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Abstract Fox River is the main source of land-based pollut-
ants that flows into the southern Green Bay of LakeMichigan.
Evaluation of water quality is normally based on time con-
suming and expensive in situ measurements. Remotely sensed
data is an efficient alternative for field monitoring because of
its spatial and temporal coverage. In this study, remote sensing
imagery combined with in situ measurements of water quality
were used to estimate an empirical relationship between water
surface reflectance and water quality parameters including
water turbidity and Total Suspended Sediment (TSS).
Surface reflectance values is obtained from MODerate
Resolution Imaging Spectroradiometer (MODIS) aboard the
Aqua satellite. The empirical equations were derived from
data over summers 2011–13 and show high correlation coef-
ficients of equal to 0.83 and 0.87 for TSS and turbidity respec-
tively. The validity of the proposed equations was tested for

summer 2014 data. The NRMSE for prediction of measured
data by the proposed equations are 0.36 and 0.3 for TSS and
turbidity. Remotely sensed data was also used to produce wa-
ter quality maps to improve our understanding of the spatio-
temporal variations of Fox River turbid plume. The proposed
approach can be extended to other coastal regions of Great
Lakes and provide a framework to study pollution transporta-
tion in coastal areas.

Keywords Environmental remote sensing . FoxRiver . Lake
Michigan .Modis . River plume . Total suspended sediment .

Turbidity .Water quality monitoring

Introduction

River plumes are major sources of pollutants, nutrients, and
sediment into coastal areas, and play a significant role in bio-
logical and geochemical functioning of the coastal environ-
ment (Petus et al. 2014). Sediments and nutrients in water can
degrade the quality of aquatic life in ecosystems by change in
light penetration, species diversity, organic content, and pro-
ductivity in the marine environments (Wood and Armitage
1997; Bilottaa and Brazier 2008). High concentration of inor-
ganic matter can deteriorate algal life and microorganisms as
well. Particles can fill in the gaps and holes that were previ-
ously habitats of aquatic organisms. Reduced photosynthesis
would result in less oxygen and productivity in water. An
indirect and important consequence of sediment intensifica-
tion in water would disturb the food balance of aquatic life,
especially fishes that are commercially and environmentally
useful for the ecosystems (Moore 1989; Wang et al. 2007).
Therefore, a fair understanding of the river plume could lead
to developing better management scenarios of the lakes,
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rivers, coastal areas, and shorelines (Edition 2011; García
Nieto et al. 2014; Corbari et al. 2016).

Turbidity can cost additional treatment processes in case of
providing freshwater supplies from surface water bodies.
Moreover, suspended sediments can decrease water quality
by providing attachment sites for more contaminations such
as heavy metals and toxic pollutants (Tchounwou et al. 2012).
In coastal areas in which the economy is dependent on water
recreational attractions, turbidity can also place a negative
impact on the tourism industry (Bozec et al. 2008; De Juan
et al. 2017). Accurate estimation of turbidity is crucial to plan
and design environmental and restoration programs, to predict
fate and transport of pollutants, and to estimate the sediment
flux (Moreno-Madrinan et al. 2010). In this research, Total
Suspended Sediment (TSS) and turbidity are considered as
representations of the water quality and river plume.

River plume can influence the temperature, water quality,
salinity, and vertical mixing and ambient velocities in the
coastal region spreading through buoyant frontal motions
(Nekouee et al. 2015a, b). Identifying the spatial extent of
the area impacted by the land-based pollutants discharged
through the river is necessary for management policies and
environmental restoration plans. Therefore, it is essential to
monitor the spatial and temporal variability of the river plume
to protect water quality and coastal environment (Petus et al.
2014). For this purpose, determination of influenced area by
river plume and controlling parameters on its variation is par-
ticularly important.

