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Abstract. A boundary version of Ahlfors’ Lemma is established and usedto
show that the classical Schwarz–Carathéodory reflection principle for holomorphic
functions has a purely conformal geometric formulation in terms of Riemannian
metrics. This conformally invariant reflection principle generalizes naturally to
analytic maps between Riemann surfaces and contains among other results a char-
acterization of finite Blaschke products due to M. Heins.

1 Introduction

In this paper, we show that the classical Schwarz–Carathéodory reflection principle
for holomorphic functions can be stated in a conformally invariant way exclusively
in terms of conformal Riemannian metrics. As some applications of this confor-
mally invariant reflection principle, we obtain

(i) sharper and localized versions of Heins’ characterization of finite Blaschke
products [15];

(ii) the limiting case of a hyperbolic reflection principle due to Fournier and
Ruscheweyh [10, 11];

and

(iii) an extension of the Schwarz–Carathéodory reflection principle for analytic
maps between Riemann surfaces, which complements the results of [22].

The proofs of these results use a mixture of methods from classical function
theory and nonlinear elliptic PDE. A basic ingredient of ourapproach is a boundary
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version of the ubiquitous Ahlfors Lemma [1, 5, 8] (see Theorem 1.4 below), which
might be of interest in its own right. This “boundary AhlforsLemma” applies to
locally complete conformal Riemannian metrics. It is related to work of Yau [26]
and Bland [3] in higher dimensional complex differential geometry and previous
work on the Gaussian curvature equation∆u = −κ(z) e2u; see, for instance, [2, 4].
However, although we discuss these connections in some detail, the emphasis of
the present paper is on function-theoretic applications ofthe boundary Ahlfors
Lemma.

Here is a quick outline of our work. LetD := {z ∈ C : |z| < 1} denote the
open unit disk in the complex planeC . Recall that an open subarc of the unit circle
∂D := {z ∈ C : |z| = 1} is an open connected subset of∂D .

Theorem 1.1. Let Γ be an open subarc of the unit circle ∂D and let f : D → D
be a holomorphic function. Then the following conditions are equivalent.

(a) For every ξ ∈ Γ,

lim
z→ξ

|f ′(z)|
1 − |f(z)|2 = +∞ .

(b) For every ξ ∈ Γ,

lim inf
z→ξ

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 > 0 .

(c) For every ξ ∈ Γ,

lim
z→ξ

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 = 1 .

(d) For every ξ ∈ Γ,

lim
z→ξ

|f(z)| = 1 .

(e) f has a holomorphic extension across the arc Γ with f(Γ) ⊂ ∂D .

Roughly speaking, Theorem 1.1 asserts that if the quantity

λ(z) :=
|f ′(z)|

1 − |f(z)|2

blows up at the boundary arcΓ, then it grows at least as fast as

(1.1) λD (z) :=
1

1 − |z|2

at Γ and then, in fact, it blows up exactly as fast asλD (z) at Γ. This in turn is
equivalent to|f(z)| → 1 asz tends toΓ.
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Remark 1.2. We note that the implications “(e)⇒ (d)” and “(c) ⇒ (b) ⇒
(a)” in Theorem 1.1 hold trivially (and in fact forevery setΓ ⊆ ∂D ). Also, the
direction “(d) ⇒ (e)” in Theorem 1.1 is of course exactly the statement of the
classical Schwarz–Carathéodory reflection principle for holomorphic self-maps of
the unit disk (see for instance [7]), while “(e)⇒ (a)” is rather straightforward: just
observe that condition (e) combined withf(D ) ⊆ D guaranteesf ′ 6= 0 onΓ, so (a)
follows immediately. Thus the major parts of the proof of Theorem 1.1 lie in the
remaining implications “(a)⇒ (c)” and “(b)⇒ (d)”.

Remark 1.3. Direction “(a)⇒ (c)” in Theorem 1.1 might be considered as a
statement about conformal metrics. In fact, iff is an analytic self-map of the unit
disk with property (a), then

λ(z) |dz| :=
|f ′(z)|

1 − |f(z)|2 |dz|

is the pullback of the Poincaré or hyperbolic metricλD (w) |dw| (see (1.1)) on the
unit diskD under the holomorphic mapw = f(z) and is therefore a regular pseudo-
metric inD itself with the same (Gaussian) curvature asλD (z) |dz| (see Section 2 for
details). Thus the implication “(a)⇒ (c)” in Theorem 1.1 is a very special case of
the following result combined with the Schwarz–Pick inequality (see Remark 1.7).

Theorem 1.4. Let Γ be an open subarc of the unit circle ∂D , let λ(z) |dz| be a

regular conformal pseudo-metric on the unit disk D with curvature bounded below
by a negative constant −cλ and let µ(z) |dz| be a conformal pseudo-metric on D
with curvature bounded above by a negative constant −Cµ. If

lim
z→ξ

λ(z) = +∞

for every point ξ ∈ Γ, then

(1.2) lim inf
z→ξ

λ(z)

µ(z)
≥

√
Cµ

cλ

for every ξ ∈ Γ.

We refer to Theorem 1.4 as the boundary Ahlfors Lemma.

Remarks 1.5.
(i) The classical Ahlfors Lemma [1] (for the unit disk) is contained in

Theorem 1.4 as a special case. To check this, chooseλ(z) |dz| := λD (z) |dz|
and letµ(z) |dz| be a conformal pseudo-metric with curvature bounded above



222 D. KRAUS, O. ROTH AND S. RUSCHEWEYH

by −4. Thenλ(z) |dz| has constant curvature−4 andλ(z) → +∞ as|z| → 1,
so

lim sup
|z|→1

µ(z)

λD (z)
≤ 1

by (1.2). Since the function

log+
( µ(z)

λD (z)

)

:= max
{

0, log
( µ(z)

λD (z)

)}

is subharmonic inD , we deduceµ ≤ λD in D from the maximum principle
for subharmonic functions.

(ii) As already mentioned above, Theorem 1.4 is connected with work of Yau [26]
and Bland [3] in higher dimensional complex geometry. This is discussed in
more detail in Section 5 below.

(iii) The proof of Theorem 1.4 (given in Section 3) is based onconstructing
suitable solutions of the nonlinear elliptic PDE∆u = −κ(z) e2u. It turns
out that it suffices to assume that the curvatures ofλ(z) |dz| andµ(z) |dz| are
bounded from below and above respectively near the boundaryarcΓ, i.e., in
U ∩ D , whereU ⊆ C is an open neighborhood ofΓ.

We now return to a discussion of Theorem 1.1.

Remark 1.6. It is indispensable to considerunrestricted limits in Theo-
rem 1.1. For instance, the implication “(d)⇒ (e)” of Theorem 1.1 would be
false under the weaker assumption

(1.3) \ lim
z→ξ

|f(z)| = 1

for everyξ ∈ Γ (where\ indicates non-tangential approach to the unit circle).
In fact, Heins [16] constructed an infinite Blaschke productf with the following
remarkable properties. The zeros off cluster exactly atz = 1, f ′ has an infinite
number of zeros in the open interval(0, 1) andf has the angular limit1 atz = 1. In
particular, (1.3) holds for everyξ ∈ ∂D , butf has clearly no holomorphic extension
to a neighborhood of∂D .

Another (explicit) example of a holomorphic functionf : D → D satisfying
(1.3) for everyξ ∈ ∂D , but without an analytic continuation across the unit circle
can be produced as follows. A result of Frostman [12] assertsthat a Blaschke
product

(1.4) f(z) =
∞∏

j=1

|zj |
zj

zj − z

1 − zj z
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has an angular limit of modulus1 at a pointξ ∈ ∂D if and only if

(1.5)
∞∑

j=1

1 − |zj |
|ξ − zj|

< ∞ .

Choosingrj = 1 − 1/j3, one sees easily that

1 + r2
j − (1 − rj)

2j4

2rj
= cosφj

for someφj ∈ (−π, π). By construction, the pointszj := rje
iφj ∈ D tend to1 and

satisfy
∞∑

j=1

1 − |zj |
|1 − zj |

=
∞∑

j=1

1

j2
< ∞ .

Thus condition (1.3) holds on the entire unit circle for the corresponding infi-
nite Blaschke product (1.4), which obviously has no analytic continuation to a
neighborhood ofz = 1.

Remark 1.7. The implication “(c)⇒ (d)” in Theorem 1.1 can be considered
as a boundary version of Schwarz’ Lemma. Recall that the Schwarz Lemma or,
rather, the Schwarz–Pick Lemma asserts that

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 ≤ 1

for every analytic self-mapf of D with equality at some pointz inside D if and only if
f is a conformal automorphism ofD . In particular, equality at some pointz insideD implies thatf has an analytic extension across the unit circle. Theorem 1.1
“(c) ⇒ (d)” allows the weaker conclusion thatf can be analytically continued
at least across an open subarc of the unit circle provided equality holds on this
boundary arc (in the sense of condition (c)). Somewhat surprisingly, it even suffices
to assume one of the (apparently) weaker conditions (a) or (b). It is not known to
us whether “(c)⇒ (d)” holds if Γ reduces to a single point. Example 4.4 below
shows that (a) does not imply (d) in this case.

Remark 1.8 (The Schwarz–Carathéodory reflection principle). As noted in
Remark 1.2 above, the direction “(d)⇒ (e)” in Theorem 1.1 is simply the Schwarz–
Carath́eodory reflection principle for holomorphic self-maps of the unit disk. Re-
call that the Schwarz reflection principle [24] tells us thata holomorphic function
f : D → D with a continuous extensionf : D ∪ Γ → C to an open subarcΓ ⊆ ∂D
such thatf(Γ) ⊂ ∂D has an analytic continuation acrossΓ. More precisely,f has a
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meromorphic continuation to the entire Riemann sphereĈ except the complemen-
tary arc∂D \ Γ; and this extension is given by

(1.6) f(z) :=
1

f(1/z)
, z ∈ Ĉ \ D .

