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Abstract
This paper considers short-term coastal erosion in the Gaza Strip and its relationship to the local sea level change and 
human interventions on the shoreline. There is a proven relationship between increased coastal erosion and global mean sea 
level rise, especially in the long-term; however, the impact of human interventions on the shoreline could be more than on 
sea level in the short-term. Recently, cliff and coastal erosion have been widely noticed along the shoreline, mainly where 
human interventions occur. Therefore, remote sensing and GIS were used to derive the rate of coastal erosion in these regions 
while local sea level data were collected from the available Permanent Service for Mean Sea Level (PSMSL) in order to 
investigate sea level changes. The local sea level trends from adjacent stations to the Gaza Strip were derived. The goal is to 
investigate whether an upward sea level trend explains the occurring erosion of the shores. The results revealed that several 
regions along the Gaza Strip shoreline undergo a landward erosional process, with an average rate ranging between – 0.2 
and – 0.8 m/year. Furthermore, monthly and annual mean sea level trends demonstrated a negative trend between -1.42 and 
–5.25 mm/year. In particular, as there is no clue of a significant upward trend in local sea level during the last eight years 
which is accompanied by an acceleration in the coastal erosion, informal human intervention could be considered a primary 
catalyst for accelerating coastal erosion in the short-term.

Keywords Coastal erosion · Sea-level rise · Gaza Strip · Human intervention · Shoreline change rates · Remote sensing · 
DSAS

Introduction

The urban sprawl and population growth in coastal cities 
raise the demand for natural resources, disturbs the natural 
equilibrium, and accelerates environmental deterioration. 
Coastal and marine environments are subject to many 
spatial, geomorphological, and demographic changes; 
some of the most common changes that occur along 
coastal regions are beach erosion, shoreline migration, 
and coastal cliffs collapsing and retreating. These changes 
are attributed to the natural factors of wave actions and 
oceanographic conditions (Łabuz 2015). Another cause 
of coastal deterioration is direct human activity, such as 
coastal urbanization and exploitation of beach resources. 
Human interventions and dam construction along rivers, 

and groins in coastal areas, cause negative impacts on the 
natural movement of sediments and hinder natural beach 
nourishments. Since the Industrial Revolution, issues of 
climate change, global warming, melting ice cover, and sea 
level rise have become some of the most important direct 
and indirect causes of coastal erosion. However, human 
factor should be considered a significant and influencing 
factor in coastal erosion (Carter 1991; Thanh et al. 2003; 
Tirkey et al. 2005; Pousa et al. 2006; El-Asmar and Hereher 
2010; Trenhaile 2011; Revell et al. 2011; Appeaning Addo 
2012; Devoy 2014; Tsoukala et al. 2015; Antonioli et al. 
2017; Duc et al. 2017; Fatorić and Seekamp 2017; Phong 
et al. 2017; Fan et al. 2018).

Thanh et al. (2003) studied the impact of human activities 
on the on marine environment; they found that human 
activities have negative impacts on coastal environment 
through increasing floods, erosion, sedimentation, and 
environmental pollution. Pousa et al. (2006), in their study, 
confirmed that man-made interventions and actions, such 
as beach mining, construction of coastal structures and 

 * Khaldoun Abualhin 
 khaldoun.alhin@gmail.com

1 Institute of Water and Environment, Al Azhar University-
Gaza, Gaza Strip, Palestine

/ Published online: 23 December 2022

Journal of Coastal Conservation (2022) 26:75

http://orcid.org/0000-0001-8339-2422
http://crossmark.crossref.org/dialog/?doi=10.1007/s11852-022-00922-y&domain=pdf


1 3

exploitation of aquifers, can cause environmental damage 
to the coastal zone. Phong et al. (2017) investigated the 
relationship between community activities and coastal 
erosion; their resuts demonstated that several human 
activities such as poor construction on coastal regions, and 
the interaction of anthropogenic activities and physical 
processes, are significant contributors to coastal erosion. 
Domínguez et al. (2005) assessed coastal vulnerability to 
erosion by combining potential coastal retreat with land-
use type. The study revealed that a substantial part of the 
studied coastal regions is at a high to medium risk due 
to human structures (Domínguez et  al. 2005). A study 
conducted on shoreline morphological changes and human 
factor found that human activities are moving closer to 
the shoreline, compared to the rate of landward shoreline 
movement. This result emphasizes the fact that the effects 
of human interventions on coastal regions could be, in some 
cases, greater than the natural influences (Appeaning Addo 
2012). Fan et al. (2018) concluded that massive reclamation 
activity, expansion of the oil industry, and sea level rise, 
have jointly contributed to the rapid change and decrease of 
the intertidal zone in west of Tiao River Mouth.

Climate change is among the most important factors that 
contribute significantly to the deterioration of the natural 
resources and the environment along the coasts. Several 
studies have discussed the adverse effects of climate change 
and sea level rise on coastal regions (Orford 1987; Carter 
1991; Scavia et al. 2002; Zhang et al. 2004; Torresan et al. 
2008; Cooper et al. 2008; Trenhaile 2011; Ranasinghe et al. 
2011; Revell et al. 2011; Ngo-Duc 2014; Łabuz 2015; Duc 
et al. 2017; de Winter and Ruessink 2017; Martins et al. 
2018). Zhang et al. (2004) indicated in their study that there 
is a highly multiplicative association between long-term 
sandy beach erosion and sea level rise. Duc et al. (2017) 
confirmed that sea level rise leads to increase of coastal ero-
sion, beach lowering, and cliff scour. Trenhaile (2011) used 
mathematical models to predict the effect of sea level rise on 
soft and hard rock coasts. Trenhaile’s results suggested that 
rising sea level would generate faster rates of cliff recession. 
de Winter and Ruessink (2017) quantified the impact of sea 
level rise on future dune erosion at two locations along the 
Dutch coast; they reported a linear relationship between sea 
level rise and dune erosion. Martins et al. (2018) evaluated 
coastal erosion vulnerability under different climate change 
scenarios; they found that the coastal vulnerability would 
increase with sea level rise, and wave height change. Moreo-
ver, they reported that the high-vulnerability sections of the 
coast were those with high population densities and high 
urbanization rates.

