A BOUNDARY VERSION OF
AHLFORS' LEMMA, LOCALLY COMPLETE
CONFORMAL METRICS AND CONFORMALLY INVARIANT
REFLECTION PRINCIPLES FOR ANALYTIC MAPS

By

DANIELA KRAUS* OLIVER ROTHT AND STEPHAN RUSCHEWEYH

Abstract. A boundary version of Ahlfors’ Lemma is established and used
show that the classical Schwarz—Caéattiory reflection principle for holomorphic
functions has a purely conformal geometric formulationemts of Riemannian
metrics. This conformally invariant reflection principlergeralizes naturally to
analytic maps between Riemann surfaces and contains anttoergesults a char-
acterization of finite Blaschke products due to M. Heins.

1 Introduction

In this paper, we show that the classical Schwarz—Caoatbry reflection principle
for holomorphic functions can be stated in a conformallyaient way exclusively
in terms of conformal Riemannian metrics. As some applicetiof this confor-
mally invariant reflection principle, we obtain
(i) sharper and localized versions of Heins’ characteiopnatf finite Blaschke
products [15];
(i) the limiting case of a hyperbolic reflection principleuel to Fournier and
Ruscheweyh [10, 11];

and

(iii) an extension of the Schwarz—Caratidory reflection principle for analytic
maps between Riemann surfaces, which complements thésre§{22].

The proofs of these results use a mixture of methods fronsiclalsfunction
theory and nonlinear elliptic PDE. A basic ingredient of approachis a boundary

*D. Kraus was supported by a HWP scholarship
0. Roth and S. Ruscheweyh received partial support form #ren@n—Israeli Foundation (grant

G-809-234.6/2003)

219

JOURNAL D'ANALYSE MATH EMATIQUE, Vol. 101 (2007)
DOI 10.1007/s11854-007-0009-x



220 D. KRAUS, O. ROTH AND S. RUSCHEWEYH

version of the ubiquitous Ahlfors Lemma [1, 5, 8] (see Theofe4 below), which
might be of interest in its own right. This “boundary Ahlfdcemma” applies to
locally complete conformal Riemannian metrics. It is rethto work of Yau [26]
and Bland [3] in higher dimensional complex differentiabgeetry and previous
work on the Gaussian curvature equatidm= —x(z) e?“; see, for instance, [2, 4].
However, although we discuss these connections in somé, dieeaemphasis of
the present paper is on function-theoretic applicationthefboundary Ahlfors
Lemma.

Here is a quick outline of our work. Léd := {z € C: |z| < 1} denote the
open unit disk in the complex plarie Recall that an open subarc of the unit circle
0D :={z € C: |z| = 1} is an open connected subseOaf.

Theorem 1.1. LetT bean open subarc of theunitcircleoD andlet f : D — D
be a holomor phic function. Then the following conditions are equivalent.
(a) Forevery¢ e,

(]
MTeE T
(b) For every¢ e T,
L 1/ (2)]
hgnHl?f (1- 2% T—1fC)E > 0.
(c) For every¢ e T,
, oy G
ll—{%(l_b' )W—l.
(d) For every¢ e T,
lim | (z)] = 1.

(e) f hasa holomorphic extension acrossthe arc T" with f(T") C OD.
Roughly speaking, Theorem 1.1 asserts that if the quantity

)
M) = TR

blows up at the boundary arg then it grows at least as fast as

(1.1) Ap(z) == 1—71|z|2

atT' and then, in fact, it blows up exactly as fast)agz) atI". This in turn is
equivalenttgf(z)| — 1 asz tends tal.
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Remark 1.2. We note that the implications “(e3 (d)” and “(c) = (b) =
(a)” in Theorem 1.1 hold trivially (and in fact faavery setT’ C dl). Also, the
direction “(d) = (e)” in Theorem 1.1 is of course exactly the statement of the
classical Schwarz—Carabdory reflection principle for holomorphic self-maps of
the unit disk (see for instance [7]), while “(&) (a)” is rather straightforward: just
observe that condition (e) combined witfiD) C D guaranteeg’ £ 0 onT, so (a)
follows immediately. Thus the major parts of the proof of ®rem 1.1 lie in the
remaining implications “(a)> (c)” and “(b) = (d)”.

Remark 1.3. Direction “(a)=- (c)” in Theorem 1.1 might be considered as a
statement about conformal metrics. In factf i an analytic self-map of the unit
disk with property (a), then

A(z) |dz| == @ |dz|

1—|f(2)?
is the pullback of the Poincaror hyperbolic metric\p(w) |[dw| (see (1.1)) on the
unit diskD under the holomorphic map = f(z) and is therefore a regular pseudo-
metric inD itself with the same (Gaussian) curvatureg&) |dz| (see Section 2 for
details). Thus the implication “(ap (¢)” in Theorem 1.1 is a very special case of
the following result combined with the Schwarz—Pick indgyésee Remark 1.7).

Theorem 1.4. LetT be an open subarc of the unit circle 9D, let A(z) |dz| bea
regular conformal pseudo-metric on the unit disk D with curvature bounded below
by a negative constant —c, and let u(z) |dz| be a conformal pseudo-metric on D
with curvature bounded above by a negative constant —C,. If

lim A(z) = +o0

z—€
for every point ¢ € T, then
(1.2) liminfM > Cu
z—E /.L(Z) C)\

for every ¢ €T.
We refer to Theorem 1.4 as the boundary Ahlfors Lemma.

Remarks 1.5.
(i) The classical Ahlfors Lemma [1] (for the unit disk) is damed in
Theorem 1.4 as a special case. To check this, chd@séiz| := A\p(z) |dz|
and letu(z) |dz| be a conformal pseudo-metric with curvature bounded above
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by —4. Then\(z) |dz| has constant curvaturet andA(z) — +oo aslz| — 1,
SO )
. p(z
lim sup
|z|—1 )\TDI(Z)

by (1.2). Since the function

log™ (;D((Zg)) = maX{O, log(;;(é)) )}

is subharmonic i, we deduce: < \p in D from the maximum principle
for subharmonic functions.

<1

(i) Asalready mentioned above, Theorem 1.4 is connectdowork of Yau [26]
and Bland [3] in higher dimensional complex geometry. Thidiscussed in
more detail in Section 5 below.

(iii) The proof of Theorem 1.4 (given in Section 3) is basedammstructing
suitable solutions of the nonlinear elliptic PDE: = —x(2) e?*. It turns
out that it suffices to assume that the curvatures of|dz| andu(z) |dz| are
bounded from below and above respectively near the bouradafy i.e., in
U NnD, whereU C C is an open neighborhood bt

We now return to a discussion of Theorem 1.1.

Remark 1.6. It is indispensable to considemrestricted limits in Theo-
rem 1.1. For instance, the implication “(e¢} (e)” of Theorem 1.1 would be
false under the weaker assumption

(1.3) Zlim |f(z)] = 1

for every¢ € T' (where Z indicates non-tangential approach to the unit circle).
In fact, Heins [16] constructed an infinite Blaschke prodetith the following
remarkable properties. The zerosjotluster exactly at = 1, f’ has an infinite
number of zeros in the open interyal 1) andf has the angular limit atz = 1. In
particular, (1.3) holds for everye 9D, but f has clearly no holomorphic extension
to a neighborhood a¥l.

Another (explicit) example of a holomorphic functigh: D — D satisfying
(1.3) for everys € 9D, but without an analytic continuation across the unit eircl
can be produced as follows. A result of Frostman [12] asdbkdisa Blaschke
product

(1.4) ) =11 @

Zj—Z
1-7%2
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has an angular limit of modulusat a point¢ € 9D if and only if

(1.5) il_"?' < 0

Choosing; = 1 — 1/43, one sees easily that

L+73 — (1 —r)5*
27“j

= cos ¢;

for some¢; € (—m,m). By construction, the points; := r;e'?s € D tend tol and
satisfy

oo

i |ZJ| ZJLQ<OO

j=1

Thus condition (1.3) holds on the entire unit circle for thewresponding infi-
nite Blaschke product (1.4), which obviously has no analgbntinuation to a
neighborhood of = 1.

Remark 1.7. The implication “(c)= (d)” in Theorem 1.1 can be considered
as a boundary version of Schwarz’ Lemma. Recall that the &chivemma or,
rather, the Schwarz—Pick Lemma asserts that

2y (2l

0= e <
for every analytic self-mapof D with equality at some pointinside D if and only if
f is a conformal automorphism @f In particular, equality at some poininside
D implies thatf has an analytic extension across the unit circle. Theordm 1.
“(c) = (d)” allows the weaker conclusion thgtcan be analytically continued
at least across an open subarc of the unit circle providedligginolds on this
boundary arc (in the sense of condition (c)). Somewhat singly, it even suffices
to assume one of the (apparently) weaker conditions (a))otdt(ls not known to
us whether “(c)= (d)” holds if " reduces to a single point. Example 4.4 below
shows that (a) does not imply (d) in this case.

