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Abstract

Aim Nuclear factor-erythroid 2-related factor-2 (Nrf2)

acts as a defense system in the development of nonalco-

holic steatohepatitis (NASH). Curcumin is a phenolic

compound with lipid regulatory, anti-oxidative, anti-

inflammatory and anti-tumorigenic properties that is ben-

eficial in defending against NASH and was recently proved

to be an Nrf2 activator. The aim of this study was to

evaluate whether Nrf2 activation could be involved in

NASH mitigation by curcumin.

Methods Hepatic, metabolic, and inflammatory parame-

ters, along with hepatic Nrf2 protein expression were

explored in adult Sprague–Dawley rats developing high-

fat-diet-induced NASH and submitted to curcumin gavage

for 6 weeks.

Results Curcumin administration led to lower degrees of

hepatic steatosis and inflammation; lower levels of serum

aminotransferases, lipids, and homeostasis model assess-

ment of insulin resistance; and lower serum and hepatic

contents of tumor necrosis factor-a (TNF-a), interleukin-6,
and malondialdehyde. In contrast, higher hepatic contents

of glutathione, heme oxygenase-1 and superoxide dismu-

tase were observed in rats with curcumin. Moreover, Nrf2

expression in liver cell nuclei was significantly higher in

rats with curcumin.

Conclusions Curcumin can prevent and ameliorate

NASH via lipid reduction, improve insulin resistance,

improve anti-inflammatory, and have antioxidant effects,

possibly related to its activation of Nrf2.

Keywords Curcumin � Nonalcoholic steatohepatitis �
Rats � Inflammation � Oxidative stress � Nuclear factor-
erythroid 2-related factor-2

Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the

most common causes of chronic liver disease worldwide

with a prevalence rate ranging from 6 to 35 % [1]. NAFLD

represents a wide spectrum of liver diseases from simple

steatosis to a more severe and treatment-resistant clinical

entity characterized by the appearance of inflammation,

termed nonalcoholic steatohepatitis (NASH), which may in

turn progress to cirrhosis and hepatocellular carcinoma [2].

The pathogenesis of NASH involves numerous factors,

such as changes in lipid metabolism, insulin resistance,

inflammatory cytokines and oxidant stress [3]. Several

recent studies suggest that nuclear factor-erythroid 2-rela-

ted factor-2 (Nrf2), an important cytoprotective transcrip-

tion factor, functions as a defense system in the

development of NASH. Therefore, Nrf2 may be a novel

therapeutic target for the prevention and treatment of fatty

liver and NASH [4]. Curcumin is a phenolic compound

found in the dietary spice turmeric, derived from the rhi-

zome of Curcuma longa [5]. In addition, curcumin regu-

lates lipid metabolism; has anti-inflammatory, anti-

oxidation and anti-cancer effects; and has been recently

proved to activate Nrf2 [6, 7]. Despite the large number of

studies demonstrating the hepatoprotective effects of
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curcumin, which may attribute to its intrinsic properties [8–

12], there are few reports on the effects of this polyphe-

nolic compound on the NASH model induced by a high-fat

diet under in vivo conditions, and on the possible molec-

ular underlying mechanisms. Therefore, the aim of this

study was to evaluate whether curcumin could attenuate or

prevent high-fat diet-induced NASH in a rat model, and

confirm whether Nrf2 activation is involved.

Materials and methods

Animals and diets

This study was performed in accordance with the Guide for

Care and Use of Laboratory Animals published by the

National Institutes of Health (Guide for the Care and Use of

Laboratory Animals, 1996). The Animal Research Com-

mittee of Shanghai Jiaotong University in China approved

the protocol. Thirty-six male Sprague–Dawley rats with an

average body weight of 190–210 g (B&K Universal Group

Limited, Shanghai, China) were used in this study. Animals

were housed six per cage at room temperature (20–22 �C)
with a light/dark cycle of 12 h and free access to food and

