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Abstract
The financial system is becoming more and more interconnected at an international 
level. This interconnection can lead to widespread financial shocks and crises around 
the globe. However, there is not a clear and unique understanding of the impact of 
financial concentration over interconnectedness and systemic risk. In the last dec-
ades, there has been a considerable development in the applications of network the-
ory to finance. These advances allow us to study, at a network level, the effect of 
financial concentration on the degree of financial interconnection, leading to robust 
evidence about this relationship. This is specially relevant in the current context of 
fusion waves happening in some European countries, fostered by the supervisory 
and regulatory agencies. The objective of this paper is to unveil the relationship 
between financial concentration and financial interconnectedness by employing net-
work models.  This paper applies the Exponential Random Graph Model to a mul-
tiplex financial network connecting some of the main countries of the international 
financial system in different layers. As each layer represents a different set of mon-
etary and financial institutions, this approach leads to a rich understanding of the 
relationship between the variables because it is possible to see how it operates at 
many levels. We find that financial concentration decreases the number of relation-
ships between the agents of the international financial network. We also find that the 
volume of assets that a country has leads to a similar result, whilst the number of 
monetary and financial institutions increases it. Finally, we find that the ERGM is a 
valid methodology to inquire the behavior of a relationship of this kind. The model 
does not allow to study the dynamic behavior of the network. Thus, other kind of 
methodologies are necessary in order to achieve results about how the relationship 
evolves over time.
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1  Introduction

Financial networks refer to a group of financial institutions interconnected 
between them through several ways, such as financial markets or infrastructures. 
There are multiple financial networks composed by different entities (e.g., banks, 
investment companies or insurance companies), which provide products and ser-
vices at many different levels, such as payments or investment services. A set of 
banks, pension funds, trade agencies, etc., can be considered as a financial net-
work. Financial instruments can also act as a financial network (e.g., a network of 
derivatives, a network of REPOs, etc.). Even the properties of a financial product 
can be the subject of a financial network (e.g., a network of maturities, a network 
of liquidity, etc.).

These institutions, instruments and features operate simultaneously at differ-
ent levels in multilayer networks, i.e., networks that have layers in which their 
elements interact at a multidimensional level. The analysis of the factors govern-
ing the interrelationships among financial agents, instruments and properties in 
networks is essential to understand and control the financial system and predict 
financial crises (Berndsen et al. 2018). This is due to the importance of financial 
networks for measuring and evaluating systemic risk.

Systemic risk is the risk of transmission of financial distress from one or more 
agents to other agents in a financial network, with the possibility of generating a 
widespread crisis (Eboli 2004). Billio et  al. (2012) consider that systemic risk, 
which affects the financial system, i.e., a collection of interconnected institutions 
that conduct mutually beneficial business relationships, is the risk of that illiquid-
ity, insolvency, and losses quickly propagate during periods of financial distress. 
Comparing these definitions, the key factor that both authors share about systemic 
risk is the propagation and transmission mechanisms of negative shocks in a set 
of interrelated institutions. Being propagation and transmission the key compo-
nents of systemic risk, it is easy to see that, systemic risk in the financial system 
is correlated with its degree of interconnectedness, since the latter is directly con-
nected with the availability of a shock to propagate.

To infer the importance of systemic risk, one could start with the costs of 
financial crises and their propagation. Only in economic terms, the cumula-
tive output losses due to long lasting banking crises have been estimated in the 
15–20% of the annual GDP of an economy on average (Hoggarth et  al. 2002). 
Significant welfare, social and psychological costs have to be added to the equa-
tion. In concordance, it is not surprising that as a consequence of the financial 
crisis of 2007–2009, the body of research around financial network models and 
financial stability has gained an increasing attention from both, the theoretical 
and the empirical perspective in the last decades (Diamond and Dybvig 1983; 
Allen and Gale 2000; Boss et al. 2004; Battiston et al. 2012; Battiston and Mar-
tinez-Jaramillo 2018). Frequently, financial stability models for systemic risk 
analysis rely on network science.

Network science can be understood as "the generation of descriptive models 
that explain and describe a certain system" (Berndsen et al. 2018, p. 131). These 
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models arrived late to economics and finance compared to other disciplines (Nier 
et al. 2007), although much progress has been done in the last decades (Glasser-
man and Young 2016; Caccioli et  al. 2018; Bardoscia et  al. 2021), motivated, 
among other factors, by the financial crisis of 2007–2009 (Garcıa et  al. 2022). 
Some of the main approaches to the analysis of systemic risk in financial net-
works rely on numerical simulations (Nier et al. 2007; May and Arinaminpathy 
2010; Gai et  al. 2011; Gai 2013), empirical analyses founded on the topologi-
cal statistics of the financial network, such as its density, clustering, transitiv-
ity, connectivity, layer similarity, etc. (Minoiu and Reyes 2013; Bongini et  al. 
2018; Berndsen et al. 2018), optimization and algorithmic approaches (Battiston 
et al. 2012; Bardoscia et al. 2015; Pichler et al. 2021; Cerqueti et al. 2021) and 
economic and econometric models (Diebold and Yılmaz 2014; Acemoglu et  al. 
2015; Demirer et al. 2018). Section 2 provides a description of each approach.

In this paper, we propose an approach to conduct inference about the factors that 
explain interconnections in financial networks based on the so-called Exponential 
Random Graph Model (ERGM) (Cranmer and Desmarais 2011; Chatterjee and 
Diaconis 2013; van der Pol 2019; Ghafouri and Khasteh 2020). Exponential-family 
random graph models describe the processes governing the formation of links in 
networks as a result of the factors selected by a researcher (Morris et al. 2008). In 
a network, the response variable is the state of a pair of nodes (or dyad), usually 
measured by the presence or absence of a tie between them, and the predictor vari-
ables are attributes of the nodes, the dyads and the ties. In a ERGM of that network, 
the predictors are fuctions of the ties of the network, and at the same time, they are 
direct functions of the response variable. The predictors have a configuration of ties, 
and to determine its relevance for the model, they are hypothesized to occur more or 
less often than expected randomly. Thus, by applying the ERGM to a financial net-
work, we can infer which predictors make a financial network more or less prone to 
be interconnected, and as a result, determine the characteristics that are relevant to 
explain the edge generation process (EGP) of a financial network. This is a reverse 
approach to numerical simulation models, which assume aprioristically the prob-
ability distribution of a financial network and accordingly conduct simulations in 
order to study the evolution of systemic risk. Instead, we aim to conduct inference 
to determine which factors are relevant for the EGP of a financial network using real 
financial network data.

We apply our approach to study how financial concentration affects interconnect-
edness in a multiplex international financial network which has countries as nodes, 
and the total volume of financial claims between countries as edges. This network 
operates at various levels including institutions such as banks, Monetary and Finan-
cial Institutions (MFIs) which are not banks, central banks and governments, pen-
sion funds, investment banks, and other relevant financial institutions (see Table 11). 
The main objective of this paper is to inquire whether financial concentration is a 
relevant source of systemic risk, as both systemic risk and interconnectedness are 
directly correlated (Battiston et  al. 2012; Allen et  al. 2012; Roukny et  al. 2018; 
Barucca et al. 2021). The focus of the application on financial concentration is moti-
vated by the high number of banking fusions which are happening currently in many 
countries (see Fig. 1).
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The contribution of this paper is, therefore, threefold. First, it provides a new 
approach to carry out statistical inference about the structure of financial net-
works by employing exponential random graph models (ERGMs). Second, it 
provides a multi-layer macro-financial network analysis by using international 
financial data extracted from the bank of international settlements (BIS). Third, 
it analyzes the effects of financial concentration over the interconnection compo-
nent of systemic risk, in a scenario in which several fusions of financial institu-
tions are taking place.

The interest of understanding the relationship between financial concentration 
and systemic risk is in the fact that, in the last ten years, there has been a consider-
able increase in banking concentration in many countries, as it is shown in Fig. 1. 
In the case of Europe, this increase of concentration is being articulated by fusion 
waves, fostered by the regulatory and supervisory institutions such as the European 
Central Bank. Understanding the systemic implications of financial concentration 
is crucial to design regulatory and supervisory policies effectively, and to prevent, 
detect and understand the dynamics of future shocks and crises.

As Sect. 2.2 exposes, even though the effects of financial competition on certain 
factors such as economic growth, profits and financial risk have been widely stud-
ied both theoretically and empirically, the body of literature in the subject of finan-
cial concentration compared to connectiveness, contagion and systemic risk studied 
through network models is much smaller. Bearing this in mind, this research aims to 
provide results about if, and to which extent, these relationships exist.

The rest of the paper is organized as it follows. Section 2 studies the literature 
related to the paper. Section  3 presents the methodology and the data. Section  4 
shows and analyzes the results of the study. Section 5 concludes and discusses the 
results through the lens of the literature.

Fig. 1   5-bank asset concentration by country
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2 � Related literature

The last financial crisis constituted a turning point in the scientific literature of finan-
cial stability. Before that period, network science was not as developed in economics 
and finance as in other fields, such as biological sciences (Nier et al. 2007). It was in 
the aftermath of the crisis when the literature of financial networks started to grow 
in an exponential manner (Tabak et al. 2020).