Located in the Midwest of US, Southern Green Bay sup-
plies one-third of the total nutrient loading to Lake Michigan
and has been designated as Area of Concern (AOC) by the US
Environmental Protecting Agency. Fox River is the main
source of land-based pollutants into southern Green Bay
(Hamidi et al. 2015). Contaminants from Fox River are
transported by currents and circulation all over the bay
(Miller and Sylor 1993; Hamidi et al. 2013). Fox River is
the main source of phosphorus to Lake Michigan (Dolan
and Chapra 2012), but the bay is a very efficient nutrient trap,
sequestering 70–90% of the total inputs via deposition and
burial (Klump et al. 1997). Organic-rich suspended sediment
from the river is the main cause of high oxygen depletion and
consequently hypoxia in southern Green Bay (Klump et al.
2009). Transport of contaminated sediment and nutrients from
Green Bay could potentially contaminate Lake Michigan
wildlife and ecosystem whereas highly contaminated sedi-
ment is found in deposition within 10 km from Fox River
(Manchester-Neesvig et al. 1996).

Fox River plume is influenced not only by the external
forcing and drivers (such as bathymetry, the wind, and
Coriolis effect) that shape the circulations and currents in
Green Bay (Hamidi et al. 2012) but also by storms and dis-
charges. This spatial and temporal variability makes direct
measurement of water quality parameters expensive, time-

consuming, and inefficient. In this situation, satellite remote
sensing imagery is claimed to be a suitable alternative for
monitoring water quality and river plumes in coastal regions
(Petus et al. 2014).

With all the advances in visual computing (Tafti et al.
2014), satellite images provide a good source of information
to study the quality of natural water resources. Several studies
have addressed the problem of environmental water quality
monitoring by modeling satellite imagery data of landscape
spatial characteristics to investigate sources of contamination
(Yan et al. 2005; Derek 2010). Remote sensing has been wide-
ly utilized to study water resources, and to monitor transport
and dispersion of pollution in water bodies (Brekke and
Solberg 2005; Yildirim et al. 2007; Shoghli et al. 2016;
Haule et al. 2016). This can be a very useful tool for water
quality modeling in lakes and coastal areas, especially in cases
of insufficient observed data. However, the verification of the
results would be a matter of concern due to lack of in situ
measured data.

Pioneer works started in 1970s to propose empirical rela-
tionships between TSS and remotely sensed radiance (λ)
(Klemas et al. 1974; Johnson 1975; Munday and Alfoldi
1979; Curran and Novo 1988). Thereupon, this relationship
has been the subject of investigation (Jupp et al. 1994; Fraser
1998; Yu et al. 2014), in which TSS and turbidity used to
assess the quality of water. Remotely sensed data in combina-
tion with in situ measurements of suspended sediment, water
quality parameters, and turbidity is an efficient way to study
the river plume and estuarine system (Petus et al. 2010;
Dogliotti et al. 2015; Garabaa and Zielinski 2015). Rostom
et al. (2016) used hyperspectral remote sensing data to analyze
turbidity of Mariut Lake in northern Egypt. Hou et al. (2017),
have studied the relationship between concentrations of obser-
vational TSS/turbidity and surface reflectance of satellite data
for 15 years and 102 large water bodies to investigate the
trends of change in sediment volume and mass balance.

To date, remote sensing techniques have not been able to
measure phosphorus directly since it is not recognized as an
optically active variable. So monitoring of such parameters
could be possible indirectly through modeling other water
quality variables that are optically active such as TSS and
chlorophyll-a. Although previous water quality studies have
mostly concentrated on remote sensing modeling of optically
active variables (He et al. 2008), some others have been tried
to focus on investigating other nutrients such as phosphorous,
nitrogen, oxygen, etc. (Wang et al. 2004; Xie et al. 2007; Wu
et al. 2010; Yang et al. 2011).