Remark 1.8 (The Schwarz—Cara#fodory reflection principle)As noted in
Remark 1.2 above, the direction “(&) (e)” in Theorem 1.1 is simply the Schwarz—
Caratteodory reflection principle for holomorphic self-maps o imit disk. Re-
call that the Schwarz reflection principle [24] tells us thdtolomorphic function
f : D — D with a continuous extensiof: DUT — C to an open subarc C oD
such thatf (") c 9D has an analytic continuation acrassMore precisely/ has a
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meromorphic continuation to the entire Riemann splieegcept the complemen-
tary arcol \ T'; and this extension is given by

1 A
(1.6) f(z): 5k 2€C\D.
In Caratleodory’s generalization [7] of the Schwarz reflection piple (implica-
tion “(d) = (e)” in Theorem 1.1), not even the continuity ffon I" is assumed.
Indeed, it suffices to suppose that thedulus of f has a continuous extensionito
with | f(T")| = 1 in order to guarantee the analytic continuabilityfafcrosd". The-
orem 1.1 shows that we can use one of the conformally inviec@mditions (a), (b)
or (c) instead of condition (d) to obtain a formulation of ehwarz—Carattodory
reflection principle entirely in terms of the PoinéanetricAp(z) |[dz| onD. In this
form, the Schwarz—Caratbdory reflection principle admits various generaliza-
tions. For instance, when combined with the boundary Ablfagmma (Theorem
1.4), it leads to a reflection principle in terms of more gaheonformal metrics
than the Poinc& metric (see Theorem 4.3). Moreover, it carries easily twer
analytic maps : S — R, where

(i) Sis adomain in the complex plane with a free analytic boundacyandR
is a simply connected bordered Riemann surface
or
(i) S is a bordered Riemann surface aRdis a simply connected bordered
Riemann surface.

We discuss a number of such extensions of Theorem 1.1, whiciplement
the results in [22], in Section 4 and Section 6 below.

Remark 1.9 (The Fournier—-Ruscheweyh reflection principl@&heorem 1.1
may also be considered as the limiting case of a recent rieftegtinciple due to
Fournier and Ruscheweyh [11] (see also [22]). This reflagtionciple asserts
that a holomorphic functiorf : D — D has an analytic continuation across an
open subar€ of the unit circle withf(I') C D if for some constant > 0 the free
boundary condition

(=)
&0 e
holds for everyé € I'. Note that condition (1.7) ensures that the analytic con-
tinuation of f maps the ard@ onto an analytic arc which lies compactly inside
the unit disk. Also, the continuation is carried out imgliciby solving a Riccati
differential equation, and it is still an open problem toald@se the possible types
of singularities of the analytic continuation ¢f(see [11, 22]). The limit case
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k — oo of the free boundary condition (1.7) is handled by Theorelrahd shows
that f has a global (meromorphic) extensiond, D across the boundary afrc
This extension mapk onto a subarc of the unit circle and is given by the simple
explicit formula (1.6). In particular, Theorem 1.1 comhkdneith the Fournier—
Ruscheweyh reflection principle give conformally invati@haracterizations of
holomorphic self-maps of the unit disk which have an analgktension across a
boundary ar@" in the two cases tha(T") ¢ D or f(T") C 9D.

We finally note another application of Theorem 1.1. The sgecase of
Theorem 1.1 that the boundary drds the whole ofoD leads to the following
corollary.

Corollary 1.10. Let f : D — D beaholomor phicfunction. Thenthefollowing
conditions are equivalent.
, PG .
@ T e =
(b) f isafinite Blaschke product.

In fact, by Theorem 1.1, condition (a) holds if and only ifias a meromorphic
continuation taC such thatf(z)| = 1 ondD, i.e., if and only iff is a finite Blaschke
product.

Remark 1.11. Corollary 1.10 is closely related to a result of Heins [15how
showed that an analytic self-mgpof the unit disk is a finite Blaschke product if
and only if

: 2y 7(2)]

(1.8) ‘ll‘r_r}l (1-12P) TR 1.

Theorem 1.1 might therefore be considered as a localizedsharper form of
Heins’ result, since it also applies to proper subarcs ofitliecircle and allows to
replace condition (1.8) by the (apparently) weaker coadifg) of Corollary 1.10.
Heins’ proof is based on a completely different but veryresting argument. He
first shows that (1.8) implieg has finite valence and maps oriipso f is a proper
self-map of the unit disk, i.e., a finite Blaschke product.isTgiobal argument
cannot be used to prove the (local) statement of Theorem 1.1.

The present paper is organized as follows. In Section 2,avedt by recalling
some basic facts about conformal metrics, including a sarsf Ahlfors’ Lemma
which is closely related to the well-known Ahlfors—Yau lemi26]. Section 3 is
devoted to the proof of the boundary Ahlfors Lemma (Theoref). 1The proof
of the (remaining) implication “(b)(d)” of Theorem 1.1 is given in Section 4,
which also contains a further discussion of the assumptbridieorem 1.1. In
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Section 5, we extend Theorem 1.4 to conformal metrics defimeghore general
domains inC than the unit disk. For this purpose, we compare the notioa of
locally complete conformal metric introduced by J. BlanfX{8r the more general
situation of complex manifolds) with the condition that tthensity of the metric
goes to infinity at the boundary. Based on the results of @&t we finally prove
several extensions of Theorem 1.1 for analytic maps bet®Ré&mann surfaces in
Section 6.

2 Conformal metrics and Ahlfors lemma

We first give a short review of some basic facts about one-dsioaal Kahler
metrics, which we prefer to call conformal metrics. For mor®rmation, the
reader is refered to [1, 14].

For brevity, we call every positive (resp. hon-negativepempsemicontinuous
function\ on a domairG C C a conformal metric (resp. conformal pseudo-metric)
and denote it by(z) |dz|. We sometimes need to distinguish between the function
A and the induced pseudo-metric. In this case, we c#ile density of\(z) |dz|.

A conformal (pseudo-)metrig(z) |dz| on a domairG C C is said to be regular, if
A is of classC? in a neighborhood of every point whekedoes not vanish. The
(Gaussian) curvature of a regular conformal pseudo-mgteiddz| is defined for
every pointz € G with \(z) > 0 by

(Alog A)(z)
A(z)?
Here,A is the Laplace operator. Inequalities suclkgs< 0 are thus interpreted as

ka(z) <0forall z € G\ Z), whereZ, := {z € G: A\(z) = 0}. Given a conformal
metric \(z) |dz| on a domainG C C, we can associate a distance function

ka(z) == —

da(z0,21) := inf/)\(z) |dz],
Bt
o

where the infimum is taken over all rectifiable path&ijpining zy € G andz; € G.
This makegG, d,) a metric space. We callz) |dz| complete (on G), ifG, d,) is
a complete metric space.

A basic property of curvature is its absolute conformal ffarace. This
means that for a regular conformal pseudo-meiie)|dw| on a domainD
and a holomorphic map = f(z) from another domairG to D, the pullback
(f*AN)(2) |dz] := Mw) |[dw| is again a regular conformal pseudo-metric@mvith
curvature

riea(2) = ra(f(2)) -
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When the domairG ¢ C has at least two boundary points (i.e., wh@ns a
hyperbolic domain) and-a is a negative constandy carries a unique complete
regular conformal metric with constant curvature. This metric\(w) |dw| IS
obtained from the Poincametric\p(z) |dz| by means of a universal cover projec-
tion7: D — G from
2 2 1
A7 (2)) |7 (2)| = ﬁ Ap(z) = %m

We call\(w) |[dw| the hyperbolic metric o with curvature—a. Unless explicitly
stated otherwise, we take the normalizatioa 4 and call the corresponding metric
the hyperbolic metric ofG (with constant curvature4). This metric is denoted
by A\¢(w) |dw].

The most important result about conformal metrics is Aldfioemma [1]. We
make use of the following slight generalization of this lesu

Theorem 2.1. Let \(z) |dz| be aregular conformal metric on the unit disk D
with curvature bounded below by a negative constant —c, and let u(z) |dz| be a
regular conformal pseudo-metric on D with curvature bounded above by a negative
constant —C,,. If

(2.1) \5211 A(z) = +o0,
then
2.2) A:) 2 422 u)

for every z € . In particular, A(z) |dz| is a complete metric on .

