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Abstract Many service industries use revenue management to balance demand

and capacity. The assumption of risk-neutrality lies at the heart of the classical

approaches, which aim at maximizing expected revenue. In this paper, we give a

comprehensive overview of the existing approaches, most of which were only

recently developed, and discuss the need to take risk-averse decision makers into

account. We then present a heuristic that maximizes conditional value-at-risk

(CVaR). Although CVaR has become increasingly popular in finance and actuarial

science due to its beneficial properties, this risk measure has not yet been considered

in the context of revenue management. We are able to efficiently solve the opti-

mization problem inherent in CVaR by taking advantage of specific structural

properties that allow us to reformulate this optimization problem as a continuous

knapsack problem. In order to demonstrate the applicability and robustness of our

approach, we conduct a simulation study that shows that the new approach can

significantly improve the risk profile in various scenarios.
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1 Introduction

Revenue management is ‘‘a method which can help a firm to sell the right inventory

unit to the right type of customer, at the right time and for the right price’’ (Kimes

2000). It combines results from areas like demand modeling and forecasting as well

as mathematical optimization with the goal of maximizing expected revenue (or

profit). The resulting models and procedures are usually integrated into automated

systems seeking to manage demand by restricting the availability of products

through some kind of capacity control.

All the classical approaches have in common that the assumption of a risk-neutral

decision maker lies at their heart. This was justified by the large number of similar

decisions in typical fields of application like airlines and hotel chains. Although

many people who are new to revenue management consider this assumption

counter-intuitive and many industry partners question it at first, it has been taken for

granted for a long time. One reason is that it leads to mathematically simpler

models, maximizing expected values.

The contribution of this paper is twofold: On the one hand, we introduce the topic

and provide the first comprehensive, up-to-date overview of existing approaches

that consider risk-aversion in revenue management’s capacity control. On the other

hand, we present a new approach that—to the best of our knowledge—is the first

one aiming at maximizing conditional value-at-risk (CVaR) and conduct a

simulation study, showing how the heuristic improves the risk profile of the

resulting policy in different scenarios.

The remainder of this paper is organized as follows: In Sect. 2, we give an

introduction to revenue management and point out some further literature to the

reader. Section 3 discusses when the assumption of risk-neutrality is and is not

appropriate and provides a comprehensive overview of the existing approaches to

incorporating risk. The new approach that optimizes CVaR is presented in Sect. 4.

The design of our simulation study is described in Sect. 5 and the results are

discussed in Sect. 6. We conclude with a summary and an outlook on avenues of

further research in Sect. 7.

2 Revenue management

The deregulation of the US airline industry in the 1970s gave rise to revenue

management as a number of new competitors offering cheap ticket prices entered

the market. Whereas business customers largely remained loyal to the established

airlines because of their extensive flight networks with carefully orchestrated

connection flights and high frequencies, leisure travelers switched to the new low-

cost airlines wherever they offered a point-to-point service between two cherry-

picked cities. This left the traditional airlines in a dilemma: To stay profitable, they

had to regain leisure travelers, but because of the high cost resulting from operating

a complex flight network, they could not lower their prices to the low-cost airlines’

price level. American Airlines was the first to solve this problem with the

introduction of an additional ‘‘Super Saver Fare’’ aimed solely at leisure travelers.
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This fare was subjected to purchase restrictions, preventing business travelers from

switching to the new, competitively priced tickets: For example, tickets had to be

purchased 30 days in advance and required a minimum stay of 7 days. However, the

popularity of these new fares with leisure customers raised a new question. Clearly,

the new approach would not be beneficial if the sale of a low-price ticket replaced a

high-paying business customer. Thus, how many seats on each flight should be sold

at the ‘‘Super Saver Fare’’? This question led to the development of revenue

management.

Despite its birth in practice, revenue management has been extensively

researched over the past 20 years, as, for example, the surveys by Weatherford

and Bodily (1992), McGill and van Ryzin (1999), Tscheulin and Lindenmeier

(2003) or Chiang et al. (2007) show. Furthermore, the standard textbooks by Talluri

and van Ryzin (2004) and Phillips (2005) give an overview of the field as well as an

in-depth discussion.

Revenue management instantly became a must-have in the airline industry (see

Cross 1997). It spread to other service industries where firms have a largely fixed

capacity and face stochastic demand of inhomogeneous value. Examples are car

rental companies (see, e.g., Carrol and Grimes 1995; Geraghty and Johnson 1997),

tour operators (see, e.g., Hoseason and Johns 1998; Klein 2000; Xylander 2003),

passenger railways (see, e.g., Ciancimino et al. 1999; Hood 2000; Bharill and

Rangaraj 2008; You 2008) to name but a few. More recently, revenue management

has also been considered in manufacturing (see, e.g., Barut and Sridharan 2005;

Rehkopf 2006; Spengler et al. 2007; Defregger and Kuhn 2007; Wiggershaus 2008;

Hintsches et al. 2010; Volling et al. 2012).

Following Lautenbacher and Stidham (1999), the standard revenue management

problem of capacity control is usually formulated as a markov decision process (see

also the abovementioned surveys and textbooks). In this problem, a firm disposes of

a perishable resource with a capacity of C units. Products i = 1, …, n each make

use of one unit of this capacity and are sold during a selling horizon of finite length

T. Any capacity that remains thereafter is worthless. Without loss of generality, the

products are priced at 0 B rn B rn-1 B ��� B r1 and variable costs are generally

neglected (although they could be integrated straightforwardly). Regarding demand,

the selling horizon is divided into a sufficiently large number of T micro periods

such that, in each micro period, no more than one customer requests a product. Time

is indexed forwards, so micro periods 1 and T mark the beginning respectively, the

end of the selling horizon. Furthermore, the common independent demand (ID)

assumption holds; that is, the probability pi(t) that product i is requested in micro

period t = 1, …, T is given ex ante and p0 tð Þ ¼ 1�
Pn

i¼1 piðtÞ denotes the

probability that no product is requested. The optimal expected revenue VN
t ðcÞ from

period t onwards with remaining capacity c is now given by the Bellman equation

VN
t cð Þ ¼

Xn

i¼1

pi tð Þ � max
xti2 0;1f g

xti � ri þ VN
tþ1 c� xtið Þ

� �
þ p0 tð Þ � VN

tþ1 cð Þ

¼ max
xt2 0;1f gn

Xn

i¼1

pi tð Þ � xti � ri þ VN
tþ1 c� xtið Þ

� �
þ p0 tð Þ � VN

tþ1ðcÞ; ð1Þ
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with the boundary conditions VN
t cð Þ ¼ �1 for c \ 0 and t = 1, …, T and

