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Mechanical properties are an essential standard for V–N steel hot-rolled
plates used in steel structures such as ship hulls, paint pipelines and offshore
platforms. To solve the problems of low production efficiency and low appli-
cability of the traditional physical metallurgy (PM) model, this study proposed
an adequate model, namely eXtreme Gradient Boosting based on Bayesian
optimization (BO-XGBoost). First, composition-process-yield strength data of
V–N steel hot-rolled plate with steel grade Q550D were collected, and K
nearest neighbor (KNN), support vector machine (SVR), multi-layer percep-
tion (MLP), random forest regression (RFR), gradient boosting regression
(GBR) and XGBoost machine learning (ML) models were established using
preprocessed data sets. Then, the Bayesian optimization method was used to
optimize the hyperparameters of the RFR and XGBoost models with better
performance. Therefore, the mechanical properties prediction model was
established, and the impact of feature processing and PM parameters on the
model was discussed. The results show that the BO-XGBoost model can
effectively predict the mechanical properties of high-dimensional industrial
big data and has excellent generalization ability (testing set Er = 93.52%,
MAE = 13.56 MPa, RMSE = 20.19 MPa), which is suitable for large-scale and
industrial production of V–N steel hot-rolled plate.

INTRODUCTION

As an essential variety of steel materials, plate
plays an irreplaceable role in national economic
construction, people’s lives and national security.1–3

V–N steel hot-rolled plate has realized mass indus-
trial production. Compared with the conventional
production process, the production process saves the
RH vacuum refining, quenching, tempering and
other heat treatment processes, dramatically
reduces energy consumption, realizes green produc-
tion and produces significant economic benefits.4

With the rapid development of computer technology
in recent years, mass data generated in V–N steel
hot-rolled plate production are collected and stored.

However, due to some plates’ unqualified mechan-
ical property data in the production process, the
products cannot be put into regular use. Therefore,
by establishing a mechanical property prediction
model to mine the considerable research value
existing in industrial big data, material science
theory and big data can be effectively linked, and
the law between the composition, structure, perfor-
mance and process of the material can be revealed
macroscopically. This provides practical guidance
for optimizing the chemical composition and pro-
duction process of products and improves the pro-
duction efficiency of products.5,6 However, in the
face of V–N steel hot-rolled plate products with a
large amount of data, complex production process
and various parameters, the traditional PM model
will consume much time and economic costs and be
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prone to failure. Thus, it is necessary to establish an
efficient prediction model for the mechanical prop-
erties of the V–N steel hot-rolled plate.

Artificial intelligence technology has gradually
emerged as an influential power for large-scale data
processing, steel performance prediction, material
composition design and process preparation.7–10

The mechanical properties prediction model based
on the ML algorithm has achieved remarkable
results and advantages in the field of big data
analysis for the steel industry. Hore et al. estab-
lished a prediction model of mechanical properties
of hot-rolled TRIP steel by combining an adaptive
neural network with a fuzzy inference system and
obtained the relationship between coiling tempera-
ture, tensile strength, elongation and other proper-
ties and achieved good prediction results.11 Qian
et al. established the DNN model based on compo-
sition and process parameters to predict the yield
strength (YS), tensile strength, elongation and
impact energy of hot-rolled steel plate. It is applied
to the factory’s manufacturing execution system to
assist the regular online production monitoring.12

Wu et al. established the tensile strength prediction
model of X70 pipeline steel based on stepwise
regression (SR), ridge regression (RR), Bayesian
regularization neural network (BRNN), radial-basis
function neural network (RBFNN), support vector
machine (SVM) and random forest (RF). They found
that RF had a strong nonlinear fitting ability and
achieved the best prediction effect (R = 0.95, MSE =
278.7 MPa2).13 Diao et al. constructed five ML

models based on 97 kinds of carbon steel data and
successfully predicted the tensile strength, fracture
stress, impact energy, hardness, fatigue strength
and elongation. They found that SVR and MLP
models had the best performance in predicting
mechanical properties.14 In addition, to solve the
problem of low interpretability of the physical
mechanism of the ML model, Li et al. introduced
Ac1, Ac3 temperature and deformation resistance
parameters to guide the ML process and success-
fully established a new industrial big data analysis
system combining ML classification and regression
model with key PM variables.15 However, most of
the above studies have carried out performance
predictions for multiple steel grades, which cannot
profoundly mine the complex functional relation-
ship between the composition of each steel grade,
process parameters and mechanical properties and
clarify the influence mechanism of different param-
eters on the performance. So far, there is no report
on modeling V–N steel hot-rolled plate based on the
ML algorithm.