The proof of Theorem 2.1 follows the same lines as the prodgheiclassical
version of Ahlfors’ Lemma. However, since Theorem 2.1 playmajor dle in
this paper, we include a proof for the convenience of theeead

Proof. Fix a numbe < r < 1 and consider

o (2) = rp(r2).

Thenyp,.(z)|dz| is a conformal pseudo-metric with curvature bounded abgve b
—Cy. Sincey,(z) is bounded from above i and\(z) — +o0 as|z| — 1, the
function

o(z) :=log , zeD,
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attains a minimum value at some poiat € D. Note thatu,.(z)) # 0, soc
is of classC? in a neighborhood ofz,; and we obtain0 < Ao(z) =
—ka(20) AM(20)% + K, (20) r(20)%. This impliesk(z0) < 0, and we can write

0 <Ao(z0) = —ka(20) A(20)* + K, (20) pr(20)°

o) Moy (1 ~ Fipg(20) M(zo)Q) .

kx(20) A(20)?

Thus

inf A(2) — inf () — o(z0) — A(zo0) > K, (20) > &
2€D [, (2)  z€D 1r(20) ka(z0) V ca
Inequality (2.2) follows by letting — 1.

In order to showA\(z)|dz| is a complete conformal metric o, we set
w(z)|dz| = Ap(z)|dz|. Then, in view of (2.2), there is a constamt> 0 such
that

da(z,20) > a - dn(z, 20)

foranyz, zo € . Heredp denotes the hyperbolic distance induced by the Poincar
metric Ap(z) |dz|. Thus every Cauchy sequengs,} in (I, d,) is also a Cauchy
sequence in the complete metric spéely ) and therefore convergent with limit
2o In D. But the topologies ofD, dp) and(D, d, ) are compatible, so the sequence
{zn} converges ta, also in(l, d, ). O

Remarks 2.2.
(@) If A(2)|dz| = An(z)|dz]| is the hyperbolic metric i) and if u(z)|dz| is a
pseudo-metric i with curvature bounded above by, then Theorem 2.1
is the classical Ahlfors Lemma [1].

(b) Theorem 2.1 is related to Yau's celebrated extension ldfofs’ Lemma
for Kahler manifolds (see [26]). In the very special case of thie diek
D c C, Yau’'s version of Ahlfors’ Lemma differs from Theorem 2.1lpim
the assumptions on the conformal me#ie) |dz|. Yau requires thaX(z) |dz|
be a complete conformal metric, whereas Theorem 2.1 asshmbesundary
condition (2.1) for the density and yields the completeness X&) |dz| as
a corollary to the estimate (2.2). Thus, Theorem 2.1 andsvtmmma (for
the unit disk) are equivalent. We note that Yau’'s lemma resaalid for
arbitrary hyperbolic domains (and way beyond), while Tle@o2.1 can be
extended only to domains with sufficiently nice boundaryisTis discussed
in Section 5.
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(c) The regularity assumption on the pseudo-meifie) |dz| in Theorem 2.1
is not essential. In fact, it suffices to assume th@&t) |dz| is an upper
semicontinuous pseudo-metric Brwith generalized curvature

(). Alogu(z)
SARANTEE

bounded above by a negative constant. Here

2
4 (1 ,
Alog u(z) := liminf —2{— /log w(z +re't) dt —log ,u(z)}
r—0 7 2w
0

denotes the generalized lower Laplacianogfy, which is defined for every

z € D with u(2) > 0. Accordingly, when we speak in the following of a
conformal pseudo-metrig(z) |dz| with curvaturex,, we always mean that
u(z) |dz| is upper semicontinuous with generalized curvatyre

(d) (The case of equality in (2.2).)

If equality holds in (2.2) for some pointe D, then equality holds for every
pointz € D. To see this (cf. [14, 19, 23]), note that the function

n(z) 3
=log B2 —log, |2
w(z) 8 A(2) 8 Cu
is non-positive and satisfies

Au(z) = —ru(2)n(2)? + Fa(2)A(2)* = Cup(2)® = ead(2)?
= C)\)\(Z)Q(GQU(Z) —1)
> 2e3M(2)u(z)

inthe openseb := {z € D : u(z) > 0}. Thus, ifu(a) = 0 for someu € D, the
functionu restricted to the compone of D which contains the pointhas
a non-negative maximum at By the strong maximum principle of E. Hopf
(cf.[13, Thm. 3.5])u has to be constant i, sou /) is constantif. Again,
this uniqueness result holds also for upper semicontinpsesdo-metrics
u(z) |dz| with generalized curvature, < —C,, < 0. One just needs to use
Calabi’s extension of the Hopf maximum principle, see [61d§19]).

(e) The assumptions on the curvature of the metkies |dz| and u(z) |dz] in
Theorem 2.1 are quite natural and cannot be omitted. Thisis¢rated with
the following examples.

Example 2.3. Let A(z) = /An(z) and u(z) = An(z) for z € D. Then
kx(z) < =2 for z € D and k)(z) — —oo When|z| — 1. Obviously, there is
no positive constan® such that\(z) > Cu(z) for all z € D.
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Example2.4. Considen(z) = Ap(z) andu(z) = exp (An(2)). Thenk,(z) < 0
for z € I, andk,(z) — 0 as|z| — 1. Again, there exists no constafit> 0 such
that\p(z) > Cexp (Ap(2)) for all z € D.

3 Proof of the boundary AhlforsLemma

Before we give the proof of Theorem 1.4, we sketch its maia.ider this purpose
suppose, thaX(z) |dz| is a regular conformal metric which tends+ec on a proper

open subar¢' of the unit circle. As becomes clear later, we may furtheuass

without loss of generality that

3.1) my = inf A(z) > 0.

zeD

The strategy is to ‘modify\(z) |dz| appropriately so that Theorem 2.1 applies. We
make the Ansatz

A(2)|dz| := A(z)o(z) |dz]

and wish to choose the auxiliary conformal metrie) |dz| such that
(3.2) hn}é o(z) =+4oc0 for¢ € OD\T and hmi?f o(z)>0foréeTl.

This ensures, in view of (3.1), thai(z) — +occ on the entire unit circle. On
the other hand, (3.2) implies that(z) is negative at least at some potgte D,
because otherwideg o is superharmonic ifd, which contradicts (3.2). Hence

(3.3) Co = — ;Iel]fD ke(z) > 0.

For the curvature of(z) |dz|, we find

ka(z) = = ra(z) | Rolz) o e Ko(2) o o _Co
a(2)? )‘(2)2_ o(z)2  Az2)?2 T o(2)? m3

In order to be able to apply Theorem 2.1, we need a lower bourtflis curvature.
In view of (3.3), we therefore require

me = inf o(z) > 0.
z€D

Thus we have

A C
KA(2) > —ea forep = —5 m—UQ,
o A

and Theorem 2.1 gives
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for z € D. The right side of the last inequality, however, is less than

which in turn is (even strictly) less than the boupd’),/c\, we want to establish;
see (1.2). To arrive at this desired bound, we would have tep# 0, which, as
we have seen above, is not possible because of (3.2).

We sidestep this problem by carefully choosing a sequencerdbrmal met-
ricso,,(2) |dz| with negative curvature, tending to0 and having the appropriate
boundary behavior (3.2). Each of these metsic&) |dz| is constructed as the so-
lution to a boundary value problem with degenerate Dirictitga for the Gaussian
curvature equation.

Theorem 3.1. Let I be a proper open subarc of the unit circle 9D such that
I#0Dandletk:D — [a, M],0 < a < M < oo, be alocally Holder continuous
function with exponent o, 0 < o < 1. Then thereisa C?-solutionu : D — R to

(3.4) Au=Fk(z)e* inD

such that

(3.5) lim u(z) {+oo for ¢ € OD\I
z=¢ 0 foréel

and

(3.6) liminfu(z) >0 if¢e T\I.

In the proof of Theorem 3.1, we make repeated use of the follpfacts about
the Gaussian curvature equation (3.4). We adopt standéatiorg soC(Q) is the
set of real-valued continuous functions on the@et C andC*() is the set of
real-valued functions having all derivatives of ordek continuous in the open set
QCC.

(CE1) (Comparison principle, see [13, Theorem 10.1])

If ui,us € C%2(D) N C(D) are two solutions to (3.4) and if, < u, on the
boundaryf? of a domain C I, thenu; < uy in Q. For this factk(z) > 0in
D would suffice.
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(CE2) LetQ C D be a regular domain with Green'’s functiogy,. If £ : D — R is
bounded and locally Blder continuous with exponeat0 < « < 1, andu is
a bounded and integrable function Qnthen

v(z) = —% //gg(z,()k(() 2 doe, zeQ,
Q

o denotes two-dimensional Lebesgue measure, belornggf N C(Q) and
v = 00ndN. If, in addition,u is locally Holder continuous with exponeft

0 < B <1, thenv € C?(Q) andAv = k(z)e** in Q (see [13, p. 53-54] and
[9, p. 241)).