VT
N(c) = 0 for c C 0. The variable xti 2 0; 1f g describes the denial (xti = 0) or

acceptance (xti = 1) of a request for product i. This formulation can be explained as

follows: In each micro period, a request for product i arrives with probability pi(t). If

a request for product i arrives, the firm can either accept or reject it. If it is accepted

(xti = 1), the firm immediately collects revenue ri, but goes into the next period with

one fewer unit of capacity, where it obtains an expected revenue of VN
tþ1 c� 1ð Þ. If

the request is rejected (xti = 0), or no request arrives, the firm expects a future

revenue of VN
tþ1 cð Þ, calculated with an unchanged capacity. Thus, we obtain the

optimal expected revenue with full capacity C over the entire selling horizon by

recursively calculating V1
N(C).

It is now easy to see that our firm should accept a request in micro period t if and

only if ri ? Vt?1
N (c - 1) C Vt?1

N (c) or, equivalently,

ri�VN
tþ1 cð Þ � VN

tþ1 c� 1ð Þ: ð2Þ

Here, the right hand side is the opportunity cost or marginal value of capacity and

(2) states that a request is accepted only if the associated revenue exceeds the

opportunity cost. By calculating (1) for every t = 1, …, T and c = 1, …, C, the

firm obtains a decision rule (policy) that guides decision making in every state

(c, t) in order to maximize the expected revenue.

3 Considering risk in revenue management

In this section, we review the consideration of risk in the revenue management

literature. For an overview of research incorporating risk in adjacent areas like

newsvendor problems or dynamic pricing, see, for example, Barz (2007, Chap. 1.2)

and Gönsch et al. (2013, Sect. 4.8).

In revenue management, the consideration of expected values is generally

justified by the large number of similar selling processes. For example, airlines have

hundreds, major ones even several thousands of take-offs every day. Thus, given

this large number of similar repetitions, a single realization has a low impact, and

the law of large numbers ensures that the average revenue per repetition is

maximized and is also quite stable when using a risk-neutral model. As Barz (2007)

points out, if the number of repetitions is too small, the assumption of both costless

insurance markets and perfect capital markets is necessary to convert the uncertain

revenue stream into a certain one with the same present value.

Lancaster (2003) was the first to raise the issue of risk and revenue management.

Interestingly, most authors cite consultants’ experiences in practice to underline the

relevance of risk-aversion. A consultant who worked with smaller airlines asked

Weatherford (2004) about risk-averse capacity control. Barz (2007) reports that

another consultant’s clients were not comfortable with their risk-neutral revenue

management system. They manually altered the forecast to obtain less aggressive

(and risky) results. In an experiment conducted at a cruise line company, Singh

(2011) observed that analysts’ individual risk-aversion has a huge impact on their
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decisions when overriding a revenue management system’s output. He attributes

this behavior largely to their personality because they made decisions about exactly

the same issues and possessed identical information. Levin et al. (2008) describe

two other frequently cited examples. Event promoters may organize only a few

large events per year in stadiums or concert halls that are very expensive to rent.

Thus, their first priority would be to recover this fixed cost. In other industries, a

manager’s primary concern might be to provide stable results, because negative

news can lead to negative stock market assessments that can far outweigh the

marginal revenue advantages of a risk-neutral policy.

Weatherford (2004) was the first to bring revenue management and risk-aversion

together. He modified the famous EMSR-b heuristic of Belobaba (1992) by

substituting revenues with a risk-averse utility function. Barz and Waldmann (2007)

also use an additive time-separable exponential utility function to model risk-

aversion, but work with the dynamic programming formulation. They show that

several well-known properties regarding the structure of an optimal policy carry

over from the risk-neutral dynamic program. In her dissertation, Barz (2007)

considers additional function types, such as atemporal utility functions that render

the model less tractable. Moreover, she gives a general introduction to modeling risk

attitudes with utility functions and how to integrate them into sequential decision

problems. Feng and Xiao (2008) focus on an atemporal utility function and show,

among others, that higher risk-aversion leads to a more conservative policy. More

specifically, a larger capacity is made available for cheaper products instead of

waiting for customers who are willing to buy the expensive ones. Zhuang and Li

(2011) also use an atemporal utility function but restrict themselves to only two

products, which are sold one after another. In this context, they show structural

properties regarding the degree of risk-aversion and demand volatility.

Apparently without being aware of Feng and Xiao’s result, Huang and Chang

(2011) constructed a straightforward heuristic that was directly derived from the

exact dynamic program by artificially decreasing capacity’s future value and, thus,

selling more cheap products. Two variants of this approach are shown to yield more

stable revenues than the standard risk-neutral dynamic program in the sense of a

lower standard deviation. König and Meissner (2009a) have further refined this

approach.

While the aforementioned research aims at optimizing utility, dispersion

parameters, like standard deviation, are also widely used to evaluate the resulting

policies. More recently, risk measures, such as value-at-risk (VaR) and conditional

value-at-risk (CVaR), have also been considered for evaluation in König and

Meissner (2009a) as well as König and Meissner (2010). König and Meissner

(2009b) remember the event promoter of Levin et al. (2008), who has to recover his

fixed costs, and modify the dynamic program to minimize the target percentile risk

(TPR), which is the probability of obtaining less than a given target revenue. König

and Meissner (2010) point out the need to ‘‘compute an optimal policy for the

common risk measures, such as standard deviation, value-at-risk, or conditional

value-at-risk’’ and focus on the VaR. They determined the VaR-optimal policy by

performing a binary search that repeatedly calculates TPR-optimal policies until the

probability of failing the target revenue closely resembles the VaR’s level.
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VaR has its roots in finance and was first proposed by the global financial

services firm J. P. Morgan Chase as an acceptability measure for a financial position

with random returns (Wozabal 2012). For a given probability level a, the VaR is the

lowest revenue that will not be exceeded with a probability greater than or equal

to a. Not least because of this simple definition as a quantile function, VaR is widely

used in academia as well as in practice, where it has been incorporated into the

Basel II and Solvency II regulations. However, despite its popularity, VaR has

certain drawbacks. Obviously, it completely neglects the distribution of revenue

below the quantile. Moreover, VaR does not belong to the important class of

coherent risk measures, proposed in a seminal paper by Artzner et al. (1999), since it

lacks certain desirable and intuitive properties. For example, it fails to satisfy the

subadditivity property required for coherent risk measures, and, furthermore, the set

of acceptable revenues may not be convex. Therefore, VaR should not be used to

control multiple risky positions, as the individual control of each position does not

allow for the control of their sum. The risk of a combined position may be deemed

greater than the sum of the individual risks, and diversification may be penalized. In

addition, VaR also fails to recognize the concentration of risks (Artzner et al. 1999).