Remote sensing techniques and Geographic Information 
System (GIS) have been widely used to study coastal ero-
sion, and monitor temporal and spatial changes (Anfuso and 
Martínez Del Pozo 2008; Sesli et al. 2009; Ahmed et al. 

2009; El-Asmar and Hereher 2010; Hereher 2011; Boateng 
2011; Pereira and Coelho 2013; McCarthy et al. 2017; Al 
Ruheili and Boluwade 2021; Prakasam et al. 2022; El Raey 
2022; Niang 2022; Susilowati et al. 2022). Moreover, sat-
ellite images provide a variety of archive data, and offer 
wide temporal and spatial coverage. GIS platforms are very 
important tools in studying spatio-temporal changes, and in 
monitoring dynamic phenomena such as coastal erosion and 
shoreline change rates, and they provide considerable accu-
racy (Szlafsztein and Sterr 2007; Boateng 2012; Mujabar 
and Chandrasekar 2013; Jana and Bhattacharya 2013; 
Kaliraj et al. 2013; Wu et al. 2021; Komolafe et al. 2021; 
Theilen-Willige and Mansouri 2022; Thinh 2022; Siyal 
et al. 2022). Al Ruheili and Boluwade (2021) used sentinel 
images and the Digital Shoreline Analysis System (DSAS) 
to estimate changes of the shoreline and explore the domi-
nant coastal conditions along the Kyarr’s region. Similarly, 
Thinh (2022) employed the same tools to monitor shoreline 
changes along the Ky Anh Coast. Sesli et al. (2009) utilized 
aerial and satellite imagery with medium and high resolution 
for mapping coastal land use and monitoring the changes. 
Their results showed the effectiveness of the remote sens-
ing data on monitoring coastal land. Szlafsztein and Sterr 
(2007) identified and classified natural and socioeconomic 
vulnerabilities of coastal zone of the State of Pará based on 
GIS models. Kaliraj et al. (2013) investigated the impact of 
wave energy and littoral current on shorelines using multi-
temporal Landsat TM, ETM + images, and the rate of shore-
line change was calculated using GIS-based tool. Hereher 
(2011) utilized Landsat remote sensing imagery from 1973 
to 2008 to estimate the quantity of land loss in terms of 
coastal erosion, while McCarthy et al. (2017) demonstared 
the capabilities and advantages of remote sensing techniques 
for assessments of coastal resources over larger areas that are 
impossible to do with traditional methods. Theilen-Willige 
and Mansouri (2022) were able to highlight critical areas 
prone to flooding hazards; they evalauted optical satellite 
data, and radar data for better understanding of the current 
development at the coasts.

Zviely and Klein (2004) used satellite imaging to assess 
shoreline changes; they estimated average cliff retreat rates 
of about 20 cm/year. Abualhin (2011) calculated the rate 
of shoreline change which was -14 cm/year along the Gaza 
Strip shoreline using remote sensing and GIS. Adler and 
Inbar (2007) investigated the difference in the shoreline 
along the North Sinai coast for over 15 years by studying 
TM and ETM true color Landsat photos from 1986 to 2001; 
the studies revealed patterns of erosion and accretion along 
the coastal zone of the Gaza Strip.

Locally and within the last decade, the Gaza Strip coastal 
zone experienced various environmental and anthropogenic 
issues such as sand mining from the backshore area, cliffs 
retreating, berms and beach levelling for recreation areas, 

K. Abualhin75   Page 2 of 21



1 3

and the establishment of coastal structures. One form of 
human intervention in the Gaza coastal zone is beach level-
ling process for creating recreation areas along shorelines; 
this decreases the beach berms height towards the sea, and 
increases coastal erosion and shoreline cliff retreat. (Peled 
et al. 1997; Golik and Rosen 1999; Zviely and Klein 2003; 
European Environmental Agency 2014; Jonah et al. 2015; 
Report et al. 2015; Deidda et al. 2016; Bitan and Zviely 
2020).

Another form of arbitrary intervention is rubble groins 
and breakwaters installation by the owners of tourist sites. 
Although groins and breakwaters protect shorelines on the 
upstream side, they cause erosion on the downstream side of 
the beach (Badiei et al. 1995; Dabees and Kamphuis 1998; 
Golik and Rosen 1999; Zviely and Klein 2003; Leont’yev 
2003; Abualhin 2011; Faiboona et al. 2011; Abualtayef et al. 
2012; Schmitt and Albers 2014; Eriksson and Persson 2014; 
Zhang and Stive 2019; Leont and Akivis 2020; Lima et al. 
2020). Coastal erosion has become a phenomenon often 
attributed to sea level rise, or climate change. While this may 
be true in most cases, it is not the only, or the main cause, 
in other regions of the world. In this study, we believe that 
the main factors for the acceleration of beach erosion in the 
short term at the Gaza Strip is the unwell human intervention 
on the shoreline; this has exacerbated the erosion at a much 
greater rate than climate change. The main question of this 
study is whether the unwell human intervention or the sea 
level rise is the main accelerator factor for the current coastal 
erosion in the short term.

This study aims to examine the link between the current 
acceleration of coastal erosion at several locations along 
the Gaza Strip coastal zone, and multipurpose human 
interventions at these sites. Additionally, an investigation 
of sea level rise trends in the region will be carried out.

