possible differences
amongst the arithmetic progressions of a given length islsyn (has bounded
gaps); this was established in [7] by ergodic methods, bes dmt currently have
a non-ergodic proof.
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