Owing to these shortcomings, VaR is increasingly being replaced by the conditional

value-at-risk (CVaR, also called average VaR or tail VaR). For continuous distributions,

CVaR is simply the expectation below the VaR and, thus, considers ‘‘how bad is bad’’

(Artzner et al. 1999). In addition, it is a coherent risk measure (Pflug 2001). Despite these

advantages, to the best of our knowledge, no work has been conducted that directly aims

at optimizing CVaR in revenue management until now.

4 Modeling CVaR in revenue management

In this section, we present the new heuristic approach to optimizing CVaR in the

context of revenue management. To this end, we state formal definitions of CVaR

(Sect. 4.1) and discuss challenges when maximizing CVaR in a multistage revenue

management environment together with a solution approach recently proposed in

the literature (Sect. 4.2). Based on this, we develop a heuristic that is computa-

tionally efficient. To this end, we first reformulate the value function to reduce its

state space (Sect. 4.3). Furthermore, in Sect. 4.4, we show how the exploitation of

the value function’s structural properties facilitates solving the minimization

problem which occurs in each state. By reformulating this optimization problem as a

continuous knapsack problem, we are able to give an efficient algorithm for the

computation of the new approach.

4.1 General representations of CVaR

The first building block we need is a formal definition of CVaR. As the most

intuitive definition of CVaR relies on the VaR, we start with a formal definition of

the latter. Given a confidence level a 2 0; 1½ � and random variable Y on a probability

space (X;F ;PÞ with distribution function F yð Þ ¼ PðY � yÞ, we use the following

definition of VaR:
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VaRa Yð Þ ¼ inf y : F yð Þ� af g ¼ F�1ðaÞ; ð3Þ

where Y denotes a profit; that is, bigger values of Y are preferred. With (3), CVaR is

now straightforwardly defined as

CVaRa Yð Þ ¼ E Y : Y �VaRa Yð Þ½ � ¼ E Y : Y �F�1ðaÞ
� �

: ð4Þ

From a theoretical point of view, (4) is valid only if considering probability spaces

without atoms. But clearly, in the problem defined above, revenue is a discrete

random variable for each given policy. Thus, we turn to the more common, but less

intuitive definition

CVaRa Yð Þ ¼ inf E YZ½ � : E Z½ � ¼ 1; 0� Z� 1

a

� 	

with CVaR0 ¼ ess inf Y : ð5Þ

As Pflug and Pichler (2012) explain, the infimum in (5) is among all nonnegative

random variables Z C 0 with expectation E½Z� ¼ 1 (densities), which satisfy the

additional truncation constraint Z� 1=a. This representation is also known as

CVaR’s dual representation. To give some intuition on this formula, the Z can be

viewed as weights that indicate whether an event (atom) falls below VaRa and is

thus included in or excluded from the CVaR’s expectation. Loosely speaking, what

distinguishes (5) from (4), is that it is now possible to divide an atom and include

only part of it in CVaR’s expectation.

4.2 CVaR in a multistage environment

Given (4) and (5), CVaRa is well defined for a given policy as described in Sect.

2. The authors mentioned in Sect. 3 use this in order to—mostly empirically—

evaluate their policies. But how can we find a CVaRa-optimal policy? At first, it

might seem intuitive to simply substitute the expectation in (1) with (5). Although

such a calculation of CVaRa at every time step seems straightforward, it is

unfortunately not the same as calculating CVaRa over the whole selling horizon

(see Artzner et al. 2007). The same holds for the optimization of CVaRa in a

multi-stage decision problem, as shown in this simple example: Assume that the

level a is smaller than the probability that no customer arrives (p0(t)) for every

micro period. Then, obviously, only the case of no arrival in every period would

be considered in such a step-wise CVaR, and, thus, the optimization. This

completely ignores that the probability of no arrival throughout the whole selling

horizon may be much smaller than a. Moreover, the number of micro periods is

somewhat arbitrary, rendering a CVaR that is related to single, artificial micro

periods less desirable.

As a recent result by Pflug and Pichler (2012) shows, the level a indeed cannot

remain constant in multistage evaluations of CVaR, and changes with the

probability of obtaining an atom included in the CVaR. One can use this result to

obtain a value function that represents the maximum attainable CVaRa from micro

period t onwards:
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Vt X1:t�1; Y1:t�1; a
� �

¼ ess sup
xt

ess inf
Zt

Xn

i¼0

pi tð Þ � Zti � Vtþ1 X1:t;Y1:t; a � Zti

� �

with VT X1:T ; Y1:T ; a
� �

¼ r X1:T ; Y1:T
� �

; ð6Þ

where the ess inf is over all Z with E½Z� ¼ 1; 0� Z� 1=a and Vt depends on

X1:t = (x1, …, xt), the complete history of past decisions and Y1:t = (y1, …, yt), the

history of past customer arrivals as well as Zt ¼ Zt0; Zt1; . . .; Ztnð ÞT . The total rev-

enue depends on the complete history of past decisions and customer arrivals and is

denoted by r(X1:T, Y1:T). This shows how the stage-wise optimization can be

retained while optimizing CVaR, but at the cost of a level a that is no longer

constant, but becomes a random variable. The value of a in micro period t [ 1

depends on Y1:t-1, which is a random variable in earlier periods but becomes known

in period t.

However, this formulation requires convexity of the action space X t 3 xt. As

capacity control’s decisions on the acceptance of requests are discrete, and therefore

X t ¼ 0; 1f gn
, this condition is obviously not met and the aforementioned value

function only serves as an approximation to the actual CVaR.

4.3 Reformulation of the value function

In the following section, we use Eq. (6) as a starting point to construct our heuristic.

