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Abstract
Regular detection and timely monitoring of shoreline evolution are essentially needed in order to identify areas that require
further investigation and protection. Possibilities for regular monitoring of shoreline changes are better facilitated now with high-
frequency revisit times of Landsat-Sentinel-2 virtual constellation. Accordingly, this study aimed at investigating the perfor-
mance of Landsat 8 and Sentinel-2A satellite imagery in mapping shoreline changes. The specific objectives were to 1) create
reference data of shoreline erosion, accretion and seafilling using very high spatial resolution data, 2) compare the results of
shoreline changes by using Landsat 8 and Sentinel-2A imagery respectively, and 3) complete the inventory of shoreline changes
between 1962 and 2016. A Quickbird panchromatic imagery (0.6 m) of 2010 was employed in combination with aerial
photography (0.5 m) from 1962 for the generation of reference data using a traditional photo-interpretation method. Then,
geographic object-based image analysis (GEOBIA) was employed to map changes in the shoreline between 1962 (i.e., reference
shoreline) and 2016 using Sentinel-2A (10 m) and Landsat 8 panchromatic band (15 m) imagery, consecutively. The use of
Sentinel-2A image provided slightly better accuracy results when compared with those from the Landsat 8 image. Accordingly,
an inventory of Lebanese shoreline evolution between 1962 and 2016 was completed using the Sentinel-2A classification results.
The combined use of Landsat-Sentinel-2 imagery is expected to generate reliable data records for continuous monitoring of
shoreline changes.
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Introduction

A coastal zone is one of the most ecologically, economically
and culturally important ecosystem (Brown et al. 2018). It
plays a role in supporting local economy based on agricultur-
al, recreational and touristic activities, in addition to fisheries
(Sesli 2010). At the same time, a coastal area is a dynamic
environment that changes rapidly due to human-caused activ-
ities and natural phenomena (Aydin and Uysal 2014;
Ahammed and Pandey 2018). On one hand, land reclamation,
construction activities, improper land-use practices and

unsustainable recreational and touristic activities are examples
of human activities that affect coastal zones. On the other
hand, water level changes, shore morphology, variance in
wave energies, grain size and sediment composition are natu-
ral processes that may induce changes in coastal environment
(Sesli 2010; Lorang and Stanford 1993).

Promoting an integrated coastal zone management is based
on monitoring shoreline changes (Goncalves and Awange
2017). Shoreline is a component of coastal zone and is defined
as “the line of contact between a land and a body of water”
(Sesli 2010). A change in shoreline position is a main response
to activities and processes that alter and shape surrounding
costal environment (Lo and Gunasiri 2014; Lorang and
Stanford 1993). In this context, monitoring changes in shore-
lines is essential for conservation and management of coastal
areas (Bailey and Nowell 1996). Additionally, a shoreline
change assessment supports informed decision-making in
coastal zone management (Fabbri 1998).

More specifically, erosion and accretion are major phe-
nomena faced by a shoreline change as a result of natural
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and human causes. Accordingly, the assessment of these two
processes is important while monitoring shoreline changes
(Kaliraj et al. 2013;Weitzner 2015). Coastal erosion is defined
as removal of sediments from the coast, causing a shoreline
retreat, while accretion represents buildup of sediments on a
visible portion of the beach (Weitzner 2015). Furthermore,
expansion of seashore reclamation activities (i.e., seafilling)
constitutes a hazardous factor that affects and disturbs natural
ecosystems in coastal zones. Monitoring seafilling, including
the creation of new lands from oceans and seas, is also essen-
tial while assessing shoreline variations (Jin et al. 2016).

Various approaches have been developed to study changes
in shorelines (Suzen and Özhan 2000; Fatallah and Gueddari
2001). These included 1) comparing historical aerial photo-
graphs and coastal topographic maps, 2) evaluating erosion,
accretion, and seafilling of coastlines, 3) developingmodels to
calculate sediment transport, and 4) identifying hazard prone
coastal areas, amongst others.