In Carath́eodory’s generalization [7] of the Schwarz reflection principle (implica-
tion “(d) ⇒ (e)” in Theorem 1.1), not even the continuity off on Γ is assumed.
Indeed, it suffices to suppose that themodulus of f has a continuous extension toΓ

with |f(Γ)| = 1 in order to guarantee the analytic continuability off acrossΓ. The-
orem 1.1 shows that we can use one of the conformally invariant conditions (a), (b)
or (c) instead of condition (d) to obtain a formulation of theSchwarz–Carath́eodory
reflection principle entirely in terms of the Poincaré metricλD (z) |dz| onD . In this
form, the Schwarz–Carathéodory reflection principle admits various generaliza-
tions. For instance, when combined with the boundary Ahlfors Lemma (Theorem
1.4), it leads to a reflection principle in terms of more general conformal metrics
than the Poincaré metric (see Theorem 4.3). Moreover, it carries easily overto
analytic mapsf : S → R, where

(i) S is a domain in the complex plane with a free analytic boundaryarc andR
is a simply connected bordered Riemann surface

or

(ii) S is a bordered Riemann surface andR is a simply connected bordered
Riemann surface.

We discuss a number of such extensions of Theorem 1.1, which complement
the results in [22], in Section 4 and Section 6 below.

Remark 1.9 (The Fournier–Ruscheweyh reflection principle). Theorem 1.1
may also be considered as the limiting case of a recent reflection principle due to
Fournier and Ruscheweyh [11] (see also [22]). This reflection principle asserts
that a holomorphic functionf : D → D has an analytic continuation across an
open subarcΓ of the unit circle withf(Γ) ⊆ D if for some constantk > 0 the free
boundary condition

(1.7) lim
z→ξ

|f ′(z)|
1 − |f(z)|2 = k ,

holds for everyξ ∈ Γ. Note that condition (1.7) ensures that the analytic con-
tinuation off maps the arcΓ onto an analytic arc which lies compactly inside
the unit disk. Also, the continuation is carried out implicitly by solving a Riccati
differential equation, and it is still an open problem to describe the possible types
of singularities of the analytic continuation off (see [11, 22]). The limit case
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k → ∞ of the free boundary condition (1.7) is handled by Theorem 1.1 and shows
thatf has a global (meromorphic) extension toĈ \ D across the boundary arcΓ.
This extension mapsΓ onto a subarc of the unit circle and is given by the simple
explicit formula (1.6). In particular, Theorem 1.1 combined with the Fournier–
Ruscheweyh reflection principle give conformally invariant characterizations of
holomorphic self-maps of the unit disk which have an analytic extension across a
boundary arcΓ in the two cases thatf(Γ) ⊂ D or f(Γ) ⊆ ∂D .

We finally note another application of Theorem 1.1. The special case of
Theorem 1.1 that the boundary arcΓ is the whole of∂D leads to the following
corollary.

Corollary 1.10. Let f : D → D be a holomorphic function. Then the following
conditions are equivalent.

(a) lim
|z|→1

|f ′(z)|
1 − |f(z)|2 = +∞.

(b) f is a finite Blaschke product.

In fact, by Theorem 1.1, condition (a) holds if and only iff has a meromorphic
continuation tôC such that|f(z)| = 1 on∂D , i.e., if and only iff is a finite Blaschke
product.

Remark 1.11. Corollary 1.10 is closely related to a result of Heins [15], who
showed that an analytic self-mapf of the unit disk is a finite Blaschke product if
and only if

(1.8) lim
|z|→1

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 = 1 .

Theorem 1.1 might therefore be considered as a localized andsharper form of
Heins’ result, since it also applies to proper subarcs of theunit circle and allows to
replace condition (1.8) by the (apparently) weaker condition (a) of Corollary 1.10.
Heins’ proof is based on a completely different but very interesting argument. He
first shows that (1.8) impliesf has finite valence and maps ontoD , sof is a proper
self-map of the unit disk, i.e., a finite Blaschke product. This global argument
cannot be used to prove the (local) statement of Theorem 1.1.

The present paper is organized as follows. In Section 2, we start off by recalling
some basic facts about conformal metrics, including a version of Ahlfors’ Lemma
which is closely related to the well-known Ahlfors–Yau lemma [26]. Section 3 is
devoted to the proof of the boundary Ahlfors Lemma (Theorem 1.4). The proof
of the (remaining) implication “(b)⇒(d)” of Theorem 1.1 is given in Section 4,
which also contains a further discussion of the assumptionsof Theorem 1.1. In
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Section 5, we extend Theorem 1.4 to conformal metrics definedon more general
domains inC than the unit disk. For this purpose, we compare the notion ofa
locally complete conformal metric introduced by J. Bland [3] (for the more general
situation of complex manifolds) with the condition that thedensity of the metric
goes to infinity at the boundary. Based on the results of Section 5, we finally prove
several extensions of Theorem 1.1 for analytic maps betweenRiemann surfaces in
Section 6.

2 Conformal metrics and Ahlfors’ lemma

We first give a short review of some basic facts about one-dimensional K̈ahler
metrics, which we prefer to call conformal metrics. For moreinformation, the
reader is refered to [1, 14].

For brevity, we call every positive (resp. non-negative) upper semicontinuous
functionλ on a domainG ⊆ C a conformal metric (resp. conformal pseudo-metric)
and denote it byλ(z) |dz|. We sometimes need to distinguish between the function
λ and the induced pseudo-metric. In this case, we callλ the density ofλ(z) |dz|.
A conformal (pseudo-)metricλ(z) |dz| on a domainG ⊆ C is said to be regular, if
λ is of classC2 in a neighborhood of every point whereλ does not vanish. The
(Gaussian) curvature of a regular conformal pseudo-metricλ(z) |dz| is defined for
every pointz ∈ G with λ(z) > 0 by

κλ(z) := − (∆ log λ)(z)

λ(z)2
.

Here,∆ is the Laplace operator. Inequalities such asκλ ≤ 0 are thus interpreted as
κλ(z) ≤ 0 for all z ∈ G \ Zλ, whereZλ := {z ∈ G : λ(z) = 0}. Given a conformal
metricλ(z) |dz| on a domainG ⊆ C , we can associate a distance function

dλ(z0, z1) := inf
γ

∫

γ

λ(z) |dz| ,

where the infimum is taken over all rectifiable paths inG joining z0 ∈ G andz1 ∈ G.
This makes(G, dλ) a metric space. We callλ(z) |dz| complete (on G), if(G, dλ) is
a complete metric space.

A basic property of curvature is its absolute conformal invariance. This
means that for a regular conformal pseudo-metricλ(w) |dw| on a domainD

and a holomorphic mapw = f(z) from another domainG to D, the pullback
(f∗λ)(z) |dz| := λ(w) |dw| is again a regular conformal pseudo-metric onG with
curvature

κf∗λ(z) = κλ(f(z)) .
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When the domainG ⊂ C has at least two boundary points (i.e., whenG is a
hyperbolic domain) and−a is a negative constant,G carries a unique complete
regular conformal metric with constant curvature−a. This metricλ(w) |dw| is
obtained from the Poincaré metricλD (z) |dz| by means of a universal cover projec-
tion π : D → G from

λ(π(z)) |π′(z)| =
2√
a

λD (z) =
2√
a

1

1 − |z|2 .

We callλ(w) |dw| the hyperbolic metric onG with curvature−a. Unless explicitly
stated otherwise, we take the normalizationa = 4 and call the corresponding metric
the hyperbolic metric ofG (with constant curvature−4). This metric is denoted
by λG(w) |dw|.

The most important result about conformal metrics is Ahlfors’ Lemma [1]. We
make use of the following slight generalization of this result.

Theorem 2.1. Let λ(z) |dz| be a regular conformal metric on the unit disk D
with curvature bounded below by a negative constant −cλ and let µ(z) |dz| be a

regular conformal pseudo-metric on D with curvature bounded above by a negative
constant −Cµ. If

(2.1) lim
|z|→1

λ(z) = +∞,

then

(2.2) λ(z) ≥
√

Cµ

cλ
· µ(z)

for every z ∈ D . In particular, λ(z) |dz| is a complete metric on D .

The proof of Theorem 2.1 follows the same lines as the proof ofthe classical
version of Ahlfors’ Lemma. However, since Theorem 2.1 playsa major r̂ole in
this paper, we include a proof for the convenience of the reader.

Proof. Fix a number0 < r < 1 and consider

µr(z) := rµ(rz) .

Thenµr(z) |dz| is a conformal pseudo-metric with curvature bounded above by
−Cµ. Sinceµr(z) is bounded from above inD andλ(z) → +∞ as |z| → 1, the
function

σ(z) := log
λ(z)

µr(z)
, z ∈ D ,
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attains a minimum value at some pointz0 ∈ D . Note thatµr(z0) 6= 0, so σ

is of class C2 in a neighborhood ofz0; and we obtain0 ≤ ∆σ(z0) =

−κλ(z0)λ(z0)
2 + κµr

(z0)µr(z0)
2. This impliesκλ(z0) < 0, and we can write

0 ≤∆σ(z0) = −κλ(z0)λ(z0)
2 + κµr

(z0)µr(z0)
2

= − κλ(z0)λ(z0)
2

(

1 − κµr
(z0)

κλ(z0)

µr(z0)
2

λ(z0)2

)

.

Thus

inf
z∈D λ(z)

µr(z)
= inf

z∈D eσ(z) = eσ(z0) =
λ(z0)

µr(z0)
≥

√

κµr
(z0)

κλ(z0)
≥

√
Cµ

cλ
.

Inequality (2.2) follows by lettingr → 1.

In order to showλ(z) |dz| is a complete conformal metric onD , we set
µ(z) |dz| = λD (z) |dz|. Then, in view of (2.2), there is a constantα > 0 such
that

dλ(z, z0) ≥ α · dD (z, z0)

for anyz, z0 ∈ D . Here,dD denotes the hyperbolic distance induced by the Poincaré
metric λD (z) |dz|. Thus every Cauchy sequence{zn} in (D , dλ ) is also a Cauchy
sequence in the complete metric space(D , dD ) and therefore convergent with limit
z0 in D . But the topologies of(D , dD ) and(D , dλ) are compatible, so the sequence
{zn} converges toz0 also in(D , dλ ). �

Remarks 2.2.
(a) If λ(z) |dz| = λD (z) |dz| is the hyperbolic metric inD and if µ(z) |dz| is a

pseudo-metric inD with curvature bounded above by−4, then Theorem 2.1
is the classical Ahlfors Lemma [1].