Combining (CE1) and (CE2), we obtain

(CE3) Letk : D — R be bounded, non-negative and locallpltler continuous
with exponentr,0 < o < 1. If v : D — R is aC?-solution to (3.4) and.
is continuous on the closufeof a regular domai C D, then the integral
formula

(3.7) u(z) = h(z) — % // galz, ) k() o2u(C) do¢
Q

holds for every: € Q. Here,h is harmonic inQ and continuous o with
boundary values, i.e.,

hlpg = ulyq -
Conversely, ifu is a locally integrable and bounded function on a regular
domain C D satisfying (3.7) for some harmonic functignin  which

is continuous o, thenu belongs toC?(2) N C(2) and is a solution to
Au = k(z) e* in Q with h = v on 9.

We also need another refinement of Ahlfors’ Lemma, due to Dhddi[20],
which is provided in the next lemma.

Lemma 3.2. Let Q bea domain in the complex plane which carries a hyper-
bolic metric A(z) |dz| with constant curvature —a’ < 0. If v(z) |dz| is a conformal
pseudo-metricin Q and if for every point z, € Q either

(i) v(z0) < Az0)
or
(i) v(z0) > 0, visof class C? in a neighborhood U C Q of zp and k,(z) < —a’
forall z e U,

1we use the function-theoretic convention. Thus Green’stfan is always non-negative.
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thenv(z) < A(z) for every z € Q.

Proof of Theorem 3.1. Let us denote the two boundary pointsidfy e/~
ande’z, i.e.,I\I = {1, e¥2}, wheree’# is the right-hand endpoint dfande?#:
the left-hand endpoint (in counterclockwise direction)e Wéfine for each integer
n > 1 a continuous functiorf, : oD — R by

(i) fn=00n1,
(i) fn, =nonob\I,, where

Iyo=TU{e":te(pr— L p]fu{e’ i telps,pa+2)},

(i) fnislinearon{e® :te (o1 — 1, ¢1)} and{e : t € (2,02 + 1)},
see Figure 1.

- 1
€Z</ﬁ‘92‘+ﬁ>
el¥2
"""""" fn+1
I\ ] fn
D elP1
ei(w*%) — —
Y15 _ w2+ 5
= n
Figure 1.

The standard theory for non-linear elliptic PDEs guaras{eee [9, p. 286] or
[13, p. 250]) that there is a unique real-valued solutigre C?(D) N C (D) to the
boundary value problem

Au = k(z)e* in D
U= fn on oD.

We are going to show that the sequereg} converges inD to a C?-function
u : D — R, which is a solution to (3.4) and satisfies the boundary dardi (3.5)
and (3.6).

Since the boundary functiorfg form a monotonically increasing sequence on
oD, the comparison principle (CE1) shows that the correspandolutionsu,,
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also form a monotonically increasing sequenc®.inin addition,{w,} is locally
bounded irh. To see this, we need only note th#t(*) |dz| is a regular conformal
metric onD with curvature bounded above by: < 0. Thus Theorem 2.1 implies
thatu,, (z) < v(z) for everyz € D and every: > 1, wheree?(®) |dz| is the hyperbolic

metric onD with curvature—aq, i.e.,

(3.8) v(2) = log (% 1_71|Z|2> .

Hence{u,} converges monotonically i to a locally bounded and locally inte-
grable function: : D — R.

To show that: is C? in D and also a solution to (3.4), fix< o < 1 and let
Q) = K,(0).> We choose continuous functiohg : © — R which are harmonic in
Q and having boundary values. Then by (CE3),

Un(2) = hn(2) — % //gg(z,g) k() e ©Odos, 2€Q.
Q

Let

V = maxwv(z),
2€EQN

where the function is defined in (3.8). Then

1
hn(2) <V 4+ %MeQV //gg(z,g) doe < Ch;
Q

see [9, p. 241]. Thereforgh,} is a monotonically increasing and bounded
sequence of harmonic functions iy so Harnack's theorem shows tht, }
converges locally uniformly i2 to a harmonic functiork : Q — R. Thus, by
monotone convergence,

u(z) = h(z) — % //QQ(Z,C) k(¢) e2u(<) doec, z€.
Q

Sinceu is bounded and integrabledh (CE3) shows that is C? in Q and a solution
to Au = k(z)e?* there.

It remains to study the boundary behaviorofThis is easy fok off the arcr
but a little more subtle fof € I.

(i) Fix ¢ € 9D\I. By our choice of the subards, there exists an integé¥ such
that¢ ¢ I, for all n > N. To establish (3.5), assume to the contrary that we
canfind asequende;} ¢ D which convergest9and a constarit< Cy < oo

2We denote byk,.(zo) the euclidean disk about € C with radiusr > 0.
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suchthat(z;) < C,forall j. Now choose aninteget > max{N, C>}. Since
um(z;) — m asj — oo, there is an integef such thatu,,(z;) > C, for all
j > J. But then the monotonicity ofu,} yieldsu(z;) > C, for all j > J,
and the contradiction is apparent. Thus

lirré u(z) = 400

for every¢ € oD\, as desired.

(i) Pick¢ e I. Sincel is open,we canfingd 0 < ¢ < 1, such thaf . (£)noD C I.
In order to prove

hn% u(z) =0,

we first show thafu,} is bounded o), whereQ = K. »(£) N D. For that,
letv(z) |dz| be a conformal metric oi.(£) with constant curvaturea’ < 0,
where

a’ := min{a,4} >0
andv(z) > 1 for z € K.(¢). Recall thata denotes a lower bound of the
functionk. For example, we can choose

1
v(2) |dz| = ; |dz| .

a 2
6(1 4e2 [z ¢ )
For each integen. > 1, we consider the upper semicontinuous conformal
metric u,,(2) |dz| on K. () defined by

evn(2) forz e K.(6)ND
Nn(z) =
v(z) forze K.()\D.

We claim thatu,(z) < A(z), where\(z) |dz| denotes the hyperbolic metric
on K. (&) with constant curvatured’. This is a consequence of Lemma 3.2,
because

A

K (2) = Keun (2) = —k(2) < —a < —d’ forze K.(§)ND
and
pn(2) = v(z) < A(z) In K (§\D
(note that the latter inequality follows, for instance froheorem 2.1). Thus

un(2) < A(z) for z € K.(§) and alln, so

un(z) < maxlog A(z) =: Cs
zEQ
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for z € Q and alln.

As everyu,, is aC?-solution toAu = k(z)e?* in  and continuous ofY, we
can use once more the integral formuladgr that is,

(3.9) wﬁﬁ%W—éﬂ%@omMM%@,wﬁ
Q

whereh,, is harmonic in2 and continuous of with boundary values,,. In
particular,{h, } is bounded o andh,, = 0 on~ := QN oD for every integer
n > 1. Lettingn — oo in (3.9) yields

w@:ﬂ@—%//mwoMOﬁ“wq
Q

for z € Q, where
h= lim h,

n—oo

is a harmonic function of. In view of (CE2), it remains to verify

(3.10) lim h(z) =0

z—&

in order to prOVGirré u(z) = 0.

To justify (3.10), we reflect each,, acrossy and call the resulting new
harmonic functionHd,,. Then{H,} is a bounded sequence of harmonic
functions in a domairG containingQ U v. Obviously, {H,} converges
locally uniformly in G to a harmonic functio? which vanishes on. Since
H|, = h, we get (3.10) as required.

(iii) Lastly, by construction,
liminfu(z) >0

z—&

for ¢ e I\I. O

Proof of Theorem 1.4. We first prove Theorem 1.4 under the additional
assumption that

my := inf A(z) > 0.
2€D

Fix & € T and letl be an open subarc dfsuch that, € I, T c I" andI # oD.
Then by Theorem 3.1, there exists a sequenegz) |[dz| }, » > 1, of regular
conformal metrics i) with
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() ko, =—1/n,
for OD\T
(i) lim o (z) = 4 0 Tore € am
z=¢ 1 forcerl
and
(iii) hmi?f on(z)>1 for £ € I\I.
To show that

My, = inf o,(z) > 0,
z€D

we consider or) the metric

2y (Vn+1-+/n)
pn(2) |dz| = 2
L= (Vi T = ) 22

which has constant curvature /n and boundary values 1. Furtheru, (z) attains
its minimum valuen,,, atz =0, i.e.,

|dz]

(3.11) My, = 2V/n (Vn+1—/n) .

According to the comparison principle, > u.,, in D, so

Mg, 2 m/"fn .

