A NEW APPROACH TO SUBORDINATION RESULTS IN FREE
PROBABILITY

By
S. T. BELINSCHI AND H. BERCOVICI*
Abstract. We show that the subordination results of D. Voiculescu and

Ph. Biane can be deduced from a continuity property of fixadtpdor analytic
functions.

1 Introduction

Consider Borel probability measurgs’ on the real lineR, and the associated
Cauchy transform&,, G, defined orC* = {z € C: Sz > 0} by
1 1
Gul2) = [ = dnl0). Gue) = [ = .

It was shown by Voiculescu [7] that there exists another abillly measure,
denoted. B v and called the free additive convolutionfndv, such that

G2+ G (2) =G g, (2) +1/2
for z in a domain of the form
{z:|Rz| < —aSz,—F < Iz < 0},

wherea, s > 0. Here we useG;1 for the inverse ofG, as a function, i.e.
G,,,(G;l(z)) = z.
An important property of free additive convolution is suthioation: there
exists an analytic function : C+ — C* such thatG s, = G,, ow and
lim ()
ylToo 1Y

=1.

This was first shown under a genericity assumption by Vogaug9], and in full
generality by Biane [2]. Biane also proved analogous resaitfree multiplicative

*The second author was supported in part by a grant from themiScience Foundation.

357

JOURNAL D'ANALYSE MATH EMATIQUE, Vol. 101 (2007)
DOI 10.1007/s11854-007-0013-1



358 S. T. BELINSCHI AND H. BERCOVICI

convolutions. These results were approached from an abswalgebra point of
view in [10, 11], and this approach provides subordinatioeven more general
contexts.

Our purpose is to show that these subordination results eaelwved as pure
complex analysis theorems. The main tool is the elementasgrvation that the
Denjoy—Wolff point of an analytic selfmap of the unit disk depends analytically
on f, exceptin the neighborhood of a Moebius map. This obsemwvadilong with
some background information, is presented in Section 2.apipdications to free
convolutions are derived in Sections 3 and 4.

2 Denjoy—Wolff Points

Denote byD = {z : |z| < 1} the unit disk in the complex plane, and fetD — D
be an analytic function. We recall that a point= D is a Denjoy—Wolff point
for f if either

(1) weDandf(w) =w;or
(2) |w| =1, lim, 11 f(rw) = w, and

lim w = f(rw) <
1 (1—r)w —

The limit displayed above is called the Julia-Caéattiory derivative off at w.
Except for the identity map of), every f has a unique Denjoy—Wolff point.
Moreover, this point is a limit of the iterates ¢fin most cases. The following
result is due to Denjoy and Wolff; we refer the reader to [6] &m excellent
exposition.

Theorem 2.1. Assumethat f : D — D is an analytic function with Denjoy—
Wbl ff point w, and denote by

fr=foforof
n times

the composition of n copiesof f. If f isnot a conformal automor phism of D, then
the sequence (f°™)2°; convergesto w uniformly on compact subsets of D.

We consider now an open sub®et C, and an analytic function: O xD — D.
We are interested in the dependence @fithe Denjoy—Wolff point of the function

9 (2) = g(A, 2).
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Lemma 2.2. Wth the notation above, if there exists Ay € Q suchthat g,, isa
conformal automor phism, then g(\, z) = g(\o, z) for every (X, z) € Q x D.

Proof. Replacingg, by 9;01 o g, We may assume thaj, is the identity map.
Fix a pointz € 9D. By the Vitali-Montel theorem, there exists a sequence 1
such thatg(\, r,z) converges to an analytic functiof)) asn — oo. Clearly
|[h(N)| < 1forall X e D, andh(\g) = z. By the maximum principlei(\) = z for
all X € Q. Now fix A € Q. We deduce that

lrl%rll g\ rz) =2z

for almost every: € 9D. The F. and M. Riesz theorem [4] now yields the desired
conclusion. O

The analytic dependence of the Denjoy—Wolff point is nowygagdeduce.

Theorem 2.3. Let g : © x D — D be an analytic function such that the map
gx(z) = g(\, z) is not a conformal automorphism of D for some (and hence all)
A € Q. Denote by w()\) the Denjoy-Wolff point of g,. Then the functionw : Q@ — D
isanalytic.

Proof. Note thatv()) isindeed well-defined since none of fj)ds the identity
map. Since none of thg, are conformal automorphisms, Theorem 2.1 implies
that

w(A) = lim g3"(0),

wheregs" denotes, as before, the compositiomafopies ofgy. The analyticity
of w then follows from Montel’s theorem. O

The functionv can take values i only if itis constant. If one of the functions
gx has a fixed point i), thenw()\) is the unique fixed point of, for every\.
The preceding result can be reformulated replag@iryy a conformally equivalent
domain. We record the statement for further reference.