Traditional techniques for monitoring shoreline changes
comprised field assessments and surveys (Quang Tuan et al.
2017; Morton et al. 1993). Field surveys are mainly executed
to assess morphological changes along the coast. More spe-
cifically, studying the topography near coastline, measuring
bathymetry, observing retreat and extent of shoreline and de-
tecting visible impacts of human and natural processes on the
coast are accomplished through surveys and field visits
(Mahabot et al. 2017). However, field assessments and sur-
veys are considered costly, labor-intensive and time-
consuming (Quang Tuan et al. 2017; Boak and Turner 2005).

More recent techniques included the use of aerial photog-
raphy and satellite remote sensing data. More specifically,
remotely sensed data has become an essential tool in numer-
ous types of environmental monitoring (Temiz and Durduran
2016). Consequently, analyzing aerial digital photography
and satellite images has become a necessity for coastal studies
(Suzen and Özhan 2000). Many studies revealed the impor-
tance of using geospatial technologies in estimating shoreline
changes through providing researchers with multi-temporal
satellites images that cover the entire coastal area (Kaliraj
et al. 2013; Nayak 2002; Kumaravel et al. 2013). Moreover,
these technologies are able to deliver information within a
short period of time while covering large areas.

Mapping shoreline changes using remote sensing data
commonly included traditional visual photo-interpretation
techniques for spatial feature extraction (Lazaridou 2012;
Ghorbani and Pakravan 2013). However, these techniques
are highly dependent on the operator capacity in photo-
interpretation and require skilled analysts (Schowengerdt
2007). In addition, visual image interpretation is proven to
be time-consuming compared to digital interpretation
(Ghorbani and Pakravan 2013). Initially, digital analyses of
satellite remote sensing data involved pixel-based classifica-
tion techniques (Blaschke 2010). With the growing

availability of moderate-to-high spatial resolution imagery,
fine spatial information and its context could be used to pro-
duce more accurate classifications (Mitri and Gitas 2004).
Simultaneously, better opportunities for regular assessment
and monitoring of shoreline changes exist now due to high-
frequency revisit times of satellites, i.e., ~2.9 days, of Landsat-
Sentinel-2 virtual constellation (Li and Roy 2017; Tyler et al.
2016). The Multispectral Imager (MSI) on-board Sentinel-2
and the Operational Land Imager (OLI) on-board Landsat-8/9
will enable enhanced regular monitoring within the next 10–
15 years (Pahlevan et al. 2017a, 2017b). The 2 to 3-day revisit
time will be easily achieved globally when Landsat-9 be-
comes operational in early 2021 (Pahlevan et al. 2019). Such
frequent revisit times are essential to instantaneously capture
shoreline dynamics considering cloud coverage.

In this context, the aim of this study was to investigate the
performance of Landsat 8 and Sentinel-2A satellite imagery
for mapping shoreline changes. The specific objectives were
to:

1) Create reference data of shoreline erosion, accretion and
seafilling using very high spatial resolution data.

2) Compare the results of shoreline changes by using
Landsat 8 and Sentinel-2A satellite imagery respectively.

3) Complete the inventory of shoreline changes between
1962 and 2016.

This work involved the use of Geographic Object-Based
Image Analysis (GEOBIA) by addressing the production of
meaningful image-objects and the assessment of their charac-
teristics (Blaschke 2010) using both spectral and contextual
features of satellite images. The use of GEOBIA provides
more meaningful information than traditional pixel-based im-
age analysis (Hidayat et al. 2018) by allowing better distinc-
tion among different informational classes.