Therefore, the study aims to establish a prediction
model of mechanical properties of V–N steel hot-
rolled plate based on the ML algorithm. This study
uses the standard YS index as an example to
provide modeling ideas for other mechanical prop-
erty prediction models. The carefully preprocessed
data are added with PM parameters for model

training and testing. The efficiency ratio (Er), mean
absolute error (MAE) and root mean square error
(RMSE) are used to evaluate the model’s prediction
performance, and the best two models are selected
according to the prediction effects of KNN, SVR,
MLP, GBR, RFR and XGBoost. Then, the BO
method is used to optimize the selected model’s
hyperparameters further to improve the model’s
prediction accuracy and generalization ability.

EXPERIMENTAL METHOD

Data Preprocessing

Data Cleaning and Processing of Missing
and Abnormal Values

The research data of the V–N hot-rolled plate in
this study were obtained from Laiwu Iron and Steel
Group Co., Ltd., of Shandong Province, including
chemical composition, rolling process and mechan-
ical properties. The corresponding steel grade is
Q550D, and the corresponding national standards
are GB/T 1591–2008 and GB/T 16270–2009. The
data mainly include chemical composition, rolling
process and mechanical properties. First, the data
were correlated by composition-process properties
and arranged according to the production process.
The samples and features with many null values
and zero values were eliminated, and the unqual-
ified samples were eliminated according to the
corresponding national standards GB/T 1591–2008
and GB/T 16270–2009 of Q550D steel. Then, the
Pauta criterion is used to detect and eliminate
abnormal values.16 When the data are normally
distributed, the Pauta criterion has an excellent
processing effect,17 as shown in formula (1):

vij j ¼ xi � xj j> 3r ð1Þ

where xi; x2; :::; xn are YS values in plate data, x is
the mean value, vi ¼ xi � x i ¼ 1; 2; :::;nð Þ is the
residual error, and r is the standard deviation. If
the residual error vi 1 � i � nð Þ of the YS xi satisfies
formula (1), that is, the YS xi =2 l� 3r; lþ 3r½ �, the
YS corresponding to the steel is considered abnor-
mal data and eliminated.

In addition, a small number of missing values in
the data set will bring additional complexity to the
model. The missing values can be processed by
filling, such as artificial, mean, EM, hot card and
regression filling.18–20 The study used methods such
as mean, median, mode, KNN interpolation and
RFR filling to fill in the missing values in the
dataset.

Feature Scaling

Feature scaling applied to features with an
extensive numerical range can standardize their
scale, so all variables can make comparable contri-
butions to the model results and accelerate the
training process, which positively impacts the model
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effect.21 Therefore, the study uses the Z-score
standardization method to scale features. The Z-
score standardization formula is as follows:

x
0 ¼ x� l

r
ð2Þ

where x is the original feature, x
0
is the standardized

feature, and l and r are the mean and standard
deviation of all samples of the original feature,
respectively.

Feature Processing and PM Element Introduction

Feature selection is selecting a relevant feature
subset for model construction and discarding some
irrelevant features under minimum information
loss. Feature selection can effectively simplify the
model, make the model easy to understand, save
storage and computing overhead and reduce the
risk of overfitting.22 The study used XGBoost model
importance evaluation and Pearson correlation
analysis to select the input features. In the first
step, the XGBoost model is used to evaluate the
importance of features, and the features as segmen-
tation points are calculated according to the gain of
structure score. The importance of each feature is
the number of times it appears in all trees. The
more times a feature is used to build decision trees
in the model, the higher its importance.23 In the
second step, the Pearson correlation coefficient is
used to measure the degree of linear correlation
between two features x1 and x2 and reduce the
features. Pearson correlation coefficient is calcu-
lated as follows:

cxy ¼
Pm

i�1 xi � xÞ yi � yÞðð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i�1 xi � xÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i�1 yi � yÞð 2
q�s ð3Þ

where x and y are the averages of elements in
vectors 1 and 2, respectively. cxy is the correlation
between different variables; m is the number of data
in the sequence. cxy is between -1 and 1, where 1 is
completely positive and -1 is completely negative.
When cxy