(b) Theorem 2.1 is related to Yau’s celebrated extension of Ahlfors’ Lemma
for Kähler manifolds (see [26]). In the very special case of the unit diskD ⊂ C , Yau’s version of Ahlfors’ Lemma differs from Theorem 2.1 only in
the assumptions on the conformal metricλ(z) |dz|. Yau requires thatλ(z) |dz|
be a complete conformal metric, whereas Theorem 2.1 assumesthe boundary
condition (2.1) for the densityλ and yields the completeness ofλ(z) |dz| as
a corollary to the estimate (2.2). Thus, Theorem 2.1 and Yau’s lemma (for
the unit disk) are equivalent. We note that Yau’s lemma remains valid for
arbitrary hyperbolic domains (and way beyond), while Theorem 2.1 can be
extended only to domains with sufficiently nice boundary. This is discussed
in Section 5.
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(c) The regularity assumption on the pseudo-metricµ(z) |dz| in Theorem 2.1
is not essential. In fact, it suffices to assume thatµ(z) |dz| is an upper
semicontinuous pseudo-metric onD with generalized curvature

κµ(z) := −∆log µ(z)

µ(z)2

bounded above by a negative constant. Here

∆ log µ(z) := lim inf
r→0

4

r2

{
1

2π

2π∫

0

log µ(z + reit) dt − log µ(z)

}

denotes the generalized lower Laplacian oflog µ, which is defined for every
z ∈ D with µ(z) > 0. Accordingly, when we speak in the following of a
conformal pseudo-metricµ(z) |dz| with curvatureκµ, we always mean that
µ(z) |dz| is upper semicontinuous with generalized curvatureκµ.

(d) (The case of equality in (2.2).)

If equality holds in (2.2) for some pointz ∈ D , then equality holds for every
point z ∈ D . To see this (cf. [14, 19, 23]), note that the function

u(z) := log
µ(z)

λ(z)
− log

√
cλ

Cµ

is non-positive and satisfies

∆u(z) = −κµ(z)µ(z)2 + κλ(z)λ(z)2 ≥ Cµµ(z)2 − cλλ(z)2

= cλλ(z)2
(
e2u(z) − 1

)

≥ 2cλλ(z)2u(z)

in the open setD := {z ∈ D : µ(z) > 0}. Thus, ifu(a) = 0 for somea ∈ D , the
functionu restricted to the componentD′ of D which contains the pointa has
a non-negative maximum ata. By the strong maximum principle of E. Hopf
(cf. [13, Thm. 3.5]),u has to be constant inD′, soµ/λ is constant inD . Again,
this uniqueness result holds also for upper semicontinuouspseudo-metrics
µ(z) |dz| with generalized curvatureκµ ≤ −Cµ < 0. One just needs to use
Calabi’s extension of the Hopf maximum principle, see [6] (and [19]).

(e) The assumptions on the curvature of the metricsλ(z) |dz| andµ(z) |dz| in
Theorem 2.1 are quite natural and cannot be omitted. This is illustrated with
the following examples.

Example 2.3. Let λ(z) =
√

λD (z) and µ(z) = λD (z) for z ∈ D . Then
κλ(z) ≤ −2 for z ∈ D and κλ(z) → −∞ when |z| → 1. Obviously, there is
no positive constantC such thatλ(z) > Cµ(z) for all z ∈ D .
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Example 2.4. Considerλ(z) = λD (z) andµ(z) = exp (λD (z)). Thenκµ(z) < 0

for z ∈ D , andκµ(z) → 0 as|z| → 1. Again, there exists no constantC > 0 such
thatλD (z) ≥ C exp (λD (z)) for all z ∈ D .

3 Proof of the boundary Ahlfors Lemma

Before we give the proof of Theorem 1.4, we sketch its main idea. For this purpose
suppose, thatλ(z) |dz| is a regular conformal metric which tends to+∞ on a proper
open subarcΓ of the unit circle. As becomes clear later, we may further assume
without loss of generality that

(3.1) mλ := inf
z∈D λ(z) > 0.

The strategy is to ‘modify’λ(z) |dz| appropriately so that Theorem 2.1 applies. We
make the Ansatz

Λ(z) |dz| := λ(z)σ(z) |dz|
and wish to choose the auxiliary conformal metricσ(z) |dz| such that

(3.2) lim
z→ξ

σ(z) = +∞ for ξ ∈ ∂D \ Γ and lim inf
z→ξ

σ(z) > 0 for ξ ∈ Γ .

This ensures, in view of (3.1), thatΛ(z) → +∞ on the entire unit circle. On
the other hand, (3.2) implies thatκσ(z) is negative at least at some pointz0 ∈ D ,
because otherwiselog σ is superharmonic inD , which contradicts (3.2). Hence

(3.3) cσ := − inf
z∈D κσ(z) > 0 .

For the curvature ofΛ(z) |dz|, we find

κΛ(z) =
κλ(z)

σ(z)2
+

κσ(z)

λ(z)2
≥ − cλ

σ(z)2
+

κσ(z)

λ(z)2
≥ − cλ

σ(z)2
− cσ

m2
λ

.

In order to be able to apply Theorem 2.1, we need a lower bound for this curvature.
In view of (3.3), we therefore require

mσ := inf
z∈D σ(z) > 0 .

Thus we have
κΛ(z) ≥ −cΛ for cΛ :=

cλ

m2
σ

+
cσ

m2
λ

,

and Theorem 2.1 gives

λ(z)

µ(z)
=

Λ(z)

µ(z)

1

σ(z)
≥

√
Cµ

cΛ

1

σ(z)
=

√
√
√
√
√

Cµ

cλ + cσ
m2

σ

m2
λ

mσ

σ(z)
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for z ∈ D . The right side of the last inequality, however, is less than

√
√
√
√
√

Cµ

cλ + cσ
m2

σ

m2
λ

,

which in turn is (even strictly) less than the bound
√

Cµ/cλ, we want to establish;
see (1.2). To arrive at this desired bound, we would have to put cσ = 0, which, as
we have seen above, is not possible because of (3.2).

We sidestep this problem by carefully choosing a sequence ofconformal met-
ricsσn(z) |dz| with negative curvatureκσn

tending to0 and having the appropriate
boundary behavior (3.2). Each of these metricsσn(z) |dz| is constructed as the so-
lution to a boundary value problem with degenerate Dirichlet data for the Gaussian
curvature equation.

Theorem 3.1. Let I be a proper open subarc of the unit circle ∂D such that
I 6= ∂D and let k : D → [a, M ], 0 < a < M < ∞, be a locally Hölder continuous

function with exponent α, 0 < α ≤ 1. Then there is a C2-solution u : D → R to

(3.4) ∆u = k(z) e2u in D
such that

(3.5) lim
z→ξ

u(z) =







+∞ for ξ ∈ ∂D \I
0 for ξ ∈ I

and

(3.6) lim inf
z→ξ

u(z) ≥ 0 if ξ ∈ I\I .

In the proof of Theorem 3.1, we make repeated use of the following facts about
the Gaussian curvature equation (3.4). We adopt standard notation, soC(Ω) is the
set of real-valued continuous functions on the setΩ ⊂ C andCk(Ω) is the set of
real-valued functions having all derivatives of order≤ k continuous in the open set
Ω ⊆ C .

(CE1) (Comparison principle, see [13, Theorem 10.1])

If u1, u2 ∈ C2(D ) ∩ C(D ) are two solutions to (3.4) and ifu1 ≤ u2 on the
boundary∂Ω of a domainΩ ⊆ D , thenu1 ≤ u2 in Ω. For this factk(z) ≥ 0 inD would suffice.
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(CE2) LetΩ ⊆ D be a regular domain with Green’s function1 gΩ. If k : D → R is
bounded and locally Ḧolder continuous with exponentα, 0 < α ≤ 1, andu is
a bounded and integrable function onΩ, then

v(z) := − 1

2π

∫∫

Ω

gΩ(z, ζ) k(ζ) e2u(ζ) dσζ , z ∈ Ω ,

σζ denotes two-dimensional Lebesgue measure, belongs toC1(Ω)∩C(Ω) and
v ≡ 0 on∂Ω. If, in addition,u is locally Hölder continuous with exponentβ,
0 < β ≤ 1, thenv ∈ C2(Ω) and∆v = k(z) e2u in Ω (see [13, p. 53-54] and
[9, p. 241]).

Combining (CE1) and (CE2), we obtain

(CE3) Letk : D → R be bounded, non-negative and locally Hölder continuous
with exponentα, 0 < α ≤ 1. If u : D → R is a C2-solution to (3.4) andu
is continuous on the closureΩ of a regular domainΩ ⊆ D , then the integral
formula

(3.7) u(z) = h(z) − 1

2π

∫∫

Ω

gΩ(z, ζ) k(ζ) e2u(ζ) dσζ

holds for everyz ∈ Ω. Here,h is harmonic inΩ and continuous onΩ with
boundary valuesu, i.e.,

h
∣
∣
∂Ω

≡ u
∣
∣
∂Ω

.

Conversely, ifu is a locally integrable and bounded function on a regular
domainΩ ⊆ D satisfying (3.7) for some harmonic functionh in Ω which
is continuous onΩ, thenu belongs toC2(Ω) ∩ C(Ω) and is a solution to
∆u = k(z) e2u in Ω with h ≡ u on∂Ω.

We also need another refinement of Ahlfors’ Lemma, due to D. Minda [20],
which is provided in the next lemma.

Lemma 3.2. Let Ω be a domain in the complex plane which carries a hyper-
bolic metric λ(z) |dz| with constant curvature −a′ < 0. If ν(z) |dz| is a conformal

pseudo-metric in Ω and if for every point z0 ∈ Ω either

(i) ν(z0) ≤ λ(z0)

or

(ii) ν(z0) > 0, ν is of class C2 in a neighborhood U ⊆ Ω of z0 and κν(z) ≤ −a′

for all z ∈ U ,

1We use the function-theoretic convention. Thus Green’s function is always non-negative.
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then ν(z) ≤ λ(z) for every z ∈ Ω.