Indeed, the boom of this stream of literature comes from the underestimation of 
systemic risk before the recent financial crisis. In effect, before this event, either 
there was a clear absence of financial market restrictions and financial-real inter-
connections in economic models, or financial systemic risks were underestimated in 
many cases (Blanchard 2014). On the one hand, quantitative macroeconomic mod-
els used in production remained silent about the origins of the financial crisis (Tay-
lor et al. 2016). On the other, they did not provide any understanding about how the 
economic institutions could have taken any measures to mitigate its effects (and to 
which extend one or other kind of policy could contribute more, i.e., comparisons 
between policy effects) (Taylor et al. 2016). Most importantly, they did not provide 
any insights about the interconnections between financial systems and systemic risk, 
and hence on the regulatory and supervisory policies needed to avoid a crisis of this 
kind (Taylor et al. 2016). Furthermore, some literature focusing on unveil the quan-
titative dynamics of systemic risk dramatically underestimated its importance (e.g., 
Bartram et al. (2007)).

After those events, in the context of economic and financial modelling, and in 
applied network theory in finance and economics, there exists a post-crisis increas-
ing interest in how complex systemic dynamics work in financial networks. There-
fore, important concepts related to these issues have been retrieved with engage-
ment, such as liquidity restrictions, contagion channels, credit cycles, financial 
accelerators, or non-linear considerations (Battiston et al. 2012; Billio et al. 2012; 
Taylor et al. 2016; Tabak et al. 2020; Barucca et al. 2021).

2.1 � Financial networks and systemic risk

One of the main approaches to financial networks and systemic risk are numerical 
simulations. Numerical simulation models start with the construction of an artificial 
financial system, most frequently, a banking system. These models recreate the bal-
ance sheet of financial institutions that can vary in structure, detail, and depth. For 
example, Nier et  al. (2007) divide artificial bank liabilities in net worth, deposits 
and borrowed. Assets are divided into two groups: external assets and lent. On the 
other hand, Gai et  al. (2011) split the bank liabilities into: retail deposits, REPO, 
unsecured interbank liabilities, and capital. Assets are separated into: fixed assets, 
’collateral’ assets, reverse REPO, unsecured interbank assets and liquid assets. After 
the definition of the balance sheets, a set of key parameters are defined, a proba-
bility distribution governing the network is assumed, and the structural dynamics 
of the propagation mechanism of the network are formulated. Finally, numerical 
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simulations are ran, and resulting networks are drawn from the simulations. By tun-
ing the parameters of interest, and observing the resulting realizations of the net-
work, the systemic dynamics of the artificial financial network can be studied.

The work of Eboli (2004) inspired other works in this area, such as the work of 
Nier et  al. (2007). Eboli (2004) carries out analytical research about the financial 
contagion mechanics based on graph theory and the notion of systemic risk provided 
by the works of (Dow 2000; De Bandt and Hartmann 2000). The author focuses 
on direct contagion (the contagion channel which arises from interbank lending 
and borrowing, as well as other contracts) and common exposures (a shock in the 
value of assets held by various institutions or in the value of assets that have a high 
positive correlation), and sets aside informational contagion. Authors who share the 
same fundamentals about network modelling follow the same approach (May and 
Arinaminpathy 2010; Gai and Kapadia 2010; Gai et al. 2011).

In order to increase the understanding of systemic risk dynamics, May and Ari-
naminpathy (2010) construct a network model that builds into the works of Nier 
et al. (2007; Gai and Kapadia (2010), and adds two distinctive features. These are, 
respectively, the employment of mean field approximations to approach the dynami-
cal conduct of random networks of banks, and the introduction of strong and weak 
liquidity shocks to the model (May and Arinaminpathy 2010).

As another example of this stream of literature, Gai and Kapadia (2010) develop 
an analytical model based on a Poisson distributed random graph to study how the 
frequency and extent of contagion evolve with respect to macroeconomic or idiosyn-
cratic shocks, variations in the balance sheet of the banks, and liquidity effects in 
the market. The numerical simulations of their model show that, in line with much 
of the literature, financial networks have a robust-yet-fragile structure. Therefore, 
shocks that may seem small a priory can have devastating consequences, which 
means that evidence about the resilience of the financial system in the past is not a 
sound signpost of its future robustness, as shown by the 2007–2009 financial crisis. 
These effects are amplified by further liquidity market restrictions and aggregated 
shocks to the balance sheets of banks (Gai and Kapadia 2010).

Gai et al. (2011) develop a network model of a generic financial network, which 
decomposes each bank balance sheet to collateral assets, REPO contracts, and unse-
cured interbank operations. It incorporates the multilayer approach into a numeri-
cal simulation model. With the purpose of analyzing liquidity crisis dynamics and 
systemic risk, they provide analytic formulation for these, and carry out six experi-
mental numerical simulations and four policy exercises. Furthermore, in addition 
to employ a uniform Poisson distribution, they provide results for a more realistic 
geometric distribution, in which some banks are much more highly connected than 
others, i.e., a clustered network structure. Their results highlight how concentration 
and complexity can increase liquidity systemic risk, and how microprudential policy 
measures, such as demanding higher quality liquidity stocks to banks, and macro-
prudential policy ones, such as counterciclycal liquidity buffers or surcharges to key 
systemic players, can help reduce systemic risk by directly making the financial sys-
tem less prone to systemic liquidity crisis.

In their milestone paper, Elliott et al. (2014) expand substantially the simulation 
framework with important advances in the field. Firstly, they explore contagions in 



2013

1 3

The network econometrics of financial concentration﻿	

a Core-Periphery model, implying by this studying a network conformed by a core, 
a small number of large organizations which are completely interconnected, and a 
periphery, a big number of small organizations that have only a few connections 
with the core. Secondly, they study contagions in a model that allows for segrega-
tion or homophily between different segments of an economy, such as countries, 
industries or sectors. Thirdly, they explore power law distributions, which have been 
advocated as more realistic for real world financial networks than regular networks 
(although with an on-going debate (Berndsen et al. 2018)). Fourthly, they model a 
network with correlated and common assets, that as the 2007–2009 financial cri-
sis showed, is crucial to account for, due to the high number of commonly held 
investments and correlated payoffs that organizations hold. Finally, they illustrate 
their model with data of the cross-holdings of debt between six European countries. 
As main results of their work, the authors highlight the useful distinction between 
diversification and integration, and the trade-off implications of those mechanisms 
over contagion, which may be related to the core-periphery structure and/or segrega-
tion structure of a network.

Cinelli et  al. (2021) evaluate the effect of incomplete information on the resil-
ience of financial networks. By performing extensive cascade failure simulations 
with different core-periphery structures, they conclude that the incomplete network 
of interbank exposures retrieved from the dataset of real interconnections of the 
Bank of International Settlements is far from a worst case scenario. This means that 
the lack of information originated by the absence of these links can lead to impor-
tant biases, as unobserved links can alter significantly the resiliency of the whole 
network. Finally, they confirm the robust-yet-fragile tendency of the network docu-
mented in previous works (Acemoglu et  al. 2015; May and Arinaminpathy 2010; 
Gai 2013).

Other important papers in the field are, among others, (Nier et  al. 2007; Luu 
et al. 2021; Chong and Kluppelberg 2018; Amini et al. 2016; Caccioli et al. 2014). 
Eventually, some efforts have been made in the literature to study financial networks 
employing dynamical network models. See, for example, (Georg 2013; Bargigli 
et al. 2015).

Empirical analyses of financial networks usually employ network statistics to 
expose properties of the topology, clustering, communality and other properties of 
the financial network that are relevant for systemic risk. For example, Barucca et al. 
(2021) study fire sales of commonly held assets, i.e., fire sales systemic vulnerabili-
ties, of financial institutions from Europe and the UK, by characterizing the equity 
and debt portfolio overlap of the communities of the network using histograms, 
number of common holdings, cosine similarities, affinity matrices, eigenvector cen-
tralities, the Herfindhal–Hirschman Index, etc. Other important papers in the field 
are (Poledna et al. 2015; Aldasoro and Alves 2018; León et al. 2018; Bargigli et al. 
2015), among others.

Optimization approaches usually apply optimization procedures to deter-
mine minimum systemic risk financial networks. This is the case of Pichler et  al. 
(2021), who develop an optimization procedure that minimizes the systemic risk 
by rearranging optimal networks of overlapping portfolios, and then apply it to the 
exposures of the major European banks. Their results show that their procedure 
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minimizes systemic risk up to a factor of two, with contagion probabilities that are 
critically reduced for the optimized network, and no individual loss to banks. On the 
other hand, the most common algorithmic approach is the Debt-rank algorithm, that 
identifies systemically important nodes by measuring the impact for the network of 
the distress of one of the central nodes (Battiston et al. 2012; Bardoscia et al. 2015; 
Battiston et al. 2016).

Economic and econometric models for financial networks differ in their approach. 
Some of the most relevant works in this area are the ones of Diebold and Yılmaz 
(2014); Demirer et al. (2018). In these works, the authors employ variance decom-
positions from Vector Autoregressions to build financial networks. From there, they 
define measures of financial connectedness to measure systemic risk. Examples 
of economic models applied to financial networks are the one of Acemoglu et  al. 
(2015), who formulate an economic model of three periods ( t = 0, 1, 2 ), a single 
economic good, and n risk neutral banks to study the phase transition of the finan-
cial system. Another important work is the one of Battiston et al. (2012), who use a 
dynamic model based on a system of stochastic differential equations with financial 
acceleration to study the optimal resilience of financial networks in relation with its 
level of risk diversification.