In addition,

(3.12) lim m,, =1

n—oo

by (3.11) and the fact that,, < 1.

We now define the conformal metrias (z) |dz| by
An(2) :i= Az) on(2).
By construction, each,,(z) |dz| fulfills the hypotheses of Theorem 2.1, i.e.,

11
lim A,(z) =400 and ky, (z) > — (77:; + - m_i) .

|z|—1 on

Thus we obtain
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for everyz € D. Consequently, we have

A v C
lim inf (Z)z r My, , Nn=12,...,
z—&o M(z) 1 mg
or+ = 2
n m;5

and the desired conclusion follows by letting— co and taking condition (3.12)
into account.

We now turn to the general case of Theorem 1.4. Fix a pirt I'. Since
Az) — +ocasz — &, thereis an open subartof I' with &, € T andl” C oD and a
Dini smooth Jordan domaiiiy C I such thal’ = 9GNID C T, A(z) > ¢; in G for
some positive constant > 0 andk(z) > —c, for z € G as well asz,(z) < -C,
for z € G. Let ¥ be a conformal map fror® ontoG. Then¥ : D — G extends
to a homeomorphism of the closur@sand G, which we continue to denote by
U. We also note that’ has a continuous and non-vanishing extensiah, tagain
denoted byd’ (see [21]). Thus there are positive constantendc; such that
c3 > |/ (2)| > c2 > 0 for all z € D. Next we pull back the pseudo-metritg&) |dz|
andu(z) |dz| via z = ¥(u) to the pseudo-metrio®*\)(u) |du| and (U*u)(u) |dul,
respectively, o). These new pseudo-metrics have the properties

(i) (T*X)(u) >c1-c2>0iInD;
(i) kgr(z) > —cyforze
and
(i) ky-p(z) < —C, forz e D.
Thus we are exactly in the situation of the special case obrdrma 1.4 which we
have considered above in the first part of the proof, so

A M) V) [T
it 5 = e 2V o

Remark 3.3. The above proof can easily be modified to give a short (and
elementary) proof of the implication “(a (b)” of Theorem 1.1. Indeed, if
A(z) |dz| is a regular conformal pseudo-metriclirwith curvature bounded below
such that\(z) — +oo for z — & € T, whereT is a proper open subarc o,
then we may again assume thdt) > ¢ > 0 in D for somec > 0. Further, we
can suppose without loss of generality tias a proper open subarc 6 with
T#0D, T D{e?: —7m/2<¢<7/2}and

limsup A(z) < +oo  forevery¢ € OD\T .

z—&

3See [21].
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Fix a point¢, € I'. Then, in view of our extra assumptions, we can find a point
wo € dD such that
(1) limsup A(woz) < +o0, and

z—&o

(i) gn% AMz)Mwpz) = +oo for every¢ € OD.
Thus the curvature of the conformal metric
A(2) |dz] = Mz) Mwoz) |dz]
is bounded below by some constant, and we can apply Theorkto 2(z) |dz|
andp(z) |dz|. This gives

lim inf Alz)
a=b pu(2)

A(2) .. A(2) 1

lim inf —< = lim inf
0 e T G Meor)

>0,

SO

4 Theorem 1.1: Proof, extension and further discussion

In view of Remark 1.2 and Remark 1.3, we are left to prove thplization
“(b) = (d)”in Theorem 1.1. We break up the proof into the followimgptlernmas.

Lemma4.1l. Let f : D — D be a holomorphic function with f(0) = 0 and let
I" be an open subarc of the unit circle oM. If

[f'(2)

. . _ 2 _ W=
4.1) lllzn_}?f (1—127) BIE >0
for every ¢ € T, then the meromor phic function
_ z2['(2)
0=

has a meromor phic extension to a neighborhood of I, whichisreal on T.

Proof. Since we assumg(0) = 0, we have f(z)| < |z| by Schwarz’ Lemma.
As a consequence, (4.1) implies
f') 1-1f(x)1?
1=[fz)? 1—-|z

>1

forevery¢ € I'. Thus, forfixed, € I, there is a constahat> 0 such thatf’(z)| > ¢
for all z € D sufficiently close t@, say for all¢ e DN K. (&), whereK. (&) is the
open disk aroung, with radiuss > 0. This implies that the meromorphic function

o= s

1imi§1f lf'(2)| = limi?f (1-12%) >0
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is in fact holomorphic and boundedihn K. (). We are going to show tha( z)
has a holomorphic extension to the di&k(&,), which is real ol N K.(&).
Pick a point; € T'nN K.(&). There are two cases to be considered:

(4.2) lim inf 1= /) = +o00
z—&1 1-— |Z|

and

(4.3) lim inf 1= /) < +o0.

Z—>£1 1 - |Z|
If (4.2) holds, then

L 1@ 1@
=GR 1=l 1+ ’

liminf [f'(z)| = liminf (1 — |2|?)
2—E€71 z—&1

whereas for the case (4.3), the Julia—Wolff-Cagatfory lemma (see for instance
[25]) applies and shows that the angular limits

Z lim f(z) =: f(&) € 0D, ézlirrgll fl(z)=:f(&4)eC

z—&1

exist and that

&1 f' (&)

f(&)

Thus, in any case, the bounded holomorphic functiof N K. (&) — C has for
everyé € I'n K. (&) an angular limith(&1) with Im 2(&1) = 0. From the classical

Schwarz—Carattodory reflection principle (see, for instance, [17, p. 8

conclude thak has a holomorphic extension & (&), which is real o’ N K. (&).

O

€[l,400).

We are now in a position to prove the implication “@)(d)” in Theorem 1.1.

Lemma4.2. Let f : D — D be a holomorphic function and let T" be an open
subarc of the unit circle oD. If

bin (1 — 2) /G
(4.4) lzﬂgf(l 121%) TR

for every ¢ € T, then f has an analytic extension acrossT" and
lim [f(2)] = 1

for every ¢ € T.
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Proof. Since
1/'(2)]
1—|z)?) ———~——
U TG
is invariant under pre- and postcomposition with conforemgbmorphisms o,
we may assumé(0) = 0. Therefore, by Lemma 4.1,

2 f'(2)
f(2)

has ameromorphic extension to a neighborhood Bf which is real orT.

(4.5) 9(z) ==

(a) First we show thag has in fact eholomorphic extension ta’. Suppose
to the contrary thay has a pole of ordeN > 1 at a point¢ € T'. We may take,
without loss of generality, = —1. Thus

(4.6) 9(2) =

9(1/z) =g(z) onT,

SO

h(1/z) = —+ onT.

In particular,h(—1) = (-=1)Vh(-1), that is,

M) < {R\{O} if Nis even
iR\ {0} if Nisodd.

Solving the ODE (4.5) forf, we have inD_ := {z € D: Rez < 0}

() =exp (/#du)

— _h(_l) C2 CN—-1
_eXp(a TSI e S Gy v T Ry el SR g g

—|—cN10g(1+z)+---),

wherez, is a point inD_ near—1 andlog is the principal branch of the logarithm.
In order to exclude the possibility thathas a pole at = —1, we distinguish
between the three cases:> 2 even,N > 3 odd, andV = 1.
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(i) N > 2even. We approach= —1 radially to arrive at a contradiction.

Sinceh(—1) € R\{0} in this case, we find fat in the interval(—1,0)

—h(~1)
1-N)(1+a)N T

|f($)|=eXp( +---+Re(cN)1n(1+a;)+...),

so that

) +oo  ifA(=1)>0
lim [f(z)] = .
e==1 0 if h(—1) < 0.

Both possibilities contradict our assumptions. h{f-1) > 0, then the as-
sumptionf (D) c D is contradicted. Ih(—1) < 0, then|f(x)] — 0 asx — —1
implies|f’(z)| — 0 asz — —1, which contradicts (4.4).

(i) N >3 odd. We let: tend to—1 on a suitable ray.
Choose) := ¢7/2(N=1) and set,, = —1 +rn forr € (0,1). Then

ih(—1)

|f(¢r)| = exp <W

+---+Re(chog(m))+---),

becausé(—1) € iR\{0}. Thus

lim |(G:)| =

Yoo if (=i)-h(=1)>0
0 if (—i)-h(~1)<0.

As before, we conclude that neither case is possible.

(iiiy N =1. We approach = —1 on a certain horocycle.

Here, the functiory takes the form

f(2) = exp (—iylog (1 + 2)) - exph(2),
wherey = —i h(—1) € R\{0} and? is a holomorphic function in a neighbor-
hood ofz = —1. Hence
[F(2)] = exp (yarg(1 + 2))exp (Reh(2)) .