�
�

�
�> 0:9, it indicates that the two variables

have a strong correlation.24 Two highly correlated
features are considered to contain similar informa-
tion or have similar effects on the mechanical
properties of V–N steel hot-rolled plates. Therefore,
we build XGBoost models with two highly correlated
features as input respectively and eliminate the
features with poor model effects.

According to the characteristics of the V–N steel
hot-rolled plate data set, this study introduced
several PM parameters to guide the ML model.
Considering that the phase transformation temper-
ature is an essential reference factor for the formu-
lation of the heat treatment process of V–N steel,
the Ac1 and Ac3 temperatures that can reflect the
microstructure of plates are introduced in the study

as new input features.25 In addition, the reduction
rate will affect the microstructure evolution of
plates. Controlling the reduction rate in the hot-
rolling process can effectively refine the grain size,
make the precipitates dispersed and fine, and
improve the strength and toughness of the steel.
Therefore, according to slab, intermediate slab and
rolling thicknesses, the reduction rate (e1) in the
rough rolling process and reduction rate (e2) in the
finish rolling process are calculated as other input
features.

Based on the above data processing process, the
input features selected for each category include
chemical composition, rolling process and PM
parameters. The output feature is YS. The descrip-
tive statistical information of the above data is
shown in Table I.

Machine Learning Model

Without loss of generality, six ML models were
established to predict YS,and the most suit-
able method was found to solve the problem in the
study, including KNN, SVR, MLP, RFR, GBR and
XGBoost.26,27 In the above model, KNN finds k
training samples closest to the training set based on
a specific distance metric and predicts them by K
’neighbors’ information. SVR aims is to obtain a
model f xð Þ that can fit the training set samples as
much as possible. By constructing a loss function
between the sample label and the model’s predicted
value, the loss function is minimized to determine
the model f xð Þ.28 In the study, RBF is selected as the
kernel function of SVR. MLP, also known as arti-
ficial neural network (ANN), is composed of the
input layer, hidden layer and output layer, and the
layers are fully connected. In the training process,
the model continuously adjusts the node weight
according to the difference between the measured
value and the predicted value by backpropagation to
obtain a smaller loss function value.29 GBR,
XGBoost and RFR belong to the ensemble learning
algorithm. Since ensemble learning completes the
learning task by constructing multiple weak learn-
ers and combining specific strategies, the main
advantage is that when one or more weak learners
make error predictions, other weak learners can be
corrected, so the ensemble learning algorithm often
has a better fitting ability and generalization per-
formance. At present, ensemble learning is mainly
divided into two categories: bagging and boosting.
RFR belongs to the bagging class, and GBR and
XGBoost belong to boosting class.30,31 Compared
with GBR, XGBoost adds regularization to the
objective function, which is beneficial to reducing
the variance of the model, simplifying the model and
preventing overfitting. It has been successfully
applied to air pollution and landslide.32

For the problem of data set partitioning, the
specific solutions are the hold-out, cross validation
and bootstrapping method. In the study, the data
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set was randomly divided into a training set and a
testing set in the ratio of 8:2 using the hold-out
method. To further analyze different models and
select appropriate models for prediction, three eval-
uation indexes, Er, MAE and RMSE, are used to
measure the model’s prediction accuracy.15 Er
refers to the proportion of the total number of data
relative to the total amount of data whose prediction
deviation of V–N steel data points is< 6% of the
average value of the target attribute. The formula of
the three indexes is defined as follows:

Er ¼ Ne

Nall
� 100% ð4Þ

MAE ¼ 1

n

Xn

i¼1

jyi � yi
^ j ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � yi
^ Þ2

s

ð6Þ

where yi and y
^

represent the measured and pre-
dicted values of plates’ mechanical properties,
respectively; n is the total number of sample data,
Ne represents the total number of data within the
specified error range, and Nall represents the total
amount of data. The higher the Er value of the
model is, the lower the MAE value and RMSE value,
and the better the fitting effect of the model.