Study area

The Gaza strip is located along the southeast coast of the 
Mediterranean Sea, between longitudes 34° 22″ 34° 25″ 
East, and latitudes 31°16″ 31°15″ North. The area of the 
Gaza Strip is 365  km2, with a maximum length of 42 km 
and a 7 km average width (Fig. 1). Beaches are affected by 
unplanned development in marine areas, and coastal denuda-
tion happens as a result. The Gaza Strip coastal region is a 
small strip of sandy beach; the entire coast of the Gaza Strip 
is sandy in most places, forming dunes particularly in the 
south, while the Kurkar cliffs can be found from the middle 
to the north. Through marine currents moving from south 
to north, Nile River sediments have been feeding the coasts 
of Palestine, including the Gaza Strip coastal region, with 
sand sediments. The majority of the coastal zone sand is 
medium to coarse (78%), and fine sand (~ 20%) (Perlin and 

Kit 1999; Ali 2002; Zviely et al. 2007; Ubeid 2014). The 
Gaza Strip is located in an arid to semi-arid region, with 
an average annual precipitation of 250—450 mm per year, 
while most of the Gaza Strip is covered by Quaternary sedi-
ment. Geologically, the coastal plain consists of a series of 
formations, mainly from the Tertiary and Quaternary eras, 
sloping gradually from the East towards the West.

The Kurkar Group, from the Pleistocene, consists of: 
(1)—marine and terrestrial calcareous sandstone known as 
Kurkar; (2)- layer of yellowish to reddish silty sand with var-
ying amounts of clay and iron oxides known as Hamra; (3)—
layer of silty clays with unconsolidated sands and conglom-
erates. The Kurkar Sediments extend along the coast but are 
more exposed in the northern part of the Gaza Strip than in 
the southern part. In some part of the Gaza coast, the Kurkar 
sediments from high coastal cliffs range between 5–18 m. 
The Holocene deposits overlie the Pleistocene Kurkar ridge 
with a thickness of up to 25 m. The Holocene deposits are 
terrestrial origin deposits and can be divided into four sub-
divisions: (1) dunes that extend along the shoreline, and 
originate partly from Nile River sediments; (2) Sand, loess, 
and gravel whose beds are small in thickness of about 10 m; 
(3) Alluvial deposits spread in the area around Wadi Gaza 
and have a thickness of about 25 m; (4) Beach formation 
composed of a thin layer of unconsolidated sand with shell 
fragments (Hudleston 1883; Horowitz 1975).

The Gaza Strip coast is characterized by low tide, semi-
diurnal tide which varies between 0.4 m during spring tides 
and 0.15 m during neap tides. Winds blow most frequently 
from west and north directions, while the high winds tend to 
come from the south-west. During winter, winds blow from 
the west and southwest with an average speed of 4.2 m/s, 
whereas in summer winds blow mainly from the northwest 
direction. In general, the wind climate is mild and wind 
speed hardly exceeds 13 m/s, where the direction is mainly 
between 240° and 0°. The dominant waves approach the 
Gaza Coast from West-Northwest (WNW) direction. On 
open sea, waves of 2.25 m and higher occur about 2.5% 
of the time from directions between Southwest (SW) and 
Northwest (NW), while at 10 m depth waves occur about 
1.4% of the time from directions between West and North-
Northwest. Waves of significant height larger than 2.25 m 
rarely occur outside November to March. The direction of 
extreme offshore waves ranges between 270° and 315°. 
Short period waves are waves generated by local wind ranges 
from 3-20 s. Long periods waves are waves with a period 
over 25–30 s with usually small amplitudes up to 0.5 m. The 
nearshore currents at Gaza coastal zone are weak currents of 
up to 0.5 m/s (Smaling 1996).

The Gaza Strip suffers from a high population density 
which negatively affects a variety of environmental disci-
plines. In recent years, the region has witnessed an eleva-
tion in the frequency of human activity and construction 
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along the coast, including the construction of tourist resorts, 
groin structures, water desalination plants, fishermen facili-
ties, and wastewater treatment outlets. The majority were 
built in an arbitrary manner rather than with an integrated 
scientific plan, thus contributing to spreading the coastal 
deterioration (Fig. 2).

Materials and methodology

The methodology relies on the use of remote sensing tech-
niques and GIS to extract shorelines from multi-temporal 
satellite data. The change in shoreline rate was calculated 
using statistical models incorporated into the digital shore-
line analysis system (Alhin and Niemeyer 2009; Himmel-
stoss 2009; Oyedotun 2014; Himmelstoss et  al. 2018a; 
Tsokos et al. 2018).

In order to distinguish between beach erosion caused by 
climate change and sea level rise, and beach erosion driven 
by human intervention, the effects of both factors must 

be examined and compared. Consequently, fieldwork was 
necessary to identify the areas that witnessed a significant 
decline in coastal cliffs and erosion in beaches, and monitor 
collapses in coastal facilities. In addition, the fieldwork was 
essential to monitor human interventions in these regions. 
Figure 2 shows the regions with significant human inter-
ventions that already suffer from severe coastal erosion. 
The land use map was created to identify human activities, 
whether tourism, industrial or agricultural, in areas that suf-
fer from coastal erosion and the decline of cliffs in general 
(Fig. 4). On the other hand, it is necessary to know the state 
of sea level in recent years and to find the general trend in 
sea level to determine whether there is an upward trend or 
whether there is stability in sea level. Therefore, sea level 
fluctuation records were collected, compiled and analyzed 
to determine the sea level rise trends. The sea level records 
were gathered from the Sea Level Station Monitoring pro-
grams, the Global Sea Level Observing System (GLOSS), 
and the Permanent Service for Mean Sea level (PSMSL) 
(Woodworth 1991; Tolkatchev 1996; Woodworth and Player 

Fig. 1  Location of the study area showing the areas affected by human intervention
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2003; Aarup 2008; Holgate et al. 2013; PSMSL 2017, 2021; 
Toker et al. 2020). GLOSS monitors and coordinates global 
and regional sea level networks to support oceanographic 
and climate research communities(Tolkatchev 1996; IOC/
UNESCO 2000; Woodworth and Player 2003; Aarup 2008; 
Woodworth 2016).