Proof of Theorem 3.1. Let us denote the two boundary points ofI by eiϕ1

andeiϕ2 , i.e.,I\I = {eiϕ1 , eiϕ2}, whereeiϕ1 is the right-hand endpoint ofI andeiϕ2

the left-hand endpoint (in counterclockwise direction). We define for each integer
n ≥ 1 a continuous functionfn : ∂D → R by

(i) fn ≡ 0 on I,
(ii) fn ≡ n on∂D \In , where

In := I ∪
{
eit : t ∈ (ϕ1 − 1

n , ϕ1]
}
∪

{
eit : t ∈ [ϕ2, ϕ2 + 1

n )
}
,

(iii) fn is linear on
{
eit : t ∈ (ϕ1 − 1

n , ϕ1)
}

and
{
eit : t ∈ (ϕ2, ϕ2 + 1

n )
}
,

see Figure 1.

D ( eiϕ1|
ei(ϕ1−1

n)

( eiϕ2|
ei(ϕ2+

1
n)

I

fn+1

fn

ϕ1 − 1
n

ϕ2 + 1
n

=̂I

=̂In

Figure 1.

The standard theory for non-linear elliptic PDEs guarantees (see [9, p. 286] or
[13, p. 250]) that there is a unique real-valued solutionun ∈ C2(D ) ∩ C(D ) to the
boundary value problem

∆u = k(z) e2u in D
u = fn on ∂D .

We are going to show that the sequence{un} converges inD to a C2-function
u : D → R, which is a solution to (3.4) and satisfies the boundary conditions (3.5)
and (3.6).

Since the boundary functionsfn form a monotonically increasing sequence on
∂D , the comparison principle (CE1) shows that the corresponding solutionsun
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also form a monotonically increasing sequence inD . In addition,{un} is locally
bounded inD . To see this, we need only note thateun(z) |dz| is a regular conformal
metric onD with curvature bounded above by−a < 0. Thus Theorem 2.1 implies
thatun(z) ≤ v(z) for everyz ∈ D and everyn ≥ 1, whereev(z) |dz| is the hyperbolic
metric onD with curvature−a, i.e.,

(3.8) v(z) := log

(
2√
a

1

1 − |z|2
)

.

Hence{un} converges monotonically inD to a locally bounded and locally inte-
grable functionu : D → R.

To show thatu is C2 in D and also a solution to (3.4), fix0 < ̺ < 1 and let
Ω = K̺(0).2 We choose continuous functionshn : Ω → R which are harmonic in
Ω and having boundary valuesun. Then by (CE3),

un(z) = hn(z) − 1

2π

∫∫

Ω

gΩ(z, ζ) k(ζ) e2un(ζ) dσζ , z ∈ Ω .

Let
V := max

z∈Ω
v(z) ,

where the functionv is defined in (3.8). Then

hn(z) ≤ V +
1

2π
M e2V

∫∫

Ω

gΩ(z, ζ) dσζ ≤ C1 ;

see [9, p. 241]. Therefore,{hn} is a monotonically increasing and bounded
sequence of harmonic functions inΩ, so Harnack’s theorem shows that{hn}
converges locally uniformly inΩ to a harmonic functionh : Ω → R. Thus, by
monotone convergence,

u(z) = h(z) − 1

2π

∫∫

Ω

gΩ(z, ζ) k(ζ) e2u(ζ) dσζ , z ∈ Ω .

Sinceu is bounded and integrable inΩ, (CE3) shows thatu isC2 in Ω and a solution
to ∆u = k(z)e2u there.

It remains to study the boundary behavior ofu. This is easy forξ off the arcI

but a little more subtle forξ ∈ I.

(i) Fix ξ ∈ ∂D \I . By our choice of the subarcsIn, there exists an integerN such
thatξ 6∈ In for all n ≥ N . To establish (3.5), assume to the contrary that we
can find a sequence{zj} ⊂ D which converges toξ and a constant0 < C2 < ∞

2We denote byKr(z0) the euclidean disk aboutz0 ∈ C with radiusr > 0.



A BOUNDARY VERSION OF AHLFORS’ LEMMA 235

such thatu(zj) < C2 for all j. Now choose an integerm > max{N, C2}. Since
um(zj) → m asj → ∞, there is an integerJ such thatum(zj) > C2 for all
j > J . But then the monotonicity of{un} yieldsu(zj) ≥ C2 for all j > J ,
and the contradiction is apparent. Thus

lim
z→ξ

u(z) = +∞

for everyξ ∈ ∂D \I , as desired.

(ii) Pick ξ ∈ I. SinceI is open, we can findε, 0 < ε < 1, such thatKε(ξ)∩∂D ⊂ I.
In order to prove

lim
z→ξ

u(z) = 0,

we first show that{un} is bounded onΩ, whereΩ = Kε/2(ξ) ∩ D . For that,
let ν(z) |dz| be a conformal metric onKε(ξ) with constant curvature−a′ < 0,
where

a′ := min{a, 4} > 0

and ν(z) > 1 for z ∈ Kε(ξ). Recall thata denotes a lower bound of the
functionk. For example, we can choose

ν(z) |dz| =
1

ε
(

1 − a′

4ε2
|z − ξ|2

) |dz| .

For each integern ≥ 1, we consider the upper semicontinuous conformal
metricµn(z) |dz| onKε(ξ) defined by

µn(z) =







eun(z) for z ∈ Kε(ξ) ∩ D
ν(z) for z ∈ Kε(ξ)\D .

We claim thatµn(z) ≤ λ(z), whereλ(z) |dz| denotes the hyperbolic metric
onKε(ξ) with constant curvature−a′. This is a consequence of Lemma 3.2,
because

κµn
(z) = κeun (z) = −k(z) ≤ −a ≤ −a′ for z ∈ Kε(ξ) ∩ D

and
µn(z) = ν(z) ≤ λ(z) in Kε(ξ)\D

(note that the latter inequality follows, for instance, from Theorem 2.1). Thus
µn(z) ≤ λ(z) for z ∈ Kε(ξ) and alln, so

un(z) ≤ max
z∈Ω

log λ(z) =: C3
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for z ∈ Ω and alln.

As everyun is aC2-solution to∆u = k(z)e2u in Ω and continuous onΩ, we
can use once more the integral formula forun, that is,

(3.9) un(z) = hn(z) − 1

2π

∫∫

Ω

gΩ(z, ζ) k(ζ) e2un(ζ) dσζ , z ∈ Ω ,

wherehn is harmonic inΩ and continuous onΩ with boundary valuesun. In
particular,{hn} is bounded onΩ andhn ≡ 0 onγ := Ω∩ ∂D for every integer
n ≥ 1. Lettingn → ∞ in (3.9) yields

u(z) = h(z) − 1

2π

∫∫

Ω

gΩ(z, ζ) k(ζ) e2u(ζ) dσζ

for z ∈ Ω, where

h = lim
n→∞

hn

is a harmonic function onΩ. In view of (CE2), it remains to verify

(3.10) lim
z→ξ

h(z) = 0

in order to provelim
z→ξ

u(z) = 0.

To justify (3.10), we reflect eachhn acrossγ and call the resulting new
harmonic functionHn. Then {Hn} is a bounded sequence of harmonic
functions in a domainG containingΩ ∪ γ. Obviously, {Hn} converges
locally uniformly inG to a harmonic functionH which vanishes onγ. Since
H

∣
∣
Ω
≡ h, we get (3.10) as required.

(iii) Lastly, by construction,

lim inf
z→ξ

u(z) ≥ 0

for ξ ∈ I\I. �
Proof of Theorem 1.4. We first prove Theorem 1.4 under the additional

assumption that

mλ := inf
z∈D λ(z) > 0 .

Fix ξ0 ∈ Γ and letI be an open subarc ofΓ such thatξ0 ∈ I, I ⊂ Γ andI 6= ∂D .
Then by Theorem 3.1, there exists a sequence{ σn(z) |dz| }, n ≥ 1, of regular
conformal metrics inD with



A BOUNDARY VERSION OF AHLFORS’ LEMMA 237

(i) κσn
≡ −1/n,

(ii) lim
z→ξ

σn(z) =







+∞ for ξ ∈ ∂D \I
1 for ξ ∈ I

,

and

(iii) lim inf
z→ξ

σn(z) ≥ 1 for ξ ∈ I\I .

To show that

mσn
:= inf

z∈D σn(z) > 0,

we consider onD the metric

µn(z) |dz| =
2
√

n
(√

n + 1 −√
n
)

1 −
(√

n + 1 −√
n
)2 |z|2

|dz| ,

which has constant curvature−1/n and boundary values≡ 1. Further,µn(z) attains
its minimum valuemµn

at z = 0, i.e.,

(3.11) mµn
= 2

√
n

(√
n + 1 −√

n
)

.

According to the comparison principle,σn ≥ µn in D , so

mσn
≥ mµn

.

In addition,

(3.12) lim
n→∞

mσn
= 1

by (3.11) and the fact thatmσn
≤ 1.

We now define the conformal metricsΛn(z) |dz| by

Λn(z) := λ(z)σn(z) .

By construction, eachΛn(z) |dz| fulfills the hypotheses of Theorem 2.1, i.e.,

lim
|z|→1

Λn(z) = +∞ and κΛn
(z) ≥ −

(
cλ

m2
σn

+
1

n

1

m2
λ

)

.

Thus we obtain

λ(z)

µ(z)
≥

√
Cµ

√

cλ +
1

n

m2
σn

m2
λ

mσn

σn(z)
, n = 1, 2, . . .
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for everyz ∈ D . Consequently, we have

lim inf
z→ξ0

λ(z)

µ(z)
≥

√
Cµ

√

cλ +
1

n

m2
σn

m2
λ

mσn
, n = 1, 2, . . . ,

and the desired conclusion follows by lettingn → ∞ and taking condition (3.12)
into account.

