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Abstract
In this paper, we provide an alternative trend (time)-dependent risk measure to Rut-
tiens’ accrued returns variability (Ruttiens in Comput Econ 41:407–424, 2013). We 
propose to adjust the calculation procedure to achieve an alternative risk measure. 
Our modification eliminates static mean component and it is based on the deviation 
of squared dispersions, which reflects the trend (time factor) precisely. Moreover, we 
also present a new perspective on dependency measures and we apply a PCA to a 
new correlation matrix in order to determine a parametric and nonparametric return 
approximation. In addition, the two-phase portfolio selection strategy is considered, 
where the mean–variance portfolio selection strategies represent the first optimiza-
tion. The second one is the minimization of deviations from their trend leading to 
identical mean and final wealth. Finally, an empirical analysis verify the property 
and benefit of portfolio selection strategies based on these trend-dependent meas-
ures. In particular, the ex-post results show that applying the modified measure 
allows us to reduce the risk with respect to the trend of several portfolio strategies.
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1  Introduction

In a portfolio optimization theory, a rationally minded investor focuses on maxi-
mizing potential profit with respect to possible portfolio losses (risk incurred). 
In general, the question of how to adequately estimate and evaluate the risk of 
a large-scale portfolio or a single asset remains an important problem in finan-
cial risk management (Hallerbach and Spronk 2002). In the existing literature, 
return time series are generally identified as specifically distributed random vari-
ables with fat tails and higher peaks (Fama 1965; Mandelbrot 1963; Ortobelli 
et al. 2017). Decades ago, Mandelbrot (1963) analysed an empirical distribution 
of equity returns, proved that the assumption of normality made in the then exist-
ing financial theories (e.g. Markowitz 1952; Tobin 1958) was a misconception, 
and explained the distribution of returns by a stable distribution. Recently, this 
finding was pursued by Rachev and Mittnik (2000), Rachev et  al. (2008), and 
Ortobelli and Tichý (2015).

Since the beginning of the modern portfolio theory presented by Markowitz, 
portfolio selection has depended on a mean and a risk represented by the variance 
of the historical joint distribution of all asset returns (Markowitz 1952). However, 
the variance examines and penalizes both-side deviations and so it does not corre-
spond to rational thinking about financial exposure. In the measurement of invest-
ment risk, it is more relevant to use semivariance or semideviation, which takes 
into account only downside deviations (losses) (Markowitz 1959). Even during 
the last dozen years, numerous variants of portfolio risk measures have been pro-
posed in the literature (Artzner et al. 1999; Rockafellar and Uryasev 2002; Szegö 
2002; Rachev et al. 2008).

A specific group of risk measures evaluates possible losses based on the quan-
tiles of the return distribution, such as Value-at-Risk (VaR) or Conditional Value-
at-Risk (CVaR) (Duffie and Pan 1997; Altman et  al. 1998; Jorion 2000; Rock-
afellar and Uryasev 2002). Furthermore, the coherent risk measures presented 
in Artzner et  al. (1999) and their subsequent adjustments (Delbaen et  al. 1998; 
Miller and Ruszczyński 2008, and references therein) were designed to detect the 
amount of capital requirement by expressing the riskiness of the financial port-
folio numerically. The above-mentioned risk measurement approaches are estab-
lished on the basis of historical returns, which essentially eliminates any time 
impact.

Therefore, a significant problem related to these risk measures is the incorpora-
tion of the time factor, which plays an important role in the financial area. In this 
context, Ruttiens (2013) proved that for the statistical measures used on resorted 
historical data, the time factor is not negligible, and proposed alternative dynamic 
risk measures. Recently, Ortobelli et al. (2017) provided an empirical application 
of such a time-dependent risk measure in the portfolio selection framework. Even 
though Ruttiens provides a suitable time-compromising approach to measure risk, 
we modify its original formulation into the trend analysis framework.

The major contribution of this paper is to provide a time-dependent risk (dis-
persion) measure which is an alternative to the “accrued returns variability” 
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(ARV) introduced by Ruttiens (see Ruttiens 2013). Moreover, we enhance the 
existing literature focused on portfolio theory and trend-dependent risk meas-
ures (Markowitz 1952; Rockafellar and Uryasev 2002; Szegö 2002; Rachev et al. 
2008; Ortobelli et al. 2019). In the original work of Ruttiens, the ARV is calcu-
lated as the standard deviation of spreads between cumulative returns and a trend 
risk free variation of these returns at each time leading to the same final cumula-
tive returns (or the final value of a portfolio). Rather, the definition of the non-
volatile linear alternative formulation could correspond to the analysis of trend 
dispersion. The mathematical formulation of the presented dynamic risk measure 
can be more precise when we consider the mean of squared spreads of cumulative 
return series with respect to the non-volatile benchmark. Therefore, our “modi-
fied accrued returns variability” (modARV) is more accurate in the portfolio opti-
mization framework while minimizing distortion with respect to the predefined 
zero-risk linear trend. Additionally, we define dependency measures, such as 
covariance and correlation, derived from the proposed modifications that can be 
used in the principal component analysis (PCA) framework.