Other important approaches to systemic risk and financial networks are the ones 
of Guttal et al. (2016) and Torri et al. (2021). Torri et al. (2021) present a methodol-
ogy based on conditional tail risk networks to evaluate the transmission of shocks 
in financial systems, and to identify the institutions that are more fragile in a finan-
cial network. Their framework is an extension of the ΔCoVaR framework of Tobias 
and Brunnermeier (2016) to networks. They further compute synthetic indicators of 
systemic risk for each bank and for the network. By applying their procedure to a 
set of European banks, they find regional clusters, which are more significant in cri-
sis periods. On the other hand, the work of Guttal et al. (2016) seeks to investigate 
whether a phenomenon called critical slowing down (an increasingly slow response 
of the financial system to shocks before a crisis), characterizes financial meltdowns. 
To do it, they employ two models: a mean-field model and a microeconomic agent-
based model. They find that a critical slowing down is not what precedes a financial 
crisis, but rising stochastic variability is, with the handicap of signing potential false 
alarms.

2.2 � Financial concentration and systemic risk

Although an a priori reasoning can lead to higher concentrated financial systems 
having higher profits, efficiency and competitiveness, the specialized literature 
points out that the general effects of further banking concentration on economic 
growth are negative for developed countries, but can be positive or irrelevant for 
developing countries. Thus, just as some scholars like (Fernandez et al. 2010; Diallo 
2017) find that concentration has a negative effect on economic growth which dis-
appears for low-quality institutional countries and is reduced in the case of coun-
tries with a high level of corporate governance. Other authors such as Abuzayed 
and Al-Fayoumi (2016), Levine et al. (2000) find that concentration has a positive 
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effect on economic growth for the MENA countries and a non-negative relationship 
in advanced countries. Diallo (2017) finds that the relationship between financial 
concentration and economic growth depends on the proximity of the country to the 
world technology frontier. Therefore, when a country is enough financially devel-
oped, banking concentration has a negative effect on the GDP. However, prior to the 
turning point, economic growth depends exclusively on the financial intermediation.

In the case of the relationship between banking competition and financial stabil-
ity, the theoretical views are twofold: a traditional competition-fragility pairing, in 
which more competition (less concentration) has a negative effect on market power, 
profit margins, and stimulates risk appetite via less franchise value; and an alter-
native competition-stability hypothesis, where concentration leads to an increased 
market power in the loan market, and as a result, to greater risk taking by financial 
institutions since they increase the interest rates of loans to clients, generating moral 
hazard and adverse selection (Berger et al. 2017).

On the other hand, evidence is sparse. Beck et  al. (2006), Chang et  al. (2008), 
Berger et al. (2017), Kabir and Worthington (2017) find evidence about the tradi-
tional competition-fragility hypothesis. Hakenes and Schnabel (2011) get ambiguous 
results with a theoretical model, and similarly Fernandez and Garza-Garcia (2015) 
find evidence about both hypotheses for the Mexican banking industry. IJtsmaet al. 
(2017) find that concentration hardly affects financial stability. Finally, Clark et al. 
(2018), Su et al. (2021) find evidence about the competition-stability hypothesis in 
the Commonwealth of Independent States (CIS) markets and in China, and Anginer 
et al. (2014) get similar results by analyzing the risk-taking behavior of banks.

However, the relationship between financial concentration and systemic risk has 
an intermediate component: the level of interconnectedness of agents in the finan-
cial system. Several studies document the robust-yet-fragile structure of the finan-
cial system because of its highly interconnected nature, meaning that high connec-
tion levels generate a low probability of big shocks to the system, but when these 
appear, the effects can widespread to the whole system (Gai 2013; Battiston et al. 
2012; Acemoglu et al. 2015). The effect of financial concentration over the systemic 
risk then depends directly on its effect over the degree of interconnectedness of the 
financial system.

3 � Data and methodology

As a methodology to investigate whether financial concentration is a driver of inter-
connectedness and systemic risk in the financial network that we have built, we 
employ the exponential random graph model, a network model from the family of 
the generalized random graphs (GRG). The ERGM is a technique that allows for sta-
tistical inference with network data. It can be used to model endogenous (structural) 
effects and exogenous (predictor or covariates) effects to the network, without need-
ing any assumptions about the independence of of the nodes or edges (Cranmer and 
Desmarais 2011). Developed mainly with a focus on Markov random graphs (Frank 
and Strauss 1986; Frank 1991; Robins et al. 2007) and with applications in the anal-
ysis of social networks (Snijders 2002; Wasserman and Pattison 1996; Wasserman 
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and Robins 2005), they have recently been proposed for the analysis of economic 
networks (van der Pol 2019). However, they have not yet been popularized for the 
analysis of financial networks, and, to the extent of our knowledge, this is the first 
application to the analysis of financial concentration and interconnectedness. Sec-
tion 3.1 introduces the formulation and estimation of a generic ERGM.

3.1 � Inference

To draw inferences about the EGP of our international financial network, we use the 
exponential random graph model (ERGM). This model is a generalizable methodol-
ogy to infer structural properties of financial networks. The ERGM is a GRG model 
which describes, in a parsimonious way, the local selection forces which configure 
the structure of a network (Hunter et  al. 2008; Newman 2003). Network datasets 
are then considered as the outputs from a regression model with a set of predictor 
variables which are network attributes, such as vertices or edges. Then, the insights 
provided by the ERGM can then be used to understand particular network relation-
ships or to simulate random realizations of networks conserving the properties of 
the original network data (Hunter et al. 2008).

In essence, the ERGM is a network analogy of the logistic regression to network 
settings, in which the probability of a link depends on the presence of other links or 
node attributes of the network dataset. Thus, they are capable of accounting for the 
existing direct and weighted interactions in a network, to identify the probability 
distribution of a network, and therefore to identify which edge and node attributes 
impact the probability of conforming new nodes (van der Pol 2019). The applica-
tion to financial networks and systemic risk is therefore immediate, as they allow to 
infer which factors determine the generation of new interconnections in the financial 
system.

Section  3.1.1 presents the mathematical derivation of the general form of the 
ERGM applied in Sect. 4.

3.1.1 � The exponential random graph mOne of the main approachesodel (ERGM)

In general, the exponential family is a broad family of probabilistic models which 
covers many types of data, not precisely networks. Specifically, exponential random 
graph models (ERGMs) are a subfamily of the exponential family consisting in sta-
tistical methods for analyzing the graphs of networked data (Ghafouri and Khasteh 
2020). Following the Hammersley–Clifford theorem (van der Pol (2019)), the prob-
ability of a graph is proportional to the probability of counts of subgraphs. Then, 
starting from an observed network (y), which is of replication interest, the goal is 
to obtain the probability that the network generated by the model (say Y) equals the 
observed network. Then

or, equivalently,

(1)logP(Y = y) ∝ � ⋅ v(G)
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where � is a vector of parameters of interest, G a network, and v(G) the vector of 
variables of that network.

To obtain a probability distribution, the normalization of Equation (2) is 
required. This is the same as normalizing a network, which means normalizing all 
the potential networks with the same number of nodes. Mathematically,

G ∈ G being a potential network in the set of all possible networks ( G ) with the same 
number of nodes.

The most general and commonly used representation of an ERGM model is 
then

where � =
∑

G∈G exp{� ⋅ v(G)} , i.e., the normalizing constant (a big magnitude), 
and Z = P(Y = y) . Equation (4) is, additionally, the canonical form of the ERGM.

To get marginal effects, let Gij a graph which contains the nodes i and j. If i is 
linked to j in the graph, we will write Gij = 1 . Otherwise, Gij = 0 . Thus, the odds 
of a link between the nodes i and j are:

and the logit, which ensures a probability space between 0 and 1, is:

Assume that the log probability of the existence of this connection between i and j is 
determined by a set of n explanatory variables and parameters in the following way:

where � ∶= (�1, �2,… , �n) is the vector of parameters of interest, and 
X ∶= (X1,X2,… ,Xn) is the vector of explanatory variables. Therefore, one has:

Equation (6) is a logit model, which supposes that the observations are i.i.d. How-
ever, the observations of networks are not independent. Therefore, the original logit 

(2)P(Y = y) ∝ exp{� ⋅ v(G)}

(3)P(Y = y) =
exp{� ⋅ v(G)}

∑
G∈G exp{� ⋅ v(G)}

(4)Z =
1

�
exp{� ⋅ v(G)}

(5)odds(Gij = 1) =
P(Gij = 1)

P(Gij = 0)

(6)logit[Gij = 1] = log[odds(Gij = 1)] = log
P(Gij = 1)

P(Gij = 0)

(7)logP(Gij = 1) =

n∑

k=1

�nXn = �1X1 + �2X2 +⋯ + �nXn

(8)P(Gij = 1) = exp

{
n∑

k=1

�kXk

}
= exp{�1X1 + �2X2 +⋯ + �nXn}
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equations need a modification to account for this dependence. If Go
ij
 is the network 

without the link between i and j, then:

is the new odds of a link in the network, where the probabilities are now conditioned 
by the structure of the network without a link ij, denoted by Go

ij
.