We now turn to the general case of Theorem 1.4. Fix a pointξ0 ∈ Γ. Since
λ(z) → +∞asz → ξ0, there is an open subarcΓ′ of Γ with ξ0 ∈ Γ′ andΓ′ ( ∂D and a
Dini smooth Jordan domain3 G ⊆ D such thatΓ′ = ∂G∩∂D ⊂ Γ, λ(z) ≥ c1 in G for
some positive constantc1 > 0 andκλ(z) ≥ −cλ for z ∈ G as well asκµ(z) ≤ −Cµ

for z ∈ G. Let Ψ be a conformal map fromD ontoG. ThenΨ : D → G extends
to a homeomorphism of the closuresD andG, which we continue to denote by
Ψ. We also note thatΨ′ has a continuous and non-vanishing extension toD , again
denoted byΨ′ (see [21]). Thus there are positive constantsc2 andc3 such that
c3 ≥ |Ψ′(z)| ≥ c2 > 0 for all z ∈ D . Next we pull back the pseudo-metricsλ(z) |dz|
andµ(z) |dz| via z = Ψ(u) to the pseudo-metrics(Ψ∗λ)(u) |du| and(Ψ∗µ)(u) |du|,
respectively, onD . These new pseudo-metrics have the properties

(i) (Ψ∗λ)(u) ≥ c1 · c2 > 0 in D ;

(ii) κΨ∗λ(z) ≥ −cλ for z ∈ D ;
and

(iii) κΨ∗µ(z) ≤ −Cµ for z ∈ D .

Thus we are exactly in the situation of the special case of Theorem 1.4 which we
have considered above in the first part of the proof, so

lim inf
z→ξ0

λ(z)

µ(z)
= lim inf

u→Ψ−1(ξ0)

λ(Ψ(u)) |Ψ′(u)|
µ(Ψ(u)) |Ψ′(u)| ≥

√
Cµ

cλ
. �

Remark 3.3. The above proof can easily be modified to give a short (and
elementary) proof of the implication “(a)⇒ (b)” of Theorem 1.1. Indeed, if
λ(z) |dz| is a regular conformal pseudo-metric inD with curvature bounded below
such thatλ(z) → +∞ for z → ξ ∈ Γ, whereΓ is a proper open subarc of∂D ,
then we may again assume thatλ(z) ≥ c > 0 in D for somec > 0. Further, we
can suppose without loss of generality thatΓ is a proper open subarc of∂D with
Γ 6= ∂D , Γ ⊃ {eiφ : −π/2 ≤ φ ≤ π/2} and

lim sup
z→ξ

λ(z) < +∞ for everyξ ∈ ∂D \Γ .

3See [21].
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Fix a pointξ0 ∈ Γ. Then, in view of our extra assumptions, we can find a point
ω0 ∈ ∂D such that

(i) lim sup
z→ξ0

λ(ω0z) < +∞, and

(ii) lim
z→ξ

λ(z)λ(ω0z) = +∞ for everyξ ∈ ∂D .

Thus the curvature of the conformal metric

Λ(z) |dz| = λ(z)λ(ω0z) |dz|

is bounded below by some constant, and we can apply Theorem 2.1 to Λ(z) |dz|
andµ(z) |dz|. This gives

lim inf
z→ξ0

Λ(z)

µ(z)
> 0 ,

so
lim inf
z→ξ0

λ(z)

µ(z)
= lim inf

z→ξ0

Λ(z)

µ(z)

1

λ(ω0z)
> 0 .

4 Theorem 1.1: Proof, extension and further discussion

In view of Remark 1.2 and Remark 1.3, we are left to prove the implication
“(b) ⇒ (d)” in Theorem 1.1. We break up the proof into the following two lemmas.

Lemma 4.1. Let f : D → D be a holomorphic function with f(0) = 0 and let

Γ be an open subarc of the unit circle ∂D . If

(4.1) lim inf
z→ξ

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 > 0

for every ξ ∈ Γ, then the meromorphic function

g(z) :=
z f ′(z)

f(z)

has a meromorphic extension to a neighborhood of Γ, which is real on Γ.

Proof. Since we assumef(0) = 0, we have|f(z)| ≤ |z| by Schwarz’ Lemma.
As a consequence, (4.1) implies

lim inf
z→ξ

|f ′(z)| = lim inf
z→ξ

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2

1 − |f(z)|2
1 − |z|2

︸ ︷︷ ︸

≥1

> 0

for everyξ ∈ Γ. Thus, for fixedξ0 ∈ Γ, there is a constantδ > 0 such that|f ′(z)| ≥ δ

for all z ∈ D sufficiently close toξ0, say for allξ ∈ D ∩Kε(ξ0), whereKε(ξ0) is the
open disk aroundξ0 with radiusε > 0. This implies that the meromorphic function

h(z) :=
f(z)

zf ′(z)



240 D. KRAUS, O. ROTH AND S. RUSCHEWEYH

is in fact holomorphic and bounded inD ∩ Kε(ξ0). We are going to show thath(z)

has a holomorphic extension to the diskKε(ξ0), which is real onΓ ∩ Kε(ξ0).

Pick a pointξ1 ∈ Γ ∩ Kε(ξ0). There are two cases to be considered:

(4.2) lim inf
z→ξ1

1 − |f(z)|
1 − |z| = +∞

and

(4.3) lim inf
z→ξ1

1 − |f(z)|
1 − |z| < +∞ .

If (4.2) holds, then

lim inf
z→ξ1

|f ′(z)| = lim inf
z→ξ1

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 · 1 − |f(z)|

1 − |z| · 1 + |f(z)|
1 + |z| = +∞ ,

whereas for the case (4.3), the Julia–Wolff–Carathéodory lemma (see for instance
[25]) applies and shows that the angular limits\ lim

z→ξ1

f(z) =: f(ξ1) ∈ ∂D , \ lim
z→ξ1

f ′(z) =: f ′(ξ1) ∈ C
exist and that

ξ1 f ′(ξ1)

f(ξ1)
∈ [1, +∞) .

Thus, in any case, the bounded holomorphic functionh : D ∩ Kε(ξ0) → C has for
everyξ1 ∈ Γ ∩ Kε(ξ0) an angular limith(ξ1) with Im h(ξ1) = 0. From the classical
Schwarz–Carath́eodory reflection principle (see, for instance, [17, p. 87]), we
conclude thath has a holomorphic extension toKε(ξ0), which is real onΓ∩Kε(ξ0).�

We are now in a position to prove the implication “(b)⇒ (d)” in Theorem 1.1.

Lemma 4.2. Let f : D → D be a holomorphic function and let Γ be an open
subarc of the unit circle ∂D . If

(4.4) lim inf
z→ξ

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 > 0

for every ξ ∈ Γ, then f has an analytic extension across Γ and

lim
z→ξ

|f(z)| = 1

for every ξ ∈ Γ.
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Proof. Since
(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2

is invariant under pre- and postcomposition with conformalautomorphisms ofD ,
we may assumef(0) = 0. Therefore, by Lemma 4.1,

(4.5) g(z) :=
z f ′(z)

f(z)

has ameromorphic extension to a neighborhood ofΓ, which is real onΓ.

(a) First we show thatg has in fact aholomorphic extension toΓ. Suppose
to the contrary thatg has a pole of orderN ≥ 1 at a pointξ ∈ Γ. We may take,
without loss of generality,ξ = −1. Thus

(4.6) g(z) =
h(z)

(1 + z)N
,

whereh is holomorphic atz = −1 andh(−1) 6= 0. Sinceg is real onΓ, we have

g(1/z) = g(z) onΓ ,

so

h(1/z) =
h(z)

zN
onΓ .

In particular,h(−1) = (−1)Nh(−1), that is,

h(−1) ∈







R \ {0} if N is even

iR \ {0} if N is odd.

Solving the ODE (4.5) forf , we have inD− := {z ∈ D : Re z < 0}

f(z) = exp

(∫ z

z0

g(u)

u
du

)

=exp

( −h(−1)

(1 − N)(1 + z)N−1
+

c2

(2 − N)(1 + z)N−2
+ · · · + cN−1

−(1 + z)

+ cN log (1 + z) + · · ·
)

,

wherez0 is a point inD− near−1 andlog is the principal branch of the logarithm.

In order to exclude the possibility thatg has a pole atz = −1, we distinguish
between the three cases:N ≥ 2 even,N ≥ 3 odd, andN = 1.
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(i) N ≥ 2 even. We approachz = −1 radially to arrive at a contradiction.

Sinceh(−1) ∈ R\{0} in this case, we find forx in the interval(−1, 0)

|f(x)| = exp

( −h(−1)

(1 − N)(1 + x)N−1
+ · · · + Re (cN ) ln (1 + x) + · · ·

)

,

so that

lim
x→−1

|f(x)| =







+∞ if h(−1) > 0

0 if h(−1) < 0 .

Both possibilities contradict our assumptions. Ifh(−1) > 0, then the as-
sumptionf(D ) ⊂ D is contradicted. Ifh(−1) < 0, then|f(x)| → 0 asx → −1

implies |f ′(x)| → 0 asx → −1, which contradicts (4.4).

(ii) N ≥ 3 odd. We letz tend to−1 on a suitable ray.

Chooseη := eiπ/(2(N−1)) and setζr = −1 + rη for r ∈ (0, 1). Then

|f(ζr)| = exp

(
ih(−1)

(1 − N)rN−1
+ · · · + Re

(
cN log (rη)

)
+ · · ·

)

,

becauseh(−1) ∈ iR\{0}. Thus

lim
r→0

|f(ζr)| =







+∞ if (−i) · h(−1) > 0

0 if (−i) · h(−1) < 0 .

As before, we conclude that neither case is possible.

(iii) N = 1. We approachz = −1 on a certain horocycle.

Here, the functionf takes the form

f(z) = exp (−iγ log (1 + z)) · exp h̃(z) ,

whereγ = −i h(−1) ∈ R\{0} andh̃ is a holomorphic function in a neighbor-
hood ofz = −1. Hence

|f(z)| = exp (γ arg(1 + z)) exp
(

Re h̃(z)
)

.

This, combined withf(D ) ⊂ D , implies that

Re h̃(−1) ≤ 0 .

Let

zφ = −1

2
+

1

2
eiφ with φ ∈







(
−π,−π

2

)
if γ > 0

(
π
2 , π

)
if γ < 0 .
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If γ > 0, then using

lim
φց−π

|f(zφ)| ≤ exp
(

−γ
π

2

)

< 1

gives

lim inf
φ→−π

(1 − |zφ|2)
|f ′(zφ)|

1 − |f(zφ)|2

= lim inf
φ→−π

1 − |zφ|2
|1 + zφ|2

|f(zφ)|
∣
∣
∣ − iγ (1 + zφ) + (1 + zφ)2h̃′(zφ)

∣
∣
∣

1 − |f(zφ)|2

=0 .

