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Additive manufacturing (AM) involves construction of 3D parts by sequen-
tially adding material to a component and has undergone advancements in the
range of materials used and the complexity of parts being printed. Laser
powder bed fusion (LPBF) AM, which is the focal point of this work, has
sparked interest in the materials and manufacturing community. LPBF has
the ability to print complex designs, which may reduce production costs
depending on materials, machine, time to print the part, and desired part
quality. These complex designs introduce complex processing spaces, result-
ing in local processing heterogeneities, which may limit the application of
LPBF. Hence, there is a need to develop methods to efficiently search for
process parameter sets that reduce local processing heterogeneities. We pre-
sent an optimization methodology implemented to demonstrate the advan-
tages of locally tailored process parameters to produce a more homogeneous
component. The optimization is applied to two geometries, using an optimized
single parameter set for the entire geometry and locally optimized scan
parameters developed based on vector level analysis. Lastly, we show how
different optimized scan parameter sets can be related to the different sub-
regions in the part in a generalized way to be applied to numerous geometries

without retraining.

INTRODUCTION

Additive manufacturing (AM), unlike conven-
tional subtractive manufacturing, constructs the
desired part by adding material to reduce waste.
AM has been finding extensive applications in many
domains, such as aerospace, automotive, medical,
dental, and others.! It is valuable to these domains
because it can print and fabricate complex parts
with intricate geometries rapidly with a good sur-
face finish and accuracy.

Laser powder bed fusion (LPBF) is a hot topic in
the metal AM world due to its design flexibility and
provision for location-specific process control. How-
ever, location-specific process control may be diffi-
cult in complex geometries. Complex geometries
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have many unique constituent parts that require
their own set of location-specific process parame-
ters. Consequently, exploring the AM processing
space for acceptable location-specific process param-
eters can be slow. Our previous work focused on
creating a pipeline for integrating physics-based
process modeling with machine learning and opti-
mization techniques.? The pipeline was illustrated
on small-scale, basic geometries that varied in size.
This research work is committed to developing
location-specific process parameters using compo-
nent processing history to achieve homogeneity.
How the laser source moves across the powder
bed drives LPBF’s locally resolved thermal history.
Thermal histories (or temperature versus time
curves) are an important aspect of a material’s
processing because they can have strong influences
on the thermophysical properties of the material.
These properties can affect distortions, mechanical
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properties, and melt pool characteristics. The laser’s
movement is dictated by the path planning strategy,
which describes the laser positions, powers, veloc-
ities, focus, and on times for each layer of the part.?
Differences in the path planning strategy affect the
local processing conditions in the part. Thus, path
planning strategy selection is critical because it
drives the quality and the properties of the final
fabricated part, especially in a complex part geom-
etry with intricate features.*

In this paper, we describe a method for controlling
the local thermal history of a part by adjusting the
laser positions, power, and speed. Section “Laser
Scan Strategies in LPBF and Impact on Local
Processing” introduces laser scan strategies in
LPBF. Section “Simulating Thermal Fields in
LPBF” outlines our thermal model and how we
assess local thermal history in a part. Section “Opti-
mization of Local Thermal Histories” defines our
optimization framework, focusing on quality mea-
surements, local part region definition, proportional
control of power and speed, convergence of results,
and post-processing. Section “Results” shows the
results of our process to generate a more homoge-
neous local thermal history for different path plan-
ning strategies and part geometries.

LASER SCAN STRATEGIES IN LPBF
AND IMPACT ON LOCAL PROCESSING

During the LPBF process, the laser is translated
on each layer with the goal of melting the powder at
all points within the polygon(s) defined by the
intersection of the layer with the 3D component
being printed. There are endless laser paths that
could achieve this goal, but the most common scan
strategy in LPBF follows a serpentine pattern. It is
a simple strategy where the laser rasters over the
powder bed in a ‘back-and-forth’ pattern. Each
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segment of the path where the laser is moving in a
constant direction is generally referred to as a
vector. When the laser reaches the end of a vector, it
translates perpendicular to that vector a small
distance, often referred to as the hatch spacing,
and then moves along another vector that is anti-
parallel to the previous vector. In this strategy, the
length of the vectors has a large impact on the
thermal histories within the part, since they control
how long it takes for the laser to move away from
and then back towards a given position in the
component.