Satellite imagery dataset

A set of satellite imagery was gathered from 2004 to 2018, 
spanning 14 years. The image data were collected almost 
simultaneously from Google Earth aerial and satellite 
images with a spatial resolution of two meters (Table 1). 

Fig. 2  Pictures of several loca-
tions affected by human inter-
ventions and showing the severe 
coastal erosion in these regions 
along the Gaza Strip shoreline

a) Collapse of one coastal recreation building after 

constructing multiple groins on the upstream side and 

hindering sediments nourishment to northern regions of the 

beach, north Gaza

b) Beach erosion and the collapse of coastal 

cliffs in the al-shatti area due to the cessation of 

beach nourishment which in turn was caused by 

the enlargement of a fishing port breakwater in 

Gaza city

c) Beach erosion and the collapse of coastal cliffs in 

the Rafah area due to the construction of a local port south 

of Rafah on the Egyptian side, and also the installation of 

wastewater pipelines, Rafah City

d) Collapsing recreational building after 

construction of groin in the upstream side in the 

blue-beach regions, Gaza city

e)
f) Groins that were installed perpendicular to the 

shoreline north of Khanyunis city

g) Recreational groins that were installed 

perpendicular to the shoreline, north Gaza

h) Wastewater outlet pipes south Gaza city
i) Rubble groin which hinders the  natural 

flow of longshore sediment, north Gaza
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The historical images in Google Earth were collected on a 
specific date. The data was pre-processed and corrected for 
geometrical distortion. A geo-referencing process was done 
to ensure all pixels in the spatial data in the imagery data-
set are spatially lined up with other images. Ground control 
points (GCPs) were collected at different locations and set 
for at least 16 points per image, with an average RMS error 
of 0.5 pixels. Shorelines were derived from the data and 
integrated into GIS software to measure statistical relation-
ships and derive an actual shoreline change rate. The study 
covered the following regions: The North Groin (Bet Lahia), 
the northern side of the fishing port (Al-Shatti), the Dier 
Albalah groin, and the Rafah Region.

Shoreline extraction and analysis 
of shoreline change rates

In coastal terminology, the term shoreline can be defined 
as the intercept of the mean water level along the beach 
(Davidson-Arnott 2010). The position of the land–water 
interface is generally adopted as the shoreline position in 
geomorphological studies, while in a geodetic survey the 
high-water line boundary is used (Schwartz 2006). The 
dynamic and spatiotemporal nature of shorelines makes the 
mapping process of this boundary more difficult compared 
to other coastal features. Extracting shorelines from satel-
lite imagery was achieved through density slicing (DS) and 
Binary thresholding methods. Histogram thresholding meth-
ods are mostly based on histogram analysis, and they convert 
greyscale images into Binary images. Shoreline extraction 
using thresholding techniques was adopted in several studies 
(Lillesand and Kiefer 1979; Wayne Niblack 1985; Johnston 
and Barson 1993; Solihin and Leedham 1999; Liu and Jezek 

2004; Lipakis and Chrysoulakis 2005; Abu-alhin and Nie-
meyer 2009; Bott 2014; Aedla et al. 2015; Kafrawy et al. 
2017; Karaman 2021). Thresholding can be done interac-
tively with a raster image display by modifying Look-Up-
Table and deriving values interactively from the image his-
togram. Meanwhile, other studies utilized simple density 
slicing techniques for extracting shorelines from satellite 
images and aerial images (Ouma and Tateishi 2006; Marfai 
et al. 2008; Karsli et al. 2011; Mitra et al. 2017; Sunder et al. 
2017; Sekar et al. 2022). However, sea foam, nearshore tur-
bidity, tidal flat, and the duration of beach insolation can be 
serious problems for determining the waterline accurately. 
Depending on the shoreline extraction method, seafoam, 
coastal structures, tidal flats, and wetlands can be misclas-
sified as water or as land. Accordingly, the shorelines were 
extracted from all image dataset, and then manual digitizing 
was conducted to ensure shoreline accuracy and refinement. 
Figure 3 shows the flowchart of the shoreline change rate 
calculation procedure.

The accuracy of shoreline extraction is a critical issue 
in ensuring the calculation credibility of the shoreline 
change rates analysis. Uncertainties of shorelines positions 
have several errors, including shorelines extraction, images 
registration and geo-reference, and waterline position at 
the time of images collection (Crowell et al. 1991; Thieler 
and Danforth 1994; Moore 2000; Ruggiero et al. 2003; Li 
et al. 2004; Ruggiero and List 2009; Nassar et al. 2019). To 
eliminate the ambiguity of shoreline locations, the shoreline 
positions were first automatically extracted from the images 
using the histogram threshold process. The extracted 
shoreline from time-series imagery (2014–2018) was 
utilized to calculate the change of the shoreline positions 
through time. The Digital Shoreline Analysis System 
(DSAS) software incorporated on the ArcGIS platform 
is used to calculate the shoreline change rates along the 
entire zones by calculating the rate of change statistics from 
multiple historic shoreline positions. The baseline generated 
was used as a starting point for all transects casting.