If γ < 0, then

lim
φրπ

|f(zφ)| ≤ exp
(

γ
π

2

)

< 1;

and we obtain as before

lim inf
φ→π

(1 − |zφ|2)
|f ′(zφ)|

1 − |f(zφ)|2 = 0 .

Thus both possibilities contradict (4.4).

All in all, we conclude thatg is holomorphic atz = −1.

(b) In part (a), we proved thatg is holomorphic in a neighborhood of every
point ξ ∈ Γ. Thus, as a solution of the complex ODEy′ = (g(z)/z) y, the func-
tion f has also a holomorphic extension to a neighborhood ofΓ. In particular,
limz→ξ |f(z)| =: q ∈ [0, 1] exists. Ifq < 1, then (4.4) would be violated, soq has to
be equal to1. �

In order to highlight that Theorem 1.1 is for the most part a statement about
conformal metrics, we now combine it with the boundary Ahlfors Lemma to prove
the following generalization of the statements “(a)⇐⇒ (c)⇐⇒ (e)” of Theorem 1.1.
This shows that one may replace the Poincaré metricλD (z) |dz| in Theorem 1.1 by
more general conformal pseudo-metrics.

Theorem 4.3. Let Γ be an open subarc of the unit circle ∂D , let w = f(z) be an

analytic self-map of the unit disk D and let µ(z) |dz| be a conformal pseudo-metric

on the unit disk D with curvature κµ ≤ −Cµ for some positive constant Cµ and

lim
z→ξ

µ(z) = +∞

for every ξ ∈ Γ. Then the following conditions are equivalent.
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(a’) There exists a regular conformal pseudo-metric λ(z) |dz| on D with curvature

κλ satisfying −cλ ≤ κλ ≤ −Cλ for positive constants cλ and Cλ such that

lim
z→ξ

λ(f(z)) |f ′(z)| = +∞

for every ξ ∈ Γ.

(c’) There exists a regular conformal pseudo-metric λ(z) |dz| on D with curvature

κλ satisfying −cλ ≤ κλ ≤ −Cλ for positive constants cλ and Cλ such that

lim inf
z→ξ

λ(f(z)) |f ′(z)|
µ(z)

≥
√

Cµ

cλ

for every ξ ∈ Γ.

(e’) The function f has a holomorphic extension across the boundary arc Γ with
f(Γ) ⊂ ∂D .

Proof. (a’)⇒(c’) This is the boundary Ahlfors Lemma (Theorem 1.4).

(c’) ⇒(e’) Just note that Theorem 2.1 gives

λD (z) ≥
√

Cλ

4
λ(z) .

So the fact thatµ(z) → +∞ asz → ξ ∈ Γ implies

lim
z→ξ

λD (f(z)) |f ′(z)| ≥
√

Cλ

4
lim
z→ξ

λ(f(z)) |f ′(z)| = +∞,

and (e’) follows from Theorem 1.1.

(e’) ⇒(a’) Chooseλ(z) |dz| = λD (z) |dz| and apply Theorem 1.1 “(e)⇒(a)”. �
We close this section with a discussion of two examples whichdemonstrate

that Theorem 1.1 does not hold in general, when the arcΓ reduces to a singleton.

Example 4.4. The holomorphic functionf : D → D with

f(z) =

√
1 − z√

1 − z +
√

1 + z

obviously has no analytic extension to any neighborhood ofz = 1. However,
condition (a) of Theorem 1.1 is satisfied atz = 1, since

lim
z→1

|f ′(z)| = +∞ and lim
z→1

|f(z)| = 0 .

Hence, the implications “(a)⇒(e)” and “(a)⇒(d)” both fail if Γ is a single point.
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Example 4.5. The functionf : D → D defined by

f(z) = T−1(
√

T (z) ) ,

whereT (z) = (1+z)/(1−z), fulfills condition (d) of Theorem 1.1 atz = 1 although
it has no holomorphic extension to any neighborhood ofz = 1. Further,f meets
condition (a) of Theorem 1.1; but it does not satisfy condition (b), since for the
points

zϕ =
1

2
+

1

2
eiϕ,

we have

lim
ϕ→0

(1 − |zϕ|2)
|f ′(zϕ)|

1 − |f(zϕ)|2 = 0 .

In particular,

lim inf
z→1

(1 − |z|2) |f ′(z)|
1 − |f(z)|2 = 0 .

Thus the implications “(d)⇒(b)”, “(a)⇒(b)” and “(d)⇒(e)” of Theorem 1.1 are
no longer true ifΓ consists of a single point.

5 Locally complete conformal metrics on smoothly
bounded domains

In this section, we extend the boundary Ahlfors Lemma (Theorem 1.4) to domains
Ω in the complex plane whose boundary contains a sufficiently smooth subsetΓ.
As we shall see, this generalization is closely linked with (a very special case of) a
boundary Schwarz Lemma due to Bland [3], in which so-called locally complete
metrics play an important rôle. Our extended boundary Ahlfors Lemma might be
considered as a converse of Bland’s boundary Schwarz Lemma.Combining both
yields a characterization of locally complete conformal metricsλ(z) |dz| on smooth
domains in terms of the boundary behavior of the densityλ.

Let us begin with defining what we mean by a smooth boundary subset of a
domain in the complex plane. We call a Jordan domainG (i.e., a domain bounded
by a Jordan curve inC ) smooth, if there is a conformal mapφ from D onto G

such that|φ′| extends continuously to∂D with |φ′| 6= 0 on ∂D . By Carath́eodory’s
extension theorem, this conformal mapφ extends to a homeomorphism of the
closuresD andG. Examples of smooth Jordan domains are given by domains
bounded by a Dini–smooth Jordan curve; see [21, Theorem 3.5].

Definition 5.1. Let Ω be a subdomain of the complex planeC . A subsetΓ
of the boundary ofΩ is calledsmooth, if for every pointξ ∈ Γ there exists a
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smooth Jordan domainG ⊆ Ω and an open neighborhoodU ⊆ C of ξ such that
ξ ∈ ∂G ∩ U ⊆ Γ.

We can now state the following generalization of Theorem 1.4.

Theorem 5.1 (Boundary Ahlfors Lemma for smooth boundary sets). Let

Ω ⊆ C be a domain and let Γ be a smooth subset of ∂Ω. Further, let λ(z) |dz|
be a regular conformal pseudo-metric on Ω with κλ ≥ −cλ, and let µ(z) |dz| be a
conformal pseudo-metric on Ω with κµ ≤ −Cµ for some positive constants cλ and

Cµ. If

(5.1) lim
z→ξ

λ(z) = +∞

for every ξ ∈ Γ, then

(5.2) lim inf
z→ξ

λ(z)

µ(z)
≥

√
Cµ

cλ

for every ξ ∈ Γ. In particular,

(5.3) lim
z→ξ

dλ(z0, z) = +∞

for every ξ ∈ Γ and every point z0 ∈ Ω.

Proof. Pick a pointξ0 ∈ Γ. Then there exists a neighborhoodU ⊆ C of ξ0

and a smooth Jordan domainG ⊆ Ω such thatξ0 ∈ ∂G ∩ U ⊆ Γ. Let φ be a
homeomorphism fromD ontoG, conformal inD , such that|φ′| is continuous and
nonvanishing on∂D . Let ξ′0 = φ−1(ξ0). Then there is an open subarcΓ′ ⊆ ∂D
such thatφ(Γ′) ⊆ ∂G ∩ U ⊆ Γ. We can apply Theorem 1.4 to the pullbacks
φ∗µ(u) |du| = µ(φ(u)) |φ′(u)| |du| andφ∗λ(u) |du| = λ(φ(u)) |φ′(u)| |du| since

(i) κφ∗µ(u) = κµ(φ(u)) ≤ −Cµ,

(ii) κφ∗λ(u) = κλ(φ(u)) ≥ −cλ,

and

(iii) lim
u→ξ′

φ∗λ(u) = lim
u→ξ′

λ(φ(u)) |φ′(u)| = +∞ for everyξ′ ∈ Γ′

in view of |φ′(ξ′)| > 0 for eachξ′ ∈ Γ′. Thus

lim inf
z→ξ0

λ(z)

µ(z)
= lim inf

u→ξ′

0

λ(φ(u)) |φ′(u)|
µ(φ(u)) |φ′(u)| = lim inf

u→ξ′

0

φ∗λ(u)

φ∗µ(u)
≥

√

Cµ

cλ

for everyξ0 ∈ Γ. This estimate easily implies (5.3) for everyξ ∈ Γ and every
z0 ∈ Ω. In fact, fix a pointξ0 ∈ Γ and a pointz0 ∈ Ω. As Γ is smooth, there
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is a pointξ1 ∈ Γ \ {ξ0}. Now let µ(z) |dz| be the hyperbolic metric of the twice-
punctured planeC ′′ := C \ {ξ0 , ξ1}. Thusµ(z) |dz| has constant curvature−4 and is
complete onC ′′ . Letε := min{|ξ0−ξ1|, |z0−ξ0|} > 0. ThenKε(ξ0)\{ξ0} ⊂ C ′′ and
z0 6∈ Kε(ξ0). After shrinkingε > 0 if necessary, estimate (5.2) yields the inequality
λ(z) ≥ c µ(z) for everyz ∈ Kε(ξ0) ∩ Ω and some constantc > 0. Thus

dλ(z, z0) ≥ c · min
|w−ξ0|=ε

dµ(w, z) (z ∈ Kε(ξ0) ∩ Ω) .

Sinceµ(z) |dz| is complete inC \ {ξ0, ξ1}, we infer thatdλ(z, z0) → +∞ asz → ξ0

in Ω. �
When Ω is a smooth domain, so the entire boundaryΓ = ∂Ω is a smooth

boundary set, andλ(z) |dz| is a regular conformal metric onΩ, Theorem 5.1 implies
thatλ(z) |dz| is complete onΩ. This is a consequence of the Hopf–Rinow theorem,
which ensures that a conformal metricλ(z) |dz| on a domainΩ is complete if and
only if (5.3) holds for everyξ ∈ ∂Ω and some (and then for every) pointz0 ∈ Ω.
The latter characterization of complete conformal metricsin terms of the boundary
behavior of the associated distance functiondλ can be localized quite easily.