The SVR, MLP, GBR, RFR and XGBoost models
used in the study were implemented based on the
scikit-learn library in Python. The experiment was
carried out on a Win10 system with 64 bits, Intel (R)
Core (TM) i5—6200 U CPU @ 2.30 GHz (4 CPU) and
running memory of 8 GB.

Bayesian Hyperparameter Optimization

BO is a global optimization algorithm based on
probability distribution. It is assumed that there is
a black box function f xð Þ from the hyperparameter
to a specific objective (such as the model perfor-
mance index). BO infers the information of the black
box function by collecting the hyperparameter (in-
dependent variable) and the corresponding model
performance index (dependent variable). The pur-
pose is to find the hyperparameter x� with d
dimensions in the hyperparameter space that opti-
mizes the model performance index. The study
takes finding the minimum value as an example,
and the expression is as follows (7):

x� ¼ arg min f xð Þ ð7Þ

where x 2 X, X � Rd, X is a hyperparameter space
with d dimensions. The BO process utilizes the Bayes
theorem. The core steps are the probability surrogate
model and the acquisition function. The probability
surrogate model approximates the black box function
f xð Þ. The acquisition function selects the nextT
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evaluation point that optimizes the objective function
value according to the evaluated domain H to reach
the optimal solution quickly. The Bayes theorem and
the expression of the evaluated domain H are shown
in (8) and (9) as follows:

p f jHð Þ ¼ p H fjð Þp fð Þ
p Hð Þ ð8Þ

H ¼ x1; f x1ð ÞÞðf ; :::; xn;ð f xnð ÞÞg ð9Þ

where p fð Þ and p H fjð Þ are the prior probability
distribution and likelihood distribution of f xð Þ,
respectively. p f Hjð Þ is the conditional probability
distribution of f xð Þ given the evaluated domain H,
that is, the posterior probability distribution.

In the study, tree-structured Parzen estimator
(TPE) is selected as the probability proxy model and
expected improvement (EI) is selected as the acqui-
sition function. The p H fjð Þ in (8) is defined as
follows:

p x yjð Þ ¼ l xð Þ; y < y�

g xð Þ; y � y�

�

ð10Þ

where lðxÞ is the density formed by using the
observations x ið Þ such that corresponding lossf x ið Þ� �

was less than y� and g xð Þ is the density formed by
using the remaining observations.

Optimization criteria based on improving EI:

EIy� xð Þ ¼
Z y�

�1
y� � yð ÞP y xjð Þdy

¼
Z y�

�1
y� � yð ÞP x yjð ÞP yð Þ

P xð Þ dy ð11Þ

By construction, c ¼ p y< y�ð Þ and
p xð Þ ¼

R
R P x yjð ÞP yð Þdy ¼ cl xð Þ þ 1 � cð Þg xð Þ.

Therefore:
Z y�

�1
y� � yð Þp x yjð Þp yð Þdy ¼ l xð Þ

Z y�

�1
y� � yð Þp yð Þdy

¼ cy�l xð Þ � l xð Þ
Z y�

�1
yp yð Þdy

ð12Þ

So finally: EIy� xð Þ ¼
cy�l xð Þ�l xð Þ

R y�

�1
yp yð Þdy

cl xð Þþ 1�cð Þg xð Þ /
cþ g xð Þ

l xð Þ 1 � cð Þ
� 	�1

. This last expression shows that

to maximize improvement, we would like points x
with high probability under l xð Þ and low probability
under g xð Þ. The tree-structured form of l and gmakes
it easy to draw many candidates according to l and

evaluate them according to g xð Þ
l xð Þ. On each iteration, the

algorithm returns the candidate x� with the greatest
EI.33–36

In the study, the BO algorithm is implemented
based on the Optuna library in Python, and the
optimization process is shown in Fig. 1. The specific

implementation steps can be summarized as
follows:

(1) According to the determined hyperparameters
to be optimized, the model hyperparameter
optimization range is set, and the initial
parameter combination is randomly generated
within the parameter range.