water. All rats were fed a standard laboratory diet for a

week. They were then randomly divided into three groups

of twelve rats each: normal group, model group and treat-

ment group. Rats in the normal group were fed a standard

diet, while those in the other two groups received a high-fat

diet composed of 18.0 % protein, 45.0 % fat, and 37.0 %

carbohydrates, and kept in darkness at 4 �C. Two rats from

each group were euthanized at the end of the 6th week to

detect pathological changes. Then, rats in the treatment

group were gavaged with 50 mg/kg of curcumin (Sigma,

USA) suspended in 0.5 % carboxymethyl cellulose (CMC)

daily for 6 weeks. The normal group and model group

received an equal volume of 0.5 % CMC (Songon,

Shanghai, China) as controls.

Sample collection

Overnight food-deprived rats were anesthetizedwith ketamine

(0.2 mL/100 g) at the end of the 12th week. Body weight was

measured. Blood was collected from the heart of the rats into a

tube, and serumwas centrifuged at 2,500 rpm for 10 min. The

liver was removed carefully and washed with physiological

saline for weighing. Serum and liver tissues were stored at -

20 and -80 �C, respectively, for further analyses.

Serum parameters

Concentrations of alanine aminotransferase (ALT) and

aspartate aminotransferase (AST) activity, serum

triglyceride (TG), total cholesterol (TC), and fasting

plasma glucose were determined by automatic biochemis-

try analyzer (Hitachi, Japan). Fasting insulin levels were

measured by radioimmunoassay and insulin resistance was

estimated based on the final blood glucose and insulin

values using the homeostasis model assessment of insulin

resistance (HOMA-IR) [13]. The concentrations of serum

free fatty acids (FFA), tumor necrosis factor-a (TNF-a)
and interleukin-6 (IL-6) were determined using enzyme-

linked immunosorbent assay (ELISA; BlueGene, Shanghai,

China) in a 48-well plate.

Histological analysis of hepatic lesions

Liver pathology was assessed by hematoxylin and eosin

(H&E) and Oil Red O staining of liver sections, and scored

via blinded samples by a board-certified pathologist. His-

tological lesions were evaluated by the improved grading

and staying system proposed by Brunt et al. [14] as fol-

lows: (1) steatosis was graded S0–S3 based on the per-

centage of hepatocytes in the biopsy involved (S0

corresponded to none; S1 was\33 %; S2 was 33–66 %; S3

was [66 %); (2) intra-acinar (lobular) inflammation was

graded L0–L3 based on inflammatory foci per 109 with

209 ocular (L0 corresponded to none; L1 was 1–2/109;

L2 was up to 4/109; L3 was[4/109); and (3) portal tract

inflammation was graded as none, mild, moderate, and

severe (P0–P3). With these data, the Necroinflammatory

Grading System for Steatohepatitis (NASH grade) pro-

posed by Brunt was applied: Grade 0 = S0 ? L0 ? P0;

Grade 1 (mild) = S1–2 plus L1 plus P0–1; Grade 2

(moderate) = S2–3 plus L2 plus P1–2; or Grade 3

(severe) = S3 plus L3 plus P1–2.

Measurement of liver inflammatory cytokines

Liver levels of TNF-a and IL-6 were assayed using ELISA

using BlueGene Kits according to the manufacturer’s

instructions (BlueGene, Shanghai, China). Absorbance was

measured at 450 nm using a Sunrise absorbance reader

(UNICO, USA) and quantified relative to a standard row.

Liver contents of malondialdehyde (MDA), glutathione

(GSH) and activity of superoxide dismutase (SOD)

Liver tissues were rinsed, weighed, resuspended at 1 g/

9 mL in normal saline, and homogenized. After centrifu-

gation at 2,500 rpm for 10 min at 4 �C, the supernatants

were collected for protein quantitative assay (JianCheng,

NanJing, China). The liver contents of MDA, GSH and the

activity of SOD were analyzed by corresponding assay kits

(BlueGene, Shanghai, China) in accordance with the

manufacturer’s instructions.
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Real-time polymerase chain reaction (RT-PCR)