Although attempts to estimate the phosphorus concentra-
tions in lakes and reservoirs have achieved limited success, a
recent research shows progress in the prediction of total phos-
phorous (TP) from satellite imagery data (Gao et al. 2015). As
there is evidence of correlation between TP and optically ac-
tive parameters like chlorophyll (Dillon and Rigler 1974),
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TSS (Alam et al. 2016), and Dissolved Organic Matter (Gao
et al. 2015), it is possible to use TSS or any other optically
active parameter as a proxy to estimate phosphorus concen-
tration from remote sensing observations.

Although it is an area of interest for many researchers and
several empirical methods have been suggested in recent
years, it is important to have a specific algorithm and equation
to relate water turbidity with reflectance from remotely sensed
data for any geographical and limnologic conditions. Water
turbidity and reflectance are strongly dependent on physical,
biological, and mineral composition of particles (Bowers et al.
2007; Moreno-Madrinan et al. 2010).

This study focuses on the Fox River turbid plume
discharged into southern Green Bay, located in North-
Western Lake Michigan. In situ water quality data is used
along with the MODIS remote sensing images to relate the
water surface reflectance to its turbidity and suspended sedi-
ment concentration. This provides a reliable source to study
and monitor the Fox River plume and water quality in Green
Bay using satellite imagery. This approach helps improve our
knowledge about the spatial extents of highly turbid and
nutrient-rich Fox River plume and its seasonal and inter-
annual variations. This paper is intended to be a point of de-
parture for use of remote sensing data for delineation of the
river plume extent, determination of water quality stressors,
and related imposed risks to the Southern Green Bay
ecosystem.

Materials and methods

Area of study

Area of study is located in southern part of Green Bay as
shown in Fig. 1. Green Bay, a major embayment in the north-
western part of Lake Michigan, is oriented along a northeast-
southwest axis with a length of 160 km, a mean width of
22 km, and a mean depth of 15.8 m (Mortimer 1979). The
shallow depth and constricted nature of Green Bay reduces
mixing and exchange flow with the main body of Lake
Michigan (Lathrop Jr. et al., Lathrop et al. 1990), making the
southern part of the bay a trap for river effluent and sediment.
Green Bay basin is about one-third of the watershed of the
lake and receives approximately one-third of the total nutrient
loading to the Lake Michigan basin (Hamidi et al. 2012).

Green Bay has a long history of hyper-eutrophication
(Bertrand et al. 1976). Hypoxia within lower Green Bay and
the Fox River has been a problem for decades, and recent
evidence suggests that this problem may be worsening
(Klump et al. 2009). Hamidi et al. (2015) studied the large-
scale currents and circulation in the bay that influence the
variation and transportation of biogeochemical loads from
tributaries, mixing, and residence time.

Fox River plume has long been recognized as a major
source of phosphorus in the Lake Michigan Basin, and the
bay receives nearly 70% of its annual load of phosphorus
(700 metric tons) from Fox River. Most of this phosphorus
is deposited in the sediments and Green Bay acts as a nutrient
trap for the external phosphorus inputs before flowing into
Lake Michigan (Klump et al. 2010). Monitoring phosphorus
changes is important for controlling eutrophication in lakes,
and coastal areas (Seker et al. 2003). Phosphorous variability
is an issue in Lake Michigan and Green Bay area since it can
unbalance the aquatic life and coastal ecosystems (Klump
et al. 1997; Danz et al. 2007).

Field data

TSS and water turbidity are two parameters that can show the
extent of river plume in coastal regions. Measurements of TSS
are time-consuming, costly, and provide information for sin-
gle points in space and time. Yet, these sparse measurements
are used to develop an empirical model that ties water surface
reflectance values obtained from remotely sensed data with
water quality parameters. In situ measurements of water qual-
ity parameters, used in this research, are provided by Green
Bay New Water (Erin Wilcox personal communications).
Figure 1 shows the stations within southern Green Bay at
which TSS, turbidity, and total phosphorous (TP) values at
water surface are measured. Geographic coordinates of these
stations are listed in Table 1.