Because some features of the model may be subgraphs and these are included in 
the model by their accounting, the counts of those variables are not equal when the 
link ij is present or absent (van der Pol 2019). The model has to account for these 
differences. Thus, being v(G+

ij
) the vector of variables when the link ij is present and 

v(G−
ij
) when it is absent, by equations (8) and (9), one has ( �′ is the transposed of � 

and �′
k
 is the transposed of �k , k = 1, 2,… , n):

where the parameters of interest of the model measure the linear dependence of the 
count differences of the subgraphs of the model, which is the basis of the ERGM. 
Observe that vk(G+

ij
) − vk(G

−
ij
) ( k = 1, 2,… , n ) is the difference of the count number 

of the network statistic k as the result of an additional link. Thus, vk is the k-th 
change statistic.

Consider vk(ΔkGij) ∶= vk(G
+
ij
) − vk(G

−
ij
) the change statistic for an ij link of the 

variable k. Then, by applying natural logarithms to remove the exponential compo-
nent of Equation (10) (which gives the exponential term to the ERGM), one has:

So, the model predicts the logit of a tie by the impact of a change in the counts of 
the network statistics measured by the parameters �′.

(9)odds(Gij = 1|Go
ij
)) =

P(Gij = 1|Go
ij
)

P(Gij = 0|Go
ij
)

(10)

odds(Gij = 1|Go
ij
) =

P(Gij = 1|Go
ij
)

P(Gij = 0|Go
ij
)

=
exp{�� ⋅ v(G+

ij
)}

exp{�� ⋅ v(G−
ij
)}

= exp{��(v(G+
ij
) − v(G−

ij
))}

= exp{��
1
(v1(G

+
ij
) − v1(G

−
ij
))} +⋯

+ exp{��
n
(vn(G

+
ij
) − vn(G

−
ij
))}

logit[Gij = 1|Go
ij
] = log[odds(Gij = 1|Go

ij
)]

= log
exp{�� ⋅ v(G+

ij
)}

exp{�� ⋅ v(G−
ij
)}

= ��
1
(v1(G

+
ij
) − v1(G

−
ij
)) +⋯ + ��

n
(vn(G

+
ij
) − vn(G

−
ij
))

= ��
1
v1(Δ1Gij) +⋯ + ��

n
vn(ΔnGij)
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3.1.2 � Layer similarity

Intuitively, a multilayer network consists of a series of interrelated sub-networks, 
called layers, as well as links connecting each network. When the node set of 
every sub-network inside the multilayer network represents the same agents, then 
the structure is called a multiplex network. In these networks, nodes remain simi-
lar but edges change.

In this paper, we are going to consider structures with layers apart from nodes 
and edges. In the most general multilayer network, a node in a specific layer can 
be linked to any node in any layer. In other words, the edges in a multilayer net-
work can be intralayer (the two nodes of the edge are in the same layer) and inter-
layer edges (which connects nodes between different layers). More precisely, a 
multilayer network is a triple M = (V ,E,L) , where V is the set of nodes, E the set 
of links between nodes, and L the set of layers. The set E is composed by triples 
(u, v, l), where u, v ∈ V  and l ∈ L.

Usually, the set of layers is composed by d elementary layers (also called 
aspects):

whereby the multilayer network can be defined as a quadruplet

where V is the set of nodes, VM ⊆ V × L1 × L2 ×⋯ × Ld , EM ⊆ VM × VM , and now 
the set of layers is defined by the Cartesian product of the elementary layers L�.

To measure the structural similarity between layers, we are going to use the so-
called Jaccard similarity:

and the Cosine similarity:

where nij = AikAkj is the set of interconnections between the nodes i and j, Aij the 
adjacency matrix of the edge ij, and ki the degree of the node i. Then

and

where 1 denotes maximum similarity and 0 no similarity.

L = {L�}
d
�=1

M = (VM ,EM ,V ,L)

(11)Jij =

∑
k nij

ki + kj − nij

(12)Cij =

∑
k nij

√
kikj

0 ≤ Jij ≤ 1

0 ≤ Cij ≤ 1,
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3.1.3 � Estimation and computation

Following Hunter et al. (2008), we estimate the model by employing pseudo-like-
lihood methods in R, as the normalizing constant of Equation (4) is difficult and 
costly to estimate by using maximum likelihood methods. Hunter et  al. (2008) 
use a local substitute approach to the estimation of the full likelihood function. 
This is called pseudo-likelihood estimation which mirrors the likelihood of a 
logistic regression. Furthermore, assuming that the elements of Y are independ-
ent, the maximum pseudo-likelihood estimator (MPLE) of an ERGM maximizes 
the pseudo-likelihood by employing logistic regression as a computational mech-
anism (Hunter et al. 2008).

3.2 � Data and variables

This paper employs datasets from three sources. First, the Federal Reserve Eco-
nomic Data from the Federal Reserve Bank of St. Louis (FRED), for the node 
covariates of Japan and the United States. Second, the Consolidated Banking 
Data from the European Central Bank (ECB stati​stics), for the node covariates 
of the rest of the countries: Austria, Belgium, Denmark, Finland, France, Ger-
many, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Sweden and the 
United Kingdom. Third, the edge relational data comes from the Consolidated 
Banking Statistics of the Bank of International Settlements (BIS-​CBS).

The data consider financial claims of all maturities between the financial sec-
tors of the aforementioned countries for 2017, in all currencies. The relative 
weight of each country is then calculated for normalization purposes. These data 
generate a directional network. Taking advantage of the division of these data 
by the BIS in four categories (banks, non-banks monetary and financial institu-
tions, official sector and private sector), as reported in Table 11, we can extend 
our analysis to a multilayer setting.

The node covariates are five-bank asset concentration, which is the proportion 
of assets of the five largest financial institutions related to the total assets of the 
financial system of a country, the value of the assets of the financial system, the 
number of monetary and financial institutions of a country in relative terms, and 
the debt of a country as a share of its GDP. All the data corresponds to 2017. In 
order to standardize the currency, the data from Japan and the United States have 
been converted into euros prior to the variable transformation.

The BIS provides data about every financial relationship of each country, that 
is, of a complete network. Because complete networks are uninformative to the 
ERGM, we consider cutoffs at a relative weight to obtain the most important 
financial relationships among countries. These cutoffs are different for the mono-
plex network and for each layer of the multilayer network, because the volume of 
financial claims varies, specially from the monoplex to the multiplex setting. The 
cutoffs values and edges are listed in Table 1.

https://fredhelp.stlouisfed.org
https://sdw.ecb.europa.eu/browse.do?node=9691533
https://www.bis.org/statistics/consstats.htm
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3.3 � Hypotheses

Due to the different theories and evidence about financial concentration presented 
in Subsection 2.2, we postulate the following hypothesis to be tested in the network 
models.

Hypothesis 1  (H1) Financial concentration increases financial interconnections.

Hypothesis 1 comes naturally from the ERGM estimation of an international 
financial network. If financial concentration is a positive factor for creating new 
edges of a relevant magnitude in our model, then it is immediate to infer that it is a 
relevant variable which increases financial interconnectedness. This is the same as 
accepting that a more concentrated financial system is more connected.

Hypothesis 2  (H2) Financial concentration decreases financial interconnections.

Hypothesis 2 is the alternative to hypothesis 1. As opposed to the reasoning 
behind hypothesis 1, if financial concentration is a negative factor for creating new 
edges in the model, then it is a relevant variable which decreases financial intercon-
nectedness. This is the same as accepting that a more concentrated financial system 
is less connected, obviously rejecting that a more concentrated financial system is 
more connected.

We are going to use mathematics to state the third hypothesis in an unambigu-
ous way. Consider a layer ( Li ) in our international financial network (N) as a set 
of vertices (V), where each vertex represents a financial institution. Being the 
nature of the edges equal but the potential number interconnections ( Ej ) between 
institutions differing across layers, then our international financial network has 
four layers {L1, L2, L3, L4} = {Li ∶ Li ⊆ N} with different edges combinations 
{E1,E2,E3,E4} = {Ej ∶ Ej ⊂ Li } such that {Li(V ,Ej) ⊆ L ⊆ N} . Then, we can state 
hypothesis 3.

Hypothesis 3  (H3) Financial concentration shares its effects across layers.

Assume linearity, that is to say, if Y is connectiveness in our network N, X is 
financial concentration, and � is a linear parameter which connects both, then:

Table 1   Cutoff values for 
the monoplex and multiplex 
networks that feed the ERGM

Layer Cutoff Number of origi-
nal edges

After-cutoff

Monoplex 1 272 49
Banks 0.3 42 23
Non-bank MFI 0.1 42 23
Official sector 0.3 42 27
Private sector 0.1 42 23
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where i = 1, 2, 3, 4 corresponds to layers, so that Yi,Xi, 𝛽i ⊆ Li . Then we assume our 
hypothesis to be true if there exist statistically significant parameters in each layer of 
the ERGM so:

or, equivalently,

where � = �1, �2, �3, �4.

4 � Results

The formulas of the models estimated for the monoplex and multiplex networks of 
Tables 4, 6, 7, 8 and 9 are presented in Table 2 (monoplex network), and Table 3 
(multiplex network). Among all the combinations of the random variables, the mod-
els presented in Tables 2 and 3 are the ones for which the MCMC algorithm con-
verges to a result.