Total RNA was extracted after homogenization in TRIzol

regent (Invitrogen, USA) using an ultracentrifuge

(BECKMAN, USA) according to the standard protocol.

cDNA was synthesized by reverse transcription using total

RNA (1 lg) as a template (Fermentas, Canada). Gene

expression analysis was performed by RT-PCR (Funglyn

Biotech, Canada). Primer sequences were as follows: gly-

ceraldehyde-3-phosphate dehydrogenase (GAPDH) (for-

ward) GACGCTTTGGTGAAGAAACTGA, (reverse)

CACACGGCAATAAATGACATGAG; heme oxygenase-

1 (HO-1) (forward) TTTCACCTTCCCGAGCATC,

(reverse) TTAGCCTCTTCTGTCACCCTGT. RT-PCR

monitoring with SYBR Green I was performed according

to the following protocol: initial incubation at 95 �C for

30 s, followed by 40 cycles of denaturation for 5 s at

95 �C, and finally annealing/extension for 30 s at 60 �C
repeated three times for each hole. Results were normal-

ized to GAPDH mRNA as an internal control and shown as

relative mRNA levels.

Western blot analysis for Nrf2 expression

Nuclear extracts were prepared as described previously

[15]. Nuclear extracts (20 lg) were separated by SDS-

PAGE gel, and proteins were transferred to a polyvinyli-

dene difluoride membrane. Membranes were blocked for

1 h in 5 % nonfat dry milk and incubated with primary

anti-Nrf2 (1:500) (BlueGene, Shanghai, China) in 5 %

nonfat dry milk overnight at 4 �C. Antibodies to Lamin B

were used as internal control. After being washed three

times for 5 min in TBS-T, membranes were subsequently

incubated with secondary antibodies appropriately diluted

in TBS-T for 1 h at room temperature. The membrane was

washed four times and detection was performed using an

enhanced chemiluminescence system and exposed to X-ray

film.

Statistical analysis

All statistics were analyzed using SPSS17.0 (SPSS Inc.,

Chicago, IL, USA). All results are shown as the mean of

three or more replicates. Data are presented as

mean ± standard error (SE). The data of three groups were

analyzed by one-way ANOVA followed by Tukey’s

methods or the Kruskal–Wallis test. LSD t and Wilcoxon

rank sum tests were used to evaluate the statistical signif-

icance of the results. P values \0.05 were considered

significant.

Results

Effect of curcumin on morphological and functional

liver parameters

Significant differences were observed for macroscopic

alterations between model and control groups at the end of

the 12th week. The livers of model group rats were enlarged

and yellow with an irregular, partially nodular surface.

Steatosis, ballooning, mixed acute and chronic lobular

inflammation and focal necrosiswere present inmodel group

rats accompanied by elevated body weight, liver weight, and

serum ALT and AST levels (P\ 0.05). In the treatment

group, the macroscopic appearance of the livers, the inten-

sity of hepatic steatosis and inflammation were significantly

alleviated, and a remarkable reduction (P\ 0.05) was

observed in body weight, liver weight and serum ALT and

AST, as compared to model group (Fig. 1; Tables 1, 2).

Effect of curcumin on serum lipids and insulin

resistance

Rats fed on the high-fat diet for 12 weeks (model group)

showed an increase (P\ 0.05) in all lipid parameters (i.e.,

TG, TC, and FFA) in serum and insulin resistance when

compared to those of rats fed the standard diet. Curcumin

treatment resulted in significant reduction (P\ 0.05) of

these lipid parameters (Table 3).

Effect of curcumin on inflammatory cytokines

Rats in the model group had higher levels of serum TNF-a
and IL-6 and higher liver contents of TNF-a and IL-6 than

those in the normal group (P\ 0.05). The administration

of curcumin resulted in a remarkable reduction of these

inflammatory cytokines (P\ 0.05) (Table 4).