The field data covers summers of 2011–2014. The analysis
presented in this paper is limited to days with no cloud cov-
erage over Green Bay and its adjacent area. Previous research
shows that the existence of water vapor after floods can reduce
the correlation between in situ water quality parameters and
reflectance measured by satellites (Moreno-Madrinan et al.
2010). Therefore, if even the adjacent areas of the bay are
covered with cloud on an image or if the image is obtained
on immediate day after a flood event, that image is not used
for analysis in this research since water vapor content can be
potentially high over the bay. We used 118 set of field data for
TSS and turbidity over 24 days with no cloud during summer
2011–2014. In Fig. 2 dates that have in situ measurements and
no cloud coverage are shown with the number of data pairs in
each date. To consider loading of the nutrients in Green Bay,
data of Fox River discharge is also driven from U.S.
Geological Survey (USGS) database (http://waterdata.usgs.
gov/nwis/sw/) for the selected time period.

MODIS 250 m imagery

MODIS images are suitable for water turbidity monitoring
because of their temporal and spatial resolution (Lillesand
2002). MODIS is a powerful imaging sensor, which was
installed on two satellite platforms; Terra and Aqua launched
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in 1999 and 2002 respectively. These two satellites carry mul-
tiple sensors and are part of NASA’s Earth Observation
System (EOS) of satellites [http://eospso.nasa.gov]. The
orbits of Terra and Aqua satellites are designed so that they
revisit any location on the earth’s surface approximately every
1 to 2 days, which means that the temporal resolution of
MODIS imagery is very suitable for spatiotemporal studies
of the river plume. Each MODIS image is comprised of 36
imaging bands ranging in wavelength from 400 to 14,400 nm
and in spatial resolution from 250 to 1000 m. There are many
applications for MODIS data varying from atmospheric to
ocean and land sciences.

The Land Processes Distributed Active Archive Center (LP
DAAC) is an organization that processes MODIS data, ar-
chives, and distributes 68 different data products such as sur-
face reflectance, surface temperature, and vegetation index
[https://lpdaac.usgs.gov]. LP DAAC is a partnership

Fig. 1 Study area and location of
in situ measurement stations

Table 1 Geographic locations of field stations

Stations Latitude (deg.) Longitude (deg.)

S1 44.557 −87.995
S2 44.596 −88.000
S3 44.581 −87.980
S4 44.596 −87.951
S5 44.653 −87.900
S6 44.718 −87.843
S7 44.795 −87.758
S8 44.839 −87.696
S9 44.883 −87.633
S10 44.894 −87.571
S11 44.928 −87.508
S12 44.975 −87.446
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between the USGS and the National Aeronautics and Space
Administration (NASA) and is a component of NASA’s Earth
Observing System Data and Information System (EOSDIS).

Landsat can provide images with finer resolution, however,
most of the available images acquired by this satellite and other
similar sensors overlap with cloudy days in the study area.
Therefore, MODIS Aqua surface reflectance product (code
named MYD09GQ) is used for its suitable spatial (250 m)
and temporal (one image per day) resolution. Additionally, ap-
plication of MYD09GQ data in assessment of turbidity and
TSS of water bodies has been tested in recent studies, which
resulted in significant correlation of imagery and observational
field data (Chen et al. 2015; Hou et al. 2017).

MYD09GQ product is primarily intended for land applica-
tions and the atmospheric correctionmay not be valid for open
ocean applications (Doxaran et al. 2009). Yet in highly turbid
water bodies, the surface reflectance products are useful since
water is a good reflector of sun’s radiation (Petus et al. 2014).
Band 1 of the MYD09GQ image has a spatial resolution of
250 m, temporal resolution of 1 day, and is centered at 645 nm
wavelength. The reflectance in this wavelength is sensitive to
mineral suspended matters and turbidity in water (Bowers
et al. 2007). Therefore, after cloud analysis and visual inves-
tigation of the images, MODIS Aqua band 1 of the
MYD09GQ product for the days with available in situ mea-
surements and no partial or full cloud coverage was selected.