Furthermore, we apply a newly proposed trend–risk measures and related depend-
ency matrices in various mean–variance portfolio selection strategies to demonstrate 
their properties in the portfolio theory. In particular, to evaluate the effect of trend-
dependent risk measures, we compare the mean–variance optimization strategy with 
a compounded double optimization strategy. This double optimization strategy con-
sists of two steps. In the first step, we fit optimal portfolios of the mean–variance 
efficient frontier. In the second step, we determine the minimum modified Ruttiens 
risk measure fixing the expected mean and the final wealth of the optimal mean–var-
iance portfolios in order to minimize the deviations with respect to the trend. To 
reduce the dimensionality of the portfolio, we use parametric and nonparametric 
returns approximation techniques with PCA applied to linear or trend-dependent 
correlation matrices (Ruppert and Wand 1994; Ortobelli et al. 2019; Kouaissah and 
Hocine 2021). According to this empirical analysis, the newly proposed approach 
leads to the mitigation of shortcomings and improves the ex-post portfolio statistics 
compared to the mean–variance scenarios.

This paper is structured as follows. In Sect.  2, we discuss the trend–risk and 
trend-dependency measures based on ARV. In Sect.  3, we discuss parametric and 
nonparametric return approximation techniques based on the PCA. Section 4 pre-
sents the empirical analysis. Conclusions are summarized in Sect. 5.

2 � Theoretical aspects of trend–risk measures

The purpose of this section is to discuss the trend–risk measure called “accrued 
returns variability” (ARV) presented by Ruttiens and to provide our comprehen-
sive modification that leads to a more precise and accurate computation in the 
portfolio optimization process.1

1  We also refer to the accrued returns variability as trend-dependent risk measure, time-dependent risk 
measure, or dynamic risk measure.
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First, let us begin with an example that helps to understand the main reason 
why measuring the risk using cumulative return series alongside the classical 
statistics of returns (variance, standard deviation, or semi-deviation). Basically, 
classical statistics measure the one-sided or two-sided risk associated with each 
return series as the mean of the deviations from the average. An important issue 
in financial time series arises from considering static types of statistics in the 
computation to determine the individual deviations with the time-dependent vari-
able. Due to the constancy of the mean value over time, alternative penalty meth-
ods have been proposed to emphasize the time dependence of the returns (Fas-
trich et al. 2015).

To illustrate the idea of a time-dependent (trend-dependent) risk measure, con-
sider two identical portfolio return series, but ordered differently. Both series of 
returns lead to the same final cumulative value as captured in Fig. 1. The com-
monly analysed statistics, e.g. mean, variance, standard deviation, skewness, and 
kurtosis, are identical for both series. However, from the investor’s perspective, 
the ways to obtain the final cumulative return are not equal. The cumulative return 
of portfolio2 looks more volatile. Rationally, we should compare the cumulative 
returns with the equally accrued return leading to the same cumulative return, 
which incorporates the impact of time. The non-volatile alternative investment 
(zero-risk linear trend) can also be seen as a benchmark.

It is apparent that Ruttiens defined ARV as the standard deviation of the posi-
tive and negative distances between the cumulative returns at a specific time and 
the analogous ones with a zero volatility linear trend.

Fig. 1   Evolution of cumulative returns of two portfolios compared to the linear trend line



2051

1 3

Mean–variance vs trend–risk portfolio selection﻿	

Based on this concept, let us assume the portfolio returns are x′r , where 
the vector of portfolio weights is denoted by x = [x1,… , xz] and the vector of 
returns is r = [r1, r2,… , rz] with xi , respectively, ri , the weight and return of the 
ith asset for i = 1, 2,… , z . Suppose that we have T observations of the portfo-
lio returns. Then we denote the tth observation of the portfolio by x�r(t) . Assume 
the cumulative portfolio return is cx′r . Then its tth observation is given by 
cx�r,t = cx�r,t−1(1 + x�r(t)) , for t = 1,… , T  . At the same time, the tth observation of 
the equally accrued return ex′r is ex�r,t = cx�r,0 +

t

T
(cx�r,T − cx�r,0) and cx′r,0 represents 

the initial investment. Recall that the slope of the linear line depends on the origi-
nal series of the returns and may have an increasing or a decreasing tendency. In 
addition, if at least one value in the original series is changed, the linear trend 
changes as well. Furthermore, the mean of the differences mx�r = E(cx�r − ex�r) is 
approximated by its empirical mean 1

T

∑T

t=1
(cx�r,t − ex�r,t) . According to Ruttiens 

(2013), ARV(x�r) is the standard deviation of cx�r − ex�r and is approximated by its 
empirical standard deviation:

Observe that the ARV is a dynamic measure that is sensitive to the order of the 
return observations over time. Thus, the ARV measure provides better perspectives 
for measuring the risk of portfolios of financial series than do the classical static 
risk measures (such as the variance). Clearly, in portfolio theory, a rational investor 
generally prefers to minimize the so called trend risk, which is formally defined as 
follows.

Definition 1  We call trend risk the variability around a defined trend.

The basic idea of Ruttiens’ ARV measure is to control the trend risk while 
maintaining the cumulative returns close to the desired trend throughout the 
investment period. Unfortunately, Ruttiens’ ARV may lead to an inaccurate valu-
ation of the trend risk, because ARV measures the distance between the cumula-
tive returns and the trend line ex′r summed with the average of the deviations mx′r , 
as illustrated in Fig. 2.

To mitigate this drawback, we present a modified risk measurement with a refine-
ment of the computation and greater usefulness in the portfolio optimization frame-
work. Improving on Ruttiens (2013), we suggest using the second moment of the 
deviations yx�r = cx�r − ex�r , instead of its standard deviation. Thus, we define a 
modification of the original ARV measure given by ARVmod(x

�r) = E(y2
x�r
) , which is 

approximated by the empirical second moment of the deviations:

(1)ARV(x�r) ≅

√

√

√

√
1

T

T
∑

t=1

[(cx�r,t − ex�r,t) − mx�r]
2.