Transects were generated automatically along the base-
line at 50-m intervals. The points of shoreline intersections 
combine date information and positional uncertainty for 
each shoreline to calculate shoreline change statistics such 
as Linear Regression Rate (LRR), and measure elapsed dis-
tance between two dates such as Net Shoreline Movement 
(NSM). The Linear Regression Rate (LRR) and the Net 
shoreline movement (NSM) were adopted in this study as 
statistical bases for calculating shoreline change rates. Sev-
eral studies used the DSAS model for calculating shoreline 
change rates via LRR and NSM (Douglas and Crowell 2000; 
Abualhin 2011; Ahmad and Lakhan 2012; Mahapatra et al. 
2014; Natesan et al. 2015; Kermani et al. 2016; Sytnik et al. 
2018; Andaryani et al. 2019; Baig et al. 2020; Muskananfola 
et al. 2020; Dereli and Tercan 2020; Aladwani 2022). The 

Table 1  Aerial imagery dataset used in the study

Shoreline region Dates Shoreline region Dates

Bet Lahia
(North Gaza)

24–5-2005
16–6-2007
20–6-2016
23–6-2018

Dier Albalah Groin
(North Khanyunis)

26–2-2004
22–11-2005
16–6-2007
24–7-2008
28–8-2011
5–9-2014
23–3-2016
23–6-2018

Al-Shatti
(Gaza City)

31–12-2004
24–5-2005
16–6-2007
28–1-2016
23–6-2018

Rafah 31–12-2004
16–6-2007
1–8-2008
15–7-2010
1–7-2012
22–12-2013
29–7-2014
23–3-2016
23–6-2018
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linear regression rate of change (LRR) is a reliable statisti-
cal tool for calculating the shoreline change rate by fitting a 
least-squares regression line to all shoreline locations along 
each transect. The linear regression method assumes a linear 
pattern of change among the shoreline dates, with the lin-
ear regression rate equal to the slope of the line. The linear 
regression approach is solely computational, involves all 
shorelines, is less prone to outliers, and it underestimates the 
rate of change compared to other statistical methods. A net 
shoreline movement calculates the total movement distance 
between the two shoreline positions and thus is considered 
an endpoint measure of change. It records the difference 
between the oldest and youngest shorelines for each transect 
in meters. On the other hand, negative rate values suggest 
erosion (landward displacement of the shoreline), while 
positive rate values indicate accretion (seaward movement 
of shoreline) (Fenster et al. 1993; Moore 2000; Honeycutt 
et al. 2001; Fletcher et al. 2003; Himmelstoss et al. 2021). 
The LRR measures annual shoreline change rates in meters, 
while the NSM estimates annual shoreline displacement in 
meters.

Results and discussion

The results will be divided into two main sections, the first 
section is related to the calculation of the rate of shoreline 
changes along the coastal zone of the Gaza Strip, with a 
focus on regions that have experienced intense human activ-
ity and interventions in the past years. The second part of the 

results will demonstrate the sea level rise trends along the 
Gaza coastal zone regions and the surrounding of southeast 
Mediterranean coast. We believe in this study that if there is 
any upward trend in sea level in the region in recent years, 
this increase will be the evidence and can be considered the 
main justification for the acceleration of beach erosion in 
the Gaza Strip coastal zone. However, if we cannot prove 
the existence of a rise in local sea level, by the principle 
of contravention, this confirms that human factor through 
intense tourist and economic activity along the shoreline 
is the main contributor to acceleration of coastal erosion in 
the short term.

Shoreline changes analysis

The rates of shoreline change were calculated for the entire 
shoreline of the Gaza Strip in general, focusing on the areas 
where there was an increase in the frequency and volume 
of human intervention in the past decade. The shorelines 
were derived from satellite imagery for the period between 
2004 and 2018 for most of the regions. As mentioned 
above, GIS and DSAS software were used to generate 
shorelines matrices to calculate shoreline change statistics 
(Himmelstoss et al. 2018b). Two statistical parameters were 
used to evaluate the shoreline change patterns; the Net 
Shoreline Movement (NSM) and Linear Regression Rate 
(LRR). The land use map shows the distribution of several 
human activities across the coastal area and the Gaza Strip 
(Fig. 4). Based on the land use map, four regions can be 
recognized and highlighted as regions of intensive human 

Fig. 3  Flowchart of shoreline 
change rate calculation
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intervention; two regions in the north of the Gaza Strip and 
two in the south. The first regions in the north are Al-Shatti 
region which extends from the Fishing port up to the end 
of Al-Shatti camp. This region is characterized by a heavy 
fishing industry, restaurant, and recreation facilities. The 
second region in the north is the Bet Lahia region which 
extends from Blue-beach region up to Al-Waha region and 
characterized by rapid construction activities for recreational 
regions and installation of multiple groins for tourist 
purposes. The second regions in the south are: Deir Albalah 
region which has witnessed construction of a perpendicular 
large groin since 2001as an infrastructure for a new fishing 
port in this city. The last region in the south is the Rafah 
region which has witnessed in recent years a booming 
activity in the field of tourism, commerce and construction. 
In addition, the construction and development of the sea 
port in the city of Rafah—Egypt significantly reduced the 
flow of sediments to the shores of Rafah- Gaza where the 
construction of this port began in 2010 and was completed 
in 2015. The next section presents the results of shoreline 
change rates for these four regions.

Bet Lahia Region

Recently, the northern section of the Gaza Strip has been 
overwhelmed with a variety of construction, including 
recreational sites and small groins of building rubbles 
along the coast. In addition, an impermeable seaward 
extended groin was developed for recreational com-
pounds in 2016. This impermeable structure, perpen-
dicular to the shoreline, impeded the regular migration 
of nearshore sediments to the northern side of the Groin, 
resulting in a sediment deficit on the downstream side 
of the beach region. The study revealed that this area 
is affected by a negative rate with an average shoreline 
shift change rate of -0.38 m/yr., and erosional rates were 
observed on 70% of all transects in this region. About 
57.35% of all transects generated in this region show a 
negative distance or coastal regression. Table 2 shows 
that the total shoreline displacement MSN is about 
-0.62 m, and the mean distance of beach erosion is about 
-27 m. Figure 5-a shows a map of the North Groin and 
surrounding area.