Data analysis procedure

MYD09GQ is a level-2 MODIS product (i.e. atmospherically
corrected and geo-located) and therefore has a sinusoidal pro-
jection. This projection is usually changed to a more intuitive
one in a preprocessing step. The field data used in this study
has geographic coordinates associated with them (latitude and
longitude). Therefore, the MYD09GQ band 1 images needed
to be reprojected to the geographic coordinate system so that
all the data would be in the same projection frame.

LP DAAC provides various tools for searching,
downloading, and re-projecting MODIS data products. In this

study, LP DAAC’s Web-basedMODIS Reprojection Tool (al-
so known as MRT Web Tool) is utilized. This online tool
allows browsing through MODIS products, searching for data
based on dates, and re-projecting to geographic coordinates.
All of MYD09GQ band 1 images of months of May through
September of 2011–2014 were initially downloaded for this
research using MRT Web tool.

Field data containing the location of sampling stations
along with associated TSS and turbidity values are tabulated
based on the dates of observation. Therefore, images acquired
on days coinciding with field measurements are selected for
model development. These images are selected among the
bulk-downloaded images of the 4 years.

A MATLAB script has been developed and used to extract
the reflectance values from selected images at the desired lo-
cations, which coincide with the in situ measurement stations.
The reflectance values are then used in conjunction with the in
situ TSS and turbidity measurements to establish an empirical
formula, which is presented in the next sections.

The water surface reflectance is not linearly related to the
concentration of TSS, but it increases with increase in TSS
concentration and turbidity (Curran and Novo 1988). To de-
velop an empirical relationship between water quality param-
eters (here turbidity and suspended sediment) and reflectance,
measured data obtained on water surface during summers
2011–2013 by Green Bay New Water is used while the 2014
data is used for evaluation of the method. The proposed em-
pirical relation can be used in water quality studies for the
Green Bay area instead of expensive and time-consuming
field measurements.

Image quality assessment and cloud contamination

To obtain reliable results, image quality assurance information
was checked for atmospheric corrections of images and other
quality issues. It is also necessary to discard images with cloud
contamination over the study area because in the presence of
clouds, all optical remotely sensed images contain information
about the clouds rather than the earth’s surface below.

Fig. 2 Dates that both field and
satellite data are available
(vertical axis shows number of
pairs of data in each date)
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To achieve this, MYD06_L2 data were used to investi-
gate cloud coverage in the study area. This dataset is a
MODIS daily global level-2 cloud product containing data
acquired from Aqua with 1 km resolution and is derived
from MODIS cloud mask product MYD35_L2 [http://
modis-atmos.gsfc.nasa.gov/MOD35_L2]. Cloud fraction
is a subset of MYD06_L2 data and was analyzed to
examine the cloud coverage in the study area. Cloud
fraction is the percentage of land in each pixel covered
by clouds, such that cloud fraction of 1 means the pixel
is completely covered by clouds and 0 means no cloud
exists in that pixel [http://modis-atmos.gsfc.nasa.gov/
MOD06_L2].

In this study, to determine cloudy pixels a threshold
value of 0.01 (1%) is selected for cloud fraction. If
more than 80% of the pixels in the area of modeling
has a cloud fraction value of 0.01 or less that day will
be considered as a clear one (Sima et al. 2013). By
doing so, several dates were determined to be clear for
the modeling. In the next step, dates with the amount of
clear pixels between 70% and 80% in the true-color
MODIS aqua images were examined visually. These
true color composites are available online [http://ge.
ssec.wisc.edu/modis-today] for visual purposes. In
addition, images with cloud fraction value of more
than 0.01 over the measurement stations were not used
in the modeling. At the end, images for days with clear
cloud status and available field data were selected for
analysis. The overlap of dates with filed data and
images with no cloud cover was 24 days that we used
for this research.