Typically, LPBF machine vendors will establish
general scan strategies that are then intersected
with the components the users want to print. To
keep the vectors short and bind thermal histories,
the general laser scan strategy will predivide the
build domain into subregions. There are multiple
methods for doing this (e.g., checkerboards or lanes/
stripes), but the common motivation is to standard-
ize the length of the vectors the laser moves along.
The vectors will run from one side of the subregion
to the other but not extend past the subregion
(Fig. 1). Typically, the subregions will be rotated
from layer to layer to ‘randomize’ the directions of
the vectors. After all the vectors are predefined,
they are then intersected with the part boundaries
on each layer, with any portion of any vector falling
outside of the component being discarded. As shown
in Fig. 1a, the vector in the bottom right consists of
three segments inside the part: (1) a short segment
bounded by the part geometry and a predefined
boundary; (2) a max-length segment bounded by two
predefined boundaries; (3) a near max-length seg-
ment bounded by a predefined boundary and the
part geometry. Overall, this strategy produces
many vectors that are of similar length that run
from one side of a subregion to another; however,
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Fig. 1. lllustration of vector generation using the common industry scan strategy (A) and custom scan strategy (B). Predefined stripe boundaries

for the common industry strategy are represented with dotted lines.
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Fig. 2. Vectors in the common industry strategy (A) versus the custom scan strategy (B). The black lines in the common industry scan strategy
represent the predefined stripe boundaries that drive vector segmentation along with the part boundaries. Coloring corresponds to the order in
which the vectors are traversed by the laser, with blue being first and red being last (Color figure online).

there is no control of very small vectors that result
from the intersection of vectors with the part
boundaries. Notably, some LPBF machine vendors
try to implement adjustments for this, but they are
generally ad hoc.

One could design a subtly different approach
that does not predefine vectors, but rather gener-
ates vectors specific to the component geometry
being printed, to ensure more uniform distribution
of vector lengths. One such custom scan strategy
is shown in Fig. 1, which uses the same parallel
vectors on each layer as the common industry
strategy but implements a different segmentation
strategy. Instead of using predefined boundaries
and then the part geometry borders, the custom
strategy starts segmentation with the part geom-
etry borders. The intersections of the part borders
and an infinite vector are determined, and the
lengths of the vector segments are calculated.
Similar to the common industry strategy, it is
desirable to segment these vectors if they are too
long. A maximum length can be defined, and if a
vector is longer than the maximum, it is seg-
mented into n equal lengths, where n is the
number of maximum length vectors that can fit
on the vector plus one. Figure 1 illustrates the
results of the segmentation steps on two different
vectors. The common industry strategy creates
short segments that are not in the custom scan
strategy. The custom strategy does not have
predefined stripe boundaries, which allows the
segmentation to be flexible, preventing scan vec-
tors with lengths at the extremes. Figure 2 shows
the results of the two scan strategies for a single
layer of a simple component. The color in the
image represents the time the vector was tra-
versed by the laser, with blue being first and red
being last.

SIMULATING THERMAL FIELDS IN LPBF
Thermal Model

The scan path planning strategy directly affects
the local thermal histories that are generated
because the laser positions, powers, velocities, focus,
and on time all affect the local energy input.
Modeling how the scan path of the laser affects
the local processing within the component is advan-
tageous because it eliminates the need to collect
empirical data on laser scan path parameters that
produce the desired material properties in the
component. Acquiring such empirical data in LPBF
requires a thorough investigation of a large param-
eter space, which is cost and time intensive. This
cost can be avoided by modeling the results of laser
scan paths. Due to the large potential laser scan
path parameter space, it is important that the
thermal model used is computationally efficient. To
achieve this efficiency, the thermal model used in
this paper does not consider power losses brought on
by laser plumes, powder dispersion, or melt pool
dynamics such as waves, sloshing, or convection.’
These parameters could and may be modeled by
other groups, but we excluded them because our
model offers a sufficient illustration of the LPBF
thermal effects for this parameter space search
method at an acceptable computational speed.

The thermal model used in this work is presented
in significantly higher detail in Ref. 6 and in similar
work.” The model represents the laser’s continu-
ously moving Gaussian energy source as a discrete
stationary distribution of Gaussian points in space.
The discrete Gaussian energy source representation
is used to determine the local thermal histories via
an analytical thermal model, derived using a Green
function approach. The analytical thermal model
gives the relationship for the temperature at the
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location 77 at a time ‘t’ due to all sources 77, as
represented in Eq. 1,

Analytical thermal model for discrete energy
source

N nP;AtO(t — 1;)

T t) =
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(1)

where 5P; is the effective power at the source, P is
the nominal power, 7 is efficiency, ¢ — 7; is the time
since source 7’ was activated, At¢ is the source
discretization, © is the Heaviside function, ¢ is the
beam radius, p is mass density, c, is the heat
capacity, and « is the thermal diffusivity.

In this work, the scan paths are fixed, which fixes
the locations of all Gaussian point sources. During
the optimization process, the power and speed of the
individual vectors will be modified, which in turn
set the power and times associated with each
Gaussian point source.

Thermal History Dimensionality Reduction

The thermal history output from the thermal
model has high dimensionality because it describes
the temperature at a point for each time step in the
simulation. Consequently, computing the thermal
history changes at a point would be computationally
prohibitive. Therefore, a reduced space needs to be
identified that can track the most relevant details of
the thermal history, which may be material and
application dependent.