This, combined withf (D) c D, implies that

Let

, Cm =T} ify >0
z¢:—%+%el¢ With(be{(ﬂ IR
(



A BOUNDARY VERSION OF AHLFORS' LEMMA 243

If v > 0, then using

T
lim zs)| < e (— —)<1
Jim (7)) < exp (=75

gives
/
liminf(1 — |ze|? _ o)l
qaﬂ_ﬁ( | ¢| )1 — |f(z¢)|2
1= |22 PG| = iv (1 20) + (14 29)* (29)
= liminf 5 ~

=0.
If v <0, then
™
i < — 1:
lim [/(0)] < exp (75 ) <1
and we obtain as before

PGl
T /G

Thus both possibilities contradict (4.4).

liéninf(l —|z4]%)

All in all, we conclude thay is holomorphic at = —1.

(b) In part (a), we proved thatis holomorphic in a neighborhood of every
point¢ € T. Thus, as a solution of the complex ORE= (¢4(z)/z)y, the func-
tion f has also a holomorphic extension to a neighborhood.ofn particular,
lim,_¢ |f(2)| =: q € [0,1] exists. Ifg < 1, then (4.4) would be violated, sohas to
be equal td. O

In order to highlight that Theorem 1.1 is for the most partaeshent about
conformal metrics, we nhow combine it with the boundary Ahdfbemma to prove
the following generalization of the statements “éa) (c) < (e)” of Theorem 1.1.
This shows that one may replace the Poidaaetric\p(z) |dz| in Theorem 1.1 by
more general conformal pseudo-metrics.

Theorem 4.3. LetI" bean opensubarcof theunit circledD, letw = f(z) bean
analytic self-map of the unit disk D and let ;(2) |dz| be a conformal pseudo-metric
on the unit disk D with curvature x,, < —C,, for some positive constant C,, and

lim p(2) = 400

z—&

for every ¢ € T'. Then the following conditions are equivalent.
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(a’) Thereexistsaregular conformal pseudo-metric A(z) |dz| on D with curvature
K satisfying —cy < k) < —C, for positive constants ¢, and C) such that

lim A((2)) [1(2)] = +oo

for every¢ eT.
(c’) Thereexistsaregular conformal pseudo-metric A(z) |dz| on D with curvature
K Satisfying —cy < k) < —C, for positive constants ¢, and C) such that

i ATCIIG) [
2 ¢ w(z) cx

for every¢ €T

(e") Thefunction f has a holomor phic extension across the boundary arc T" with
f(T) c om.

Proof. (a’)=-(c’) This is the boundary Ahlfors Lemma (Theorem 1.4).
(c) =(e’) Just note that Theorem 2.1 gives

Ap(z) > \/?/\(Z) .

So the fact thati(z) — +o00 asz — £ € T implies

. ’ C)\ . /
lim A (f (2)) [/°(2)] = \/; lim A(f(2)) IS (2)] = +o0,

and (e’) follows from Theorem 1.1.
(e’) =(a’) Choose\(z) |dz| = An(z) |dz| and apply Theorem 1.1 “(e)(a)”. O
We close this section with a discussion of two examples widietmonstrate
that Theorem 1.1 does not hold in general, when th&asduces to a singleton.

Example 4.4. The holomorphic functiorf : D — D with
_ Vv1i—2z
CVI—z+V1+2

obviously has no analytic extension to any neighborhood ef 1. However,
condition (a) of Theorem 1.1 is satisfiedzat 1, since

f(2)

lirri|f'(z)| =+oc0 and 11rq|f(z)| =0.

Hence, the implications “(a&)(e)” and “(a)=-(d)” both fail if T is a single point.
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Example 4.5. The functionf : D — D defined by

whereT'(z) = (1+2)/(1-z), fulfills condition (d) of Theorem 1.1 at= 1 although
it has no holomorphic extension to any neighborhood ef 1. Further,f meets
condition (a) of Theorem 1.1; but it does not satisfy cowdit{b), since for the
points

1 1 .
= — —e'?
Zy 5 + 26 R
we have el
lim (1 — |2,[2)—L 2l
P VTR
In particular,
/
liminf(1 — |2|? M:O.
it = TR

Thus the implications “(d-(b)”, “(a)=-(b)” and “(d)=(e)” of Theorem 1.1 are
no longer true if" consists of a single point.

5 Locally complete conformal metrics on smoothly
bounded domains

In this section, we extend the boundary Ahlfors Lemma (Tapot.4) to domains
Q in the complex plane whose boundary contains a sufficientiyath subser.
As we shall see, this generalization is closely linked wéthvéry special case of) a
boundary Schwarz Lemma due to Bland [3], in which so-caleally complete
metrics play an importantte. Our extended boundary Ahlfors Lemma might be
considered as a converse of Bland’s boundary Schwarz Ler@wmiabining both
yields a characterization of locally complete conformatngs A(z) |dz| on smooth
domains in terms of the boundary behavior of the density

Let us begin with defining what we mean by a smooth boundargetuif a
domain in the complex plane. We call a Jordan dondaiine., a domain bounded
by a Jordan curve i) smooth, if there is a conformal mapfrom D onto G
such that¢’| extends continuously toD with |¢'| # 0 on oD. By Caratleodory’s
extension theorem, this conformal mapextends to a homeomorphism of the
closuresD andG. Examples of smooth Jordan domains are given by domains
bounded by a Dini-smooth Jordan curve; see [21, Theorem 3.5]

Definition 5.1. Let Q2 be a subdomain of the complex plaBie A subsefl
of the boundary of2 is calledsmooth, if for every point¢ € T' there exists a
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smooth Jordan domaii C © and an open neighborhodd C C of ¢ such that
e dGNUCT.

We can now state the following generalization of Theorem 1.4

Theorem 5.1 (Boundary Ahlfors Lemma for smooth boundary setisgt
Q C C be a domain and let ' be a smooth subset of 9Q. Further, let A(z) |dz|
be a regular conformal pseudo-metric on Q with k) > —c,, and let u(z) |[dz| be a
conformal pseudo-metric on Q with x, < —C, for some positive constants c, and
C,. If
(5.1) lim A\(z) = 400

z—€

for every ¢ €T, then

(5.2) lim inf Mz) > Cu
z—E /.L(Z) C)\

for every ¢ € T'. In particular,

(5.3) lirré dx(z0,2) = 400

for every ¢ € T and every point z; € Q.

Proof. Pick a point¢, € I'. Then there exists a neighborhotdC C of &,
and a smooth Jordan domath C Q such that{, € GNU CT. Let¢ be a
homeomorphism frond onto G, conformal inD, such that¢’| is continuous and
nonvanishing ordD. Let &, = ¢~1(&). Then there is an open subdrcC oD
such thatp(I’) € 0GNU C I'. We can apply Theorem 1.4 to the pullbacks

¢ p(w) |dul = p(d(w)) [¢' (u)| |du| and@*A(u) |du| = A(¢(u)) |¢' (u)| |du| since
() Kgep(u) = ru(d(u)) < =Cy,

(i) Kgx(u) = rr(d(u)) = —c,
and

(iii) lin%/ d*Mu) = lin%, Mp(u)) |9 (u)] = 400 for everye’ eI
in view of |¢'(¢')] > 0 for each¢’ € T. Thus

A AW 6w [Ca
S e TR ) ] R ) TV o

for every¢, € I. This estimate easily implies (5.3) for evegye T' and every
z0 € Q. In fact, fix a point§, € I' and a pointzg € Q. As I' is smooth, there
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is a point§; € I'\ {&}. Now letu(z) |dz| be the hyperbolic metric of the twice-
punctured plan€” := C\ {&, &1 }. Thusu(z) |dz| has constant curvaturet and is
complete orC”’. Lete := min{|{o — &1, |20 — &o|} > 0. ThenK (&) \ {&} € C” and

20 € K:(&). After shrinkinge > 0 if necessary, estimate (5.2) yields the inequality
A(z) > cu(z) for everyz € K (&) N and some constant> 0. Thus

da(z,20) > - ‘ nglrll dy(w,z) (2€ K (6)NQ).
w—go|=¢€
Sinceu(z) |dz| is complete inC \ {&o, &1}, we infer thatdy (z, zp) — 400 asz — &
in Q. O

When Q is a smooth domain, so the entire boundary= 99 is a smooth
boundary set, aniz) |dz| is aregular conformal metric di, Theorem 5.1 implies
that\(z) |dz| is complete o). This is a consequence of the Hopf—Rinow theorem,
which ensures that a conformal methi¢:) |dz| on a domairn is complete if and
only if (5.3) holds for every € 99 and some (and then for every) poiate Q.
The latter characterization of complete conformal meiricerms of the boundary
behavior of the associated distance functigrcan be localized quite easily.