High-fat diet-induced oxidative stress was decreased

by curcumin treatment

Administration of a high-fat diet to rats increased the liver

protein MDA content by more than 200 % versus the model

group, whereas curcumin treatment decreased the high-fat

diet-induced protein MDA content to basal levels. Con-

cerning the hepatic contents of GSH and activity of SOD,

the model group exhibited the lowest values, significantly

different (P\ 0.05) from the normal and treatment groups.

In relation to HO-1 protein, the treatment group showed the

highest values, significantly different (P\ 0.05) from the

normal and model groups (Table 5; Fig. 2).
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Fig. 1 Macroscopic appearance and histological sections of liver in each group of rats. a1–a3 Normal group; b1–b3 model group; c1–c3 treatment

group. a1–c1 macroscopic appearance; a2–c2 H&E staining 9200; a3–c3 Oil Red O staining 9200

Table 1 Body weight, liver weight, and liver function in each group of rats at the end of the 12th week

Group Body weight (g) Liver weight (g) ALT (U/L) AST (U/L)

Normal 413.6 ± 14.4 9.7 ± 0.6 49.3 ± 2.1 83.0 ± 7.5

Model 481.2 ± 33.7a 17.8 ± 1.6a 83.0 ± 4.4a 122.3 ± 3.5a

Treatment 426.4 ± 19.8b 13.5 ± 1.1b 43.7 ± 3.2b 82.5 ± 7.4b

Data are mean ± standard error of three groups

ALT alanine aminotransferase, AST aspartate aminotransferase
a P\ 0.05, compared with normal group
b P\ 0.05, compared with model group
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Effect of curcumin on Nrf2 expression

We examined whether 6-week treatment with curcumin

affected the liver expression of Nrf2. There was a 160 %

increase in liver nuclear Nrf2 protein in rats given curcu-

min; no differences were found between the normal and

model groups (Fig. 3).

Discussion

The high-fat diet rat model closely resembles the patho-

physiology observed in human NAFLD. By feeding rats a

high-fat diet for 6 weeks, we reproduced the hepatic

lesions of nonalcoholic simple fatty liver. Moreover, when

dietary fat time was extended to 12 weeks, significant

further increases in macro- and micro-steatosis, lobular

inflammation and necrosis were observed, accompanied by

elevated body weight, liver weight and serum ALT and

AST levels, suggesting that we have reproduced the model

of NASH [16].

Despite the fact that pathogenesis of steatosis and pro-

gression to steatohepatitis have not yet been fully eluci-

dated, some factors, such as changes in lipid regulation,

insulin resistance, inflammatory cytokines, and oxidative

stress have been identified as factors in NAFLD [17].

These factors directly or indirectly induce and aggravate

liver steatosis, trigger production of inflammatory cyto-

kines (causing inflammation and fibrogenic response), and

promote cell apoptosis and death [17–20]. This leads to

development of NASH, which can ultimately result in end-

stage liver disease. This study showed significant increases

in serum levels of lipids, HOMA-IR, TNF-a and IL-6;

increases in hepatic content of MDA; and reductions in

hepatic GSH content and SOD activity, thus confirming the

role of the above factors on the pathogenesis of NASH.

As an important cytoprotective transcription factor, Nrf2

could be activated by electrophilic agents and play a cen-

tral role in mediating a cytoprotective response against a

wide variety of stress and toxic insults. Protection against

oxidative/nitrative stress involves not only enhanced

expression of Nrf2 but also the expression of Nrf2-regu-

lated gene products including GSH, glutathione peroxidase,

glutathione synthesis, HO-1, NAD(P)H quinine oxido-

reductase 1, glutamate cysteine ligase and many other

factors [21–23]. In fact, besides its role in regulating cel-

lular anti-oxidative defense, Nrf2 has also been shown to

attenuate insulin resistance and has anti-obesity and anti-

inflammatory functions. As an example, the increased

susceptibility of Nrf2-deficient mice to dextran sulfate

sodium or carcinogen-induced colitis and colorectal cancer

is associated with decreased expression of antioxidant/

phase II detoxifying enzymes in parallel with up-regulation

Table 2 Effect of curcumin on histological parameters in livers

Group Steatosis Lobular inflammation NASH grade

Normal 0 0 0

Model 2.8 ± 0.4a 2.3 ± 0.5a 2.7 ± 0.5a

Treatment 1.80 ± 0.4b 1.6 ± 0.5b 1.8 ± 0.8b

Data are mean ± standard error of three groups

NASH nonalcoholic steatohepatitis
a P\ 0.05, compared with normal group
b P\ 0.05, compared with model group