Calculating (6) in the context of revenue management poses two challenges: the

intractably large state space and the computationally expensive minimization

problem for each stage.

The first challenge, the high dimensionality of its state space, results from the

inclusion of the decision history X1:T as well as the past demand realizations Y1:T,

which are necessary to calculate r(X1:T, Y1:T) at the final stage. Fortunately, the state

space can be simplified as follows: First, observe that in (6) past decisions and

demand realizations are only needed to calculate the revenue obtained in the past

and to determine what additional requests can be accepted; for the latter, knowing

the remaining capacity is sufficient. Moreover, revenues can be considered directly

at each stage owing to CVaR’s translation equivariance, namely:

CVaRa Y þ að Þ ¼ CVaRa Yð Þ þ a;

for a random variable Y and a 2 R. Thus, similar to (1), it suffices to include the

remaining capacity in the state space in addition to the level a and (6) can be written

as

Vt c; að Þ ¼ ess sup
xt

ess inf
Zt

Xn

i¼1

pi tð Þ � Zti � xti � ri þ Vtþ1 c� xti; a � Ztið Þð Þ

þ p0 tð Þ � Zt0 � Vtþ1 c; a � Zt0ð Þ; ð7Þ

subject to the boundary conditions: Vt(c, a) = -? for c \ 0 and VT(c, a) = 0 for

c C 0. As in (2), the firm should accept a request for product i if and only if
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ri�Vtþ1 c; að Þ � Vtþ1 c� 1; að Þ;

where, as stated above, the value of a becomes known in period t.

4.4 Efficient implementation

For a straightforward implementation of (7), we employed the fmincon function,

which is part of the Optimization Toolbox for MATLAB, in order to solve the

optimization problem in each state. The function performs a constrained minimi-

zation without requiring any information about the objective function and therefore

takes no advantage of any inherent structural properties.

To calculate (7) more efficiently, we exploit structural properties that come to

light when we transform the value function Vt(c, a), which seems to possess no clear

structure besides the obvious monotonicity. In contrast, the function

eVt c; að Þ :¼ a � Vt c; að Þ; ð8Þ

is also convex in a (see Pflug and Pichler 2012). Additionally, in the context of

capacity control, eVt c; að Þ is piecewise linear in a due to the discrete distribution of

revenues. This structure can be used to considerably simplify the optimization

problem and, as it is necessary to solve it in each state, this has a large impact on the

overall runtime. Below, we present an algorithm that efficiently solves the mini-

mization problem to optimality.

First, by substituting (7) into (8), we obtain

eVt c; að Þ ¼ ess sup
xt

ess inf
Zt

Xn

i¼1

pi tð Þ a � Zti � xti � ri þ eVtþ1 c� xti; a � Ztið Þ
� �

þ p0 tð Þ � eVtþ1 c; a � Zt0ð Þ:

Now, let

ft c; a; xt; Ztð Þ :¼
Xn

i¼1

pi tð Þ � a � Zti � xti � ri þ eVtþ1 c� xti; a � Ztið Þ
� �

þ p0 tð Þ � eVtþ1 c; a � Zt0ð Þ: ð9Þ

Moreover, as we consider only discrete random variables with compact support,

the ess inf is in fact a minimum. Therefore, at each state (c, a) and for each decision

xt, we have to solve the minimization problem

min
Zt

ft c; a; xt; Ztð Þ ð10Þ

s:t: pT
t Zt ¼ 1 ð11Þ

0� Zti�
1

a
; i ¼ 0; . . .; n ð12Þ

Zt 2 R
nþ1 ð13Þ
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where pt = (p0(t), …, pn(t))T. With eZt :¼ a � Zt, we combine the level a and Zt to

rewrite (9) as eft c; xt; eZt

� �
:¼
Pn

i¼1 pi tð Þ � eZti � xti � ri þ eVtþ1 c� xti; eZti

� �� �
þ

p0 tð Þ � eVtþ1 c; eZt0

� �
. Using this, the abovementioned problem can be rewritten as

min
eZt

eft c; xt; eZt

� �
ð14Þ

s:t: pT
t
eZt ¼ a ð15Þ

0� eZti� 1; i ¼ 0; . . .; n ð16Þ
eZt 2 R

nþ1; ð17Þ

where eft is piecewise linear in eZti; i ¼ 0; . . .; n, which is obvious when eft is written

as eft c; xt; eZt

� �
:¼
Pn

i¼1 pi tð Þ � efti c; xt; eZti

� �
þ p0 tð Þ � eft0 c; xt; eZt0

� �
with efti c; xt; eZti

� �

:¼ eZti � xti � ri þ eVtþ1 c� xti; eZti

� �
; i ¼ 1; . . .; n and eft0 c; xt; eZt0

� �
:¼ eVtþ1 c; eZt0

� �

due to the piecewise linearity of eVtþ1.

As xt 2 X t ¼ 0; 1f gn
, the evaluation of efti c; xt; eZt

� �
only involves eVtþ1 c� 1; �ð Þ

if requests for product i are accepted (xti = 1) and eVtþ1 c; �ð Þ if requests for product

i are rejected (xti = 0) in period t, including the case of no customer arrival.

Subsequently, we denote by ka1 ¼ 0\ka2\ � � �\kana
¼ 1 the set of points, where

eVtþ1 c� 1; �ð Þ is not differentiable, including the endpoints 0 and 1. Likewise, we

denote by kr1 ¼ 0\kr2\ � � �\krnr
¼ 1 the set of points, where eVtþ1 c; �ð Þ is not

differentiable, again including the endpoints 0 and 1. Thus, with sij, we can denote

the slope of efti in segment j that is between kaj and ka,j?1 for requests accepted

(xti = 1) and between krj and kr,j?1 for requests rejected (xti = 0). This structure

enables us to partition each variable eZti into variables eZtij corresponding to segment

j of efti and write efti as efti c; xt; eZti

� �
¼
Pn0

j¼1
eZtij � sij with

Pna

j¼1
eZtij ¼ eZti, for xti = 1,

where na is replaced by nr for xti = 0. From the convexity of eVtþ1; it follows that

sij \ si,j?1. Thus, (10)–(13) can be expressed as the following linear program:

min
eZt

X

i:xti¼1

Xna

j¼1

eZtij � pi tð Þ � sij

� �
þ
X

i:xti¼0

Xnr

j¼1

eZtij � pi tð Þ � sij

� �
ð18Þ

s:t: 0� eZtij� ka;jþ1 � ka;j 8i; j : xti ¼ 1 ð19Þ

0� eZtij� kr;jþ1 � kr;j 8i; j : xti ¼ 0 ð20Þ
X

i:xti¼1

Xna

j¼1

eZtij � pi tð Þ þ
X

i:xti¼0

Xnr

j¼1

eZtij � pi tð Þ ¼ a: ð21Þ

Moreover, Problem (18)–(21) is in fact a continuous knapsack problem where eZtij

is the number of items selected of type (t, i, j) and pi(t) represents the items’ weight.