(2)ARVmod(x
�r) ≅

1

T

T
∑

t=1

y2
x�r,t

,
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where ARVmod(x
�r) ≥ 0 similarly to ARV(x�r) . It is worth noting that these two 

trend-dependent measures are highly correlated.

Proposition 1  When ARVmod equals zero, then the cumulative volatility equals the 
zero volatility trend line (that is, ARVmod(x

�r) = 0 ⇔ cx�r = ex�r ), which is required 
for the elimination of the volatility around the trend line. This is in contrast to the 
original formulation of Ruttiens, for which ARV equals zero implies the cumula-
tive returns essentially equal the zero volatility trend line plus the average of the 
deviations (that is, ARV(x�r) = 0 if and only if cx�r − ex�r = E(yx�r) , where generally 
E(yx�r) ≠ 0).

Remark 1  Observe that the expected deviation constant function is different from the 
linear trend function or the equally accrued return ex′r in Ruttiens’ work, resulting in 
an inaccuracy in the computation. Thus, when we minimize ARVmod(x

�r) = E(y2
x�r
) , 

the cumulative return portfolio tends to the zero volatility trend line (the equally 
accrued return ex′r is fixed as an optimal wealth path and, therefore, cx′r → ex′r ). 
In contrast, considering the minimization of ARV causes a shift of the optimal 
path by the value of the mean deviation mx′r , which can lead to a distortion, since 
cx�r → (ex�r + mx�r) . This situation is also presented in Fig. 2.

Ruttiens’ ARV still offers a usable alternative to measuring risk based on the 
transformation of the original series to the spread series. Recall that our modifi-
cation is concentrated on the elimination of trend deviations and mitigating the 

Fig. 2   Impact of ARV and ARV
mod

 on the portfolio optimization task
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imperfection mentioned in the computation (optimization) framework. Due to the 
modification presented, the results of a decision-making process that includes ARV 
or ARVmod are not considerably different but, within the theoretical concept exam-
ined, more accurate. This measure can also be assigned to the category of trend-
deviation measures. In general, we work with the linear trend, though in the finan-
cial sphere either an exponential or non-linear trend that replicates a specified index 
could be desirable.

2.1 � Dependency measures

As one of the objectives of this study is to evaluate the effect in the classical 
Markowitz mean–variance portfolio analysis, the portfolio risk is logically measured 
through a variance (Markowitz 1952). To calculate this, a dependency structure, 
expressed by a variance–covariance matrix Σ = [�i,j] , between all combinations of 
assets, is essential. Mathematically, the covariance between the ith and the jth return 
is given by

where �i is the mean of the ith returns. Of course, variance and covariance are static 
types of measures.

Therefore, to evaluate a time dependent measure, we can consider the deviations 
between the cumulative returns and the zero volatile trend line. In particular, the 
corresponding Ruttiens covariance structure of the spread series of (ci − ei) associ-
ated with the ith asset return is formulated as follows:

where mi is the expected value of (ci − ei) . According to Ruttiens (2013), �Rutt
i,j

 is 
generally higher than the static covariance �i,j.

Similarly to the Ruttiens covariance in (4), we propose the modified covariance 
�mod Rutt
i,j

 between the ith and the jth return series based on the spreads. Again, we 
eliminate the mean component mi in the calculation so as to take into account only 
the trend. From the previous assumption, we obtain �mod Rutt

i,j
 as follows:

where the properties of this dependency measure are similar to those of �Rutt
i,j

.
According to this concept, the path-dependent risk measure of the portfolio 

ARV(x�r) = x�ΣRuttx and ARV
mod

(x�r) = x�Σmod Ruttx , where ΣRutt = [�Rutt
i,j

] and 
Σmod Rutt = [�mod Rutt

i,j
] . To express the dependency structure, linear correlation coeffi-

cients, such as those of Pearson or Kendall, are widely used in financial modelling. 
Many types of correlation measures assess the dependency structure between finan-
cial variables, but only some of them are appropriate for reducing the dimensionality 
with a PCA type of composition or to evaluate the dispersion statistic of portfolios 
(Ortobelli and Tichý 2015).

(3)�i,j = E[(ri,t − �i)(rj,t − �j)],

(4)�Rutt
i,j

= E[(ci − ei) − mi][(cj − ej) − mj],

(5)�mod Rutt
i,j

= E[(ci − ei)(cj − ej)],
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The general one is the linear Pearson correlation (PC) formulated as

where �ri =
√

E(ri − �i)
2.

An alternative correlation measure can be used when we assume that the returns 
are in the domain of attraction of an �-stable sub-Gaussian distributed S�(� , �,�) 
random variable ( Rachev and Mittnik 2000), characterized by its index of stability 
� ∈ (0, 2] , its asymmetry parameter � ∈ [−1, 1] , its dispersion parameter 𝛾 > 0 , and 
its location parameter � . Thus, we can estimate the stable correlation measure (SC) 
as

for all �-stable sub-Gaussian distributed returns with a finite mean (i.e. 𝛼 > 1 ) (Orto-
belli and Tichý 2015).