(2) Based on the acquisition function EI, the next
superparameter combination sampling point
xi is selected from the TPE probabilistic sur-
rogate model.

(3) The value of the model’s hyperparameters as a
new combination of hyperparameters is input
into the prediction model for training, and the
prediction results of the model are obtained.

(4) If the error of the new hyperparameter com-
bination meets the accuracy requirement, the
algorithm is terminated and exited, and the
optimal hyperparameter combination is out-
put. If the accuracy requirement is not met,
xi; f xið Þð Þ is input into the TPE model to modify

the acquisition function, and steps (2) and (3)
are repeated to find the hyperparameter com-
bination that meets the accuracy requirement
and stops the iteration.

RESULTS AND DISCUSSION

Data Preprocessing Results and Discussions

Results and Discussion of Data Cleaning
and Processing of Missing and Abnormal Values

In the study, 5021 samples were obtained through
data association, and 3856 samples were obtained
after deleting samples with many null values, redun-
dant features and abnormal values. The cleaning
effect of the above abnormal values is shown in
Fig. 2a. The processed data are more intensive and
concentrated. Then, the missing values were filled,
and the filling effect is shown in Fig. 2 (based on the
XGBoost model runs ten times). As shown in Fig. 2b
and c, the KNN imputation and RFR imputation
methods achieved better results on the training and
test sets than other imputation methods. Because the
KNN interpolation method uses the average of K
nearest neighbors to fill in missing values, RFR can
combine multiple decision trees to make a more
accurate and stable prediction of missing values than
a single tree. Among them, the RFR filling achieved
the best filling effect. The training sets Er, MAE and
RMSE were 99.99%, 3.63 MPa and 5.18 MPa, respec-
tively. The testing sets Er, MAE and RMSE were
93.26%, 14.25 MPa and 21.41 MPa, respectively.
Therefore, the study took the data after RFR filling
as the subsequent modeling data.

Feature Processing Results and Discussion

The XGBoost model importance evaluation
method was used to calculate the importance of
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input features to YS. To avoid the influence of
randomness on the results, the data set was ran-
domly divided ten times, and the obtained feature
importance ranking is shown in Fig. 3. To ensure
the generalization of the model, the features with an
importance score< 90, namely Cu, Nb, Mo, Al, B,
Ti and Ni, were removed.

Then, the correlation coefficient value with an
absolute value > 0.9 is shown in Fig. 4. When
jrxyj>0.9, two features were used as input features

respectively to establish two ML models. The RT
and CIT features were removed by comparing the
model’s prediction accuracy. Based on the XGBoost
model feature importance analysis and Pearson
correlation analysis, the final input and output
parameters are determined as shown in Table I in
Sect. ‘‘Data preprocessing’’.

Figure 3 shows that the input features have
different degrees of influence on the YS of the V–N
steel hot-rolled plate with steel grade Q550D. The
feature importance score of chemical composition
from high to low is C, N, Si, Mn, Cr, P, S and V. C
element can stabilize austenite and form an inter-
stitial solid solution. Adding an appropriate amount
of C element to the V–N steel of Q550D can form V
(C, N), VN and other precipitates with V and N
elements.37 The precipitates can promote the for-
mation of intra-grain ferrite (IF) in the austenite
region and play the role of fine grain strengthening.
In the ferrite region, fine dispersed particles can be
formed to play the role of precipitation strengthen-
ing, thus significantly improving the YS of the steel.
However, too high C content will reduce the low
temperature toughness of steel and significantly
destroy the weldability of materials. Therefore, by
ultra-low carbon composition design, the C content
is controlled between 0.058 wt.% and 0.136 wt.%.
Both Si and Mn can improve the stability of
austenite, thus improving the strength and

hardness of steel. However, too high Mn is prone
to composition segregation, leading to too high
hardness and toughness deviation. Cr is a cheap
element that not only has the effect of solid solution
strengthening and refining the organization but
also can improve steel’s hardenability, significantly
improving steel’s antioxidant effect. However, too
much Cr has a greater tendency to temper brittle-
ness. S and P are harmful elements in steel. S will
cause serious segregation of FeS, resulting in steel
cracking during hot working, which is a hot brittle
phenomenon. P is mainly introduced by raw mate-
rials such as ore and pig iron. Although it has a
significant strengthening effect, it will significantly
reduce low temperature toughness, that is, cold
brittleness. Therefore, in the actual production
process, the content of S and P in steel needs to be
strictly controlled in a lower range. V and N are the
main microalloying elements of Q550D V–N steel.
The non-metallic compound of V can form MnS +
VN composite second phase with fine MnS particles