4.1 � Monoplex network

The ERGM estimates for the monoplex network (Fig. 2) are presented in Table 4. 
Both the AIC and BIC criteria select model 5 as the best fit. Model 5 has the in-
degree geometrically weighted coefficient, the mutual coefficient, and the edges 

(13)Yi = �iXi

(14)for every Li ∈ N, 𝛽 > 0, 𝛽q ≈ 𝛽k, q ≠ k

(15)for every Li ∈ N, 𝛽 < 0, 𝛽q ≈ 𝛽k, q ≠ k

Fig. 2   International network of financial claims. The node size indicates the relative magnitude of finan-
cial concentration in the country. The edge size measures the directional volume of financial claims 
exchanged between two countries
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coefficient as statistically significant parameters. The geometrically weighted in-
degree coefficient shows that the network is prone to have a lower quantity of low-
degree and high-degree nodes, this is, less clustering in comparison with a random 
network. The mutual coefficient points out that the number of reciprocated links 
is higher in comparison with a random network. The edges coefficient controls for 
the density of the network. The remaining coefficient, the absolute difference of 

Table 2   List of all the models 
estimated in the monoplex 
network of Table 4

The random variables are Y = logit[P(Gij = 1] , C = Concentration , 
A = Assets and M = MFIs . iX and oX indicate in-degree and out-
degree variants of the variable, respectively. Additionally, all the 
models incorporate the control variables geometrically weighted out 
and in degree, mutual and edges, which control for, respectively, the 
degree, the reciprocity, and the density of the network

Model Equation

1 Y = �
1
C
i

2 Y = �
1
C
i
+ �

2
A
i
+ �

3
M

i
+ �

4
D

i

3 Y = �
5
ΔiC

i
+ �

6
ΔoC

i

4 Y = �
5
ΔiC

i
+ �

6
ΔoC

i
+ �

7
ΔiM

i
+ �

8
ΔoM

i
+ �

9
ΔiA

i

      + �
10
ΔoA

i
+ �

11
ΔiD

i
+ �

12
ΔoD

i

 5 Y = �
13
ΔC

i

6 Y = �
13
ΔC

i
+ �

14
ΔA

i
+ �

15
ΔD

i
+ �

16
ΔM

i

Table 3   List of all the models 
estimated in the multiplex 
networks of Tables 6, 7, 8 and 9.

The random variables are Y = logit[P(Gij = 1] , C = Concentration , 
A = Assets and M = MFIs . iX and oX indicate in-degree and out-
degree variants of the variable, respectively. Additionally, all the 
models incorporate the control variables geometrically weighted out 
and in degree, mutual and edges, which control for, respectively, the 
degree, the reciprocity, and the density of the network.. The variants 
in the layer of banks obey to the incapability of the MCMC algo-
rithm to converge in the respective models

Model Equation

1 Y = �
1
C
i

2 Y = �
1
C
i
+ �

2
A
i

3 Y = �
1
C
i
+ �

3
M

i

4 Y = �
1
C
i
+ �

2
A
i
+ �

3
M

i

5 Y = �
5
ΔC

i

6 Y = �
5
ΔC

i
+ �

6
ΔA

i
+ �

7
ΔM

i

7 Y = �
5
ΔC

i
+ �

6
ΔA

i
+ �

7
ΔM

i
+ �

8
ΔD

i

8 Y = �
9
iC

i
+ �

10
oC

i

9 Y = �
9
iC

i
+ �

10
oC

i
+ �

11
iM

i
+ �

12
oM

i
+ �

13
iA

i
+ �

14
oA

i

Banks layer:
6 Y = �

5
ΔC

i
+ �

6
ΔA

i

7 Y = �
5
ΔC

i
+ �

6
ΔA

i
+ �

7
ΔM

i

9 Y = �
9
iC

i
+ �

10
oC

i
+ �

11
iM

i
+ �

12
oM

i
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Table 4   ERGM estimates for the monoplex network and the model variants of Table 2

∗∗∗p < 0.01 ; ∗∗p < 0.05;∗p < 0.1

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

gwodeg.fixed.0.5 1.95 2.01 1.96 2.34 2.12 2.01
(1.93) (2.09) (2.05) (2.20) (1.95) (1.92)

gwideg.fixed.0.5 −2.34∗∗∗ −2.17∗∗∗ −2.37∗∗∗ −2.15∗∗∗ −2.28∗∗∗ −2.25∗∗∗

(0.69) (0.73) (0.71) (0.77) (0.72) (0.69)
mutual 1.41∗∗∗ 1.35∗∗ 1.41∗∗∗ 1.46∗∗∗ 1.40∗∗∗ 1.37∗∗∗

(0.52) (0.53) (0.52) (0.55) (0.54) (0.53)
nodecov.Concentration −0.00 −0.00

(0.00) (0.01)
edges −1.23∗ −0.62 −1.14∗ −0.86 −1.84∗∗∗ −1.67∗∗∗

(0.63) (0.86) (0.65) (0.97) (0.42) (0.46)
nodecov.Assets −0.01

(0.03)
nodecov.Debt −0.00

(0.00)
nodecov.mfi −0.01

(0.04)
nodeicov.Concentration −0.00 −0.01

(0.01) (0.01)
nodeocov.Concentration −0.01 0.00

(0.01) (0.01)
nodeicov.Assets −0.01

(0.04)
nodeocov.Assets −0.02

(0.06)
nodeicov.Debt −0.00

(0.00)
nodeocov.Debt −0.00

(0.00)
nodeicov.mfi −0.05

(0.05)
nodeocov.mfi 0.07

(0.08)
absdiff.Concentration 0.01 0.01

(0.01) (0.01)
absdiff.Assets 0.01

(0.03)
absdiff.Debt −0.00

(0.00)
absdiff.mfi −0.01

(0.04)
AIC 235.63 239.55 237.42 246.16 233.87 237.93
BIC 253.04 267.40 258.31 287.93 251.27 265.77
Log Likelihood −112.82 −111.78 −112.71 −111.08 −111.93 −110.96
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financial concentration, is not statistically significant. The coefficients for the ran-
dom variable concentration, although small and not statistically significant, are neg-
ative in the rest of the models too, reflecting a negative impact of concentration over 
the generation of new edges in the network. Interestingly enough, the coefficients 
for the absolute difference of concentration in models 5 and 6 are both positive and 
of higher magnitude than ones of the variable in levels; however, they are neither 
statistically significant.

4.2 � Multiplex network

We now move on to the multiplex network, in which all the nodes are the same 
but the edges vary depending on the layer, this is, the financial sector considered. 
Table  5 presents the Jaccard and Cosine similarity indices of the different layers 
of the network, while Sects. 4.2.1, 4.2.2, 4.2.3 and 4.2.4 present the results of the 
analyses.

4.2.1 � Layer 1: Banks

The first layer, the layer of banks, is the one of Figure 3. The biggest interconnec-
tions are the ones between France and the UK, and Germany and the UK. There 
are also substantial interconnections between France and Italy, France and Spain, 
France and the US, and Germany and the US. As the size of the nodes shows, the 
biggest interconnections in the layer of banks are between countries of relatively low 
financial concentration levels.

Next, we report the ERGM results for the layer of banks in table 6. Up to 9 mod-
els were estimated, depending on the combinations that are feasible to the conver-
gence of the MCMC algorithm. All the differences between the number of param-
eters and the models between the monoplex and multiplex setup, and across layers, 
obey to this computational aspect.

According to the AIC and BIC criteria, the best model is Model 5, which incor-
porates the coefficients of the variables geometrically weighted out- and in-degree, 
mutual, edges, and the absolute difference of financial concentration. Only the 
coefficient of the geometrically weighted out-degree and the absolute difference of 
financial concentration are statistically significant, with p-values less than 0.05 and 
0.1, respectively.

Table 5   Layer similarity 
analysis. The numbers behind 
(above) the diagonal are the 
Jaccard (Cosine) similarity 
values

Banks Nonbanks MFI Official Private

Banks − 0.468 0.486 0.560
Nonbanks MFI 0.833 − 0.240 0.234
Official 0.689 0.840 − 0.673
Private 0.762 0.840 0.689 −
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The geometrically weighted out-degree negative coefficient 𝛽 = −3.25 means that 
on-going clustering structures are less probable in the banks layer than in a random 
network. Although of different magnitudes, this coefficient is negative and statisti-
cally significant in any model.

Regarding financial concentration, the coefficient of the absolute difference of 
Model 5 shows a negative statistically significant effect over the formation of edges 
( 𝛽 = −0.04 ). Therefore, financial concentration is associated with a Î = 3.92% 
reduction in the generation of new edges in the layer of banks, and this effect is 
statistically significant. This effect is robust to different model specifications, as 
the coefficients of models 6 and 7 are also negative and statistically significant 
( 𝛽 = −0.05 and 𝛽 = −0.06 , respectively). Moreover, the reduction in connected-
ness increases in those two specifications ( ̂I = 4.87% and Î = 5.82% ). Furthermore, 
the only other statistical significant co-variate is concentration in its levels form in 
Model 2 ( 𝛽 = −0.03 ), which further increases the robustness of these results.

Finally, the edges tend to be more reciprocated than in a random network in every 
model. However, only in models 1, 3, 4 and 8 these coefficients are statistically 
significant.