Since we use the covariance between random variables with respect to their trend 
in formulas (4) and (5), we can define the following alternative Ruttiens correlation 
(RC) under the same assumptions:

where the standard deviation �(ci−ei) =
√

E[(ci − ei) − mi]
2 . Thus, our proposed 

alternative, called the modified Ruttiens correlation (MRC), is formulated as

where the standard deviation of (ci − ei) is given by �(ci−ei) =
√

E(y2
i
).

3 � Approximation of returns with parametric and nonparametric 
regressions

In this section, we present essential aspects of return approximation techniques 
using parametric and nonparametric regressions and principal component anal-
ysis (PCA). In particular, we reduce a large-scale portfolio complexity using a 
multifactor model that incorporates an adequate number of factors (not too large) 
such that the explained variability is significantly non-zero (Ortobelli et al. 2019). 
For this purpose, we consider the PCA of the correlation matrix of asset returns to 
determine the main factors. Similarly to the previous literature (e.g. Ortobelli and 
Tichý 2015; Kouaissah and Hocine 2021), to identify the main s factors (principal 
components), we apply a PCA to both the Pearson correlation and our proposed 

(6)�ri,rj =
E[(ri − �i)(rj − �j)]

�ri�rj

,

(7)�Stable
ri,rj

=
E[(ri − �i)sign(rj − �j)]

2E(∣ ri − �i ∣)
+

E[(rj − �j)sign(ri − �i)]

2E(∣ rj − �j ∣)
,

(8)�Rutt
ri,rj

=
E
{[(

ci − ei
)

− mi

][(

cj − ej
)

− mj

]}

�(ci−ei)�(cj−ej)
,

(9)�mod Rutt
ri,rj

=
E[(ci − ei)(cj − ej)]

�(ci−ei)�(cj−ej)
,
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trend-dependent correlation matrix, respectively. Moreover, we consider the fol-
lowing linear multifactor model:

where bi,0 is the fixed constant for asset i = 1,… , z , bi,j is the coefficient related to 
factor fj , s is the number of factors, and �i is the error part. Generally, an ordinary 
least squares (OLS) estimator is usually used to estimate the coefficients of the para-
metric linear regression problem (Fan et al. 2008). Using parametric regression, we 
replace the original z correlated return series {ri}

z

i=1
 with z uncorrelated time series 

{gi}
z

i=1
 obtained from the PCA, where each ri follows a linear function of gi . Dimen-

sionality is reduced by using only a few factors that express a large part of the total 
variability, while the remaining factors form the error part. Thus, the linear multifac-
tor model of returns series that is estimated by the OLS method is formulated as

where (r̂i) is the approximate gross return of asset i, bi,0 is the fixed constant for the 
ith asset, bi,j is the coefficient of the factor fj , s is the number of factors, and �i is the 
error part of asset i.

The OLS estimator works well if the initial series is normally distributed, but 
this is not obvious for a return series (Rachev and Mittnik 2000). This strong 
assumption may lead to a misleading final estimate when applied to financial 
data. Recently, Ortobelli et  al. (2019) proposed a nonparametric approximation 
to reduce the dimensionality of a large-scale portfolio, where the factors are again 
determined applying a PCA to the linear or another type of correlation structure 
and the s + 1 th factor Bs+1 , that is,

where (f1,… , fs) represents s uncorrelated factors and Bs+1 is a benchmark index. In 
this paper, we use the market upper stochastic bound defined as Bs+1 = maxi(ri) that 
gives the maximum possible return among the available assets at any time. The non-
parametric regression model is consistent even if the returns commonly follow the 
stable distribution (Rachev and Mittnik 2000; Nolan and Ojeda-Revah 2013). The 
recently preferred tool for the estimation of the function �(f ) is the estimator based 
on locally weighted least squares (hereinafter only RW) proposed by Ruppert and 
Wand (1994). To estimate the regression function �(f ) by RW, we have to estimate 
the parameter a by optimizing the following problem:

(10)ri = bi,0 +

s
∑

j=1

bi,jfj + �i, for i = 1,… , z,

(11)r̂i = bi,0 +

s
∑

j=1

bi,jfj +

z
∑

j=s+1

bi,jfj = bi,0 +

s
∑

j=1

bi,jfj + 𝜖i,

(12)ri = E(ri ∣ f1,… , fs,Bs+1) + � = �(f ) + �,

(13)min
a,b

T
∑

t=1

{

ri − a − bT
(

f(t) − f
)}2

KH

(

f(t) − f
)

,
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where f(t) is the tth observation of the vector of factor f, KH is a multivariate kernel 
estimator of an s × s symmetric positive definite matrix H that depends on the sam-
ple size T.

For the multivariate kernel estimator KH , Scott (2015) suggests employing the 
s-dimensional multivariate Gaussian density with variance–covariance bandwidth 
H = diag(h1,… , hs):

where 𝜎̂i means the estimated standard deviation of variable fi , and T is the num-
ber of observations. More details and a discussion of non-parametric regression are 
provided in Ruppert and Wand (1994); Bowman and Azzalini (1997); Scott (2015); 
Ortobelli et al. (2019). The empirical analysis of this paper uses the normal kernel 
function and the bandwidth selection method suggested by Scott (2015).