Constraints (19) and (20) represent the amount available of each item, and
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constraint (21) is the weight restriction of the knapsack. Thus, Problem (18)–(21)

can be solved efficiently by using a simple greedy procedure (Dantzig 1957).

The basic idea of such a procedure is to sort the items according to their relative

value per unit weight, which is pi tð Þ � sij

� �
=pi tð Þ ¼ sij in this case. As we have a

minimization problem, the items are subsequently considered in the order of

increasing relative value. As much as possible is selected from each item with

respect to constraints (19) and (20). The procedure terminates when our knapsack is

full and condition (21) is satisfied.

We provide the formal algorithm, which we call lowest-ascent, in the following.

Steps 1–3 involve some initializations. The core of the algorithm is Step 4. Here, we

iterate over the slopes until the knapsack is full; that is, condition (21) is satisfied

with E eZt

� �
¼ a. In each iteration k, we select as much as possible from every item

with relative value sðkÞ (Steps 4.1 and 4.2). This amount is restricted by the amount

available (Steps 4.2.1 and 4.2.2) and, for the last item, by the knapsack’s maximum

weight (Step 4.2.3), whichever is less. As we are only interested in the eZti to obtain a

solution for Problem (14)–(17), we directly add the increase to eZti (Step 4.2.4).

Algorithm lowest-ascent:

1. eZti ¼ 0; i ¼ 0; . . .; n

2. k = 1

3. sort all unique slopes sij in ascending order s(1) \ s(2) \ ���\ s(N)

4. while E eZt

� �
\a

4.1. S ¼ i; jð Þ : sij ¼ s kð Þ
� �

4.2. for (i, j) [ S

4.2.1. if xti = 0: D1 = kr,j?1 - krj

4.2.2. else: D1 = ka,j?1 - kaj

4.2.3. D2 ¼ a� E eZt

� �� �
=pi tð Þ

4.2.4. eZti ¼ eZti þmin D1;D2ð Þ
4.2.5. if E eZt

� �
¼ a: break

4.3. k = k?1

5 Simulation experiment design

In this section, we describe the design of simulation experiments used to compare

the new approach developed in Sect. 4 to standard benchmark approaches. All

implementations were done in MATLAB version R2012b and were run on a PC

with a 2.8 GHz Intel Core i7 processor and 8 GB of RAM, running on Microsoft

Windows Server 2008 Enterprise SP2 64 bit. We outline the approaches and control

mechanisms considered in the simulation study in Sect. 5.1 and describe the settings

considered in Sect. 5.2. In Sect. 5.3, we determine the grid size for a based on an
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analysis of how different grid sizes influence the accuracy and runtime of the

algorithm. The subsequent Sect. 6 contains the results of the simulation study.

5.1 Control mechanisms

In the simulation study, we compare the new approach to several standard control

mechanisms. The following mechanisms are considered:

• CVAR denotes the new control mechanism developed in Sect. 4. We discretized

the state space and used an equidistant grid with a grid size of 5 %, i.e.

a [ {0, 0.05, 0.1, …, 1}, together with a linear interpolation in order to

compute the value function via dynamic programming. In Sect. 5.3, we show

that this is a reasonable compromise between accuracy and runtime.

• EV implements the control mechanism given by Eq. (2) and uses the opportunity

cost calculated by the classical dynamic program (Eq. 1). This mechanism is

optimal in that it maximizes the revenue’s expected value.

• FCFS is a very simple mechanism that accepts all requests in a first come, first

served manner until no more capacity is left.

• EXPOST is a mechanism that uses perfect hindsight information on incoming

demand to pick ex post the requests to accept from each demand stream. Thus, it

calculates the maximum revenue that can be obtained from each demand stream

and thereby maximizes expected revenue and conditional value-at-risk. The

obtained values serve as an upper bound for all other mechanisms.

5.2 Settings

The design of our simulation experiments is based on a classical example by Lee

and Hersh (1993). Their setting is widely used in revenue management (see, e.g.,

Subramanian et al. 1999), especially in the context of risk-aversion (see, e.g., Barz

2007; Barz and Waldmann 2007; König and Meissner 2009a). The example consists

of an airplane with a capacity of C = 10 seats and four products (booking classes)

i [ I = {1, …, 4} with revenues of r1 ¼ 200; r2 ¼ 150; r3 ¼ 120 and r4 = 80. As it

is often the case in practice, demand for more expensive products tends to arrive

later. The selling horizon consists of 30 micro periods and is partitioned into five

intervals. Our first setting is the original setting from Lee and Hersh (1993) and,

thus, denoted as Setting Lee/Hersh. The request probabilities for each interval are

shown in Table 1, where pi(t) denotes the probability of a request for product i in

micro period t. These probabilities reflect the fact that in passenger air transpor-

tation, higher value demand (often business customers) tends to arrive later in the

selling horizon.

To further evaluate the robustness of our results, we use two additional variants

of this setting that differ in their arrival of demand over time. In the first variant,

denoted as Setting LBH, demand follows the classical low-before-high assumption

and customers demanding lower value products arrive strictly before customers

asking for more expensive products. Table 2 shows the request probabilities. We

chose the probabilities such that total expected demand for each product is the same
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as in Lee and Hersh’s example. The length of the time intervals is set such that the

total number of micro periods remains at 30 and the demand intensity increases

towards the end of the selling horizon. Again, this effect is widely observed in

airline practice.

In the third setting, we consider the time-homogeneous arrival probabilities

shown in Table 3 (Setting Flat). Again, 30 micro periods are used and the

probabilities are set such that total expected demand is the same as in Setting Lee/

Hersh.