Definition 5.2 (cf. [3]). A conformal pseudo-metricλ(z) |dz| on a domain
Ω ⊂ C is calledlocally complete near a subset Γ of the boundary ofΩ if

(5.4) lim
z→ξ

dλ(z, z0) = +∞

for everyξ ∈ Γ and some (and then for every) pointz0 ∈ Ω.

According to this definition, Theorem 5.1 simply says that a pseudo-metric
λ(z) |dz| whose densityλ(z) blows up at a boundary setΓ in the sense of condition
(5.1) is locally complete nearΓ provided the curvature ofλ(z) |dz| is bounded below
and the boundary setΓ is smooth. The curvature condition cannot be dropped
completely, as Example 2.3 shows. Moreover, one also needs some assumptions
on the boundary setΓ. This is illustrated with the next example, which shows that
rough boundary subsetsΓ such as isolated points lack sufficient ‘influence’ on the
speed at which the pseudo-metric tends to+∞ atΓ.

Example 5.2. Consider on the punctured unit diskD \{0} the metricλ(z) |dz|
with

λ(z) =

√

1 + |z|1/3

|z|5/6

1

1 − |z|2 .

Then (5.1) holds for everyξ ∈ ∂D ∪ {0}, butλ(z) |dz| is clearly not complete near
z = 0. Note that−2 ≤ κλ(z) ≤ −1/18 for z ∈ D \{0}.
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What about the converse of Theorem 5.1 ? Does the densityλ(z) of a regular
conformal metricλ(z) |dz| which is locally complete at a subsetΓ of the boundary
tend to+∞ at Γ ? Without a lower bound on the curvature ofλ(z) |dz| the answer
is no, even for real analytic boundary sets.

Example 5.3. The metric

λ(z) |dz| = exp

[
1

1 − |z|

(

sin
1

1 − |z| + 1

)

+ 1 − |z|
]

|dz|

is complete onD , but condition (5.1) clearly does not hold. To check completeness,
we observe that a routine calculation shows that

r∫

0

λ(z) |dz| ≈ − log(1 − r) (r → 1),

so that dλ(0, z) → +∞ as|z| → 1. The curvature of the metricλ(z) |dz| is bounded
from above but not from below on the unit disk.

However, if a regular conformal metricλ(z) |dz| is locally complete near a
smooth boundary setΓ and has curvature bounded from below, then the density
λ(z) indeed blows up atΓ, i.e., condition (5.1) holds for everyξ ∈ Γ. As we
see in Corollary 5.6 below, this is a straightforward consequence of the following
boundary Schwarz Lemma of Bland, see [3], which therefore might be viewed as
a counterpart to Theorem 5.1.

Theorem 5.4 (Bland’s boundary Schwarz Lemma). Let Ω ⊆ C be a domain
and let Γ be a smooth subset of ∂Ω. Further, let λ(z) |dz| be a regular conformal

metric on Ω with κλ ≥ −cλ, and let µ(z) |dz| be a regular conformal pseudo-metric
on Ω with κµ ≤ −Cµ for some positive constants cλ and Cµ. If λ(z) |dz| is locally

complete near Γ, then

lim inf
z→ξ

λ(z)

µ(z)
≥

√
Cµ

cλ

for every ξ ∈ Γ.

Remark 5.5. Theorem 5.4 is just a very special case of Bland’s boundary
Schwarz Lemma (which in its original form applies to higher dimensional situ-
ations). Note that Bland’s boundary Schwarz Lemma is formulated for regular
conformal metricsλ(z) |dz| and regular conformal pseudo-metricsµ(z) |dz|, while
in Theorem 5.1,λ(z) |dz| is a regular conformal pseudo-metric and the regularity
of µ(z) |dz| is of no importance.
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By now, we have in hand enough technology to establish the following charac-
terization of locally complete regular conformal metrics in terms of the boundary
behavior of their density functions forsmooth boundary sets.

Corollary 5.6. Let Ω ⊆ C be a domain, let Γ be a smooth subset of ∂Ω and

let λ(z) |dz| be a regular conformal metric on Ω with κλ ≥ −cλ for some positive
constant cλ. Then the following are equivalent:

(a) λ(z) |dz| is locally complete near Γ;

(b) lim
z→ξ

λ(z) = +∞ for every ξ ∈ Γ.

Proof. The domainΩ has at least two boundary points, since it has a smooth
boundary setΓ. ThusΩ carries a complete regular conformal metricλΩ(z) |dz|
with constant negative curvature. Theorem 5.1 applied toµ(z) |dz| := λΩ(z) |dz|
yields implication “(b)⇒ (a)”. The converse implication follows from Theorem
5.4 applied toµ(z) |dz| = λΩ(z) |dz|, using the well-known fact thatλΩ(z) → +∞
asz → ξ for everyξ ∈ ∂Ω (see, for instance, [14]). �

Problem 5.7. What are the minimal regularity conditions on the boundary

set Γ such that the two conditions (a)and (b) in Corollary 5.6 are still equivalent ?

6 Reflection principles for analytic maps between
Riemann surfaces

In this final section, we extend Theorem 1.1 to analytic maps between Riemann
surfaces.

We say a Riemann surfaceR has analytic boundary if it sits inside a compact
bordered Riemann surfaceR′ with border∂R′ 6= ∅ such thatR = R′ \ ∂R′. In
this case,R′ and∂R′ are uniquely determined byR. We call ∂R′ the analytic
boundary ofR and denote it by∂R. ThenR ∪ ∂R is a compact bordered Riemann
surface. Notice that∂R is a (not necessarily connected) real analytic manifold of
(real) dimension1. Now let f : D → R be an analytic map. We say thatf has an
analytic extension across an open subarcΓ of ∂D with f(Γ) ⊆ ∂R, if there exists
an analytic mapF defined on a neighborhoodU ⊆ C of Γ, which maps into the
Schottky doubleR = R ∪ ∂R ∪R∗ such thatF (Γ) ⊆ ∂R andF = f in D ∩U . Here
R∗ denotes the mirror ofR.

Theorem 6.1. Let Γ be an open subarc of ∂D , let R be a simply connected

Riemann surface with analytic boundary ∂R, let λ(w) |dw| be a complete regular
conformal metric on R with curvature−cλ ≤ κλ ≤ −Cλ for some positive constants
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cλ and Cλ, and let f : D → R be an analytic map. Then f has an analytic extension

across Γ with f(Γ) ⊂ ∂R if and only if

(6.1) lim
z→ξ

λ(f(z)) |f ′(z)| = +∞

for every ξ ∈ Γ.

Remarks 6.2.

(a) Note thatλ(f(z)) |f ′(z)| is the density of the pullback of the metricλ(w) |dw|
under the mapf , sof∗λ(z) |dz| = λ(f(z)) |f ′(z)| |dz| is a conformal pseudo-
metric onD and therefore a well-defined function onD .

(b) For the only if part of Theorem 6.1, it suffices to assume that λ(w) |dw| is a
complete regular conformal metric with curvature bounded below. However,
these assumptions cannot be weakened further. For instance, takeR = D ,
λ(w) |dw| = |dw| and any function holomorphic in a neighborhood of a point
of the unit circle. Thenλ(w) |dw| is not complete onD and has curvature0,
but (6.1) does not hold. ForR = D , λ(w) |dw| as in Example 5.3 andf = id,
the metricλ(w) |dw| is complete onD , but the curvature ofλ(w) |dw| is not
bounded below and the boundary condition (6.1) does not hold.

(c) For the if part, it is enough thatR carry a conformal pseudo-metricλ(w) |dw|
onR with curvature bounded above by a negative constant.

(d) In Theorem 6.1, it is essential thatR be simply connected, as the following
example shows. LetR be the annulus{z ∈ C : e−1 < |z| < 1} and let
λ(w) |dw| be the hyperbolic metric onR. Then

f(z) = exp

(
i

π
log

(

i
1 + z

1 − z

))

defines a universal covering mapf : D → R, soλ(f(z)) |f ′(z)| = λD (z). Thus
(6.1) holds for everyξ ∈ ∂D , but f cannot be continued analytically across
∂D , asf does not even have a continuous extension to the pointz = 1.

For the proof of Theorem 6.1, we need the following lemma, which seems
rather obvious at first glance. Since we have no exact reference and the argument
contains a subtlety, we include the proof.

Lemma 6.3. Let R be a simply connected Riemann surface with analytic
boundary ∂R 6= ∅. Then R is hyperbolic and there is a conformal map π from D
onto R, which has an analytic extension to a conformal map of a neighborhood ofD such that π(∂D ) = ∂R.
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Proof. Let R = R ∪ ∂R ∪ R∗ denote the Schottky double ofR and let
πR : X → R be a universal cover projection, whereX = D , C or the Riemann
sphereĈ . The Schottky doubleR is a compact Riemann surface without border.
It is easy to check thatR is also simply connected. Indeed, letw0 ∈ R be an
arbitrary point and fixz0 ∈ X such thatπR(z0) = w0. Then there exists a branchg

of the inverse ofπR on the simply connected domainR ⊂ R such thatg(w0) = z0

andπR ◦ g = id
∣
∣
R

. As ∂R is compact,g has an analytic extension to an open set
containingR∪∂R. SinceR∗ is simply connected, this implies thatg has an analytic
continuation toR. The fact thatg(R) is open and compact yields thatX = Ĉ , i.e.,
g(R) = Ĉ , soR is a simply connected compact surface andπR is a conformal map.
Let D = π−1

R (R). ThenD is a simply connected domain on̂C , and∂D is a compact
and real analytic one dimensional submanifold ofĈ . The topology of the spherêC
also forces∂D to be also connected. Therefore,∂D is real analytic homeomorphic
to the unit circle. This seems obvious, but is surprisingly difficult to prove (see,
for instance, [18, Theorem 1]). Consequently,D is bounded by an analytic Jordan
curve, and there is a conformal mapΨ defined on a neighborhood ofD which mapsD ontoD and∂D homeomorphically onto∂D. Finally,π := πR ◦Ψ is a conformal
map defined on a neighborhood ofD such thatπ(∂D ) = ∂R. �

Proof of Theorem 6.1. Letπ : D → R be the conformal map of Lemma 6.3.
We pull the metricλ(w) |dw| back to the unit disk usingw = π(u) and get acomplete
regular conformal metric

ν(u) |du| := π∗λ(u) |du| = λ(π(u)) |π′(u)| |du| .