4 � Empirical analysis of the portfolio selection strategy

In this empirical section, we analyse ex-post and ex-ante portfolio statistics of 
various portfolio selection strategies using approximated returns from factors 
by parametric and nonparametric regression models. In particular, we use a new 
framework that integrates both the trend–risk measures and trend-dependency 
structure introduced in Sect.  2 into several variations of portfolio optimization 
scenarios. These scenarios are basically derived from the mean–variance port-
folio model, where we assume 40 various risk-averse strategies that ultimately 
form an efficient frontier (Markowitz 1952). Furthermore, we also propose a new 
portfolio selection framework with a double optimization process and a trend-
correlation PCA. The advantage of the double optimization consists of setting a 
benchmark portfolio statistics in the first part and then finding the effective (less 
trend-risky) way of how to achieve at least the same level of profitability. Accord-
ing to the results obtained, we show the effect of different strategies on the wealth 
paths, return statistics, and diversification measures of particular portfolios.

In this analysis, we consider a dataset consisting of daily observations of 182 
U.S. stocks, which were included as components of the S &P 100 index during 
the period from 2 January 2002 to 31 December 2021, which means 5036 daily 
observations in total. In addition, we monitored changes in the composition of 
the index that occurred regularly every three months and created a composition 
matrix. It follows that we are able to capture all the changes in the data-set to 
make it dynamic in time and eliminate the impact of survivorship bias. This fact 
makes the analysis more realistic, accurate, and credible. All data were down-
loaded from Thomson Reuters Datastream.

(14)Scott’s rule in ℝ
s ∶ ĥi = 𝜎̂iT

−1∕(s+4), i = 1,… , s,
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4.1 � Ex‑post comparison according to nonparametric regression among different 
portfolio strategies

To illustrate the effect using an ex-post empirical analysis, we assume that each 
portfolio is re-optimized at monthly intervals (every 21 days) based on a one-year 
moving window of historical observations (252 days). Furthermore, we assume 
that short sales are not allowed and the initial wealth of the portfolio W0 = 1 is first 
invested on 2 January 2003.2 In order to investigate the effect on portfolios on the 
efficient frontier, we decided to examine 40 portfolio strategies, which differ in risk 
attitudes and required minimum value of expected return while maintaining equidis-
tant intervals between them.3 For all 40 mean–variance strategies, we find the com-
position of the optimal portfolio, where the following steps are performed:

Step 1 In the first scenario, apply the PCA to the classical Pearson correlation 
matrix (i.e. PC), select 17 principal components (which explain at least 85% of the 
variability) and then use the OLS estimator or RW estimator to approximate the 
returns (i.e. OLS-Pearson or RW-Pearson). In the second scenario, apply the PCA 
to the stable conditional correlation matrix of returns (i.e. SC) and simultaneously to 
one of the Ruttiens (i.e. RC) or modRuttiens (i.e. MRC) correlation matrices. Then 
approximate the returns using the nonparametric RW estimator (i.e. RW-Ruttiens, 
respectively RW-modRuttiens). In this scenario, we select 3 factors of a particular 
PCA on trend-dependent correlations (explaining at least 90% of the particular vari-
ability), 13 factors from a stable PCA (explaining at least 60% of the stable variabil-
ity), and factor Bs+1 as a max benchmark. Thus, both strategies consist of 17 factors 
to approximate returns (see, e.g. Ortobelli et al. 2019).4

Step 2 Determine the optimal weights for all 40 portfolio strategies and create the 
efficient frontier. In particular, the simple mean–variance (mean–variability) model 
consists of determining the optimal vector of asset weights x for the first strategy 
while minimizing the global variance of the portfolio (GMV) as the following quad-
ratic optimization problem:

(15)
min(x�Σx)

x
�� = 1

0 ≤ xi ≤ 1; i = 1,… , z,

2  All observations in 2002 are used for the initial optimization, therefore the total investment period is 
reduced by one year.
3  While the first strategy (Strategy 1) is a global minimum variance portfolio (GMV), the last one (Strat-
egy 40) is a maximum expected return portfolio (MER). Therefore, for the rest of the strategies, we com-
pute the lower bound of the expected return M ∈ (x�

GMV
r, x�

MER
r) with the equidistant difference d calcu-

lated as d =
(x�

MER
r−x�

GMV
r)

N−1
 , where N is the number of strategies. Recall that in this empirical analysis we 

use N = 40.
4  According to our preliminary analysis, even when we include more factors explaining the given vari-
ability, the composition of the portfolios is not substantially different. In general, the portfolio statistics 
do not change significantly.
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where Σ is the classical variance–covariance matrix and �� = (1, 1,… , 1) is a vec-
tor of ones. Then, determine the vector x for the last strategy (i.e. 40th) solving the 
optimization problem in order to maximize the mean expected return of the portfolio 
maxE(x�r) , while the conditions of the model remain the same as in (15). Further-
more, compute the individual vectors of weights x for the inner portfolios of the 
efficient frontier. To do so, minimize again the variance of the portfolio formulated 
as min(x�Σx) , while achieving a predetermined lower bound of expected return M. 
Thus, add a condition E(x�r) ≥ M to model (15).

In contrast, the double optimization strategy is further composed of the second 
optimization process, which considers the minimization of the modified Ruttiens 
risk measure ARVmod formulated in Equation (2). To define the zero volatility trend 
line for each portfolio ex′r , we use the first mean–variance (MV) optimization (15). 
Employing this assumption, compute ex�r,t = W0 +

t

T
(WMV

x�r,T
−W0) , where W0 = 1 . 