Study area and dataset description

The study area consists of the entire Lebanese coastline locat-
ed in the eastern Mediterranean (Fig. 1). The Lebanese coast-
line extends over 220 km between Arida in the north and Ras
Al-Naqoura in the south (CAS 2008; Badreddine et al. 2018).
Approximately 70% of the population in Lebanon lives in the
coastal zone, where most of the important cities and economic
centers exist (Plan bleu/PNUE 2000; Badreddine et al. 2018).
Agricultural activities are present in different locations along
the coastal zone (MOE/UNDP, 2011). More than 15 fishing
harbors, 4 commercial ports, 3 power plants, a set of sea pe-
troleum pipelines, several industries and 4 major bays (Beirut,
Jounieh, Chekka and Akkar) are located along the shoreline
(Badreddine et al. 2018). It is important to mention that the
Lebanese coastline includes many different natural habitat
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types for endangered fauna and flora (sandy, silty, rocky, ne-
ritic, oceanic and coastal habitats) (MOE/UNDP 2011).

In Lebanon, the coast has been experiencing increased an-
thropogenic pressures such as uncontrolled and illegal urban
development, agricultural and industrial runoff, sewage dis-
charge and seashore reclamation (Abou-Dagher et al. 2012;
Badreddine et al. 2018). In this context, the detection and
monitoring of shoreline evolution are essentially needed in
order to identify areas that require further investigation, man-
agement and/or protection (Abou-Dagher et al. 2012).

Black and white aerial photographs acquired in the year
1962 with a resolution of 0.5 m were collected, ortho-rectified
and mosaicked. A Quickbird panchromatic imagery (0.6 m) of
2010 was also employed. A cloud-free image of Landsat 8
Operational Land Imager (OLI) acquired in 2016was collected.
The image consisted of nine spectral bands with a spatial reso-
lution of 30 m for bands 1 to 7 and 9. The resolution for band 8
(i.e., panchromatic band) was 15 m. The approximate scene
size was 170 km north-south by 183 km east-west. In addition,
a cloud-free Sentinel-2A image acquired in 2016 was collected.
The Sentitnel-2A image had a spatial resolution of 30 m and a
swath width of 290 km. All remote sensing images were
projected at UTM (WGS84-zone 36).

Methodology

In this study, the adopted methodological approach to inves-
tigate the performance of Landsat 8 and Sentinel-2A in map-
ping changes along the Lebanese shoreline is represented in
the following flowchart (Fig. 2).

Development of reference data

At first, the shorelines of the years 1962 and 2010 were man-
ually digitized using ESRI ArcGIS 9.2 software by tracing and
capturing their linear geographic features on the aerial

photographs and Quickbird image, respectively. The High
Water Mark (HWM), defined as dry/wet line, was adopted
as shoreline indicator (Boak and Turner 2005). Then, changes
along the shoreline were assessed using the year 1962 as a
reference shoreline and 2010 as an initial target year. Assessed
changes included erosion, accretion and seafilling. Surfaces
were measured as polygon areas and rounding was made at
the thousand-level values. The coastlines of 1962 and 2010
were produced in shapefile.

Geographic object-based image analysis

The assessment of shoreline changes between 1962 and 2016
involved 1) generating image objects or segments for subse-
quent classification, 2) creating a classification scheme, and 3)
mapping the changes in the different land cover categories
between the 2 yrs. The GEOBIA approach was adopted by
employing the software “eCognition”. One classification
model was developed with the use of Sentinel-2A image and
another one with the use Landsat 8 panchromatic image.

Each of the Sentintel-2A and Landsat 8 panchromatic im-
ages was first segmented and then classified using eCognition
(Benz et al. 2004; Gitas et al. 2004). The strategy behind the
image segmentation was to create image objects for use in the
classification. The segmentation algorithm is essentially a
heuristic optimization procedure that minimizes the average
heterogeneity of image objects for a given resolution over the
whole scene. Weighting between spectral and shape heteroge-
neity enables adjustment of the segmentation results to the
considered application. Segmentation of the Sentinel-2A im-
agery at the pixel level was generated using an average ab-
stract scale of 10 and equal band weights of the visible and
Near Infra-Red (NIR) bands. The composition of homogene-
ity criteria included the following weights: 10% for shape,
90% for color and 50% for compactness. The segmentation
of the Landsat 8 panchromatic layer involved the use of the
same abstract scale of 10. Also, the same weights of the

Fig. 1 Location of the study area
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composition of homogeneity criteria of shape, color and com-
pactness were adopted.