4.2.2 � Layer 2: Non‑bank financial and monetary institutions

The layer of non-bank monetary and financial institutions is presented in Fig. 4. At 
a first glance, the relative size of the volume of financial claims is smaller compared 
to Fig. 3. The only sizeable linkage is the one between France and the United States 
and vice-versa, followed by a link from Germany to the United States. The rest of 
links are not very big, which leads to conclude that the international transactions 
of the banking sector are still considerably higher in magnitude compared to other 
financial institutions.

The estimates for the layer of non-bank monetary and financial institutions is 
provided in Table 7. In this case, the AIC and BIC criteria diverge, as the Akaike 

Fig. 3   Layer 1: Links coun-
tries by their banks. Node size 
measures the country’s relative 
financial concentration and edge 
size measures the directional 
volume of financial claims 
between two countries
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Table 6   ERGM estimates for the layer of banks and the model variants of Table 3

∗∗∗p < 0.01 ; ∗∗p < 0.05 ; ∗p < 0.1

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

gwodeg.
fixed.0.5

−2.83∗ −2.84∗∗ −2.88∗ −2.86∗ −3.25∗∗ −3.31∗∗ −3.17∗∗ −3.06∗ −3.11∗

(1.53) (1.44) (1.55) (1.48) (1.48) (1.53) (1.59) (1.70) (1.77)
gwideg.

fixed.0.5
−0.09 −0.37 −0.05 −0.38 −0.39 −0.32 −0.63 0.21 0.11

(1.94) (1.97) (1.90) (2.10) (2.11) (1.79) (2.11) (2.20) (2.15)
mutual 2.18∗ 1.88 2.07∗ 1.93∗ 1.95 1.86 1.58 2.14∗ 2.21∗

(1.19) (1.18) (1.12) (1.14) (1.22) (1.24) (1.20) (1.11) (1.15)
nodecov.

Concen-
tration

−0.01 −0.03∗ −0.02 −0.03

(0.01) (0.02) (0.01) (0.02)
edges 1.17 3.77 1.95 3.56 1.04 1.07 1.35 1.29 1.68

(1.61) (2.70) (2.41) (3.04) (1.27) (1.22) (1.33) (1.58) (2.52)
nodecov.

Assets
−0.08 −0.08

(0.06) (0.06)
nodecov.mfi −0.03 0.01

(0.06) (0.07)
absdiff.

Concen-
tration

−0.04∗ −0.05∗∗ −0.06∗∗

(0.02) (0.02) (0.03)
absdiff.

Assets
0.02 −0.03

(0.05) (0.07)
absdiff.mfi 0.10

(0.08)
nodeicov.

Concen-
tration

−0.02 −0.01

(0.02) (0.03)
nodeocov.

Concen-
tration

−0.01 −0.02

(0.02) (0.02)
nodeicov.

mfi
0.03

(0.14)
nodeocov.

mfi
−0.06

(0.10)
AIC 55.52 55.87 57.46 57.35 52.44 54.12 54.06 57.83 61.14
BIC 64.21 66.29 67.89 69.51 61.13 64.54 66.23 68.25 75.05
Log Likeli-

hood
−22.76 −21.93 −22.73 −21.68 −21.22 −21.06 −20.03 −22.91 −22.57
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Information Criterion chooses Model 6, but the Bayesian Information Criterion 
chooses Model 1. This last model has the out-degree geometrically weighted 
and the edges coefficients as statistically significant control variables. Then, it 
has concentration as a co-variate, which is statistically significant at 0.05. In 
this model, an increase of financial concentration is related to an Î = −2.95% 
decrease in connectiveness.

In Model 6, the same controls, with the same signs, are statistically signifi-
cant. However, this model includes three co-variates in absolute differences, 
financial concentration, volume of assets of a financial system, and number of 
monetary and financial institutions of the system, but only the first and the third 
are statistically significant at 0.05 and 0.1, respectively. In this model the coef-
ficient for the absolute differences of concentration is 𝛽 = −0.08 and the coeffi-
cient for the absolute differences of MFI is 𝛽 = 0.25 . This means that an increase 
of financial concentration is associated with an Î = −7.68% reduction in con-
nectedness, and an increase in the number of monetary and financial institutions, 
with an increase of Î = 28.4% . These are the biggest impacts registered.

A horizontal analysis of the results leads to conclude that the out-degree geo-
metrically weighted control is negative and statistically relevant in any model 
but the seventh, so the ERGM is pointing out again that the degree of cluster-
ing is smaller than the one of a random network. Financial concentration has a 
negative coefficient of statistical relevance in three of the four models in which 
it appears. The edges control is significant in most models, as opposed to the 
previous model. Assets are associated with a powerful negative effect over con-
nectedness (Model 4: 𝛽 = −0.14 ( p ≤ 0.1)), specially over the number of in-
going linkages (Model 9: 𝛽 = −0.25 ( p ≤ 0.1)). Finally, the number of monetary 
institutions has the most powerful positive effect over connectedness (Model 5: 
𝛽 = 0.25 ( p ≤ 0.1 ) and Model 6: 𝛽 = 0.23 ( p ≤ 0.1)).

Fig. 4   Layer 2: Links countries 
by their non-bank MFI. Node 
size measures the country’s 
relative financial concentration 
and edge size measures the 
directional volume of financial 
claims between two countries
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Table 7   ERGM estimates for the layer of non-bank MFI and the model variants of Table 3

∗∗∗p < 0.01 ; ∗∗p < 0.05 ; ∗p < 0.1

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

gwodeg.
fixed.0.5

−2.81∗ −2.73∗ −2.71∗ −2.76∗ −3.13∗∗ −3.59∗∗ −2.87 −3.14∗ −4.39∗

(1.49) (1.65) (1.40) (1.56) (1.39) (1.72) (1.80) (1.75) (2.53)
gwideg.

fixed.0.5
−1.07 −0.85 −1.12 −1.08 −1.04 −1.88 −1.04 −0.60 0.52
(1.86) (2.16) (1.67) (2.17) (1.99) (1.93) (2.37) (2.48) (2.97)

mutual 0.63 0.33 0.72 0.28 0.91 0.07 −0.30 0.70 0.95
(1.03) (1.03) (1.03) (1.11) (1.03) (1.18) (1.34) (1.04) (1.34)

nodecov.
Concen-
tration

−0.03∗∗ −0.05∗∗ −0.03 −0.05∗

(0.01) (0.03) (0.02) (0.03)

edges 3.93∗∗ 8.03∗∗ 3.96 6.98∗ 1.63 2.84∗ 3.33∗ 3.82∗ 5.48
(1.94) (4.00) (2.77) (4.03) (1.17) (1.47) (1.85) (2.11) (4.22)

nodecov.
Assets

−0.12 −0.14∗

(0.08) (0.08)
nodecov.

mfi
−0.00 0.06
(0.08) (0.09)

absdiff.
Concen-
tration

−0.04∗ −0.08∗∗ −0.07∗

(0.02) (0.04) (0.04)

absdiff.
Assets

−0.13 −0.15

(0.08) (0.09)
absdiff.mfi 0.25∗ 0.23∗

(0.13) (0.13)
absdiff.

Debt
−0.01

(0.01)
nodeicov.

Concen-
tration

−0.03 −0.03

(0.02) (0.04)

nodeocov.
Concen-
tration

−0.02 −0.05

(0.02) (0.04)

nodeicov.
mfi

0.34
(0.22)

nodeocov.
mfi

−0.04

(0.13)
nodeicov.

Assets
−0.25∗

(0.15)
nodeocov.

Assets
−0.09

(0.11)
AIC 55.39 54.70 57.63 56.05 56.67 53.62 54.61 57.36 58.46
BIC 64.08 65.13 68.06 68.21 65.35 65.79 68.51 67.79 75.83
Log Likeli-

hood
−22.70 −21.35 −22.82 −21.02 −23.33 −19.81 −19.30 −22.68 −19.23
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4.2.3 � Layer 3: Official sector

Figure 5 provides graphical representation of the official sector layer which has, by 
far, the biggest financial interconnections of all layers. The most important links to 
be highlighted are the one from the United States to Germany (the biggest) and vice-
versa, the one from the United Kingdom to Germany, the one from France to the 
United States, the one from France to the United Kingdom, and the one from the 
United Kingdom to the United States and vice-versa. Overall, the sizes of these links 
are bigger than the size of the ones of the rest of layers, by indicating that finan-
cial claims between governments, central banks and international organizations are 
highly relevant.

The ERGM estimates for the layer of the official sector are shown in Table 8. This 
time, the AIC and BIC criteria converge to select Model 1 where only the param-
eters of the concentration and the edge control co-variates are statistically significant 
random variables. The value of the financial concentration parameter is 𝛽 = −0.05 
( p ≤ 0.05 ), which leads to an Î = 4.87% decrease in financial connectedness. Fur-
thermore, financial concentration is consistently significant in three out of the four 
models which include it (models 1, 2, and 3). Moreover, it is not the only variable 
of statistical significance in all models, but also the edges, the mutual and the geo-
metrically weighted out-degree controls.

4.2.4 � Layer 4: Private sector

The layer corresponding to the private sector is presented in Fig. 6. The size of the 
edges is much smaller than the layer of the official sector (Fig. 5). The biggest links 
are the ones from Germany to the United Kingdom and to the United States, from 
the United Kingdom to the United states, from Spain to the United Kingdom, from 
the United States to the United Kingdom, from Spain to the United States, from 
France to Italy, and from France to the United States.