Results and discussion

Relationship between reflectance and particle
concentration

In general, the concentration of mineral suspended sediments
has a good correlation with reflectance coefficient in the red
part of the spectrum (Bowers et al. 2007). In this wavelength,
absorption of solar radiation by Colored Dissolved Organic
Material (CDOM) is much smaller (Bowers et al. 2007) than
absorption by clear water, therefore higher reflectance is ex-
pected from turbid water. In this research, surface reflectance
values obtained from band 1 of MODIS images (MYD09GQ
products) are used which are associated with the red part of the
spectrum.

Fox River plume and pollution from the watershed is a
serious concern in summer seasons, and the environmental
problems are getting worse by thermal stratification (Hamidi
et al. 2015). On the other hand, in winter the southern portion
of the bay is fully or partially covered by ice, thus field mea-
surements and remotely sensed data are confined to the
months of summer.

Regression was used to estimate a mathematical relation-
ship between water surface reflectance and in situ water qual-
ity parameters in southern Green Bay for three years separate-
ly and also together. After exclusion of all dates with cloud
contamination, 97 pairs of in situ TSS and remotely sensed
observations are selected for all stations shown in Fig. 1.
Using regression method, a relationship is proposed between
in situ measurement and water surface reflectance obtained
from band 1 of MYD09GQ. Figure 3 shows this relationship

Fig. 3 Relation between
reflectance in band 1 MODIS and
in situ data for TSS in a) 2011, b)
2012, c) 2013, and d) three years
combined
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and as one can see, although the three years have different
average temperature and river discharges, the relationship be-
tween TSS and surface reflectance follows similar trends over
three years. As the overall trend for the equations over three
years are similar, it is reasonable to use the relationship ob-
tained by combined data of three years as shown in Fig. 3d.
Eq. 1 presents the empirical relation between the surface re-
flectance obtained from band 1 of MYD09GQ images and
TSS:

TSS ¼ 1:6355 e0:7402Rrs ð1Þ
where Rrs is reflectance percentage and TSS is suspended sed-
iment concentration in milligram per liter (mg/L).

Reflectance and turbidity

Turbidity is a commonly used index to determine the percent-
age of light penetration in water that consequently affects the
photic depth in the water column. Photic depth indicates the
depth in the water column in which gross primary productivity
and respiration are equal. Turbidity has a direct influence on

water quality, heat flux, thermal stratification, and hypoxia
(Hamidi et al. 2015; Bravo et al. 2015).

Accurate estimation of turbidity is crucial to plan and de-
sign environmental and restoration programs, to predict fate
and transport of pollutants, and to estimate the sediment flux
(Moreno-Madrinan et al. 2010).

Following the same method used for TSS, Fig. 4 shows
pairs of in situ turbidity data and its corresponding surface
reflectance for summers of 2011 to 2013. A similar trend
for variation of turbidity versus reflectance over all three
summers can be observed in Fig. 4. Based on low inter-
annual variation, the whole set of data is used as a refer-
ence to propose Eq. 2 to estimate turbidity based on atmo-
spherically corrected reflectance in band 1 from MODIS
Aqua sensor.

T ¼ 1:1627 e0:778Rrs ð2Þ

In this equation, Rrs is the surface reflectance obtained
from band 1 of MYD09GQ images and T is water turbidity
in NTU unit.