Table 3 Serum TG, TC, FFA levels, and HOMA-IR in each group

Group TG (mmol/

L)

TC (mmol/

L)

FFA (lg/
mL)

HOMA-IR

Normal 0.4 ± 0.1 0.8 ± 0.0 0.5 ± 0.1 4.0 ± 0.8

Model 0.7 ± 0.1a 1.4 ± 0.2a 0.9 ± 0.5a 10.2 ± 2.6a

Treatment 0.4 ± 0.2b 1.0 ± 0.1b 0.7 ± 0.1b 4.7 ± 1.0b

Data are mean ± standard error of three groups

TG triglyceride, TC total cholesterol, FFA free fatty acids, HOMA-IR

homeostasis model assessment of insulin resistance
a P\ 0.05, compared with normal group
b P\ 0.05, compared with model group

Table 4 Changes in serum and liver inflammatory cytokines in each group

Group TNF-aA (pg/mL) IL-6A (pg/mL) TNF-aB (pg/mL) IL-6B (pg/mL)

Normal 174.2 ± 8.3 122.1 ± 6.2 116.9 ± 4.8 87.9 ± 18.2

Model 261.2 ± 25.4a 182.6 ± 42.8a 196.0 ± 43.0a 143.1 ± 39.9a

Treatment 203.7 ± 15.1b 138.2 ± 21.1b 156.7 ± 11.8b 96.9 ± 15.5b

Data are mean ± standard error of three groups

TNF-a tumor necrosis factor-a, IL-6 interleukin-6
a P\ 0.05, compared with normal group
b P\ 0.05, compared with model group
A Serum level
B Hepatic level
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of pro-inflammatory cytokines, such as cyclooxygenase-2

and TNF-a [24, 25]. It was shown recently that Nrf2

inhibits lipid accumulation in mice fed a high-fat diet, and

prevents the development of insulin insensitivity, obesity,

and other related metabolic abnormalities [26–28]. Fur-

thermore, diverse Nrf2 activators, such as phenethyl iso-

thiocyanate, resveratrol and oltipraz, can attenuate

lipopolysaccharide-induced nuclear factor-jB activation,

insulin resistance, and obesity that have been induced by a

high-fat diet [29–31]. These findings suggest that Nrf2

deficiency, and the resulting impaired antioxidant activity,

are important for the susceptibility to obesity-related met-

abolic, inflammatory and oxidative stress diseases.

Interestingly, it has been demonstrated that Nrf2

expression increases during the development of NAFLD

and NASH in mice and that the increase reflects the

severity of disease [4]. Although no significant differences

were found between normal and model groups with respect

to Nrf2 expression (data not shown) in our study, Nrf2

protein expression presented a rising trend in our model

group rats. This suggests that Nrf2 functions as a defense

system in the development of NASH. In fact, accumulating

evidence has demonstrated hepatoprotective effects of Nrf2

[32]. In addition, Chowdhry and colleagues found that

Nrf2-/- mice were considerably more sensitive to NASH

on the methionine- and choline-deficient diet. The Nrf2-/-

livers suffered more oxidative stress than their wild-type

counterparts as assessed by a significant depletion of

reduced glutathione that was coupled with increases in

oxidized glutathione, MDA, and inflammation [33]. The

above findings suggest that Nrf2 associates with NASH and

may be a novel therapeutic target for the prevention and

treatment of fatty liver disease.