Sinceκν ≥ −cλ, Corollary 5.6 implies

lim
|u|→1

ν(u) = +∞ .

Define a holomorphic functiong : D → D by g(z) := (π−1 ◦ f)(z). Then

(6.2) λ(f(z)) |f ′(z)| = ν(g(z)) |g′(z)| (z ∈ D ) .

We now prove the only if part of Theorem 6.1 and therefore assume that
f : D → R has an analytic continuation acrossΓ with f(Γ) ⊆ ∂R. Then, by
Lemma 6.3,g : D → D also has an analytic extension acrossΓ with g(Γ) ⊂ ∂D . In
particular,g′ 6= 0 on Γ andν(g(z)) → +∞ asz → Γ, which combined with (6.2)
gives (6.1).

In order to establish the if part of Theorem 6.1, we assume that f : D → R

satisfies the boundary condition (6.1). Then, in view of (6.2), we have

lim
z→ξ

ν(g(z)) |g′(z)| = +∞



252 D. KRAUS, O. ROTH AND S. RUSCHEWEYH

for every ξ ∈ Γ. The curvature conditionκν ≤ −Cλ < 0 makes it possible to
apply Theorem 2.1, which showsν ≤ c λD for some constantc > 0. Therefore
λD (g(z)) |g′(z)| → +∞ on Γ. In view of Theorem 1.1 this forcesg to have an
analytic extension acrossΓ, so f = π ◦ g has an analytic extension acrossΓ by
Lemma 6.3. �

In the next step we replace the unit diskD in Theorem 6.1 by the ‘interior’S0

of a bordered Riemann surfaceS = S0 ∪∂S. For this purpose, we first clarify what
(6.1) means for an analytic map betweenS0 andR.

Remark 6.4. Let S = S0∪∂S be a bordered Riemann surface and letλ(z) |dz|
be a pseudo-metric onS0. Further, let{ϕα : Uα → C } be the family of charts ofS
and letλα(u) |du| be the pseudo-metricλ(z) |dz| in the local parameterϕα restricted
to S0. Then, ifξ ∈ ∂S belongs toUα and

lim
z→ξ

λα(ϕα(z)) = +∞ ,

then

lim
z→ξ

λα′ (ϕα′(z)) = +∞

for any other chartϕα′ with ξ ∈ Uα′ . This enables us to say that a pseudo-metric
tends to+∞ at a pointξ of the border∂S, and we writeλ(z) |dz| → +∞ asz → ξ

in this case.

Taking the preceding remark into account, we see from the proof of Theorem
6.1 that the complete regular conformal metricλ(w) |dw| in Theorem 6.1 can be
replaced by a regular conformal pseudo-metric satisfyingλ(w) |dw| → +∞ as
w → ∂R. We are now in a position to generalize Theorem 6.1 in the desired
direction.

Theorem 6.5. Let S = S0 ∪ ∂S be a bordered Riemann surface; let R be a
simply connected Riemann surface with analytic boundary ∂R; let λ(w) |dw| be a

regular conformal pseudo-metric λ(w) |dw| on R with curvature bounded below
and above by negative constants −cλ and −Cλ, respectively, and

lim
w→τ

λ(w) |dw| = +∞

for every τ ∈ ∂R; and let f : S0 → R be an analytic map. If ξ0 is a point of the

border of S, then the following statements are equivalent.

(i) f has an analytic continuation to a neighborhood U of ξ0 in the Schottky

double S such that f(U ∩ ∂S) ⊆ ∂R.
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(ii) There is a neighborhood U ⊆ S of ξ0 such that

lim
z→ξ

λ(f(z)) |f ′(z)| |dz| = +∞

for every point ξ ∈ U ∩ ∂S.

Proof. (i)⇒(ii): Let f have an analytic continuation to a neighborhoodU of
ξ0 in S. We may assumeU lies in a parameter neighborhoodUα ∪ U∗

α of S. Then
there exists a simply connected domainV in U with ξ0 ∈ V such thatV ⊂ U and
a local parameter̂ϕα : Uα ∪ U∗

α → C , ϕ̂α(z) = u, such thatϕ̂α(V ∩ S0) = D . Let
Γ := V ∩ ∂S andI := ϕ̂α(Γ). ThenI is an open subarc of∂D , and the function
f̂ := f ◦ ϕ̂−1

α : D → R has an analytic continuation acrossI. By Theorem 6.1,

lim
u→η

λ(f̂(u)) |f̂ ′(u)| = +∞

for everyη ∈ I, so
lim
z→ξ

λ(f(z)) |f ′(z)| |dz| = +∞

for everyξ ∈ Γ.

(ii)⇒(i): Maintaining the same notation as in the proof of “(i)⇒ (ii)”, we see
that

lim
z→ξ

λ(f(z)) |f ′(z)| |dz| = +∞

for everyξ ∈ Γ gives
lim
u→η

λ(f̂(u)) |f̂ ′(u)| = +∞

for everyη ∈ I. By Theorem 6.1, the function̂f has an analytic extension across
I. Thusf = ϕ̂α ◦ f̂ has an analytic continuation acrossΓ and consequently to a
whole neighborhood ofξ0. �

Our next result is a global extension of Theorem 6.5.

Corollary 6.6. Let S and R be simply connected Riemann surfaces with
analytic boundaries ∂S and ∂R, respectively; let Γ be an open and connected

subset of ∂S; and let R carry a complete regular conformal metric λ(w) |dw|
with curvature bounded below and above by negative constants −cλ and −Cλ,

respectively. Further, let f : S → R be an analytic map. Then the following

conditions are equivalent.

(i) f has an analytic extension across Γ such that f(Γ) ⊂ ∂R.

(ii) For every ξ ∈ Γ,

lim
z→ξ

λ(f(z)) |f ′(z)| |dz| = +∞ .
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(iii) If µ(z) |dz| is a conformal pseudo-metric on S whose curvature is bounded

from above by a negative constant −Cµ and

lim
z→ξ

µ(z) |dz| = +∞

for every ξ ∈ Γ, then

(6.3) lim inf
z→ξ

λ(f(z)) |f ′(z)|
µ(z)

≥
√

Cµ

cλ

for every ξ in Γ.

Note thatλ(f(z)) |f ′(z)|/µ(z) in (6.3) is the quotient of two conformal pseudo-
metrics onS. Sinceµ(z) |dz| → +∞ as z → Γ, this quotient is therefore a
well-defined function on the surfaceS at least nearΓ.

Proof. Let πS : D → S, z = πS(u), andπR : D → R, w = πR(v), be the
conformal maps described in Lemma 6.3 and letI = π−1

S (Γ) ⊆ ∂D . Further, define
the analytic mapg : D → S by g = f ◦ πS and the holomorphic functionh : D → D
by h = π−1

R ◦ f ◦ πS.

(i)⇒(ii): Supposef has an analytic extension acrossΓ with f(Γ) ⊆ ∂R. Then by
Lemma 6.3, the functiong has an analytic extension acrossI as well, so Theorem
6.1 applied to the analytic mapg yields

lim
u→η

λ(g(u)) |g′(u)| = +∞

for everyη ∈ I. This implies

lim
z→ξ

λ(f(z)) |f ′(z)| |dz| = +∞

for everyξ ∈ Γ.

(ii) ⇒ (iii): Let µ(z) |dz|be a conformal pseudo-metric onS with curvatureκµ ≤
−Cµ < 0. Pulling backµ(z) |dz| via πS, i.e.,(π∗

S µ)(u) |du| = µ(πS(u)) |π′
S(u)| |du|,

gives a pseudo-metric onD with curvatureκπ∗

S
µ ≤ −Cµ. From Theorem 1.4 follows

lim inf
z→ξ

λ(f(z)) |f ′(z)|
µ(z)

= lim inf
u→π−1

S
(ξ)

λ(g(u)) |g′(u)|
π∗

S µ(u)
≥

√

Cµ

cλ

for everyξ ∈ Γ.

(iii)⇒(i): Define onD the regular conformal metricπ∗
Rλ(v) := λ(πR(v)) |π′

R(v)|
with curvatureκπ∗

R
λ ≥ −cλ. Note thatπ∗

R λ(h(u)) |h′(u)| = λ(g(u)) |g′(u)| for u ∈ D .
Hence, by assumption,

lim inf
u→η

π∗
R λ(h(u)) |h′(u)|

π∗
S µ(u)

≥
√

Cµ

cλ
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for everyη ∈ I. Since
lim
u→η

π∗
S µ(u) = +∞

for everyη ∈ I, we obtain in view of Theorem 2.1

lim
u→η

λD (h(u)) |h′(u)| ≥
√

Cλ

4
. lim
u→η

π∗
Rλ(h(u)) |h′(u)| = +∞

for everyη ∈ I. Now h has an analytic extension acrossI with h(I) ⊆ ∂D by
Theorem 1.1. Consequently, Lemma 6.3 gives thatf has an analytic extension
acrossΓ with f(Γ) ⊆ ∂R. �

We conclude this paper by noting that the characterization of locally complete
regular conformal metrics in terms of the boundary behaviorof the density in
Corollary 5.6 carries over to Riemann surfaces. We limit ourselves to stating the
result for bordered Riemann surfaces and omit the proof, which is similar to that
of Corollary 5.6.

Proposition 6.7. Let S = S0 ∪ ∂S be a bordered Riemann surface, let Γ

be an open connected subset of the border ∂S and let λ(z) |dz| be a regular

conformal metric on S0 with curvature bounded from below. Then the following
are equivalent:

(a) λ(z) |dz| → +∞ as z → ξ for every ξ ∈ Γ;

(b) λ(z) |dz| is locally complete near Γ, i.e., for any z0 ∈ S and for every ξ ∈ Γ,

lim
z→ξ

dλ(z, z0) = +∞ .
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