To evaluate our approach’s performance, we generated 10,000 customer streams

for each setting and used the abovementioned mechanisms to decide on the

acceptance of requests and calculate the resulting revenue for each stream.

5.3 Grid size and runtime

We started the numerical experiments with a preliminary investigation of the grid

size used in CVAR to discretize the state space with regard to a. For this purpose, we

performed CVAR with five different grid sizes, 0.01, 0.05, 0.10, 0.15, and 0.20, to

compute the value function given by Eq. (7). For each grid size, we evaluated the

Table 1 Request probabilities

for Setting Lee/Hersh
Request probability Micro period t

1–5 6–12 13–19 20–26 27–30

p1(t) 0.08 0.06 0.10 0.14 0.15

p2(t) 0.08 0.06 0.10 0.14 0.15

p3(t) 0.14 0.14 0.10 0.16 0

p4(t) 0.14 0.14 0.10 0.16 0

Table 2 Request probabilities

for Setting LBH
Request probability Micro period t

1–10 11–20 21–25 26–30

p1(t) 0 0 0 0.62

p2(t) 0 0 0.62 0

p3(t) 0 0.35 0 0

p4(t) 0.35 0 0 0

Table 3 Request probabilities

for Setting Flat
Request probability Micro period t

1–30

p1(t) 0.1033

p2(t) 0.1033

p3(t) 0.1167

p4(t) 0.1167
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demand streams 101 times, optimizing the CVaR at levels a 2 f0; 0:01; 0:02; . . .; 1g.
Figure 1 shows the CVaRs obtained in Setting Lee/Hersh. As the results for other

settings are very similar, they were omitted.

Whereas very low and high values of a have similar results, they vary

considerably for intermediate levels. For values of a between about 0.1 and 0.5, the

difference in CVaR is up to nearly 5 %. Obviously, a finer grid size leads to higher

CVaRs, but the difference between a grid size of 0.05 and 0.01 is negligible for all

values of a.

In addition to these results, which were obtained using our lowest-ascent

algorithm from Sect. 4.4, we also tested a straightforward implementation using the

fmincon function provided by MATLAB’s Optimization Toolbox version 6.2.1 with

a grid size of 0.05. Compared to our algorithm with the same grid size, this

implementation performed slightly worse in respect to the attained CVaR and was

therefore excluded from further analysis. The weaker performance is probably due

to the numerical approximations used by fmincon.

Lowest-ascent’s advantage over fmincon is even more obvious when runtimes are

considered (Table 4). For a grid size of 0.05, lowest-ascent is about 909 faster than

fmincon. Jointly considering the attained CVaR and runtime, we think that a grid

size of 0.05 offers a reasonable tradeoff and continue to use it in the following.

Nonetheless, the new approach requires the solution of a continuous knapsack

problem in every state. This leads to longer runtimes when compared to the risk-

neutral dynamic program. As the settings only differ in the arrival probabilities, and

therefore the computational complexity of each approach (risk-averse and risk-

neutral) is the same in all settings, we explicitly state the runtimes only for Setting

Lee/Hersh.

Fig. 1 Attained CVaR (Setting Lee/Hersh)
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Please note that the values given in Table 4 refer to the time necessary to

calculate the value function, which is necessary only once and can be done upfront,

prior to the selling horizon. In all the approaches, the same time is needed to

actually decide on whether or not to accept an arriving request. Moreover, to obtain

results that are easy to compare and owing to very short runtimes, our

implementation does not use parallelization. However, due to the specific structure

of the dynamic program, the algorithm could easily be implemented using parallel

computing. Consequently, the number of threads could easily reach the full initial

capacity.

6 Numerical results

In this section, we present the main results of an extensive simulation study that

compares the new approach developed in Sect. 4 to standard benchmark approaches.

In Sect. 6.1, we compare the CVaR obtained by the new approach with the

benchmark mechanisms’ results. In Sect. 6.2, we discuss the influence of demand’s

temporal distribution and compare the mechanisms to results obtained with perfect

hindsight information. Finally, we take a look at the capacity utilization (Sect. 6.3)

and the tradeoff between risk-aversion (i.e. maximizing CVaR) and expected

revenue (Sect. 6.4).

6.1 Comparison of control mechanisms’ CVaRs

In this section, we compare the revenue performance of the new approach with the

benchmarks in each of the three settings described above. We first compare the

CVaR of the revenues obtained with our approach with the benchmarks’ CVaR.

Second, focusing on the influence of demand’s arrival order, we use the same

method to compare the revenues obtained in the different settings. Finally, we take a

look at capacity utilization to investigate how the observed revenues are attained.

Figures 2, 3, and 4 show the CVaR obtained using the four control mechanisms

outlined in Sect. 5.1. For each setting, we calculated the CVaRa for

a [ {0, 0.05, 0.1, …, 1}. As the acceptance decisions of EV, FCFS, and EXPOST

do not depend on the level a, we first processed all demand streams using these

mechanisms and subsequently calculated the CVaRa using the resulting per-stream

Table 4 Runtimes in Setting

Lee/Hersh
Control mechanism Grid size Runtime [mm:ss.ms]

CVAR 0.01 10:17.514

CVAR 0.05 00:24.882

CVAR 0.10 00:06.490

CVAR 0.15 00:03.260

CVAR 0.20 00:02.000

CVAR with fmincon 0.05 35:51.545

EV – 00:00.156
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Fig. 2 Attained CVaR (Setting
Lee/Hersh)

Fig. 3 Attained CVaR (Setting
LBH)

Fig. 4 Attained CVaR (Setting
Flat)
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revenues. In contrast, CVAR’s decisions depend on the level a and we have to

process the streams for each a to determine the distribution of total revenue and

calculate the CVaR.

CVAR clearly outperforms FCFS for all levels of a in all three settings and

outperforms EV for a B 0.5 in Setting Lee/Hersh (Fig. 2) and Setting Flat (Fig. 4).