Theorem 2.4. Consider a domain A conformally equivalent to D and an
analytic function g : Q x A — A such that for some A € Q, themap g, (z) = g(\, 2)
isnot a conformal automor phismof A and hasafixed point in A. Then there exists
an analytic function w : Q — A such that g(\, w()\)) = w(A), A € Q. Moreover, for
everyw € A,

w(A) = lim ¢y (w)

uniformly on compact subsets of G.
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3 Subordination for Multiplicative Convolution

We start with an easy consequence of Theorem 2.3.

Theorem 3.1. Consider two analytic functions f;, f, : D — D. There exist
unique analytic functions wy, w» : D — D such that

(1) wi(0) = w2(0) =0,
(2) wa()) = A (wa(2), and
(3) wa(A) = Af1(wi(N)) for all z € D.

Proof. Combining conditions (2) and (3), we see thatmust satisfy the
equation
wi(A) = Afa(Afi(wi(A), A e

Consider therefore the functign D x D — D defined by
g(A7z):)‘f2()‘f1(Z))7 )\,ZE]D).

Note thatgo(z) = ¢(0,z) = 0 is certainly not a conformal automorphism. Theo-
rem 2.3 then guarantees the existence of an analytic funcfioD — D such that
g(A,w1(N) = wi(A) for A € D. (Note that the function; must satisfyw, (0) = 0;
hence it does not take valuesd.) Settingw2(A) = Afi(w1(N)) yields the de-
sired functions. The fact that;,w, are unique follows from the uniqueness of
Denjoy—Wolff points. O

The subordination result for free multiplicative convadumt on the unit circle
is essentially a reformulation of the preceding result. &ldoom [8] that, given
probability measureg, v on 9, one defines a probability measur& v, called
the free multiplicative convolution gf andv. Wheny andr have nonzero first
momentsy. X v can be calculated as follows. Define analytic functippsD — C
andn, : D — D by

tA Pu(N)
L = ) . =, D.
v = [ o, n) TS e
We haven,, (0) = 0, ands, is invertible nean\ = 0 becausey;, (0) equals the first
moment of. The measurg X v is uniquely determined by the requirement that

(3.1) 20, (2) = 1, (2)n, 1 (2)

for z close to zero. The following result is due to Biane [2]. Thggial proof is
combinatorial.
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Theorem 3.2. Given Borel probability measures p, v on 9, there exist ana-
Iytic functions wy, w- : D — D such that
(1) w1(0) = w2(0) =0,
(2) Yy (A) = Yu(wi(N)) = ¢y (w2(})), and
(3) wi(Mw2(A) = Az, (A) for all A € I.

Proof. As noted by Biane, it suffices to prove the theorem in gasadv
have nonzero first moments. Singg0) = 0, we can writey, () = Afi()), where
f1:D — D is analytic. Analogouslyy,(\) = Af2()). The assumption about v
implies that we can define analytic functians w, in a neighborhood of zero by
setting

w10 = n (e (V), - w2 (V) = 0y (1m0 (V)

Replacingz by 7,x, ()) in (3.1), we obtain
ANy (A) = wi(A)wa ()
for A in some neighborhood of zero. We also have

_ Aumy (A) _ Ay (w2 (N))
WQ()\) WQ()\)

w1 ()\) = )\fg ((JJQ ()\))

Analogouslyws(A) = Afi(w1(A)) in some neighborhood of zero. The uniqueness
of Denjoy—Wolff points shows that;, w, coincide in a neighborhood of zero with
the unique analytic functions satisfying the conclusiomb&orem 3.1. In other
words,w; andw, can be continued analytically to the entire unit disk. Mo
the equalities (2) and (3), which are true in a neighborhda#m, extend td® by
unique continuation. O

We now pass to free multiplicative convolution of measume®o = [0, +o0).
Given a Borel probability measupeon R, , one defines the functiors, andn,, by
the same formulas used for measure®dnbut now forA € C\ R.. The function
n, satisfies the conditions

nM(X) =nu(A), nu(N) € Ct, argn,(A) >argX for\ e Ct,

and
1u(0=) = limny (z) = 0.

If  andv are probability measures @ different from the Dirac measupg at
zero, (3.1) again holds, this time in an open subs€t@dntaining some interval of
the form(—«, 0) with « > 0. Itis convenient to use, in place 6f\ R, , the domain

S={z+iy:zcRye (-mm}h
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which is conformally equivalent via the map S — C \ R; defined by
u(\) = —e=*, NeS.
The following result was first proved by Biane [2].

Theorem 3.3. Given probability measures i, v on R,_, both different from o,
there exist unique analytic functionsw;,ws : C\ Ry — C\ Ry such that

(1) w1(0-) = w2(0—) = 0;

(2) for every A € C*, we havew;()\) = w;()), w;(A) € Ct, and argw;(\) > arg A
for j =1,2;

(3) nux (A) = nu(wi(N) = nu(w2(N)) for A € C\ Ry ; and
(4) wl(/\)WQ(A) = /\np,lgu()‘)'
Proof. Asinthe proofof Theorem 3.2, relation (3.1) yields analftinctions
w1 = 77;:1 ONuRky, W2 = 77;1 O NuRy

defined in some open subset@{R . , symmetric relative t®, satisfying relations
(3) and (4) in that neighborhood. We need to show that these iturschave
continuations with the required properties. Consider thmefions

hlzuflonuou, hgzuflonl,ou.