As previously assumed, the condition in the optimization model is to maintain the 
required expected return of the portfolio SM in each step computed from the MV 
model. Therefore, based on the formulation in Sect. 2.1, we have to solve the follow-
ing quadratic optimization problem:

where r[0,T] is the gross return vector observed during the last window of observa-
tions [0, T] (which is, in our analysis, one year, i.e. 252 daily returns). By adding 
this part into the algorithm, we should reduce another type of variability of the 
mean–variance selection strategy, achieving at least the same expected return and 
final wealth with a different path that reduces the deviation between cumulative 
portfolio returns and the zero volatile trend line.

Step 3 Compute the ex-post final wealth for each kth re-calibration interval as 
follows:

where rex−posttk+1
 is the vector of gross returns between time tk and tk+1 , meaning 

tk+1 = tk + � where � = 21.
The entire algorithm (Steps 1 to 3) is repeated until daily return observations are 

available.
The results of our analysis are reported in Tables 1, 2, 3 and Figs. 3, 4, 5, and 6. 

Tables 1, 2, and 3 report important portfolio statistics of ex-post returns, i.e. mean 
(%), standard deviation (%), skewness, kurtosis, VaR5% (%), CVaR5% (%), selected 
performance measures,5 i.e. SR (%), TDR1, and TDR2, and final wealth for the 

(16)

min x
�Σmod Rutt

x

x
�
r[0,T] = SM

x
�� = 1

0 ≤ xi ≤ 1; i = 1,… , z.

(17)Wtk+1
= Wtk

(x�r
ex−post
tk+1

),

5  In order to measure the performance of the portfolio, we selected the usually used Sharpe ratio (SR) ( 
Sharpe 1994; Biglova et al. 2004). This indicator was chosen due to its explanatory power based on the 
entire distribution of returns. The Sharpe ratio expresses the expected excess return for the unity of risk 
measured as standard deviation calculated as SR =

E(x�r−rb)

�x� r
 , where �x′r denotes the standard deviation of 
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scenarios proposed and all portfolio strategies (Ortobelli et al. 2017; Malavasi et al. 
2020).

Table 1 illustrates the results of classical mean–variance portfolio selection strat-
egies on ex-post approximated returns using PCA on the Pearson correlation matrix 
with parametric OLS and nonparametric RW regression models. It is evident that for 
the strategies with minimal risk and maximal expected returns located at the begin-
ning and at the end, the OLS slightly outperforms the RW regression model in the 
profitability statistics, i.e. mean and final wealth. In contrast, strategies in the mid-
dle with RW approximation of returns lead to higher ex-post mean and final wealth. 
However, by analysing the risk measures of particular strategies, we observe that a 
significantly lower variability (standard deviation, VaR5%, or CVaR5%) of ex-post 
portfolio returns is achieved when including the RW regression model. As expected, 
the significance decreases with increasing strategies that maximize the expected 
return. In relation to these facts, it can be noted that the use of RW regression shows 
generally higher SR results. The most striking peculiarity shown in Table 1 is that 
TDR1 and TDR2 often contradict the results observed for the other indicators due 
to the noticeably higher values for most of RW strategies, except for those around 
30. This is mainly caused by the lower rate of the trend-dependent risk measure. In 
addition, the ex-post returns of all strategies with OLS and especially with the RW 
approximation are negatively skewed and strongly leptokurtic.

However, to obtain deeper insights into these findings, Figs.  3 and  4 illustrate 
the Log-Wealth paths of all strategies considering both the parametric OLS-Pear-
son regression approach and the nonparametric RW-Pearson correlation approach, 
respectively.

It is clearly observable that the application of the nonparametric regression tech-
nique generates a similar final Log-Wealth for the less risky strategy and outper-
forms the OLS in the middle strategies, as concluded from Table 1. However, from 
the surface plot of wealth paths for all strategies, we can better see the difference in 
riskiness between these regressions. Especially in the part of the figures monitor-
ing riskier strategies, the impact of the financial crisis in 2008–2009 can be seen, 
as well as the ability of the strategy to adapt. These figures confirm the findings 
that using the RW approximation smooths the wealth paths compared to their cor-
responding strategies with OLS, which concurrently means a reduction of the port-
folio risk. Recall that these findings are based on a strategy with a mean–variance 
optimization.

According to the previous discussion and the existing literature that evaluates 
the accuracy of the OLS and RW approximation by testing the concave dominance 
between the estimated error parts Ortobelli et al. (2019), the RW method is preferred 
for further analysis.

Furthermore, in Tables 2 and 3, we illustrate the same ex-post statistics of all port-
folio strategies, while applying nonparametric RW-Ruttiens and RW-modRuttiens 

the portfolio and rb is the benchmark return, see Rachev et al. (2008). Following Ortobelli et al. (2017), 
we define new types of trend-dependent ratios TDR1 and TDR2. These two measures indicate the value 
of excess wealth per unit of various kinds of risk, static or trend-dependent. Specifically, the formulations 
of TDR1 and TDR2 are given by TDR1 =

WT−1

ARV
mod

(x�r)
 and TDR2 =

WT−1

�x� r+ARVmod
(x�r)

.

Footnote 5 (continued)
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1 3

return approximation scenario simultaneously with a double optimization strategy 
for a monthly re-calibration.