Fig. 4  Land use map of the study area. The Arrows show the regions affected by the intensive human intervention and also the rate of shoreline 
changes and the net shoreline movement (on the Left is the northern part and on the right is the southern part of the Gaza Strip)
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Al ‑Shatti Region

Few studies have evaluated the impact of the Gaza fishing 
port breakwater on Al-Shatti shoreline. The studies 
demonstrated that the breakwater accelerated coastal 
erosion downstream (Zviely and Klein 2003; Abu-alhin 
and Niemeyer 2009; Abualhin and Niemeyer 2009; 
Abualhin 2011; Abualtayef et  al. 2012). The average 
shoreline change rate in this region was about -0.34 m/
yr. The large breakwater structure scatters nearshore 
sediments flux offshore and hinders sediment flow into 
the northern part of the Gaza city and the Al-Shatti region. 
Although the condition has somewhat improved in the last 
decade, a safety gabion was installed to mitigate beach 

erosion in this area. As a result, the coastal erosion rate 
decreased from -0.34 m/year in 2010 to -0.2 m/year in 
2018 (see Table 3). Nevertheless, erosional processes are 
the dominant processes in this region where erosional 
rates were observed with 50.9% and 55.2% of the transects 
generated in this region showing a negative distance. 
Figure 5-b shows the shoreline change rate on the northern 
side of Gaza Fishing Port in the Al-Shatti region.

Deir Albalah Region

A long groin has been built between Deir Albalah and 
Khanyunis regions, running perpendicular to the shoreline, 
and extending 200 m seaward. The groin is characterized 

Table 2  The shoreline changes 
rate (LRR) and the net shoreline 
movement (NSM) at Bet Lahia 
Groin

Shoreline change rate Parameters Bet Lahia

NSM (m) Average distance (m) -0.62
Percent of all transects that have a negative distance 57.35%
Maximum negative distance (m) -27.32

LRR (m/yr) Average rate (m/yr) -0.38
Percent of all transects that are erosional 70.59%
The maximum value of erosion -3.7

Fig. 5  a The shoreline change in the Bet Lahia region, b The shoreline change in the Al-Shatti region
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by average width of about 35 m and more than 5-m height 
above sea level, and it is about 7 m below sea surface at the 
groin head. Undoubtedly, the construction of groins at this 
location was not according to coastal engineering investiga-
tion because the current direction and sediment circulation 
were not considered. In addition, the land levelling process 
altered the geomorphological pattern, where coastal cliffs 
were downgraded and collapsed during the construction 
stage. Negative impacts on the surrounding environment 
have been noted as a natural consequence of such installa-
tions that were not built to account for beach erosion. The 
finding shows that the rate of shoreline changes is higher in 
this region than in the north of the Gaza Strip (Fig. 6). About 
64.56% of all transects in this region are showing a negative 
distance. The average shoreline rate was about -0.49 m/year, 
and the percentage of transects that exhibited erosional rates 
in this region was 78% of all transects, as seen in Table 4. 
The findings indicate that coastal cliff retreat accelerated 
after installing the groin.

Rafah Region

Rafah city is a border city with Egypt, and recently, the 
region has been under intensive human activity on both sides 
of the border. Scenes such as coastal roads falling, and cliffs 
demolished due to wave scour have become more common 
phenomenon after 2011. The newly built Port on the Egyp-
tian side was completed in 2013, located only about 1.7 kms 
from the Gaza Strip border (Fig. 7-a). The port breakwater 
has influenced sediment flux circulation in this littoral cell. 
The existence of this Port on the upstream sediment flux 
has implications for downstream shorelines; it has stifled 
natural nearshore sediment movement, limited net sediment 
flux to the north, and accumulated significant amounts of 
sediment on the upstream side of the port breakwater. Due to 
the shortage of sediment flux reaching the Rafah city beach, 
coastal erosion intensified and became very noticeable. For-
tunately, even a detrimental effect will not last long, as the 
beach will usually revert to its natural state within a few 
years if no more change occurs and the beach enters a state 
of dynamic equilibrium.

The study reveals that the shoreline change rate in this 
region was about -0.8 m/year, and the average shoreline 

movement distance was about -11.9 m (Table 5). The over-
all shoreline movement was about – 48.8 m during the port 
building stage, and much of the upstream sediments were 
trapped behind the port breakwater. The dominant pro-
cess affecting the Rafah shoreline are erosional processes 
(Fig. 7-b). Several land processes in the Rafah region are 
also linked to anthropogenic practices, including beach lev-
elling and beach sand quarrying for different industries. The 
human intervention in these cases were the reasons for the 
acceleration in coastal erosion in the past years.

In short, the study showed shoreline change rates at sev-
eral locations along the shoreline (Table 6); the findings con-
firm that coastal erosion is a dominant process affecting this 
region in the last few years. Moreover, the study shows the 
close relationship between the erosion factors prevalent in 
the different areas of the Gaza Strip and the intense human 
activities that these areas witnessed.