These are analytic selfmapsSéuch that for every € SNC", we havé;(\) € C*,

h;i(X) = hj(X), and0 < Sh;(A) < SA. The existence af, andw, amounts to the
existence of analytic selfmaps, u» of S such that for every ¢ SN C*, we have

u;(\) € CF, o Suy(N) < S,

and
ur(A) +us(N) = A+ hj(u;(N), j=1,2.

Writing v, (A) = u;(A) — A, f;(A) = hj(A) — Afor j = 1,2, we see that
v1(A) = ur(A) = A = ha(uz(A) —ua(A) = fa2(u2(A) = fa(A +v2(N));
and this leads to the fixed point equation

v1(A) = fa(A + fr(A + v ().

It is then natural to consider the function

g\ 2) = foA+ fi(A+ 2)).
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This function is not defined on the entire prodBctS. Howeverg(\, z) e SNC~
provided that\ € SNC" andz € SN C~. To verify this, fix \ € SN C*
andz e SNC. If S\ +2) >0, then-S(\ +2) < Sfi(A+ 2) <0, so that
0< -2 <SA+ filh+2)) < A Thush + fi(A + z) € SNCT, and therefore
g(A\,2) eSNC™ and

0>Sg(\ z) > =S\

< 0, then0 < Sfi(A+ 2) < =X + 2), so thatSx <

Similarly, if S(\ + 2)
< —3z. Again we conclude that + f,(\ + z) e SN C*t and

SN+ fi(A+2))
0> Sg(\ 2) > Sz,

The local existence of the functian indicates that the equatign(z) = =z has
a solution for some value of € SN C*. Theorem 2.4 then yields an analytic
functionv; : SNCT — SN C- satisfying

gAvi(N) =v1(A), AeSNCT.
The inequalities obtained above also show inductively that
0> Sg3"(—A) > —9,

thus establishing the inequalities> Swvy(\) > -3\ for A € SN C*. The function
u1(A) = A +v1()\) then maps N C* to itself; and setting

uz(A) = A+ fi(ur(N) = A+ ha(ur(N) — ur(N),
we obtain functions satisfying our requirement§in C*. Since
0<Su;(\) <SS\, AeSncCt,j=1,2,

it follows that all the limit values of.; on the real line are real or infinite. Seidel’s
version of the Schwarz reflection principle [3] allows us xte@du; to S in such

a way thatu;(\) = u;()\) for all \. This establishes the existence«qf u, and
therefore ofv;,ws. The uniqueness of these functions follows from the uniggen
of Denjoy—Wolff points. O

4 Subordination for Additive Convolution

For a Borel probability measugeon the real line, we writd, (\) = 1/G.()),
A € C*. As observed in [5] and [1],

SF,(\) >3\, AeCH,
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and

Fl(i
lim 22 _

yToo Yy
This implies the invertibility of the functio), in a region where\| = |z + iy| is
sufficiently large, provided that/y remains bounded. The defining equation of
free additive convolution is now
Fl(2) + FyYe) = 2+ Fag (2).
The earliest subordination result in this area is the falhgiheorem, first proved
in the generic case in [9] and in full generality in [2].
Theorem 4.1. Given Borel probability measures i, v on R, there exist unique
functions wy, wy : Ct — Ct such that
(1) Sw;(A\) > A for A € C, and
i 20 _ j=1,2:
yToo Y
(2) Fumo(N) = Fu(wi(N) = Fy(w2(N)); and
(3) wi(A) +wa(X) =X+ F,m, (N for all A e C*.

Proof. The analytic functions,; = FM—1 o Fm, andwy = Flo F,m, are
defined for\ = iy if y is sufficiently large and satisfy

i ) _ g g

yloo Y
as well as conditions (2) and (3) in some open set. It remaipsdve that these
functions can be continued analytically @ and that the continuations satisfy
the first condition in (1). Séft;(\) = F,(A) — A, ha(A) = F,(A) — A. The analytic
functionshi, h, have nonnegative imaginary part@i. We combine (2) and (3)
to obtain the fixed point equation

w1 (A) = A+ ha(wz(N) = X+ ha(A + hi(wi(X))).
This leads to the functiop: C* x Ct — C* defined by
g\ 2) =X+ ha(A+ hi(2)), A ze€CT.
The local existence of the functions implies that some of the functions(z) =
g(\, z) have afixed point. Therefore, Theorem 2.4 yields a globa&fined function
w1 such thay(\, wi(N\)) = w1 (N\). Note that
Swi(A) = SN+ Sha( A+ hi(wi (V) >3\, AeCH.
The second function is obtained simply.ag\) = A + k(w1 ()\)). The uniqueness
of the functionsv; follows from the uniqueness of Denjoy—Wolff points. O
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