Curcumin, a natural phenolic compound found in the

dietary spice turmeric, derived from the rhizome of

Fig. 2 Expression of HO-1 mRNA and GAPDH in liver tissues. HO-

1 heme oxygenase-1, GAPDH glyceraldehyde-3-phosphate dehydro-

genase. A Normal group; B model group; C treatment group. Data are

mean ± standard error of three groups. aP\ 0.05, compared with

group A; bP\ 0.05, compared with group B

Fig. 3 Expression of Nrf2 protein in liver cell nucleus in each group.

Nrf2 nuclear factor-erythroid 2-related factor 2. A Normal group;

B model group; C treatment group. Data are mean ± standard error of

three groups. bP\ 0.05, compared with group B

Table 5 Contents of MDA and GSH and activity of SOD in livers of

each group

Group MDA (nmol/

mgprot)

GSH (mg/

gprot)

SOD (U/

mgprot)

Normal 0.7 ± 0.1 1.5 ± 0.1 386.3 ± 43.8

Model 1.6 ± 0.0a 1.2 ± 0.2a 335.5 ± 25.8a

Treatment 0.5 ± 0.1b 1.6 ± 0.2b 420.1 ± 42.0b

Data are mean ± standard error of three groups

MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase
a P\ 0.05, compared with normal group
b P\ 0.05, compared with model group
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Curcuma longa, regulates lipid metabolism, and exerts

anti-inflammatory, anti-oxidation and anti-cancer effects in

a variety of pathological conditions including cancer,

inflammation, obesity and cardiovascular disease [8–12].

Recently, several lines of evidence have suggested that

curcumin inhibits oxidative stress and inflammation by

triggering Nrf2 signaling. For instance, dietary curcumin

increases Nrf2 expression at the transcriptional and trans-

lational levels, suggesting that Nrf2–Keap1 interaction

enables Nrf2 to translocate to the nucleus [6, 7]. Activated

Nrf2 binds to the antioxidant-responsive element and ini-

tiates the transcription of genes coding antioxidants against

oxidative/nitrative stress and inflammation. Curcumin can

also elicit its prostate cancer chemopreventive effect in

TRAMP C1 cells, potentially through epigenetic modifi-

cation of the Nrf2 gene with its subsequent induction of the

Nrf2-mediated anti-oxidative stress cellular defense path-

way [34].

Although numerous studies confirm its potential bene-

ficial role, the mechanisms whereby curcumin might be

effective at mitigating NASH remain unclear. In the pres-

ent study, NAFLD rats induced by high-fat diet, showed

marked reduction of steatosis and inflammation after being

treated with 50 mg/kg curcumin for 6 weeks. These data

agree with the efficacy of curcumin in NASH rabbits as

reported by Ramirez-Tortosa et al. [35], who also showed

that curcumin supplementation lowered the aminotrans-

ferase activity and the levels of TNF-a protein. Serum TG,

TC and FFA were reduced in our study. However, reports

about the influences of curcumin on lipids are contradic-

tory. While some reported data and our results showed the

hypolipidemic activity of curcumin [36–38], several

reports indicate that plasma lipid levels are not affected by

curcumin supplementation [35, 39]. This discrepancy may

be related to diet composition, concentration of curcumin,

method of supplementation, and duration of treatment. Our

results showed for the first time that curcumin could

improve insulin resistance; reduce liver MDA levels; and

increase hepatic GSH content, SOD activity and HO-1

expression, thus confirming the antioxidant effect of cur-

cumin in NASH model rats induced by a high-fat diet.

Moreover, we demonstrated for the first time that expres-

sions of Nrf2 and its target genes were enhanced in our rat

liver model of NASH, and that this Nrf2 induction by the

polyphenolic compound may be involved in its preventive

and therapeutic effects.

In conclusion, curcumin treatment attenuated insulin

resistance, serum lipids, oxidative stress, and liver

inflammation in rats with NASH induced by high-fat diet.

All the above results suggest that the beneficial effect of

curcumin occurred at least in part through activation and

modulation of the Nrf2–Keap1 signaling pathway. Based

on the findings of the present study, and due to the safety

profile as well as low cost of curcumin, we believe that

these studies might facilitate future clinical trials with

curcumin in the treatment of NASH.
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