In Setting LBH (Fig. 3), CVAR is superior to EV for all a B 0.7. For higher values of

a, there is essentially no difference. This behavior is intuitive, because as a ? 1,

CVaRa approaches the expected value and CVAR’s policy increasingly resembles

that of EV. For low levels of a (approximately below 0.2), FCFS performs better

than EV and almost as well as CVAR. This is due to the fact that a low confidence

level means considering only the worst outcomes, which usually are the ones with

no or very weak demand. Thus, with decreasing a, CVAR accepts more requests

upfront and becomes more similar to FCFS, which accepts all requests. In contrast,

EV denies some requests for products with lower revenues and rather waits for

requests for products with higher revenues. Therefore, FCFS can be considered a

policy for an extremely risk-averse decision maker. Please note that, while CVAR is

formally equivalent to EV for a = 1, it is not fully equivalent to FCFS for a = 0

because CVAR involves waiting for high revenue requests that will arrive for sure.

In sum, in realistic settings, FCFS and EV can be considered two extremes between

one can vary by choosing a level a [ [0, 1] for CVAR.

6.2 The influence of demand’s temporal distribution

Next, we focus on the influence of demand’s arrival order. For each control

mechanism, we compare the CVaR obtained when demand is low-before-high

(Setting LBH), somewhere in-between (Setting Lee/Hersh), and time-homogeneous

(Setting Flat). Figures 5, 6, and 7 show the resulting CVaR for EV, FCFS, and

CVAR relative to the CVaR obtained with EXPOST. This benchmark is widely used

in numerical studies in revenue management, even though it disposes of perfect

hindsight demand information and, therefore, provides only an easy-to-calculate

upper bound on the expected revenue. This bound is usually not attainable through

control methods disposing of only distributional information. Thus, the gap between

a control mechanism and EXPOST usually consists of two components: the value of

information and what we call the optimality gap that stems from the mechanisms’

heuristic nature. Moreover, in this context, EXPOST is useful because it does not

depend on the setting; it ignores demand’s temporal distribution and only uses

information on total expected demand, which is equal in all three settings. As CVaR

equals the expected value at a = 1, the expected revenue is displayed at the right of

all figures.

Figure 5 displays the performance of EV, which is optimal in terms of expected

revenue. Thus, at a = 1, we have the optimal expected revenue that can be

obtained. Here, the difference between EV and EXPOST is solely the value of

information and there is no optimality gap. Not surprisingly, revenues decline and

this gap increases when lower value products are requested earlier and capacity

control becomes more challenging. Regarding smaller values of a, the difference

between EV and EXPOST increases because, besides the information value, there is
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also an optimality gap between them as we still follow a policy that optimizes the

expected value instead of the evaluated CVaR depicted in the figure.

The results for CVAR are shown in Fig. 6. CVAR performs best in the time-

homogeneous case (Setting Flat), where it delivers at least 96 % of EXPOST. Its

performance is slightly lower in Setting Lee/Hersh, but still quite impressive; it

delivers at least 95 % of EXPOST. CVAR performs worst in Setting LBH where

demand arrives strictly low-before-high, delivering at least 92 % of EXPOST. When

comparing CVAR and EV, it is important to remember that Figs. 5 and 6 display the

same values for the level a = 1. However, whereas the relative CVaRs obtained

through EV decline with decreasing a (from right to left), CVAR yields constant

results. Only Setting Flat shows a slight decline of about 0.5 % from a = 1 to

a = 0.9. Beginning at about a = 0.3, the relative CVaR rises until it reaches 100 %

in all three settings at a = 0. Regarding the optimality of the policy calculated with

Fig. 5 Percentage of EXPOST
(EV)

Fig. 6 Percentage of EXPOST
(CVAR)
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CVAR, the comparison to EXPOST is only of limited explanatory power because,

with our heuristic approach, we are not able to determine an optimal policy or

confirm that our policy is optimal. Therefore, we do not know how much of the

difference is due to the information value. However, for a = 1, we know that the

difference equals the information value. As the difference is the biggest for a = 1,

we are quite confident that the policy is quite good, although we do not know how

the value of information declines with decreasing a.

Fig. 7 Percentage of EXPOST
(FCFS)

Fig. 8 Capacity utilization
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For the sake of completeness, Fig. 7 shows the results for FCFS. In general, the

picture is quite similar to that of CVAR, but the attained CVaRs are considerably

lower at about 90 %, 87 % and 77 % for the three settings.

The value of a = 0 is a special case. According to (5), the CVaR0 only reflects

the worst outcome, that is the simulation run with the least revenue. Thus, the result

is more or less arbitrary, even with a very large number of simulation runs. In

Settings Lee/Hersh and LBH, as expected, EV obtains quite a small revenue in the

worst customer stream compared to EXPOST’s revenue in the stream where

EXPOST obtains the lowest revenue (The worst streams are not necessarily the same

for different control mechanisms). But surprisingly, EXPOST and EV obtain

Fig. 9 Average number of
accepted requests (CVAR,
Setting Lee/Hersh)

Fig. 10 Average number of
accepted requests (CVAR,
Setting LBH)
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identical revenues in the worst stream of Setting Flat. A detailed analysis shows that

these worst streams for EXPOST and EV are identical and only contain 3 customer

requests. Obviously, EXPOST accepts all three requests, even though they are for

low value products. But EV also accepts the requests, because they arrive quite late

in the selling horizon. Thus, we get identical values for CVaR0 for both methods,

although this result is quite unusual because the probability that such a stream is

generated is extraordinarily low.

6.3 Capacity utilization

To investigate how CVAR achieves its results, we consider the mean capacity

utilization for each setting, shown in Fig. 8. At first, we notice that the capacity

utilization declines in a: The less risk-averse we become, that is, the higher a, the

longer CVAR waits for higher revenue requests that may (or may not) arrive in the

future. More precisely, early arriving lower revenue requests are rejected and the

lowest capacity utilization is attained for a = 1, which is the same policy as EV. In

Setting Flat and Setting Lee/Hersh, the capacity utilization declines rather smoothly

in a, whereas in Setting LBH, it seems to decline in three steps. This seemingly odd

behavior is caused by demand arriving strictly low-before-high. The average

number of accepted requests in all three settings is shown in Figs. 9, 10 and 11, and

Table 5 in the Appendix. Figure 10 reveals that in Setting LBH, CVAR seems to

follow some kind of protection level approach, at least regarding the earliest (lowest

revenue) product 4. The steps correspond to (from left to right) accepting a

maximum of 3, 2, 1 or 0 requests for that product. The effect of this protection level

approach for product 4 on total capacity utilization is larger than the influence of the

other products, and determines the prevalent structure of capacity utilization. Note

Fig. 11 Average number of
accepted requests (CVAR,
Setting Flat)
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that average numbers are smaller than these integers as they reflect the probability

that the respective number of requests will actually arrive.