Definition 5.2 (cf. [3]). A conformal pseudo-metrig(z) |dz| on a domain
Q c Cis calledlocally complete near a subset T of the boundary of? if

(5.4) hn%d)\(z,zo) = +o00

for every¢ € T' and some (and then for every) poigte Q.

According to this definition, Theorem 5.1 simply says thatsayzo-metric
A(z) |dz| whose density(z) blows up at a boundary sEtin the sense of condition
(5.1) is locally complete ne&rprovided the curvature of(z) |dz| is bounded below
and the boundary sét is smooth. The curvature condition cannot be dropped
completely, as Example 2.3 shows. Moreover, one also nesds assumptions
on the boundary sé&t. This is illustrated with the next example, which shows that
rough boundary subselfssuch as isolated points lack sufficient ‘influence’ on the
speed at which the pseudo-metric tends-to atT'.

Example 5.2. Consider on the punctured unit diBk{0} the metric\(z) |dz|

with
V1I+]z[13 1

Az) = |Z|5/6 1— |22 :

Then (5.1) holds for every € 9D U {0}, but\(z) |dz| is clearly not complete near
z =0. Note that-2 < k,(z) < —1/18 for z € D\{0}.
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What about the converse of Theorem 5.1? Does the dexgityof a regular
conformal metric\(z) |dz| which is locally complete at a subgebf the boundary
tend to+oco atI" ? Without a lower bound on the curvature)gt) |dz| the answer
is no, even for real analytic boundary sets.

Example 5.3. The metric

1 . 1
A(z) |dz| = exp [1 m_—p <sm =T + 1> +1-— |z|] |dz|

is complete o), but condition (5.1) clearly does not hold. To check conggiess,
we observe that a routine calculation shows that

T

/)\(z) |dz| = —log(1 —7) (r—1),

0

so that d(0, z) — +o0 as|z| — 1. The curvature of the metrig(z) |dz| is bounded
from above but not from below on the unit disk.

However, if a regular conformal metrig(z) |dz| is locally complete near a
smooth boundary sét and has curvature bounded from below, then the density
A(z) indeed blows up ar, i.e., condition (5.1) holds for every € T'. As we
see in Corollary 5.6 below, this is a straightforward consagre of the following
boundary Schwarz Lemma of Bland, see [3], which therefoghirtbe viewed as
a counterpart to Theorem 5.1.

Theorem 5.4 (Bland’s boundary Schwarz Lemmalet Q € C be a domain
and let I be a smooth subset of 9. Further, let A\(z) |dz| be a regular conformal
metric on Q with k) > —c,, andlet u(z) |dz| bearegular conformal pseudo-metric
on Q with x,, < —C,, for some positive constants ¢, and C,,. If A(z) |dz| islocally
complete near T', then

for every ¢ € T.

Remark 5.5. Theorem 5.4 is just a very special case of Bland’s boundary
Schwarz Lemma (which in its original form applies to highéneénsional situ-
ations). Note that Bland’s boundary Schwarz Lemma is foateal for regular
conformal metrics\(z) |[dz| and regular conformal pseudo-metrigs) |dz|, while
in Theorem 5.1)(z) |dz| is a regular conformal pseudo-metric and the regularity
of u(z) |dz| is of no importance.
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By now, we have in hand enough technology to establish thefoig charac-
terization of locally complete regular conformal metrindeérms of the boundary
behavior of their density functions femooth boundary sets.

Corollary 5.6. Let @ C C be a domain, let ' be a smooth subset of 92 and
let A(z) |dz| be a regular conformal metric on 2 with x, > —c, for some positive
constant c,. Then the following are equivalent:

(@) \(z) |dz| islocally complete near T

(b) lin% Az) = oo for every £ € T.

Proof. The domaimn has at least two boundary points, since it has a smooth
boundary sef’. Thus(Q carries a complete regular conformal metkig(z) |dz|
with constant negative curvature. Theorem 5.1 applied(t0|dz| := Aq(z) |dz]
yields implication “(b)=- (a)”. The converse implication follows from Theorem
5.4 applied tqu(z) |[dz| = Aq(2) |dz|, using the well-known fact that,(z) — +oo
asz — ¢ for every¢ € 09 (see, for instance, [14]). O

Problem 5.7. What are the minimal regularity conditions on the boundary
set I' such that the two conditions (a) and (b) in Corollary 5.6 are still equivalent ?

6 Reflection principlesfor analytic maps between
Riemann surfaces

In this final section, we extend Theorem 1.1 to analytic magisvéen Riemann
surfaces.

We say a Riemann surfaéehas analytic boundary if it sits inside a compact
bordered Riemann surfad& with borderdR’ # () such thatR = R’ \ 9R’. In
this case,kR’ and9R’ are uniquely determined bg. We call 9R’ the analytic
boundary ofk and denote it bpR. ThenR U dR is a compact bordered Riemann
surface. Notice thalR is a (not necessarily connected) real analytic manifold of
(real) dimensioni. Now let f : D — R be an analytic map. We say thahas an
analytic extension across an open suliaof oD with f(I") C JR, if there exists
an analytic mag defined on a neighborhodd C C of T', which maps into the
Schottky doubleR = RUOR U R* such thatF(I') C 9RandF = finDNU. Here
R* denotes the mirror oR.

Theorem 6.1. Let " be an open subarc of 9, let R be a simply connected
Riemann surface with analytic boundary dR, let A(w) |dw| be a complete regular
conformal metric on R with curvature—c, < k) < —C), for some positive constants
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cyandCy,andlet f : D — R beananalytic map. Then f hasan analytic extension
acrossT" with f(I') ¢ OR if and only if

(6.1) i A(f(2)) 11" (2)] = o0
for every ¢ € T.

Remarks 6.2.
(a) Note that\(f(2))|f'(z)| is the density of the pullback of the metri¢w) |dw|
under the mag, so f*\(z) |[dz| = A(f(2)) |f'(2)||dz| is a conformal pseudo-
metric onD and therefore a well-defined function &n

(b) For the only if part of Theorem 6.1, it suffices to assuna Mw) |dw| is a
complete regular conformal metric with curvature boundeldw. However,
these assumptions cannot be weakened further. For instakesk = D,
AMw) |[dw| = |dw| and any function holomorphic in a neighborhood of a point
of the unit circle. Then\(w) |dw| is not complete o and has curvature
but (6.1) does not hold. Fdt = D, A(w) |dw| as in Example 5.3 anfl = id,
the metric\(w) |dw| is complete or, but the curvature of(w) |dw| is not
bounded below and the boundary condition (6.1) does not hold

(c) Forthe if part, it is enough thdt carry a conformal pseudo-metricw) |dw|
on R with curvature bounded above by a negative constant.

(d) In Theorem 6.1, it is essential thAtbe simply connected, as the following
example shows. LeR be the annulugz € C : e7! < |z| < 1} and let
A(w) |dw| be the hyperbolic metric oR. Then

F(2) = exp (%bg (ﬁfj))

defines a universal coveringm@p D — R, SOA(f(2)) |f'(z)| = Ap(z). Thus
(6.1) holds for every € 9D, but f cannot be continued analytically across
0D, asf does not even have a continuous extension to the peint.

For the proof of Theorem 6.1, we need the following lemma,clwlseems
rather obvious at first glance. Since we have no exact referand the argument
contains a subtlety, we include the proof.

Lemma 6.3. Let R be a simply connected Riemann surface with analytic
boundary OR # (. Then R is hyperbolic and there is a conformal map = from D
onto R, which has an analytic extension to a conformal map of a neighborhood of
D such that 7(0D) = OR.
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Proof. Let R = RU JR U R* denote the Schottky double dt and let
mr : X — R be a universal cover projection, wheke= D, C or the Riemann
sphereC. The Schottky doubl& is a compact Riemann surface without border.
It is easy to check thar is also simply connected. Indeed, le§ € R be an
arbitrary point and fix, € X such thatrz (z9) = wy. Then there exists a brangh
of the inverse ofrgz on the simply connected domaihc R such thaty(wy) = 2o
andrr og = id|R. As OR is compactg has an analytic extension to an open set
containingRUdR. SinceR* is simply connected, this implies thahas an analytic
continuation toR. The fact thay(R) is open and compact yields that= C, i.e.,
g(R) = C, soR is a simply connected compact surface apds a conformal map.
LetD = n5'(R). ThenD is a simply connected domain dhanddD is a compact
and real analytic one dimensional submanifold’ofThe topology of the sphef@
also force®) D to be also connected. Therefodd) is real analytic homeomorphic
to the unit circle. This seems obvious, but is surprisingffiallt to prove (see,
for instance, [18, Theorem 1]). Consequenihis bounded by an analytic Jordan
curve, and there is a conformal m&mlefined on a neighborhood Bfwhich maps
D onto D anddD homeomorphically ontéD. Finally, 7 := n¢ o ¥ is a conformal
map defined on a neighborhoodkuch thatr (D) = JR. O

Proof of Theorem 6.1. Letr: D — R be the conformal map of Lemma6.3.
We pull the metric\(w) |dw| back to the unit disk using = 7 (u) and get aomplete
regular conformal metric

v(u) |du] == 7*Mw) |du| = XMw(w)) |7 (u)]|du| .
Sincekx, > —c,, Corollary 5.6 implies

lim v(u) = +o0.