in V–N steel to further promote the nucleation of
IF.38 On the one hand, precipitation strengthening
improves the strength of the steel; on the other,
acicular ferrite also greatly improves the material’s
toughness. V is abundant and inexpensive, and it
has a strong affinity with N. N is a harmful element
when it is free and can exist in the form of
precipitates with V to improve the overall perfor-
mance of the steel. Therefore, by designing the ratio
of V and N, the steel can be guaranteed to obtain
excellent comprehensive performance while greatly
saving production costs.

For the rolling process, the microstructure of the
steel will change continuously through the rolling
process of heating, rough rolling, finishing rolling
and cooling. HT, ROT, RFT and e1 will affect the
morphology of the original austenite and austenite
recrystallization behavior. As the temperature

Fig. 1. Process of Bayesian hyperparameter optimization based on TPE.
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decreases, the austenite grains are gradually
refined, increasing the overall austenite grain
boundary area, dislocations, and substructures.
FOT, FRT and e2 are essential factors affecting the
deformation and phase transformation of V–N steel.

With the continuous decrease of temperature, plas-
tic deformation leads to the elongation and flatten-
ing of austenite grains, the large increase of grain

Fig. 2. Comparison of abnormal value elimination effect and effects of different missing value filling methods on modeling: (a) abnormal values
elimination effect, (b) training set, (c) testing set.

Fig. 3. Feature importance ranking based on XGBoost model.

Fig. 4. Feature correlation analysis based on Pearson.
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boundary area and the generation of many defor-
mation bands and strain-induced precipitates,
which provide a good nucleation site for ferrite
phase transformation and refine the ferrite grains.
As the factor with the highest feature importance
score in Fig. 3, COT will affect the microstructure
refinement of austenite to ferrite transformation.39

Controlling the COT can make the second phase of
V–N steel fully precipitate and produce more acic-
ular ferrite, polygonal ferrite and other microstruc-
tures, thereby improving the strength and
toughness of steel.40

A relatively higher correlation (corresponding to
darker ellipses in the top right region of Fig. 4) is
observed between YS and processing parameters
and among processing parameters themselves.
Some of it is expected since many processing
parameters are inherently coupled (e.g., FRT and
CIT). It shows the critical dependence of material
properties on the rolling process through
microstructure.7 Although all process parameters
were highly correlated with YS, the most influential
ones are FOT, FRT, CIT and COT. In particular,
FOT shows a strong positive correlation with YS.
Given the way the dataset was constructed, most of
these reflect that performing one or more of these
processing steps enhances the YS of V–N steel hot-
rolled plate. IBT and RT are negatively correlated
with the YS, indicating that the smaller the thick-
ness, the worse the YS.

Analysis of Modeling Results

After data partitioning, there were 3084 samples
in the training set for training the model and 772
samples in the test set for evaluating the effect and
generalization of the model. Considering that the
model pays more attention to improving model
generalization performance in actual production,
the model was evaluated by the prediction results
on the testing set. Figure 5a used the histogram to
compare the prediction effects of the six models in
Sect. ‘‘Machine learning model’’. The evaluation
indexes Er, MAE and RMSE of the XGBoost and
RFR models were much better than those of KNN,
RBF-SVR and MLP models. The MAE and RMSE
evaluation indexes of the GBR model were poor, but
its Er was close to that of the XGBoost and RFR
models. To show the model fitting effect, a scatter
plot of the measured and predicted values of the six
models were drawn. Figure 5b–g clearly shows the
relationship among the measured value, predicted
value and best-fitting line through the scatter plot.