6.4 Tradeoff between risk-aversion and expected revenue

Although our primary goal is to maximize CVaR for a certain level of a, we

briefly consider revenue’s standard deviation in this section. Figures 12, 13, and

14 show scatter plots of the standard deviation against the mean of total revenues

for the three settings considered. Each of the 21 points in a plot represents

employing CVAR with a specific value for a and computing the sample mean and

standard deviation of total revenues across all customer streams. In addition, the

values obtained with EV and FCFS are indicated. As already discussed in Sect. 6,

they are identical to the values obtained with CVAR for a = 1 and a = 0,

respectively. We notice a large reduction in the standard deviation when using

CVAR with a\ 1 compared to EV (a = 1). As the confidence level a declines, the

standard deviation also declines further. However, this trend only holds for

a C 0.2. For smaller values of a, the standard deviation increases again and

reaches the value of FCFS for a = 0. While capacity control decisions for

intermediate values of a apparently smooth the revenues obtained from the

stochastic customer streams, this does not hold for very low values of a. Here, the

worst outcomes are increasingly considered and capacity control increasingly

resembles FCFS which accepts all requests until the capacity is fully occupied.

Using FCFS, we obtain simply the mean and the standard deviation of the sum of

the first ten requests’ prices.

Not surprisingly, all three figures clearly show that the optimization of CVaR for

a level a = 1 and, thus, the reduction in standard deviation comes at the price of a

decrease in expected revenue. Note that while the points are quite evenly spread in

Setting Lee/Hersh and Setting Flat, they are clustered into about four groups in

Setting LBH. This again reflects that there are only a few major policy changes as a
is varied.

Fig. 12 Comparison of
expected value and standard
deviation (Setting Lee/Hersh)
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7 Conclusions

As revenue management increasingly spreads to industries other than the large

airlines where it was born some 30 years ago, new challenges arise. One issue is the

assumption of risk-neutrality that lies at the heart of traditional revenue manage-

ment. While this assumption is, on average, perfectly appropriate in the long run,

based on a high number of flight departures, hotel room bookings, etc., it does not

take into account that decision makers may prefer stable results in the short term

rather than accepting the volatility caused by risk-neutral models. While users’

acceptance of automated systems is always an issue in practice, we observed in our

consulting practice that even highly trained analysts with a mathematical

background (rightly?) mistrust risk-neutral systems. However, as Singh (2011)

observed in an experiment conducted at a cruise line company, analysts following

Fig. 13 Comparison of
expected value and standard
deviation (Setting LBH)

Fig. 14 Comparison of
expected value and standard
deviation (Setting Flat)
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only their intuition make very different and contradicting decisions when overriding

a revenue management system’s output.

As a result, risk-averse models have been considered in revenue management

since about a decade ago and a variety of risk indicators have been used. However,

although research on risk and revenue management has recently gained momentum,

our literature review shows that the body of scientific publications is still quite

limited.

This paper contributes to that research by proposing—to the best of our

knowledge—the first approach that directly aims at maximizing CVaR, an

intuitively appealing risk measure that is widely used in finance due to its desirable

theoretical properties. The exploitation of the underlying value function’s structure

allows us to reformulate the inherent optimization problem as a continuous

knapsack problem and provide an algorithm that allows for an efficient implemen-

tation. Thus, the runtime is reduced to a fraction of the time needed by a

straightforward implementation that uses standard optimization functions. In a

simulation study based on an example widely used in the literature, we show that the

new approach delivers very good results. Moreover, we give insights into how these

results are obtained and discuss the approach’s relationship to widely used

benchmark approaches.

In our opinion, there are two main avenues for further research on this topic. The

first specifically relates to our approach and includes extensions to other risk

measures that admit a Choquet representation, and, thus, are closely related to

CVaR. Moreover, it may be worthwhile to obtain upper bounds that are tighter than

our variant of the standard benchmark using hindsight information. The second

avenue relates to research on risk-averse revenue management in general, where the

consideration of a single resource and so-called independent demand is standard.

This is justified by risk-aversion being most relevant to smaller firms. Moreover,

these assumptions allow for focusing on the effects of risk-aversion in models with

an improved mathematical tractability. Nonetheless, resource networks and

customer choice are highly relevant in some industries and increasingly considered

in research on classical risk-neutral revenue management. Therefore, we think that

bringing these elements and risk-aversion together would be an interesting avenue

for future research. The extension of our approach to resource networks is quite

straightforward, although all the difficulties known from classical network revenue

management will come into play. Similarly, the inclusion of customer choice is a

possibility but the challenge will be to develop a model that is computationally

tractable.

Appendix

See Table 5.
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Table 5 CVAR’s average number of accepted requests per product

Setting Product a

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Lee/Hersh 1 2.04 2.07 2.12 2.17 2.24 2.29 2.34 2.39 2.44 2.48 2.53

2 2.01 2.04 2.09 2.14 2.2 2.25 2.29 2.34 2.39 2.43 2.47

3 2.89 2.91 2.93 2.96 2.98 3 3.03 3.04 3.06 3.07 3.08

4 2.91 2.83 2.7 2.55 2.39 2.24 2.1 1.97 1.84 1.72 1.6

LBH 1 0.77 1.35 1.43 1.56 1.6 1.9 2.09 2.13 2.18 2.24 2.28

2 2.16 2.61 2.54 2.78 2.75 2.73 2.52 2.49 2.55 2.69 2.76

3 3.43 3.21 3.2 2.82 2.8 3.15 3.15 3.14 3.01 2.8 2.77

4 3.51 2.64 2.64 2.64 2.64 1.9 1.9 1.9 1.9 1.88 1.77

Flat 1 2.3 2.31 2.33 2.37 2.41 2.44 2.48 2.52 2.56 2.59 2.63

2 2.33 2.34 2.37 2.4 2.44 2.47 2.51 2.54 2.58 2.61 2.64

3 2.59 2.6 2.62 2.65 2.68 2.71 2.73 2.76 2.78 2.81 2.83

4 2.63 2.6 2.52 2.42 2.29 2.19 2.08 1.96 1.85 1.73 1.63

Setting Product a

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Lee/Hersh 1 2.57 2.61 2.66 2.69 2.72 2.75 2.78 2.8 2.83 2.84
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