Local sea level change trend

Climate change is one of the most important factors that 
reshape shorelines, influence waves and longshore currents. 
Globally, sea level rise has been one of the main compo-
nents in increasing coastal flooding, marine erosion, and cliff 
retreats. One of the consequences of human activities may 
be an increase in carbon emissions; this contributes to global 
warming and an increase in global temperature, and conse-
quently, to the melting of ice, which is one of the reasons 
for the rise in global sea levels, and coastal erosion (Stive 
2004; Klein et al. 2004; FitzGerald et al. 2008; Nicholls 
and Cazenave 2010; Thiel 2012; Romine et al. 2013; Wil-
liams 2013; Church et al. 2013; Cazenave and Cozannet 
2014; Zviely et al. 2015; Toimil et al. 2017; de Winter and 
Ruessink 2017; Abdul Maulud et al. 2018; Stronkhorst et al. 
2018; Vousdoukas et al. 2018; Horton et al. 2018; IPCC 
2019; Le Cozannet et al. 2019; Bramante et al. 2020). Our 
study did not include parts of the Gaza Strip where there 
are no large industrial activities because they are not con-
sidered sources of carbon emissions, and they therefore do 
not have any impact on changing the global or local sea 
level. Globally, experts believe that the rate of the global 
mean sea level rise during the 21st century will exceed the 
rate observed during 1971– to 2010, and by 2100, it will 

Table 3  The shoreline changes 
rate (LRR) and the net shoreline 
movement (NSM) et al.-Shatti 
Region

Shoreline change rate Parameters Al-Shatti region

NSM (m) Average distance (m) -0.5
Percent of all transects that have a negative distance 55.2%
Maximum negative distance (m) -13.32

LRR (m/yr) Average rate (m/yr) -0.2
Percent of all transects that are erosional 50. 9%
The maximum value of erosion -1.9
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range from as low as 0.4 m to as high as 1.5 m (Horton et al. 
2020). The long-term trend estimation of the Global Mean 
Sea level (GMSL), based on tide gauge record, up to 2012, 
averaged 1.7 mm/ yr. In comparison, satellite altimeter-based 

measurements exhibited a GMSL rate of 3.2 mm/yr. from 
1993–2012 (Church and White 2011; Ray and Douglas 
2011; Williams 2013; Parker 2014; Watson et al. 2015; Yi 
et al. 2015; Chen et al. 2017; Dangendorf et al. 2017; Dieng 

Fig. 6  The shoreline change rate 
at Dier Albalah

Table 4  The shoreline changes 
rate (LRR) and the net shoreline 
movement (NSM) at Dier 
Albalah

Shoreline change rate Parameters Dier Albalah

NSM (m) Average distance (m) -2.17
Percent of all transects that have a negative distance 64.56%
Maximum negative distance(m) -20.8

LRR (m/yr) Average rate (m/yr) -0.49
Percent of all transects that are erosional 78. 48%
The maximum value of erosion -1.95
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et al. 2017; Veng and Andersen 2020). Dangendorf et al. 
(2017) have reconstructed GMSL of 1.1 mm/yr before 1990 
and 3.1 mm/yr. from 1993 to 2012.

Nevertheless, the increase in coastal erosion as a result 
of sea level rise is indisputable, but the question is whether 
there is a real rise in the local sea level that is causing accel-
erated erosion in some areas of the Gaza Strip. To answer 
this question, sea level data have been collected during the 
past decade at several tide gauge stations in areas adjacent 
to the coast of the Gaza Strip. Since the Gaza Strip does not 
have any tide-gauging station, the data were collected from 
4 stations: Ashkelon, Ashdod, Tel Aviv, and Akko, which 
are coastal cities along the south-eastern coastline of the 
Mediterranean Sea, 11 km to 160 km from the Gaza Strip. 
The sea level change values from the Permanent Service for 
Mean Sea Level (PSMSL) dataset were used to investigate 
the sea level change trend in short-term assessment. The 
mean sea level data for seasonal cycles of the four tide sta-
tions were transformed into a common datum to construct a 

Fig. 7  a The Rafah Sea Port on the Egyptian side of the border, b The shoreline changes in Rafah Region

Table 5  The shoreline changes 
rate (LRR) and net shoreline 
movement (NSM) at Rafah 
region

Shoreline change rate Parameters Rafah

NSM (m) Average distance (m) -11.9
Percent of all transects that have a negative distance 47.56%
Maximum negative distance (m) -48.8

LRR (m/yr) Average rate (m/yr) -0.81
Percent of all transects that are erosional 66. 48%
The maximum value of erosion -2.36

Table 6  Summary of the Shoreline changes rate (LRR) and the net 
shoreline movement (NSM) for several locations along the Gaza Strip 
coastal zone, in particular at regions affected by substantial human 
intervention

Region Shoreline change rate 
LRR (m/year)

Net Shoreline 
Movement NSM 
(m)

Bet Lahia -0.38 -0.62
Al-Shatti (in Gaza city) -0.2 -0.5
Deir Al Balah - 0.49 -2.19
Rafah Region - 0.81 -11.9
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time-series analysis of sea level rise trends. This conversion 
was performed by PSMSL, making use of the tide gauge 
datum history. Next, the PSMSL data were converted to the 
Revised Local Reference (RLR) data. The RLR datum at 
each station is set to around 7000 mm below mean sea level, 
an arbitrary choice made many years ago to avoid negative 
numbers in the resulting RLR monthly and annual mean 
values. Thus, the RLR data can be used for time-series sea 
level change studies (Holgate et al. 2013; PSMSL 2021). 
Accordingly, monthly and annual sea level change trends 
were derived, and the trendline coefficients were utilized to 
estimate the sea level change rates during this period.

By reviewing the results of sea level projections at the 
four tidal stations adjacent to the Gaza strip, we found the 
following:

• Comparison of the trendlines of the investigated 4 
stations showed no upward sea level trends in most of 
the stations in the covered period. Thus, attributing 
the current acceleration in coastal erosion and cliff 
collapse to the sea level rise is not supported by data. 
Figure 8 shows the monthly sea level change trends 
over 7 to 8 years. The slopes of the trendlines range 
from—0.0072  mm in Tel Aviv to 0.0019  mm in 
Ashkelon, which means that there is hardly any upward 
or downward trend during this period, but the sea level 
has remained almost the same.

• The monthly sea level change trend at Ashkelon tide 
station, 11 km from the Gaza Strip, exhibited a trend 

slope of 0.0005 mm for the period from 2012 up to 2019 
(Fig. 9). These results confirm that there is no rise in sea 
level in this period, and therefore, the role of climate 
change and sea level rise in the acceleration of coastal 
erosion in the Gaza Strip are negligible in the short term.