Ju|—1

Define a holomorphic functiop: D — D by g(z) := (7= o f)(z). Then

(6.2) AFED () =v(g(2)lg' ()] (2 € D).

We now prove the only if part of Theorem 6.1 and therefore mesthat
f : D — R has an analytic continuation acroBswith f(I') C 9R. Then, by
Lemma 6.3y : D — D also has an analytic extension acrbssith ¢(T') c dD. In
particular,g’ # 0 onT andv(g(z)) — +o00 asz — I', which combined with (6.2)
gives (6.1).

In order to establish the if part of Theorem 6.1, we assume fthad — R
satisfies the boundary condition (6.1). Then, in view of 82 have

lim 1(g(2)) |g'(2)] = 400
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for every¢ € T'. The curvature conditior, < —C, < 0 makes it possible to
apply Theorem 2.1, which shows< ¢ \p for some constant > 0. Therefore
Ap(g(2)) g’ (2)] — +o00 OnT. In view of Theorem 1.1 this forcegto have an
analytic extension acrod§ so f = w o ¢ has an analytic extension acrdsdy
Lemma 6.3. O

In the next step we replace the unit diBkn Theorem 6.1 by the ‘interior
of a bordered Riemann surfae= S, U9S. For this purpose, we first clarify what
(6.1) means for an analytic map betwegrandR.

Remark 6.4. LetS = S,UdS be abordered Riemann surface anc\(e) |dz|
be a pseudo-metric ofy. Further, lef{y, : U, — C} be the family of charts of
and let\, (u) |du| be the pseudo-metriqz) |dz| in the local parameter, restricted
to Sy. Then, if¢ € 95 belongs ta/, and

lirré Aa(pa(2)) = +o0,

then
lim Aa (o (2)) = +o0

for any other charp,. with ¢ € U,.. This enables us to say that a pseudo-metric
tends to+oo at a point of the bordewS, and we write\(z) |[dz| — +oo asz — &
in this case.

Taking the preceding remark into account, we see from thefmTheorem
6.1 that the complete regular conformal meti@) |dw| in Theorem 6.1 can be
replaced by a regular conformal pseudo-metric satisfhiQg) |dw| — +oco as
w — OR. We are now in a position to generalize Theorem 6.1 in thereesi
direction.

Theorem 6.5. Let S = Sy U 0S5 be a bordered Riemann surface; let R be a
simply connected Riemann surface with analytic boundary OR; let A(w) |[dw| be a
regular conformal pseudo-metric A(w) |dw| on R with curvature bounded below
and above by negative constants —c, and —C,, respectively, and

lim \(w) |[dw| = 400

w—T

for every 7 € OR; and let f : Sy — R be an analytic map. If & is a point of the
border of S, then the following statements are equivalent.

(i) f has an analytic continuation to a neighborhood U of &, in the Schottky
double S such that f(U N aS) C OR.



A BOUNDARY VERSION OF AHLFORS' LEMMA 253

(i) Thereisaneighborhood U C S of &, such that
lim A(f(2)) |f'(2)ldz| = +o0

for every point ¢ € U N 9S.

Proof. (i)=-(ii): Let f have an analytic continuation to a neighborh@bdf
& in S. We may assum¥ lies in a parameter neighborhobdd U U’ of S. Then
there exists a simply connected doma&irin U with & € V such that’ ¢ U and
a local parametep,, : U, UU} — C, $o(2) = u, such thatp,(V N Sy) = D. Let
I' .=V naoSandl := ¢,(I"). ThenI is an open subarc @D, and the function
f:=fo¢z!: D — R has an analytic continuation acrdssBy Theorem 6.1,
lim A(f (w)) | f'(u)| = +00

u—n

for everyn € I, so
lim A(f(2)) |f'(2)l1dz| = +o0

for every¢ e T.

(i)=(i): Maintaining the same notation as in the proof of “§)(ii)”", we see
that

i A(F(2) 1) ld] = +00

for every¢ e T gives
tim A(f(u)) [ £ (u)] = +00

u—n

for everyy € I. By Theorem 6.1, the functiofi has an analytic extension across
I. Thusf = ¢, o f has an analytic continuation acrdssind consequently to a
whole neighborhood of;. O

Our next result is a global extension of Theorem 6.5.

Corollary 6.6. Let S and R be simply connected Riemann surfaces with
analytic boundaries 0S and 9R, respectively; let I' be an open and connected
subset of 9S; and let R carry a complete regular conformal metric \(w) |dw|
with curvature bounded below and above by negative constants —c, and —C),
respectively. Further, let f : S — R be an analytic map. Then the following
conditions are equivalent.

(i) f hasananalytic extension acrossT" suchthat f(T') C 9R.
(i) For every¢ eT,
limn A(F(2)) | (2)] Jdz] = +oo.
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(i) 1f u(z)|dz| is a conformal pseudo-metric on S whose curvature is bounded
from above by a negative constant —C,, and

hn% w(z)|dz| = +o0
for every ¢ €T, then
(6.3) lim i?f AUz

for every¢inT.

Note that\(f(2)) | f'(2)|/u(z) in (6.3) is the quotient of two conformal pseudo-
metrics onS. Sincepu(z)|dz| — 400 asz — T, this quotient is therefore a
well-defined function on the surfaceat least near.

Proof. Letng : D — S, 2 = ws(u), andng : D — R, w = wr(v), be the
conformal maps described in Lemma 6.3 and letr3 ' (T') C 9D. Further, define
the analytic mag : D — S by g = f o mg and the holomorphic functiol: D — D
byh=ng5"ofors.

(iy=(ii): Supposef has an analytic extension acr@ssith f(T') C OR. Thenby
Lemma 6.3, the function has an analytic extension acrdsas well, so Theorem
6.1 applied to the analytic mapyields

lim A(g(u)) |g'(u)| = +o00

u—nmn

for everyn € I. This implies
lim A(f(2)) [f'(2)] ldz| = +o0

for every¢ e T.

(if) = (iii): Let p(2) |dz| be a conformal pseudo-metric Siwith curvatures,, <
—Cy, < 0. Pulling backu(z) |dz| viarg, i.e., (7§ 1) (w) |du] = p(ms(w)) |7 (w)| |dul,
gives a pseudo-metric dnwith curvature: , < —C,,. From Theorem 1.4 follows

!
lim inf 7)\@(2')) |/(2)] = liminf —*———+ —
z—¢ w(z) u—rgl(e) e p(u) x
for every¢ e T.

(iify =(i): Define onD the regular conformal metric, A(v) := A(7r(v)) |7 (v)|
with curvaturei.; » > —cx. Note thatry, A\(h(u)) |1/ (u)| = AMg(u)) |¢' (u)| foru € D.
Hence, by assumption,

T A(h(w)) [P (u)]

lim inf =& ﬂ

>
u—1 7§ p(w) e
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for everyn € I. Since
lim 75 p(u) = 400

u—nmn

for everyn € I, we obtain in view of Theorem 2.1

lim Ap(h(u)) A/ (u)] > @.5@7 TRA(h(w)) [B (u)] = +o00

u—n

for everyn € I. Now h has an analytic extension acrassvith 4(1) C oD by
Theorem 1.1. Consequently, Lemma 6.3 gives jhats an analytic extension
acrosgd” with f(I') C JR. O

We conclude this paper by noting that the characterizatidooally complete
regular conformal metrics in terms of the boundary behawiothe density in
Corollary 5.6 carries over to Riemann surfaces. We limitselues to stating the
result for bordered Riemann surfaces and omit the proofchvis similar to that
of Corollary 5.6.

Proposition 6.7. Let S = Sy U 89S be a bordered Riemann surface, let T
be an open connected subset of the border 95 and let A(z)|dz| be a regular
conformal metric on Sy with curvature bounded from below. Then the following
are equivalent:

(@) \(z)|dz] — +ocasz — Efor every € € T
(b) A(2) |dz| islocally complete near T, i.e., for any z;, € S and for every ¢ € T,

lim dy(z,20) = +00.

z—&
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