The results give a broad overview of the profitability and benefits of incorpo-
rating the proposed trend measures into the double optimization portfolio strategy. 
In particular, we observe that in most strategies, the proposed approach using RW 

Fig. 3   Ex-post Log-Wealth of mean–variability strategies with parametric OLS return approximation 
scenario

Fig. 4   Ex-post Log-Wealth of mean–variability strategies with nonparametric RW-Pearson return 
approximation scenario
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approximated returns with Ruttiens and modRuttiens correlations outperforms the 
RW-Pearson approximation with a mean–variance optimization in terms of profita-
bility, except for the first risk-minimizing strategies that achieve higher wealth using 
the RW-Pearson approach. Furthermore, using the RW-Pearson scenario leads to a 
lower level of riskiness (standard deviation, VaR5%, CVaR5%) than using the other 

Fig. 5   Ex-post Log-Wealth of mean–variability strategies with nonparametric RW-Ruttiens return 
approximation scenario

Fig. 6   Ex-post Log-Wealth of mean–variability strategies with nonparametric RW-modRuttiens return 
approximation scenario
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two approaches, where the high risk-averse strategies show approximately one-
half the RW-Ruttiens results, but with higher risk tolerance, the differences narrow 
almost to zero. Probably the reason for this is that the second optimization focus-
sing on minimizes the deviations from the trend allow smoothing the wealth path, 
but the weights vary significantly from the optimum of the global minimum vari-
ance strategy. However, we can observe a trend that as the rate of return increases, 
portfolio performance expressed by SR increases. It is also evident that more risky 
mean–trend–risk strategies (above the average) generally outperform the mean–vari-
ance ones. Nevertheless, RW-modRuttiens generates higher trend-dependent per-
formance ratios only for the least risky and the most profitable strategies. Further-
more, it is evident that the ex-post return series of all RW-Pearson strategies are 
more asymmetric and leptokurtic than RW-Ruttiens or RW-modRuttiens. Generally, 
according to the findings above, the RW-modRuttiens approach is more appropriate 
for less risk-averse investors than RW-Ruttiens.

In Figs.  5 and  6, we show the Log-Wealth paths of all strategies based on the 
nonparametric RW-Ruttiens and RW-modRuttiens scenarios. They essentially con-
firm that trend–risk strategies have a fundamental impact on ex-post performance 
in portfolio selection strategies even if they have a slightly higher variability in their 
ex-post wealth paths.

To show and easily compare the results of the different strategies, Fig.  7 with 
selected portfolio indicators is presented. In particular, we also present the results 
of trend–risk measures and performance ratios. For all partial panels a–h, the x axis 
represents an individual portfolio strategy (1–40), where 1 means the GMV strategy 
and 40 is the MER strategy. On the y axes, we show Final Wealth (panel a), Mean 
(panel b), Standard Deviation (panel c), Sharpe Ratio (panel d), ARVmod (panel e), 
ARV (panel f), TDR1 (panel g), and TDR2 (panel h). The discussion of the classi-
cal portfolio statistics presented in Tables 1, 2, and 3 was provided above. However, 
when we focus on both trend-dependent risk measures ARVmod and ARV, it can be 
surprising that this kind of risk of whole portfolio paths with the double optimiza-
tion strategy is habitually higher than the simple mean–variance model. Only for the 
less and relatively high risky portfolios are the obtained results of these scenarios 
lower than the other ones. We can observe that the results of ARVmod for the most 
risky strategies are not depicted in the figure due to the scale used (around a value of 
20) in order to better show the differences.

4.2 � Ex‑ante analysis of diversification impact

Having shown the comparison of portfolios between the three strategies in terms of 
ex-post portfolio performance, we proceed to analyse the diversification effect of 
individual strategies. To do so, we select four basic diversification measures.

The first simple indicator is the number of assets (DM1) to which the investment 
funds are allocated, i.e. the number of assets with the non-zero weight after the kth 
re-calibration. The results of DM1 are in the interval [0, z], where 0 indicates that 



2071

1 3

Mean–variance vs trend–risk portfolio selection﻿	

the investor interrupted the investment at the re-calibration time k and z means that 
all funds are split into all available assets.

The second diversification measure (DM2) is the simple concentration index, also 
well known as the Herfindahl–Hirschman index, which is generally used to meas-
ure market concentration (Hirschman 1964). However, because of its explanatory 
power, it can be applied to portfolio analysis. Its formulation is as follows:

where DM2 ∈ [
1

z
, 1] due to the cases where naive and single asset portfolios are 

considered. If the value of DM2 approaches zero (one), then the investment is 
divided into a huge (small) number of assets and vice-versa.

The last measure of diversification DM3 is more significant for evaluating port-
folio diversification from a risk perspective. For this purpose, DM3 is the ratio 
between the risk of the portfolio and the average variability of all z assets for the kth 
re-calibration. It is formulated as

where DM3 ≥ 0 and T = (1,… , 252) . If DM3 = 1 then the risk of the portfolio is 
equal to the mean risk of the assets, which can substitute for the average market 
risk. If DM3 < 1 ( DM3 > 1 ) the portfolio has a lower (higher) risk than the market 
average.

The last indicator examined is turnover (Moorman 2014). According to Biglova 
et  al. (2014), turnover is defined as the change in the composition of the optimal 
portfolio after the kth re-calibration. Therefore, it can be expressed as follows:

where xk
i
 is the proportion of funds invested in the ith portfolio component at the 

re-calibration time k. Moreover, based on this formulation, the indicator value �k 
belongs to [0,  2] interval, where �k = 0 means the unchanged composition of the 
portfolio after the kth re-calibration, while �k = 2 indicates the situation in which the 
portfolio composition has completely changed.

Table  4 reports the average results of all selected diversification measures (i.e. 
DM1, DM2, and DM3) and the turnover indicator � of all optimal portfolio strate-
gies considering different RW approximation scenarios.