The thermal model output is discretized using a
SAX approximation,® which produces a categorical
labeling at each time step rather than an exact
temperature; see Fig. 3. In this work, the temper-
ature values were assigned to one of five categories,
which correspond to phase transition temperatures
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for the titanium alloy being simulated. The catego-
rization itself does not reduce the dimensionality of
the thermal history. For this paper, the thermal
histories were reduced to the total time a point
spent in the category associated with being in the
liquid phase (i.e., the total time molten). The total
time molten was selected as the parameter to
optlmlze because it correlates to potential material
defects.” Moreover, the total time molten is con-
trolled by the input energy density, which is a
function of the laser power and the time spent near
the point. These values are directly controlled by
the scan path planning strategy discussed previ-
ously. Total time molten is not the only relevant
metric for controlling part quality, but it was
selected as a starting test case. Additional metrics
that are relevant to microstructure formation,
residual stresses, or other aspects of part quality
could also be included.

OPTIMIZATION OF LOCAL THERMAL
HISTORIES

Quantification of Vector Contribution
to Quality

The thermal model provides point histories but
does not directly describe the thermal history for a
vector in the scan path planning strategy. To
address this, points were sampled in a boundary
around the vector, and their thermal histories were
grouped to develop a parameter that could define
the melt quality of a vector. In addition, thermal
influences on the vector from nearby vectors were
considered to develop a metric that considered the
local heating of LPBF.

Points were sampled around the vectors using the
melt pool as a boundary (Fig. 3). The vector’s melt
pool has the strongest influence on points within
one layer thickness and one hatch spacing centered
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Fig. 3. Cross section of a scan vector melt pool in the perpendicular direction including influences from the neighbors (A). Thermal histories for a
scan vector with the relevant isotherms for an exemplar metal (B). The colored lines in the cross section match the isotherm ranges in the thermal
history graph. The orange line in the cross section is the only area where points will reach the liquid phase. As shown, there is a small overlap in
the liquid phase between the middle vector and either neighbor (Color figure online).
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Fig. 4. Latin hypercube sampled points shown in a 2D space within a boundary defined by the hatch spacing width and length of the scan vector
(A). Identification of scan vector neighbors and their associated Gaussian weights based on the overlap with a smoothing window of ¢ = % (B).

on the vector. For every layer, points were sampled
using a Latin hypercube sampling’® method in a
three-dimensional sampling space around the vec-
tors (Fig. 4). This sampling space was bounded by
the layer thickness, hatch spacing, and length of the
vector to simulate the points that would be most
influenced by the vector. A uniform sampling den-
sity of 50 points/mm was used to create a consistent
representation despite the varied length of the
vectors. The sampling space is defined by a rectan-
gular domain that surrounds the vector with prin-
cipal axes along: (1) the length of the vector; (2) the
direction perpendicular to the vector in the surface
of the layer; (3) the direction perpendicular to the
layer (i.e., the build direction). The domain was
bounded by the length of the vector, a hatch spacing
centered on the vector, and the layer thickness, in
the three respective directions. After these points
were sampled, the coordinates were converted to the
X, y, and z space of the vectors.

The total time molten for the sampled points was
compared to a set desired total time molten of
1.2 ms. This desired time was selected to prove the
concept of the paper that the total time molten can
be controlled but it does not have a known relation
to desirable material properties. The difference
between a point’s total time molten and the desired
total time molten was defined as the ‘thermal error’
for a point. A scalar value for the vector’s melt
quality was generated by taking a weighted average
of the thermal errors based on the point’s perpen-
dicular distance from the vector. The scalar value
for the vector’s melt quality was labeled the vector
thermal error. A positive vector thermal error
corresponded to over-melting of the vector and a

negative vector thermal error corresponded to
under-melting of the vector.

Defining a Descriptor of Local Scan Path

During the optimization process, each vector in
the laser scan path could be treated individually
and its parameters updated independent of any
other vectors. A drawback to this approach is the
large number of vectors to optimize over and the
inability to transfer the knowledge learned from one
component to another. Instead, a feature descriptor
was developed that could be used to categorize
similar vectors into groups. Categorizing the vectors
allows for the optimization to select parameter
updates for a set of vectors, which has benefits of:
(1) reducing the total number of parameter updates;
(2) smoothing the update actions by averaging over
multiple similar vectors; (3) learning a parameter
set for each category. The last benefit provides
generalizable parameters tied to a vector descriptor
that could be applied to vectors in a different
geometr%f1 ) 2Without rerunning the optimization
process.

The categorization of vectors into groups of sim-
ilar vectors is dependent on the definition of similar.
In this work, the aim was to group vectors where
the laser’s local raster path creates a similar
sequence of energy deposition. A three-component
descriptor was developed that captures information
about the vector and its nearest neighbors. A
vector’s nearest neighbors correspond to vectors
that are near it in both space and time. The LPBF
process is local, meaning energy entered into the
system at a point spatially removed from another
has little effect on the temperature at that point.
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Fig. 5. Reference and neighboring vectors in the tensile bar with common industry (A) and custom scan strategy (B).