In Fig. 5, the slope of the red line is 1, and the
dashed black line is the boundary of the Er value. The
more prediction points fall within the boundary
range and are close to the line with slope 1, the better
the fitting effect of the model is. Figure 5b–d indi-
cates many prediction points outside the Er boundary
line. The Er of the model was< 90%, and the MAE
and RMSE were > 20 MPa and 30 MPa,

respectively, indicating the generalization ability of
the KNN, RBF-SVR and MLP model was poor. The
main reason for the poor generalization ability of the
KNN model is that the industrial data dimension
used in the study is too high. As the dimension
increases, the distance between the two points in the
KNN model tends to be larger. Compared with the
KNN model, the RBF-SVR model can solve high-
dimensional problems. However, the study’s poor
generalization ability is mainly related to the param-
eter selection and the stability of the kernel function
in high-dimensional space mapping. For the MLP
model, the main reason for the poor prediction effect
is that the appropriate artificial neural network
parameters are not selected, such as the number of
hidden_layer sizes and batch_size. The points in
Fig. 5e were close to the reference line, and 90.42% of
the prediction points were located within 6% of the
average YS value of the testing set. However, in the
range of YS 700–782 MPa, due to the small number of
edge data, the frequency of occurrence in the training
set was low, making the information in the data
difficult to learn by the model. Therefore, with the
decrease in data density, the prediction effect wors-
ened. In Fig. 5f and g, > 90% of the data in the
prediction results of the XGBoost and RFR models
were located within the Er boundary, and the fitting
slope was closer to 1. The MAE and RMSE were<
16 MPa and 23 MPa, respectively, indicating that

the prediction effect was perfect. As described in Sect.
‘‘Machine learning model’’, the ensemble learning
algorithm has a strong generalization ability and
better fitting effect for high-dimensional complex
features. Therefore, XGBoost and RFR models were
selected as the objects of BO algorithm optimization.

Hyperparameter Optimization Results
Analysis

In the modeling process, the hyperparameters
affecting RFR are mainly n_estimators, max_depth,
min_samples_split, max_features, etc.41 The hyper-
parameters affecting the XGBoost model are mainly
n_estimators, max_depth, min_child_weight, learn-
ing_rate, etc.42 The greater the number of n_esti-
mators in the modeling process, the more
information the model learns, but too many n_esti-
mators will lead to increased running time and
overfitting phenomenon, thus reducing the model
prediction accuracy. If Max_depth is deeper, more
feature attributes need to be divided in the model-
ing, and the corresponding model structure will be
more complex. Therefore, the size of max_depth
needs to be set with reference to how many feature
attributes of the training data. The min_sam-
ples_split, which affects the random forest model,
mainly restricts the conditions for further sub-tree
division. If the number of samples at a node is less
than the min_samples_split, no further attempts
will be made to select the optimal features for
division, while the max_features can control the
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maximum number of features considered for the
division to control the generation time of the
decision tree. The smaller the min_child_weight
affecting the XGBoost model, the easier the model is
to overfit, while learning_rate controls the step size
when updating the weights in each iteration, and
the smaller the value, the slower the training.
According to the description of the physical

mechanism of hyperparameters above, the main
hyperparameter ranges and optimal hyperparame-
ters of the RFR and XGBoost models optimized by
the BO method in the study are shown in Table II.
The hyperparameter range in Table II (default
values for other hyperparameters) was adopted,
and the hyperparameters obtained by optimization
were used for modeling. The prediction effect of the