Fig. 4 Relation between
reflectance in band 1 MODIS and
in situ data for turbidity in a)
2011, b) 2012, c) 2013, and d)
three years combined

Fig. 5 Comparison of in situ TSS
(left) and turbidity (right) data for
summer 2014 with proposed
equation based on 2011–13 data
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Validation of proposed method

To validate the empirical equations, suggested for TSS and
turbidity, the reflectance for stations with measurements in
summer 2014 was extracted from remotely sensed data fol-
lowing the same procedure described in Section 2.4.
Comparison of TSS and turbidity values obtained from
Eqs. 1 and 2 for 2014 images with the in situ measured TSS
and turbidity values provides a reliable way to validate the
level of accuracy of these empirical equations. Figure 5 shows
the proposed equations along with the pairs of in situ data and
surface reflectance for 2014. In this figure, there is a good
agreement between the proposed empirical method and 2014
in situ data. It is important to note that the empirical relations
were developed without use of 2014 data. The correlation
coefficient between measured data and proposed equation is
about 0.95. This shows the reliability of the method and equa-
tions suggested in this research to study Fox River plume and
spatiotemporal variation of water quality parameters in south-
ern Green Bay.

Normalized RootMean Square Error (NRMSE) is a param-
eter, which is used for comparison of two sets of data. The
goodness of fit between measurements and model predictions
of TSS and turbidity was quantified in terms of NRMSE. The
NRMSE between observed and modeled data is estimated
using Eq. 3 for time series of observed (xi,1) and modeled
(xi,2) values of TSS and turbidity.

NRMSE ¼ 1

std
∑ n

i¼1

xi;1−xi;2
� �2

n
Þ
1=2

0

@ ð3Þ

In this equation, std. is the standard deviation of the ob-
served values. Calculation shows the NRMSE is 0.36 and 0.3
for TSS concentration and turbidity respectively.

To ensure the robustness of R2 and correlation coefficient
values for Eq. 1, cross-validation of the empirical relation was
performed over the whole set of data for 2011–2014. Five
experiments with different combinations of training data and
test data were performed. Each experiment was run 100 times
with the training and test data pairs selected randomly. Table 2
presents some statistics on R2 and correlation coefficient that
confirm that the values cited in Sections 3.1 are within accept-
able range. All these tests show the ability of this method to
predict the variation of water quality parameters based on
remotely sensed data in southern Green Bay.

River plume dynamics

Fox River plume is a highly dynamic coastal structure, driven
by meteorological forcing, Coriolis Effect, river discharge,

Table 2 Cross-validation of the empirical relation considering data of
2011–2014

Training Test Mean R2 Std. R2 Mean Corr. Std. Corr.

50% 50% 0.8199 0.0293 0.7451 0.0684

60% 40% 0.8182 0.0236 0.7609 0.0806

70% 30% 0.8192 0.0185 0.7637 0.0989

80% 20% 0.8204 0.0116 0.769 0.109

90% 10% 0.8184 0.0086 0.8384 0.1454

Fig. 6 Examples of Fox River
plume. The arrows show the
dominant wind direction at the
same dates
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and Bay bathymetry. Using Eq. 1 concentrations of TSS can
be calculated for any day using only band 1 of theMYD09GQ
image of that day. A color representation of the calculated TSS
for all pixels of the bay provides a map of plume distribution
associated with each day. Figure 6 shows the variation of
plume for a selection of 12 days between summers of 2011–
2013. This figure shows the high spatial and temporal varia-
tions of the plume in the southern portion of the bay. The area
of the plume is mainly extended to the east side of the bay.

The area of the southern Green Bay affected by plume is
also calculated here using a TSS of 5 mg/L as the threshold to
define the plume. There is 97 pairs of data with cloud-free
MYD09GQ images for the period of summers of 2011
through 2013. The variation of the area of the plume is be-
tween 12 to 180 km2 for these days while 50% of the time the
area of the turbid plume is more than 106 km2.

Figure 7 shows the variation of Fox River discharge and
concentration of TSS in three different locations inside the bay
obtained using Eq. 1. From Fig. 7a a correlation between the
increase of TSS concentration in station 4 and increase of
discharge rate from the river can be seen (marked by arrows).
The same argument is valid for TSS concentration in Stations
7 and 9 as shown in Fig. 6b.