Additionally, energy entered at a moment tempo-
rally removed from another has little effect on the
temperature at that time. As such, the nearest
neighbors for a particular vector were determined
using the temporal distance from and the projected
spatial overlap with the reference vector (Fig. 4).
Projected overlap was selected to determine the
spatial nearest neighbors because heat most rapidly
dissipates perpendicularly to the direction of travel
of the laser. To be a nearest neighbor of a reference
vector, a vector must meet these criteria: (1) the
vector covers > 50% of the length of the reference
vector, (2) the vector is lazed within a time period
that corresponds to the time necessary to print 5
maximum length vectors. Only one pre- and one
post-ceding vector are selected for a given reference
vector. If there are multiple pre- or post-ceding
vectors that meet both criteria, the closest to the
reference vector is selected. The three components
of the descriptor are the lengths of the preceding,
reference, and post-ceding vectors. The length of
each vector was chosen for the length’s impact on
thermal history noted in the previous section. The
descriptor maps each vector to a point in a 3D space.
Furthermore, the 3D descriptor space can be dis-
cretized into ‘bins’ that group vectors that have
similar nearest neighbors and thus similar energy
input schedules.

The descriptor space of a rectangular cuboid
component, referred to from here as a tensile bar,
is visualized in Fig. 5 to compare vector distribu-
tions for the common industry and custom scan
strategy. The custom scan strategy has a sparser
distribution and, therefore, fewer unique vectors
compared to the common industry scan strategy.
This implies that the custom scan strategy gener-
ates a more homogeneous vector distribution than
the common industry scan strategy. Consequently,
scan path plans generated with the custom scan
strategy are expected to have fewer unique local
scan regions and require fewer parameters to
control the thermal history.

The number of unique parameter sets used within
the component and the amount of averaging across
vectors can be adjusted by changing the bin size of
the descriptor space. We selected two different
parameter sets and bin sizes for the optimization
step. A single parameter set was selected that used
a single bin to control the power and velocity for
every vector in the entire part. This was selected to
replicate the current method for controlling power
and velocity on typical LPBF machines. In addition
to the single parameter set, a large parameter set
was selected that used 20 x 20 x 20 binning in the
descriptor space. This binning yielded 8000 unique
powers and velocities that could be used to adjust
different vector groupings. The large parameter set
was compared against the single parameter set to
determine the impact of using more parameters to
homogenize the thermal histories.

Scan Vector Parameter Update Strategy

The scan vector parameters were updated using
proportional control with clipping. The idea for the
update is based in the classic control example of
building temperature regulation using a thermo-
stat. The scan vector neighborhoods can be thought
of as rooms that should be kept at a consistent
temperature. Thus, in a process similar to a ther-
mostat, we compare the difference between the set
point and the actual temperature of a scan vector,
which has been captured in the vector thermal
error, to make our adjustments. The vector thermal
error is used to update the input energy density via
heuristic knowledge. Specifically, the input energy
density is adjusted using the power and velocity in
the scan path planning strategy parameters. If the
scan vector neighborhood is too cold, or under-
melted, the input energy density is increased by
increasing the power and decreasing the speed. If
the scan vector neighborhood is too hot, or over-
melted, the input energy density is decreased by
decreasing the power and increasing the speed. The
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power and velocity were bounded by the operating
conditions of a real-world LPBF machine.

Calculating the vector thermal errors with a
weighted average led to large vector thermal errors
when there were large point thermal errors. These
large vector thermal errors generated large param-
eter updates, which caused fluctuations around the
set point. Again, this can be compared to thermostat
fluctuations, which are undesirable because they
increase the settling time. A clipping function was
introduced to reduce the magnitude of the update
and decrease fluctuations. Multiple clipping func-
tions were compared and each function bounded the
update by 5% of the magnitude (Fig. 6). The tanh?
function was selected as the best clipping function
and was used to update the power and velocity for
each scan vector on every layer.

Updates to the power and velocity were smoothed
using a Gaussian kernel (Fig. 4). This was done to
account for the local influence the vectors will have
on each other. Specifically, if the input energy
density increases for each vector, then the local
input energy density will increase, and each vector
will require less energy to reach the desired total
time molten. This is similar to the heating or cooling
effect that connected rooms in a house will have on
each other. If the heat transfer between the rooms is
not considered, the system will over-compensate
and miss the set point. Hence, the smoothing is a
method to account for the heat transfer in the local
processing region of a vector and prevent over-
compensation by the controller.