The classification scheme included the following classes:
land in 1962, sea water in 1962, land in 2016, sea water in
2016, land in 1962 converted to water in 2016, and water in
1962 converted to land in 2016. Classifying the image objects
to map land cover changes between the 2 yrs involved the use
of the reference shoreline of 1962 as a thematic layer and
mean spectral layer features of the Sentinel-2A imagery (in-
cluding visible and NIR bands) and the Landsat-8 panchro-
matic band. Subsequently, contextual features (i.e., relation-
ship among classified objects) were employed for change de-
tection mapping.

Comparison of classification results and development
of the inventory

In order to compare and evaluate the classification results
between those of the Sentinel-2A imagery and the Landsat 8
panchromatic band, a spatial analysis using ArcGIS was con-
ducted. This included the production of intersection layers
between “reference data” of the 1962–2010 and the change
detection maps derived from the use of Sentinel-2A imagery
and Landsat 8 panchromatic image, respectively. Non-
intersected polygons were excluded in the analysis given that
relatively small changes across the shoreline might have hap-
pened between 2010 and 2016, the dates in which the satellite
images were acquired. Finally, an inventory of shoreline
changes between 1962 and 2016 was produced using the im-
age classification results of highest accuracy.

Results and discussion

Initially, surfaces of erosion, accretion and seafilling were
assessed and interpreted by overlaying the 1962 and 2010

shorelines (Table 1). It is worth mentioning that the calculated
shoreline length was 297.87 km in 1962 and 370.92 km in
2010. The produced “reference data” was used for evaluating
the classification performance of GEOBIA in each of the two
cases of employing satellite imagery of 2016.

The applied method for generating reference data could be
affected by two sources of errors, namely errors caused by the
data sources and errors caused by the interpretation and the
measurements (Moore 2000). More specifically, possible
causes of errors include radial distortion, photo shrink or stretch
of data (i.e., aerial photography). The ortho-rectification of the
aerial photography resulted in a total Root-Mean-Square
(RMS) error value of 2.8. As for the interpretation, errors could

Table 1 Evolution of the Lebanese shoreline between 1962 and 2010
(reference data)

Type of change between 1962 and 2010

Cazas Erosion (m2) Accretion (m2) Seafilling (m2)

Akkar 786,748 5001 37,862

Minieh -Dannieh 154,948 0 68,898

Tripoli 37,394 1874 1,110,686

Koura 10,149 0 236,176

Batroun 119,642 33,417 278,881

Jbeil 9936 0 117,548

Kesrouane 1625 9313 863,328

El-Maten 0 0 2,108,456

Beirut 4483 46,368 2,086,842

Baabda 5406 15,143 648,234

Aley 37,457 1242 294,182

Chouf 305,978 12,599 188,744

Saida 304,036 25,710 137,254

Sour 827,401 6726 111,828

Total area (m2) 2,605,203 157,394 8,288,918

Fig. 2 Methodological approach
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occur due to seasonal changes that result in the movement of
the dry/wet line. Such errors are reduced by making sure that
most images are taken during the same season, the best being
the summer season. Additionally, working with different
resolutions/characteristics could lead to a misinterpretation of
the shoreline position. Yet, shaded areas resulting from cliffs on
seaside can in some cases mask some parts of the shoreline.

The classification of the satellite imagery showed results
(i.e., classified polygons) of two main classes, namely, loss of
land to sea water (i.e., erosion) and gain of land in sea water
(i.e., accretion and seafilling). The evaluation of the classifi-
cation results involved comparing the common areas between
the reference data and the polygons resulting from image clas-
sification of Sentinel-2A and Landsat-8, respectively
(Table 2).