• As for the annual mean of sea level trends: the annual 
mean of sea level trends at Ashkelon, Ashdod, and Akko 
demonstrated downward trend slopes of about – 1.95, – 
5.25, – 1.42 mm/yr, respectively for period between 2012 
and 2019, Fig. 10. While, the annual mean sea level trend 
at Tel Aviv showed positive slope of about 3.44 mm/yr.

• The annual mean sea level trend at Ashkelon shows 
a downward trend slope of -1.95 mm/year (Fig. 11). 
Accordingly, three of four stations demonstrated a down-
ward sea level trends.

By comparing the trends of sea levels in the four tide 
stations adjacent to the Gaza Strip (Fig. 11), and reviewing 
the summary of the shoreline change rates for the several 
regions that witnessed significant human intervention 
along the Gaza Strip (Fig. 12), important findings can be 
derived. There is no evidence of an increase in the sea 
level in the past decade, while a significant erosion and 
negative shoreline changes were found in several regions 
along the shoreline of the Gaza Strip.

Fig. 8  The RLR monthly sea 
level change trends for tide 
stations at Ashkelon, Ashdod, 
Tel Aviv, and Akko. The Tide 
Gauge data were obtained from 
PSMSL (Holgate et al. 2013; 
PSMSL 2021)

Short-term analysis of coastal erosion among human intervention and sea level rise Page 13 of 21    75



1 3

Fig. 9  The RLR monthly sea 
level change trend at Ashkelon, 
which is 11 km off the Gaza 
Strip. The Tide Gauge data were 
obtained from PSMSL (Holgate 
et al. 2013; PSMSL 2021)

Fig. 10  The RLR annual mean 
of sea level change trends at 
Ashkelon, Ashdod, Tel Aviv, 
and Akko. The Tide Gauge data 
were obtained from PSMSL 
(Holgate et al. 2013; PSMSL 
2021)

Fig. 11  The RLR Annual 
mean of sea level change trend 
at Ashkelon, which is 11 km 
from the Gaza Strip. The Tide 
Gauge data were obtained from 
PSMSL (Holgate et al. 2013; 
PSMSL 2021)
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For instance, Fig.  13 showed that Rafah region 
experienced the largest shoreline changes and also the 
maximum movement of shoreline position. The significant 
erosion and negative changes in this region can be clearly 
attributed to the establishment of the fishing port in Rafah-
Egypt, which acts as a barrier to the natural northward 
sediment flow to the Gaza Strip. This is a clear example 
of the influence of human intervention in acceleration of 
coastal erosion.

In summary, in this study, the rates of shoreline change in 
the beaches were calculated by using remote sensing and GIS 
technologies, with emphasis on areas that have experienced 
intense human activity in recent years. The rates of shoreline 
change ranged from -0.2 to -0.8 m/year and the net movement 
of the shoreline ranged from 0.5 to 11 m over the past decade 
alone. At the same time, the change in local sea level was 
studied by comparing sea level at 4 tide gauge stations adja-
cent to the coastal zone of the Gaza Strip. Through the tidal 

Fig. 12  a Summary of the 
Annual sea level change trends 
at tide stations: Ashkelon, Ash-
dod, Tel Aviv, and Akko

Fig. 13  The average shore-
line change rates and the net 
shoreline movement at several 
locations where unwell human 
intervention took place at the 
shoreline of the Gaza Strip
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values, local sea level trends were analysed; in most of them, 
there is no real rise in local sea level during recent years that 
can be attributed to any beach erosion phenomenon. On the 
contrary, the tide gauge stations showed a decreasing trend of 
the average annual sea level in three out of the four stations, 
which clearly indicates a small decrease in sea level during 
the period covered by the study.

However, there is an obvious association between the 
erosion locations along the shoreline and the regions 
affected by substantial human interventions such as port 
building, groins construction, establishment of recreational 
area, and tourist facilities. The high vulnerability areas of 
the shoreline were those areas affected by high population 
densities and hard coastal structures. Within this context, 
human interventions are potentially one of the major and 
rapid sources of coastal erosion in the short term, compared 
with climate change which is often more apparent in the long 
term. Nevertheless, the current prevalence of coastal erosion 
on the Gaza Strip shoreline is not, therefore, an indication of 
global sea level rise, but if such a sea level rise develops, there 
will be an acceleration of existing beach erosion. This result 
is consistent with some studies that have reported similar 
conclusions (Bird 1996; FitzGerald et al. 2008; Appeaning 
Addo 2012; Martins et al. 2018; IPCC 2021; Niang 2022). 
Technically, the techniques of using remote sensing and 
GIS have proven again their high capacity, efficiency and 
accuracy in studying and analysing changes in phenomena 
of a chronological dynamic nature.

Accordingly, this study does not diminish the impact 
of climate change and sea level rise on global coastal 
erosion, but the study distinguishes between factors with 
short-term impact such as human interventions, in this 
case, and changes that require decades to show their 
impact on the local environment, especially in a closed 
sea area such as the Mediterranean Sea. The finding 
demonstrates that demographic pressure and human 
intervention appear to have a substantial negative impact 
on coastal erosion, where unregulated interventions form 
a catalyst that accelerates coastal erosion.

Finally, we recommend that decision makers and 
government agencies responsible for beach management 
take the necessary scientific and technical measures to 
prevent encroachments on the coast. This is in addition to 
studying the creation of any hard structures or construction 
on the beach from an environmental and engineering 
perspective, and adopting permeable designs that allow the 
natural movement of the nearshore sediments and ensure 
beaches’ nourishment.

Data Availability The data that support the findings of this study 
are openly available in the Permanent Service for Mean Sea 
Level (PSMSL) dataset at https:// psmsl. org/.
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