This proportional control method was used to
optimize the scan vector parameters on each layer
in the scan path planning strategy. The layer’s
sampled points had converged if: (1) > 99% were

molten > 0 ms; (2) 2 95% were molten > 0.5 ms;
(8) < 5% were molten > 0.9 ms. These thresholds
were chosen to show that the distribution of the
vector thermal errors could be controlled. In addi-
tion, an early stopping criterion was used for layer
optimization. The early stopping criterion measured
the absolute difference between sampled points
with a total time molten > 0 ms for: (1) the current
iteration and (2) the moving average over the last
three iterations. If the absolute difference dropped
below 0.005, the optimization had converged.

Clipping Functions to Reduce Fluctuations

The following clipping functions were compared:
(1) ‘scaled’; (2) tanh; (3) tanh?; (4) tanh®. The ’scaled’
function updates each vector based on the fraction
of that vector‘s thermal error divided by the max-
imum vector thermal error on that layer. Conse-
quently, varying max vector thermal errors on the
layers will generate different outputs for the same
input vector thermal error when using the ’scaled’
function. The hyperbolic tangent clipping functions
were selected because they are a commonly used to
limit deep neural network weight updates.'® In
addition, each hyperbolic tangent function has
different behavior around 0, which will affect the
ability of the system to settle around the set point
based on the vector thermal error. The tanh?
function will only give positive outputs based on
the vector thermal error, so the output was multi-
plied by the sign of the vector thermal error.

The clipping functions were evaluated based on
the difference between the results and the desired
total time molten and the number of iterations until
convergence. The optimization was run for each
clipping function on one layer of a simple
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Fig. 6. Example outputs for different clipping functions based on
vector thermal error. As the power of the hyperbolic tangent function
increases, the plateau of the output around 0 increases.
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rows show (A) the tensile bar before optimization, (B) ‘scaled’ results,
(C) tanh results, and (D) tanh? results (Color figure online).
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rectangular cuboid component (Fig. 7). The ‘scaled’
and tanh?® functions create a visually more homo-
geneous part than the tanh function. This occurs
because the tanh? and the ‘scaled’ functions have a
similar slope near 0. The tanh function, however,
has a steep slope near 0 that may perturb low vector
thermal errors and cause the system to over-correct.
Consequently, more energy is added to bulk and
corner regions that have reached a steady state
until the optimization process terminates. The
darker blue ‘lines’ that are present in the bulk, as
well as near the perimeter of the component, are the
locations where the laser reaches the end of a vector
and turns off while traversing to the next vector.
There are sophisticated laser acceleration and
deceleration parameters that can be implemented
on LPBF machines to attempt to mitigate these
features. It is out of the scope of this work to
optimize those parameters as well though that could
be done with this same approach.

The point thermal error distributions were exam-
ined for a more detailed comparison (Fig. 8). These
distributions confirm that the ‘scaled’ and tanh?®
functions have tighter distributions closer to the
desired total time molten than the tanh function.
Also, the tanh function has a longer tail, which
indicates that the part is overheating in certain
regions. The tanh? function has a higher peak,
which means that it has more points near the
desired total time molten. Additionally, the left tail
is slightly shorter, and the right tails are the same
for the tanh? and ‘scaled’ functions. Therefore, the
tanh? function created fewer under-melted points
while maintainin% the same number of over-melted
points. The tanh” function converged the fastest,
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Fig. 8. Distributions of the point thermal error for the optimized
tensile bar results obtained via the different clipping functions. The
point thermal error is the difference between the optimized results
and the desired total time molten.
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taking just 5 iterations compared to the 12 itera-
tions required for the ‘scaled’ function and 20
iterations required for tanh. In short, the tanh?
function produced less error between the results
and the desired total time molten while also con-
verging faster. Thus, it was selected as the best
clipping function and was used for all optimization
runs going forward.

Accounting for Heat Transfer with Smoothing

Once the best clipping function was chosen, the
influence of the smoothing parameter, ¢ on the
optimization results was examined. This value
assigned weights to the nearest neighbors of a
reference vector by using a Gaussian weight kernel
(Fig. 4). Nearest neighbors were determined based
on distance and projected overlap. To be a nearest
neighbor of a reference vector, a vector must meet
these criteria: (1) the vector covers > 50% of the
length of the reference vector and (2) the vector is
one of the pre- or post-ceding vectors in the smooth-
ing window of the reference vector in a time sorted
list. Both criteria ensure the neighboring vector has
a non-negligible influence on the thermal history of
the reference vector. Again, if we compare this to
building heat transfer, small rooms or far away
rooms are not likely to significantly contribute to
the temperature in a given room.

These values, combined with the tanh? function,
were used to obtain new optimization results. The
results showed no visible difference, and the distri-
butions were similar for all values of ¢ (Fig. 9).
However, these values did affect the speed of
convergence, and ¢ =5/3 reached the optimized
state in fewer iterations. The similarity in the
results may be explained by the melt pool overlap
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Fig. 9. Distributions of the point thermal error for the optimized
tensile bar results obtained via the different {sigma} values.
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of neighboring vectors (Fig. 1). The melt pool of a
scan vector is mostly isolated from its neighbors,
except for some small overlap from the closest
vectors. Therefore, it should be expected that the
input energy required for melting will only transfer
between the vectors on either side of the current
vector. Consequently, we expect that any smoothing
window considering more than one neighbor, or
o= %, will not affect the optimization because not
enough heat transfers for melting. However, it may
be valuable to consider the smoothing window and
heat transfer effects for lower temperature phase
transitions such as the o or § phase. These transi-
tions require less input energy density, and it would
be important to consider the heat transfer in a
larger neighborhood.