The other point one can investigate from Fig. 7 is the de-
crease in the TSS concentration from south to the north of the
bay. For a given date, June 20th for instance, the TSS concen-
tration in Stations 4, 7, and 9 are approximately 40, 12, and
5 mg/L. This shows that the main source of sediment concen-
tration and turbidity in the southern Green Bay is Fox River

discharge, even though other factors such as wind driven
wave, gyres, and circulation affect the TSS concentration.

Indirect estimation of TP

As it is shown in Fig. 8, the correlation between TSS and TP
observational data was tested in this study. There is a strong
correlation that provides a framework to predict indirectly TP,
which doesn’t have direct optical properties and spectral char-
acteristic, from TSS and reflectance. Eq. 4 shows the empiri-
cal relation between measured TSS and TP, calculated from
1100 pairs of data over summers 2011–13.

TP ¼ 0:0037 TSSð Þ þ 0:0134 ð4Þ

Fig. 7 Correlation between river
discharge and TSS concentration
in three different stations in the
bay

Fig. 8 Correlation between total suspended sediment and total
phosphorus in the southern Green Bay

Using MODIS remote sensing data for mapping the spatio-temporal variability of water quality and river... 947



This relationship and estimated TSS could be used for fur-
ther analyses to evaluate phosphorus concentration in the
Green Bay. TP field measurement would be costly and in
many instances not practical. Therefore, it is not possible to
measure TP in many different locations or field stations and
eventually a limited number of measurements would be ob-
tained. It should also be noted that the TP evaluated using this
method would be restricted to the surface of the water column
since the calculation of TSS with remote sensing techniques is
also valid for the upper layers. In addition, one should be
aware of the errors in modeling TSS with imagery data and
building a TP ~ TSS relationship. Nevertheless, this method
can provide a general knowledge about TP circulation and a
rough estimation of its variability in a large study area. It can
also help to determine TP gradient as well as point sources of
pollution, if any, in the modeling zone.

Summery and conclusion

In this research, the Fox River turbid plume—a major source
of sediment and contamination to the Green Bay and Lake
Michigan—was studied using the in situ measurements and
satellite imagery data. Cloud contamination is a common bar-
rier to the remote sensing modeling in the study area. To avoid
this issue and in order to select the most appropriate satellite
data temporal resolution of different available satellites was
considered against the time of measurements. In this regard,
MODIS data provides the most overlapping time. Surface
reflectance values, obtained from band 1 of MYD09GQ im-
ages, were correlated to corresponding turbidity and TSSmea-
sured over summers of 2011–13 for 16 stations in Southern
Green Bay. Derived empirical equations showed strong corre-
lation between turbidity and TSS with surface water reflec-
tance with correlation coefficients of 0.87 and 0.83, respec-
tively. Proposed relationships were validated against mea-
sured data in summer of 2014. The NRMSE for prediction
of measured data with the equations developed for turbidity
and TSS are 0.3 and 0.36, respectively. Proposed model was
used to estimate TSS in the Lower Green Bay area. Generated
maps provide a spatiotemporal view of the variations of TSS
which indicates the dynamic nature of the Fox River plume. It
was shown that the turbidity and TSS concentration increase
with an increase in river discharges. Additionally, it was also
shown that the concentration of TSS increases in 3 specific
stations as the river discharge increases. These types of anal-
ysis that model spatial and/or temporal variability in a large
systems may probably need either huge amount of calcula-
tions or a dense network of monitoring stations. In either
way, the analysis would be expensive and time-consuming,
while remote sensing provides reliable and accurate estima-
tions with less effort needed for data collection and computa-
tional processes. This study provides a framework to

incorporate widely available remotely sensed data in water
quality studies. In future analyses, the proposed empirical re-
lations could be applied to other sites in the Great Lakes to
check the validity and robustness of the proposed methodol-
ogy. In addition to that, other water quality parameters could
be targeted as the subject of the study. Obviously, more in situ
measurements is required for further validations.
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