Fig. 5   Layer 3: Links countries 
by their official sector. Node 
size measures the country’s 
relative financial concentration 
and edge size measures the 
directional volume of financial 
claims between two countries
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Table 8   ERGM estimates for the layer of the official sector and the model variants of Table 3

∗∗∗p < 0.01 ; ∗∗p < 0.05 ; ∗p < 0.1

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

gwodeg.
fixed.0.5

−2.85 −2.64 −2.59 −2.68 −4.72∗∗∗ −3.71∗∗ −2.96 −4.09∗ −3.74

(1.98) (2.21) (1.98) (2.26) (1.50) (1.77) (2.90) (2.24) (3.03)
gwideg.

fixed.0.5
9.50 10.76 8.98 11.19 8.09 8.24 11.65 23.82 24.35
(12.22) (12.75) (13.24) (13.57) (9.70) (9.68) (12.12) (25.46) (22.24)

mutual 1.06 1.04 1.17 1.10 2.18∗ 1.44 0.95 0.94 1.25
(1.41) (1.51) (1.44) (1.44) (1.21) (1.46) (1.56) (1.49) (1.53)

nodecov.
Concen-
tration

−0.05∗∗ −0.06∗ −0.05∗ −0.06

(0.02) (0.03) (0.03) (0.04)

edges 5.43∗ 6.85 6.51 6.84 0.11 0.14 1.09 6.36∗ 6.45
(3.24) (4.62) (4.40) (5.67) (1.38) (1.56) (1.75) (3.62) (5.45)

nodecov.
Assets

−0.05 −0.05

(0.09) (0.09)
nodecov.

mfi
−0.04 −0.00

(0.10) (0.11)
absdiff.

Concen-
tration

−0.02 −0.05 −0.05

(0.02) (0.03) (0.04)

absdiff.
Assets

0.01 −0.03

(0.07) (0.08)
absdiff.mfi 0.20 0.22

(0.14) (0.14)
absdiff.

Debt
−0.02

(0.02)
nodeicov.

Concen-
tration

−0.09 −0.06

(0.06) (0.06)

nodeocov.
Concen-
tration

−0.03 −0.06

(0.02) (0.05)

nodeicov.
mfi

0.15
(0.28)

nodeocov.
mfi

−0.07

(0.12)
nodeicov.

Assets
−0.01

(0.16)
nodeocov.

Assets
−0.08

(0.10)
AIC 44.67 45.92 46.52 48.20 51.69 50.00 50.13 45.50 52.00
BIC 53.36 56.35 56.94 60.36 60.38 62.16 64.03 55.93 69.37
Log Likeli-

hood
−17.33 −16.96 −17.26 −17.10 −20.84 −18.00 −17.06 −16.75 −16.00
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The results from the ERGM estimation for the private sector layer have been pre-
sented in Table 9. This time, both the AIC and BIC criteria converge to select Model 
2, which is the best model by far, specially according to the BIC criterion. In this 
model, the edges control, the concentration and the asset covariates are statistically 
significant at 0.05. The concentration coefficient is 𝛽 = −0.10 , with an associated 
impact of Î = −9.51% over the connectedness of the network, whilst the coefficient 
of the random variable assets is 𝛽 = −0.35 , which equals an associated impact of 
Î = −29.53% in connectedness in comparison with a random network.

Whilst the control for out-degree is not significant in Model 2, it is in the major-
ity of models. Similarly, the controls for edges and mutual roughly are in a half of 
models. Again, the variable concentration is significant in three out of four models, 
with a negative coefficient. The coefficient for the random variable assets is also 
negative and of a very relevant magnitude for the private sector, a result that is con-
sistent in every model in which it appears (models 2 and 4; 𝛽 = −0.35 (p ≤ 0.05) 
and 𝛽 = −0.34 (p ≤ 0.05) , respectively). The coefficient is even higher in the case 
of in-going links (Model 6: 𝛽 = −0.46 (p ≤ 0.1) ). Finally, in Model 6, the absolute 
difference of concentration is also negative and statistically significant, with a value 
𝛽 = −0.04 (p ≤ 0.1)).

4.3 � Analysis of the results

The comparison between Tables from 6, 7, 8 9 and Table 4 shows substantial dif-
ferences between the monoplex network and the multiplex network. The ERGM fit 
for the monoplex network has no statistically significant parameters and a bad AIC 
and BIC fit. However, when disaggregating the full picture into different layers con-
formed by different financial sectors, we find that the fit is four times better, and a lot 
of relevant factors are statistically significant.

As shown in Table 10, the main factor explaining financial interconnectedness in 
our international financial network is financial concentration, which is statistically 

Fig. 6   Layer 4: Links countries 
by their private sector. Node 
size measures the country’s 
relative financial concentration 
and edge size measures the 
directional volume of financial 
claims between two countries
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Table 9   ERGM estimates for the layer of the private sector and the model variants of Table 3

∗∗∗p < 0.01 ; ∗∗p < 0.05 ; ∗p < 0.1

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

gwodeg.
fixed.0.5

−3.15∗∗ −2.87 −3.13∗ −3.27∗ −3.52∗∗ −3.30∗∗ −2.96∗ −3.66∗∗ −4.16

(1.43) (1.75) (1.66) (1.90) (1.47) (1.56) (1.68) (1.72) (3.12)
gwideg.

fixed.0.5
−0.04 −0.77 −0.22 −0.87 0.05 0.05 −0.10 0.75 1.02
(1.96) (2.67) (2.41) (2.82) (1.72) (1.98) (2.41) (2.09) (4.04)

mutual 2.11∗ 0.45 1.85 0.50 2.11∗ 2.00∗ 1.69 2.06∗ 1.07
(1.17) (1.47) (1.26) (1.44) (1.15) (1.20) (1.22) (1.19) (1.67)

nodecov.
Concen-
tration

−0.02 −0.10∗∗ −0.03∗ −0.11∗∗

(0.01) (0.04) (0.02) (0.05)

edges 1.68 15.62∗∗ 4.17 17.35∗∗ 0.61 0.51 1.36 2.03 16.05∗∗

(1.70) (6.80) (2.94) (8.44) (1.04) (1.14) (1.31) (1.76) (8.16)
nodecov.

Assets
−0.35∗∗ −0.34∗∗

(0.14) (0.15)
nodecov.

mfi
−0.08 −0.05

(0.07) (0.10)
absdiff.

Concen-
tration

−0.03 −0.04∗ −0.02

(0.02) (0.02) (0.03)

absdiff.
Assets

−0.01 −0.04

(0.06) (0.07)
absdiff.mfi 0.05 0.00

(0.07) (0.07)
absdiff.

Debt
−0.02

(0.01)
nodeicov.

Concen-
tration

−0.03 −0.11

(0.03) (0.08)

nodeocov.
Concen-
tration

−0.01 −0.10

(0.02) (0.06)

nodeicov.
mfi

0.15
(0.20)

nodeocov.
mfi

−0.15

(0.14)
nodeicov.

Assets
−0.46∗

(0.26)
nodeocov.

Assets
−0.26

(0.18)
AIC 53.59 43.49 54.29 44.94 53.95 57.05 56.37 55.38 48.27
BIC 62.28 53.91 64.72 57.10 62.64 69.21 70.27 65.81 65.64
Log Likeli-

hood
−21.79 −15.74 −21.15 −15.47 −21.97 −21.52 −20.18 −21.69 −14.13
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Table 10   Summary of the statistically significant estimates and impacts of the layers of the multiplex 
financial network

Concentration Concentration(diff) Assets Assets(in) MFI(diff)

Layer 1: Banks
 Model 2 𝛽 = −0.03∗

Î = −2.95%

 Model 5 𝛽 = −0.04∗

Î = −3.92%

 Model 5 𝛽 = −0.05∗∗

Î = −4.88%

 Model 6 𝛽 = −0.06∗∗

Î = −5.82%

Layer 2: Non-bank MFI
 Model 1 𝛽 = −0.03∗∗

Î = −2.95%

 Model 2 𝛽 = −0.05∗∗

Î = −4.88%

 Model 4 𝛽 = −0.05∗ 𝛽 = −0.14∗∗

Î = −4.88% Î = −13%

 Model 5 𝛽 = −0.04∗

Î = −3.92%

 Model 6 𝛽 = −0.08∗∗ 𝛽 = 0.25∗∗

Î = −7.69% Î = 28.40%

 Model 7 𝛽 = −0.07∗ 𝛽 = 0.23∗

Î = −6.76% Î = 25.86%

 Model 9 𝛽 = −0.25∗

Î = 22.11%

Layer 3: Official sector
 Model 1 𝛽 = −0.05∗∗

Î = −4.88%

 Model 2 𝛽 = −0.06∗

Î = −5.82%

 Model 3 𝛽 = −0.05∗

Î = −4.88%

Layer 4: Private sector
 Model 2 𝛽 = −0.10∗∗

Î = −9.52%

 Model 3 𝛽 = −0.03∗ 𝛽 = −0.35∗∗

Î = −2.95% Î = −29.53%

 Model 4 𝛽 = −0.11∗∗ 𝛽 = −0.34∗∗

Î = −10.42% Î = −28.82%
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significant in all layers. In layer 2, financial concentration is significant in all the 
models in which it appears with the exception of one. Overall, the impact of finan-
cial concentration over the connectedness of the financial network is Ī = −5.60% , 
with an average coefficient of 𝛽 = −0.058 . When in absolute differences, the impact 
increases to Ī = −6.39% , with an average coefficient of 𝛽 = −0.066 . As a conse-
quence of these results, we fail to accept Hypothesis 1, and we accept Hypothesis 
2. Additionally, we find enough evidence to accept Hypothesis 3, as financial con-
centration has a negative impact on any model of the multiplex network in which 
it appears, its statistically significant in most of models, and has an economic and 
financial significant impact on the connections of our multiplex network.