Convergence of Optimization Results

After determining the best clipping function to
update the power and speed for the vectors on a
layer and selecting a ¢ value that smoothed the
update to account for local thermal influences from
nearby vectors, all the layers were optimized for
two different geometries. The geometries optimized
were a tensile bar and a T-object. The tensile bar
had 115 layers, and the T-object had 500 layers to
be optimized, where each layer was rotated by 67°
according to LPBF conventions. For the first layer,
the scan vectors are initialized with a baseline
power of 300 W and a baseline speed of 1300 m/s.
After each layer is optimized, the scan vectors for
the next layer are initialized by checking them
against bins of similar scan vectors in similar part
regions on previous layers. If a similar scan vector
has not been seen on a previous layer, it is
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Tl —— T-Object
1500
wn 1250
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Fig. 10. L2 norm difference between the previous and current layer’s
optimized results for the tensile bar and T-object.

initialized with the baseline conditions of power
and speed. Once all layers were optimized, the
convergence of the results for each geometry was
examined to confirm the method was reducing the
vector thermal error and driving the geometry
towards the desired total time molten. In addition,
a support vector regression (SVR) function'* was fit
on the bins that described similar scan vectors in
similar part regions to determine whether general
part regions could be optimized in a single geom-
etry and transferred across layers or across
geometries.

For the layers in the geometry, the scan vectors
were binned in a 20 x 20 x 20 dimensional space
based on their lengths and the lengths of their pre-
and post-ceding neighbors. Each bin consisted of the
number of vectors in each bin, their powers, and
their speeds. These values created an average
power and speed associated with each bin that
was used to update the power and speed for any
additional vectors in that bin on subsequent layers.
After optimizing each layer, the output was an N x
N x N of N x N x N matrix of powers and speeds.
These powers and speeds were associated with a
total time molten for the layer. For subsequent
layers, the difference between the total time molten
was found using the L2 norm (Fig. 10). The
optimization is reducing the difference in the total
time molten for each geometry and either reaching
the desired total time molten criteria or the early
stopping criteria.

Smoothing Optimization Results

Once the optimization was carried out for a
geometry, the output nxnxn matrix of powers and
speeds was stored. Two different cases were exam-
ined in this work, n = 1, or the single parameter
condition, and, n =20, or the large parameter
condition. In the case of the large parameter
condition, support vector regression (SVR) was used
to fit a functional rePresentation of the data in the
3D descriptor space.'* To fit this function, first, the
matrix was preprocessed to remove powers and
speeds equal to zero. Then, the resulting data were
split into 80% training and 20% testing data. Next,
the hyperparameters were narrowed down using a
grid search technique, and the best hyperparame-
ters were selected using the k-fold cross-validation
technique.!® After determining the hyperparame-
ters, the SVR surface was fit on the training data
and predictions made on the testing data yielded R*
values of 0.8985 for the power and 0.9153 for the
speed. These values show a strong positive correla-
tion between the vector groups and the optimized
powers and speeds. Thus, we suspect a general
trend exists between the scan vector parameters
and the vector descriptor defined in Section “Defin-
ing a Descriptor of Local Scan Path” that can be
estimated with a surface. This surface can be used
to predict the vector parameters given a vector
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Fig. 11. Tensile bar (A) and T-shaped object (B).
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Fig. 12. Baseline and optimized tensile bar results obtained using the common industry scan strategy. Results shown are baseline (A), optimized
single parameter (B), and optimized large parameter (C). The color bar represents the difference between the total time molten and the desired
total time molten (Color figure online).
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descriptor for a vector in any component and reduce
the need for simulation and optimization runs.
Having this functional form of the relationship
allows a user to choose any level of control they
would like regarding the discretization of the vector
descriptor space.

RESULTS

The results presented in this work are from two
component geometries to show variations between
components of different geometric complexity. The
first geometry considered was a simple rectangular
cuboid (referred to as tensile bar in this paper). The
second geometry considered was a T-shaped object,
with slightly more complex features like thin and
thick cross sections. The geometries are shown in
Fig. 11.