From the results in Table  4 we observe that according to the number of non-
zero weight assets (i.e. DM1) optimal portfolios are always divided among more 
than 2 assets and less than 17 assets on average for RW-Pearson and for RW with 
trend-correlation measures less than 5 assets on average. As might be expected, 
risk-averse strategies are more diversified than the riskiest strategies. This fact has 

(18)DM2 =

z
∑

i=1

x2
i
,

(19)
DM3 =

xk�Qkxk

1

z

∑z

i=1

�
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�
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been confirmed in research on portfolio diversification ( Egozcue et al. 2011; Woer-
heide and Persson 1992, and the references therein). As a result, the values of DM2 
behave in inverse relationship depending on the selected strategy, meaning that a 

Fig. 7   Comparison of portfolio Final Wealth and selected daily statistics for particular strategies
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higher value of DM1 corresponds to a lower value of DM2 and vice versa. How-
ever, the differences between risk-averse strategies are not very pronounced. In addi-
tion, when we compare the more sophisticated diversification measure DM3, we can 
observe that if the RW-Pearson selection strategy is applied, the interval is deeper 
compared to the RW-Ruttiens and RW-modRuttiens strategies. Furthermore, due 
to increased diversification, risk-averse strategies have drastically lower variability 
(approximately 10%) than the average of assets in the market, and risk-seeking strat-
egies are more than 1.5 times riskier than the market average. In contrast, when con-
sidering the RW-Ruttiens and RW-modRuttiens strategies, the variability is almost 
always below the market average, even for the riskiest portfolio strategies (around 
40). In summary, these approaches stabilize the portfolio variability.

In addition, an examination comparing types of investor reveals that for classi-
cal mean–variance optimization in the RW-Pearson scenario, risk-averse investors 
exhibit lower portfolio turnover than risk-takers. However, using the proposed dou-
ble optimisation in RW-Ruttiens or RW-modRuttiens, lower turnover is present in 
the strategies around the middle. Considering the average values of the turnover, 
which are around 1.4, we can deduce that RW-Ruttiens or RW-modRuttiens (for 
almost all strategies) reflect a significant change in portfolio composition. Recall 
that proportional transaction costs are strongly influenced by turnover.

We have also tested the second order stochastic dominance among the ex-post 
log-returns of the different portfolio selection strategies. We observed that about 23 
per cent of trend–risk portfolio strategies second order stochastically dominates the 
corresponding mean–variance strategies. However, among the trend–risk type strat-
egies, we do not observed the second order stochastic dominance relationship.

4.3 � Discussion

According to the previous ex-post and ex-ante empirical analysis, we have demon-
strated that:

•	 The integration of time-dependent or trend–risk measures as an alternative in 
the optimization process expands our insight into the issue of portfolio selection 
strategy;

•	 A trend–risk double optimization portfolio strategy outperforms the profitability 
of the simple mean–variance selection strategy;

•	 In general, these risk measures appear to be more useful in the finance sense as 
well as attractive to risk-avoiding investors.

In addition, we also used exponential and other variations of the trend line as a sub-
stitute for the equally accrued return (required trend) in risk measurement equations, 
which generate similar results and benefits. Nevertheless, we did not cover them in 
this analysis, but this adjustment could merit further research. In other words, we 
can integrate different types of function (e.g. the exponential) to capture trend pref-
erences or replace it with the market trend. Furthermore, we could consider replac-
ing the mean–variance model for the first optimization with a max-ratio model.
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Recall that in this paper we expanded the possibility of using trend analysis to 
measure risk and dependence in the portfolio selection problem. The results should 
not only compare the modified indicators with the original ones provided by Rut-
tiens, but rather present the advantage of the proposed portfolio selection strategies.

5 � Conclusion

In this paper, we have proposed a new modification of the trend-dependent risk 
measure based on Ruttiens’ ARV, which evaluates the mean of the squared devia-
tions between the returns and their linear trend. In this context, we are able to 
include the trend in the optimization process more accurately than Ruttiens sup-
posed. Moreover, we have also defined new trend-dependency measures, i.e. 
covariance and correlation, that are appropriate to use for the PCA.

To empirically apply the proposed trend-dependent measures in the portfolio 
selection problem, we have considered the mean–variance portfolio model. In 
this context, we applied a PCA to several correlation matrices (linear or trend-
dependent) to reduce the dimensionality of the portfolio and approximate the 
returns using both parametric and nonparametric regression models. Additionally, 
we proposed a new double optimization portfolio selection strategy, which con-
sists of the classical Markowitz mean–variance model followed by a minimiza-
tion of the deviations from the trend alternative obtained from the previous opti-
mization generating at least identical mean return and final wealth. We evaluated 
the impact on the ex-post portfolio statistics for 40 strategies with different pref-
erences and risk attitudes of investors. The empirical results showed that using 
the nonparametric RW approximation, the wealth is smoother during the invest-
ment and return series are less variable, with insignificant differences in the prof-
itability. Furthermore, double optimization strategies with trend correlation PCA 
and RW regression model outperforms the final wealth of strategies based on the 
Pearson correlation PCA. Finally, the average results of ex-ante diversification 
analysis show that the suggested strategies reduce the number of assets in the 
portfolio and their allocation compared to the RW-Pearson strategy.

Note that this type of trend-dependent risk measure is only one alternative, 
which can subsequently be adapted to the requirements of analysts or researchers.
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