The overall classification accuracy of Sentinel-2A imagery
(i.e., 99.5%) was slightly higher than that of Landsat-8 pan-
chromatic band (99.27%). The main difference in mapping
changes was at the level of user’s accuracy for mapping loss
of land using Landsat-8 panchromatic (i.e., 95.5%) and
Sentinel-2A imagery (i.e., 99.5%). This could be explained
by the improved ability to segment and classify small geo-
graphic variations across the land-water interface when using
higher spatial resolution data and multi-spectral information
from the Sentintel-2A image.

Considering results from similar studies, Forkuor et al.
(2018) found that classification of Sentinel-2A bands common
to Landsat-8 produced an overall accuracy that was 4% better
than that of Landsat 8 when mapping land use and land cover
(LULC). The improved discrimination of LULC classes was
mostly attributed to the Sentinel-2A red-edge bands. Yet, the
performance of using Sentinel-2A bands versus Landsat 8
panchromatic band of 15 m resolution needs to be also inves-
tigated. In this context, Labib and Harris (2018) noted that
Sentinel-2A image performed better in classifying Green
Infrastructure (GI) when compared to the use of Landsat 8
panchromatic image using GEOBIA. The former resulted in
71.41% of overall accuracy while the latter resulted in an
overall accuracy of 67.85% (i.e., −3.56%) despite the 5-m
variation in spatial resolution between the two images. In
comparison to Landsat 8 (i.e., after pan-sharpening), classifi-
cations of Sentinel 2-A were smoother (i.e., result of the 5-m

difference in pixel size between the two images). More spe-
cifically, it was found that water bodies were under- or over-
classified using the panchromatic Landsat 8 while feature ex-
traction and delineation of object boundary were highly accu-
rate in the case of Sentinel-2A results. In the context of this
work, the slight difference between the two overall accuracies
is mostly explained by the conducted discrimination between
two classes only (i.e., namely water and land). However, the
higher differences between overall accuracies in the other
studies (Forkuor et al. 2018; Labib and Harris 2018) were
mostly attributed to discriminating among many other differ-
ent LULC classes. This accounted for significantly improved
distinction between specific classes (e.g., vegetation and built-
up among others) in comparison to other classes.

Further investigation of the results indicated how the shape,
color and compactness criteria used in the segmentation pro-
cess helped in producing spatially homogeneous objects in
strongly textured data (Fig. 3). Objects (i.e., segments) devel-
oped for Sentinel-2A image properly fitted with water bodies.
Segments clearly distinguished objects with clear boundaries.
In contrast, some of the segments produced from the Landsat
8 panchromatic image did not homogeneously represent a
whole object. Labib and Harris (2018) argued that the spatial
resolution of Sentinel-2A parameters positively influenced the
image segmentation process.

Based on segmentation, specific spectral information (i.e.,
mean values of spectral bands) and contextual information
(i.e., spatial relationship of image objects) were made avail-
able for classification. In turn, based on classification of image
objects usingmembership functions of contextual and spectral
features, desired classes of interest were extracted in a step-
wise approach.

Consequently, the image classification results of the
Sentinel-2A data (1962–2016) were compared to the reference
data (1962–2010) in order to complete the inventory of shore-
line evolution between 1962 and 2016 across the different
Cazas (i.e., administrative districts of Lebanon). Land areas
gained in seawater between 2010 and 2016 were further seg-
regated into accretion and seafilling based on photo-interpre-
tation. The results were summarized in Table 3 and Fig. 4.

More specifically, it was found that the area of seafilling in
reference data amounted to 76.58% of seafilling between

Table 2 A comparative
evaluation of the image
classification results

Landsat-8 panchromatic Sentinel-2A (visible and near infra-red)

Producer’s accuracy (%)

Loss 99.37 99.14

Gain 99.26 99.89

User’s accuracy (%)

Loss 95.4 99.5

Gain 99.9 99.82

Overall accuracy (%) 99.27 99.5
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1962 and 2016 using the Sentitnel-2A imagery. This differ-
ence is mostly explained by the various seafilling activities
which took place along the El-Maten district between 2010
and 2016. In addition, the area of erosion in reference data was
higher by 26% in comparison to the area of erosion between
1962 and 2016, while the area of accretion in reference data

represented 41.22% of accretion between 1962 and 2016. On
one side, the increasing area of accretion between 2010 and
2016 significantly contributed to decreasing the area of ero-
sion between 1962 and 2016. On the other side, an accretion
area (i.e., representing 4.18% of the total seafilling between
1962 and 2016) could be mistakenly classified as seafilling.