In the analysis of the results, the goal time molten
was estimated to be ~ 1.2 ms. Notably, each layer
was optimized individually and did not directly
optimize the time molten in 3D, where subsequent
layer melting would increase the total time molten
at a given location in the component. The optimiza-
tion criteria on each layer drove the time molten
towards 0.5-0.7 ms within the layer but would also
remelt the previous layer for a shorter time. Typ-
ically, a layer remelts two layers below but for
increasingly shorter times. It was estimated that a
given point in the component, with ideally opti-
mized vectors, would be melted for 0.6 ms, 0.4 ms,
and 0.2 ms by the three layers that would melt it
(totaling 1.2 ms). This estimate is noted on all plots
as the goal time molten but should be treated as a
rough estimate and is not what was actually the
optimization criterion.
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Fig. 13. Baseline and optimized tensile bar distributions using the
common industry scan strategy.
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Fig. 15. Baseline and optimized T-object distributions using the
common industry strategy.
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Fig. 14. Baseline and optimized T-object results obtained using the common industry scan strategy. Result shown are baseline (A), optimized
single parameter (B), optimized middle parameter (C), and optimized large parameter (D). The color bar represents the difference between the
total time molten and the desired total time molten (Color figure online).
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Fig. 16. Baseline and optimized tensile bar results obtained using the custom scan strategy. Results shown are baseline (A), optimized single
parameter (B), and optimized large parameter (C). The color bar represents the difference between the total time molten and the desired total
time molten (Color figure online).
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Fig. 17. Baseline and optimized tensile bar result distributions using
the custom scan strategy.

Common Industry Strategy

Figure 12 shows the results of the tensile bar
optimized using the common industry scan strategy
with the selected clipping function and value. The
common scan strategy creates triangular corner
regions within the part where the vectors are all
very short. The baseline parameter set (300 W and
1200 mm/s) shows that large portions of the part are
below the desired time molten with increased total
time molten in the corners. The optimized single
parameter set returned an optimal power of 311 W
and an optimal speed of 1257 mm/s. This parameter
set improved the melt quality of the bulk regions at
the expense of the corner regions. The single
parameter cannot address the differences in local
processing conditions in the bulk and corner
regions. The large parameter set is able to reduce
the differences by using more parameters sets to
balance the needs of the corner and bulk regions.

The visual results are supported by the distribu-
tions shown in Fig. 13. The baseline has the lowest
mean total time molten followed by the large
parameter set and then the single parameter set.



Optimization of Local Processing Conditions in Complex Part Geometries Through Novel Scan 111

Strategy in Laser Powder Bed Fusion Process

0 0

100 100

200 200

300 300

400 400

200

(A) (B)

-0.2

-0.4

(C)

Fig. 18. Baseline and optimized T-object results obtained using the custom scan strategy. Results shown are baseline (A), optimized single
parameter (B), and optimized large parameter (C). The color bar represents the difference between the total time molten and the desired total

time molten (Color figure online).

le6
1.0

—— Baseline

---= Single Parameter Set
-~ Large Parameter Set

---- Desired Dist. Mean

Mean = 0.89

Median = 0.90

SD =0.30

5th percentile = 0.40
95th percentile = 1.35

Mean = 1.14

Median = 1.15

SD =0.35

5th percentile = 0.55
95th percentile = 1.70

Counts

Mean = 1.16

Median = 1.20

SD =0.33

5th percentile = 0.60
95th percentile = 1.65

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Molten (ms)

Fig. 19. Baseline and optimized T-object result distributions using
the custom scan strategy.

This confirms that the optimization strategy can
control the scan vectors to reach a desired total time
molten for the part. The large parameter set
generates a more homogeneous part, as seen by a
lower standard deviation. However, the large
parameter set is farther from the desired set point
than the single parameter set. This may be an effect
of the control strategy falling into local minima.
Importantly though, the large parameter set
reduces the severely overmelted points that are
present in the single parameter set case.

Similarly, the T-object was optimized using the
common industry scan strategy, and the results are
shown in Figs. 14 and 15. The results followed
similar trends seen in the tensile bar. An additional

parameter set size, termed medium parameter set,
which uses a 5 x 5 x 5 discretization of the vector
descriptor space was added to determine the min-
imum level of control needed for the common
industry scan strategy. The medium parameter set
had a mean total time molten between the single
and large parameter sets, which followed an
expected trend. As the level of control increases, so
does the homogeneity of the part, though not
linearly. It is clear again that the large parameter
set case is able to significantly reduce the severely
overmelted regions. Because the large parameter
set case can provide more control of the vectors, it is
able to keep the vectors closer to the individual
layer goal of 0.5 ms. This is likely the reason the full
3D time molten (with remelting from subsequent
layers) is slightly lower than the estimated target of
1.2 ms.