Finally, we find that the volume of assets of a financial system, also has a nega-
tive effect on the quantity of its financial interconnections. This impact is even big-
ger in magnitude than the one of concentration (but it has less statistically signifi-
cant coefficients), with an average coefficient of 𝛽 = −0.345 , and an average effect 
of Ī = −29.18% . This effect is concentrated around in-going links (with a coefficient 
of 𝛽 = −0.355 and an impact Ī = −29.88% ). However, this effect appears only in the 
non-bank MFI layer and the private sector, therefore, in a smaller way than concen-
tration. Eventually, the number of monetary and financial institutions of a country 
has a relevant positive financial and statistical outcome on financial connectedness 
in the non-bank MFI layer. Here, increasing the number of MFI increases connect-
edness in Ī = 21.34% , with a coefficient of 𝛽 = 0.24.

Regarding layer similarity, we find a high degree of it. This is specially true for 
the Jaccard similarity index, and it is in concordance with other works of the litera-
ture of multiplex financial networks, such as the one of Aldasoro and Alves (2018) 
for maturities and types of European financial instruments. However, the values 
reported by Bargigli et  al. (2015) for the Italian interbank market and by Poledna 
et al. (2015) for the Mexican interbank system are lower.

Eventually, the degree distributions of the financial network are showed in Figs. 7 
and 8 in the Appendix. From Fig. 7 it is possible to see that the degrees from one 
to six accumulate a high probability, which descends drastically when consider-
ing a degree beyond six (for a degree of eight, the probability is around 0.3). When 
considering a degree of more than ten, the probability is very low. The in-degree 

Table 10   (continued)

Concentration Concentration(diff) Assets Assets(in) MFI(diff)

 Model 6 𝛽 = −0.04∗

Î = −3.92%

 Model 9 𝛽 = −0.46∗

Î = −36.87%

Average
𝛽 = −0.058 𝛽 = −0.066 𝛽 = −0.345 𝛽 = −0.355 𝛽 = 0.24

Ī = −5.60% Ī = −6.39% Ī = −29.18% Ī = −29.88% Ī = 21.34%

∗∗∗p < 0.01 ; ∗∗p < 0.05 ; ∗p < 0.1
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distribution reflected in Fig. 8 concentrates the probability around a degree of two, 
and decreases dramatically from there to reach a low probability of a degree beyond 
four (around 0.2). The probability remains stable until reaching a degree of ten, 
when the probability reaches zero. On the other hand, the probabilities of the out-
degree distribution are much more densely concentrated, as they are ranged between 
degrees one and six. Furthermore, the probability of having a degree of three or less 
is of 0.9, while in the case of the in-degree distribution, it is of 0.6. The in and out 
degree distributions behave quite differently.

4.4 � A note on financial concentration, asset accumulation 
and the interconnectedness of the financial system

Proceeding inductively, the results of the econometric analysis carried out in this 
paper can be interpreted as it follows.

When the financial institutions of a country concentrate a substantial share 
of assets in the system, the country tends to be less connected with the rest of the 
financial system at an international level. Thus, when in a financial market there 
are financial institutions which are in a competitive situation instead of having big 
entities which concentrate most of the assets around them, its financial institutions 
are more prone to connect with other agents in other countries and vice-versa. This 
mechanism is highly potentiated by asset accumulation.

Specifically, a country with a high quantity of assets connects much less with other 
agents in the international financial system, that is, it is more financially self-sufficient. 
Specifically, it tends to have less in-going linkages. That is, it exports financial claims, 
but it reduces its imports. This effect is specially relevant for the private sector.

A priory, one may think that from this it can be concluded that, as financial con-
centration and asset accumulation decrease the number of financial interconnections 
of the international financial system, it reduces the widespread potential of financial 
crises, and therefore, it decreases systemic risk. Although this reasoning is not com-
pletely false and supports the robust-yet-fragile argument, it is not completely true. 
To understand the full effects of financial concentration and asset accumulation on 
systemic risk, other factors such as too-big-to-fail risks must be considered.

Finally, the more monetary and financial institutions of a country, the more the 
interconnections with the financial system. As financial institutions go to interna-
tional money markets, primary and secondary financial markets, foreign exchange 
markets, capital markets and so on in order to conduct their financial operations, 
when the number of financial institutions of a country increases, so do its chances to 
be connected with the financial system at an international level.

5 � Conclusion and discussion

In this study, we have proposed the usage of the Exponential Random Graph 
Model to inquiry some of the characteristics that influence the level of intercon-
nection between agents in a financial network. This approach has been proposed 
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by van der Pol (2019) in economic networks; however, it is new to the literature 
of financial networks. We believe that the ERGM is a generalizable methodol-
ogy to inquire the determinants of new interconnections in financial networks. 
As interconnectedness is one of the key drivers of systemic risk, (Gai et al. 2011; 
Battiston et  al. 2012; Acemoglu et  al. 2015; Roukny et  al. 2018) knowing its 
determinant factors is essential for researchers, practitioners and policy-makers 
involved in finance, and particularly in financial stability.

We have applied the model to a international country-wise financial network 
connecting the countries by their financial claims, at a monoplex and multiplex 
level. We have mainly centered our study over the effects of financial concen-
tration on connectiveness and systemic risk, due to a current wave of fusions 
between financial institutions, specially Europe (see Figure 1). Additionally, we 
study the impact of asset accumulation, the number of monetary and financial 
institutions, and the number of public debt of a country on the degree of intercon-
nection of our financial network. Our main conclusions can be summarized as it 
follows: 

1.	 In concordance with the literature (Poledna et al. 2015; Battiston and Martinez-
Jaramillo 2018; Aldasoro and Alves 2018), we have found that the results of the 
monoplex network differ substantially from the multiplex network. However, the 
layers of the multiplex network are highly correlated as in Aldasoro and Alves 
(2018), and the estimates are robust to layers. Furthermore, the effects of the vari-
ables, when present in various layers, are always of the same sign, and centered 
around the same magnitude.

2.	 Financial concentration decreases the number of interconnections in the financial 
network. Overall, an increase in financial concentration causes a reduction of the 
−5.60% in the edge generation process of new interconnections.

3.	 Asset accumulation highly decreases the number of interconnections in the finan-
cial network. On average, this effect is of the −29.18% , but it increases to the 
−29.88% in the case of in-going connections, and it is specially relevant for the 
private sector of the financial system (see Table reftab:layeragents).

4.	 The number of monetary and financial institutions of a country increases, overall, 
in a 21.34% the generation of new connections. This effect affects monetary and 
financial institutions which are not banks.

Smaga (2014); Cifuentes et al. (2003) argue that, as the financial system becomes 
more concentrated, systemic risk increases. Our model suggests that this increase 
of systemic risk may be due to correlated or commonly held assets (Barucca et al. 
2021) or too-big-to-fail risks (Haldane and May 2011), not due to connectedness.

Although our model provides important results about the impact of financial 
concentration (and other variables) on the generation of new connections in a 
financial network, it is important to distinguish it from the total effect of financial 
concentration and systemic risk, specially for policy design and implementation. 
When talking about systemic risk, other factors such as too-big-to-fail risks must 
be taken into consideration. Therefore, it is not directly arguable that financial 
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concentration reduces systemic risk overall. Furthermore, luckily the understand-
ing of the effects of financial concentration on interconnectedness are going to be 
contrasted, revised and augmented in further studies related to the topic.

Future research can be done in estimating the rest of the factors of the concen-
tration-systemic risk binomial, specially in a dynamic setting. A systematical report 
of the probability distributions of a wide number of financial networks to feed 
numerical simulations models is an important matter, due to the variety of them that 
may exist according to the results of this and other researches. Finally, we propose 
employing the ERGM as a methodology to uncover new relationships in financial 
networks.

Appendix

See Table 11, Figs. 7, 8, 9 and 10

Table 11   Agents in each layer of the multiplex network

Layer Agents

Banking sector Commercial banks, universal banks, savings banks, post banks, 
giro institutions, agricultural credit banks, cooperative credit 
banks and credit unions

Nonbank monetary and financial 
institutions

Special purpose vehicles, hedge funds, securities brokers, money 
market funds, pension funds, insurance companies, financial 
leasing corporations, CCPs, unit trusts, other financial auxilia-
ries and other captive financial institutions, development banks 
and export credit agencies

Official sector General government, central banks and international organisations
Private sector Non-financial corporations and households
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Fig. 7   Degree distribution of the monoplex network versus Poisson CDFs of different � values

Fig. 8   In and out degree distributions of the monoplex network versus Poisson CDFs of different � values
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Fig. 9   Goodness of fit of the banks and non-banks MFI best models
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Fig. 10   Goodness of fit of the official and private sector best models
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