The shoreline inventory of 1962–2016 (Fig. 5) showed that
the largest area of erosion was in Akkar (703,831 m2), follow-
ed by Sour (435,224 m2) and Chouf (224,065 m2). As for
accretion, the largest area was in Saida (100,819m2), followed
by Beirut (84,350 m2), Sour (47,895 m2) and Kesrouane
(46,984 m2). Moreover, the largest seafilling areas were found
in El-Maten (2,279,432 m2), Beirut (2,271,323 m2), Tripoli
(1,675,731 m2) and Kesrouane (1,050,206 m2). Erosion,

Fig. 3 A subset of segmented and
classified Sentinel-2A image

Table 3 Sentinel-2A shoreline data for 2016

Type of change between 1962 and 2016

Cazas (i.e., districts) Erosion (m2) Accretion (m2) Seafilling (m2)

Akkar 703,831 4900 56,650

Minieh –Dannieh 178,069 1100 86,970

Tripoli 15,400 4300 1,675,731

El-Koura 19,050 400 468,069

Batroun 115,250 35,800 367,737

Jbeil 14,550 18,367 173,915

Kesrouane 1300 46,984 1,050,206

El-Maten 0 0 2,279,432

Beirut 0 84,350 2,271,323

Baabda 0 18,550 781,360

Aley 20,800 0 458,350

Chouf 224,065 18,300 282,900

Saida 199,966 100,819 704,856

Sour 435,224 47,895 165,964

Total 1,927,504 381,765 10,823,462 Fig. 4 The total area (in m2) of erosion, accretion and seafilling per Caza
(i.e., districts) (1962–2016)
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accretion and seafilling are expected to significantly affect
coastal dynamics and morphology at different locations along
the shoreline. Further focused and site-specific investigations
to assess impact on coastal and marine habitats will need to be
conducted accordingly.

Overall, the combined use of GEOBIA and satellite images
of Landsat-8 and Sentinel-2A provided satisfactory results in
mapping gains and losses of land along the shoreline. This is
considered as an essential step towards using an operational
tool for identifying coastal areas of possible concerns, there-
fore requiring further investigation.

Conclusions

Understanding the causes of coastal changes as well as con-
tinuously monitoring changes of sand/pebble beaches, coastal
currents and wave profiles (i.e., particularly around eroded

and seafilled areas) are essential steps towards designing and
adopting proper mitigation actions.

In this context, this study aimed at investigating changes
along the Lebanese shoreline using object-based image anal-
ysis of Sentinel-2A and Landsat-8. Although the classification
of the two images resulted in close mapping accuracies, the
use of Sentinel-2A imagery provided slightly better classifica-
tion reliability. Yet, both images showed satisfactory results in
mapping shoreline changes. This justifies the beneficial com-
plementary use of Landsat-8 panchromatic band and Sentinel-
2A imagery in GEOBIA for operational mapping and moni-
toring of shorelines. Recognizing the slight differences in their
spectral and spatial sampling, the combined use of near-
simultaneous Landsat-8 and Sentinel-2A satellite products is
expected to open opportunities for capturing the dynamics of
shoreline at rates that have never been possible before. This is
expected to generate a seamless data record for local, national
and even global shoreline monitoring.

Fig. 5 Subsets of shoreline
changes between 1962 and 2016
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As GEOBIA worked well with Sentinel-2A and Landsat 8
images, future work involves further improvement. This in-
cludes investigating different optimizations of the segmenta-
tion process and additional investigation of rule-based classi-
fication. In turn, this is expected to support the future automa-
tion of the mapping procedure, therefore facilitating transfer-
ability and replicability of the image classification models.
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