Custom Strategy

Compared to the common industry scan strategy,
the custom scan strategy generates a visually more
homogeneous part for all three optimized conditions
of the tensile bar (Fig. 16). However, the baseline
condition is significantly undermelted. Visual
results are supported by the distributions for each
condition (Fig. 17). The standard deviations for the
baseline and single parameter set were reduced.
The standard deviation for the large parameter set
remained the same, but the mean is closer to the
desired total time molten. Therefore, the custom
scan strategy generates a more homogeneous part
than the common industry scan strategy. This
strategy generates scan vectors that are more
homogeneous by removing the outlier scan vectors
that the common industry scan strategy generates.
In addition to the lower standard deviations, the
distributions show that the single and large param-
eter sets have the same mean and almost the same
standard deviation. This supports the homogeneity
of the custom scan strategy vectors because a single
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Fig. 20. Baseline and optimized T-object results obtained using the common industry scan strategy. The optimization was performed on the
tensile bar and then applied to the T-object to test the generalizability of the approach. Results shown are T-object baseline (A), optimized single
parameter tensile bar results applied to the T-object (B), and optimized large parameter tensile bar results applied to the T-object (C). The color
bar represents the difference between the total time molten and the desired total time molten (Color figure online).
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Fig. 21. Baseline and optimized T-object result distributions using
the common industry scan strategy with generalization from tensile
bar to the T-object.

parameter set can optimize the scan vectors nearly
as well as 8000 parameter sets. The single param-
eter does well because the scan vectors in the
custom scan strategy are more uniform in length
relative to the common industry strategy.

The results of the optimized T-object using the
custom scan strategy followed a similar trend seen in
the tensile bar (Figs. 18 and 19). These results demon-
strate that the custom scan strategy can generate
homogeneous vectors on more complicated geometries.

Generalizability of Optimization Approach

Generalizability, somewhat different from trans-
fer learning,'®'” in this application refers to using

the optimized results from one geometry (i.e., the
tensile bar) and applying them to another geometry
(i.e., the T-object). The optimized results should not
depend on the geometry of the part but the distri-
bution of the part’s scan vectors. If scan vectors and
scan vector neighborhoods of two parts are similar,
the optimized parameter sets should be
generalizable.

The ability to generalize is accomplished through
the vector descriptor space, which can be either a
single or a large parameter set. The vector descrip-
tor space attempts to generalize the local scan paths
contained in a geometry. If enough vectors with
unique vector descriptors have been seen by the
algorithm, any new geometry could be optimized by
using previously learned results. This is not typical
transfer learning referred to in machine learning,
but generalization because optimized conditions are
mapped into a generalizable space that can be
applied to another geometry. To demonstrate the
generalizability, the optimized parameters for the
common industry strategy applied to the tensile bar
were ‘transferred’ to the T-object (Figs. 20 and 21).
Visually, the T-object looks similar whether it is
optimized with the tensile bar results or its own
results. This is true for both the single and large
parameter sets, which have hot spots in similar
locations. The distribution for the single parameter
set in both cases is the same. The mean, median,
standard deviation, 5th percentile, and 95th per-
centile values are all equal in the original custom
industry scan strategy and in the ‘transferred’ case.
The distribution for the large parameter set is
slightly better in the ‘transferred’ case compared to
the original case. The mean of the distribution is
closer to the desired total time molten, and the
standard deviation increases minimally. Conse-
quently, this suggests that the optimized results
from one geometry can be used to optimize a
different geometry. Similar results were seen when
testing generalizability on the custom scan strategy.
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CONCLUSIONS AND FUTURE WORK

This paper presents a methodology for homoge-
nizing the total time molten for a LPBF part. An
optimization process was outlined that changes the
scan parameters of power and speed to move the
total time molten for each scan vector to the desired
total time molten. The best update strategy utilized

a tanh? function to clip the step size during the scan
parameter update. A smoothing method was exam-
ined to account for the influence of neighboring
vectors on a particular vector. The smoothing did
not have a strong influence on the distribution of
total time molten for the scan vectors. However, the
optimization converged faster if the smoothing
parameter, o, was > 5/3.

The results showed that a more homogeneous
total time molten in an LPBF part geometry was
achieved when optimizing the power and speed at
the vector level. The optimized vector parameters
were selected based on the scan vector lengths and
the lengths of their neighboring vectors. In addition,
once the vectors were optimized in one geometry,
the optimized parameters could be applied to sim-
ilar vectors in a different geometry. It was shown
that a generalizable vector descriptor allowed for
the transferability of the parameter sets. In general,
the most homogeneous total time molten was
obtained when the vectors were grouped with
similar vectors in a more discrete manner in the
vector descriptor space.

An area of future work includes generating and
fitting a more meaningful optimization criterion.
Currently, the optimization simply targets a specific
total time molten for a layer based on domain
knowledge, but it is not certain what this means for
the properties of the part. A suggested criterion,
presented in the previous paper,” would be the
principal component analysis space of thermal
history. This space can capture the full thermal
history instead of just the total time melted, allow-
ing for direct linking between the optimization and
part properties. However, it is not currently known
how updating the scan parameters for a particular
vector will alter this space, and an investigation will
need to take place to understand this effect. Once
this effect is understood, optimization can be
applied to shift the points in the PCA space to
create the desired cluster(s).
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