Fig. 5. Comparison of prediction results of KNN, RBF-SVR, MLP, GBR, XGBoost and RFR models and scatter plots of predicted and measured
values distribution: (a) comparison results, (b)–(g) prediction results (Color figure online).
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BO-RFR and BO-XGBoost models is shown in
Fig. 6, and the points with different colors in Fig. 6b
and c represent the absolute error size. Figure 6a
compares the performance indexes of RFR,
XGBoost, BO-RFR and BO-XGBoost models. It
was found that BO made two models’ Er increase
by 0.29% and 2.27%, two models’ MAE increase by
1.17% and 10.54%, respectively, and two models’
RMSE increase by 1.27% and 10.54%, respectively.
It showed that the BO algorithm had a better
optimization effect on the XGBoost model and
improved its accuracy, robustness and reliability
because the BO algorithm can establish a probabil-
ity model through the previous evaluation results of
the objective function, find the value of the mini-
mum objective function and avoid falling into the
optimal local solution. In addition, as shown in
Fig. 6b and c, the points of the BO-XGBoost model
were more concentrated within the boundary line,
while the BO-RFR model had multiple points with
huge prediction absolute errors. Figure 6d, e shows
that the relative error of the BO-XGBoost model
was concentrated in a narrow interval. Finally, it
was found that the BO-XGBoost model had higher
performance indicators than the BO-RFR model. Er,
MAE and RMSE were 2.70%, 6.40% and 8.35%
higher, respectively. Therefore, the BO-XGBoost
model had the best prediction effect and general-
ization performance for the YS modeling of V–N
steel. The study made some data of V–N hot-rolled
plate with steel number Q550D public and provided
a GitHub link to test the BO-XGBoost model. The
GitHub link is https://github.com/Sstar126/data.git.
In the form of ‘‘black box function,’’ the model
directly realizes the efficient prediction of the YS of
V–N steel hot-rolled plate. Compared with the
traditional PM model, it has the advantages of
convenience, high precision and stronger applica-
bility. It can provide key and effective guidance
information for the subsequent design of chemical
composition and rolling process parameters and
reduce the production of unqualified products.

Effects of Feature Processing and PM
Parameters on Models

In the study, the input features were reduced
from 25 to 16 dimensions by XGBoost model feature

importance analysis and Pearson correlation anal-
ysis, which greatly simplified the data structure. At
the same time, four PM parameters, Ac1, Ac3, e1 and
e2, were introduced to guide the model establish-
ment. In this section, three BO-XGBoost models
were established using the original data set, the
data set after feature processing and the data set
after introducing PM parameters. The influence of
feature processing and PM parameters on the model
was illustrated by comparing the three models’
evaluation indexes and modeling efficiency.

As shown in Fig. 7a, the feature-processed data
set’s performance was slightly worse than the
original data set’s performance on the BO-XGBoost
model because the removed features contain helpful
information for modeling. However, Fig. 7b shows
that the modeling efficiency of the data set after
feature processing on the BO-XGBoost model was
improved by 58.07%. This case showed that feature
processing could simplify the model and improve the
modeling efficiency under slight information loss.
When chemical composition information is removed,
dimensionality is reduced, and material variability
is eliminated, which provided excellent help for
calculating the model and storing data in the steel
production process. At the same time, the related
elements removed in the dimension reduction pro-
cess, such as B, Ti, Ni and other elements, have a
low influence on the mechanical properties of the
plate.43 Through the guidance of data dimension
reduction, the cost and design difficulty can be
reduced in the actual material research and devel-
opment. In addition, in combination with Fig. 7a
and b, it could be found that the data set with the
introduction of PM parameters increased the mod-
eling time on the BO-XGBoost model by about 500 s
compared with the data set after feature processing.
However, its Er, MAE and RMSE were increased by
0.85%, 5.02% and 5.11%, respectively, indicating
that the introduction of PM parameters improved
the model’s accuracy and increased the inter-
pretability and scalability of the ML model. Ac1

and Ac3 are expected to provide guidance on the
subsequent heat treatment of failed products, and e1
and e3 can provide assistance on the reduction of
rolling passes.

Table II. Optimized hyperparameters in three models

Algorithm Hyperparameter Range Best hyperparameters

XGBoost n_estimators (100, 1000) 779
max_depth (1, 30) 7

min_child_weight (1, 50) 1
learning_rate (0.001, 0.2) 0.059

RFR n_estimators (100, 1000) 973
max_depth (1, 30) 29

min_samples_split (5, 300) 5
max_features (1, 20) 19
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Fig. 6. Comparison of RFR, BO-RFR, XGBoost and BO-XGBoost models, scatter plot of error distribution and relative error frequency
distribution of BO-RFR and BO-XGBoost: (a) comparison results, (b)–(e) prediction results (Color figure online).

Fig. 7. Effect of feature processing and PM parameters on the model: (a) comparison results on the testing set, (b) comparison of modeling time.
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CONCLUSION

A methodology was presented to train multiple
ML models and perform hyperparameter optimiza-
tion to predict YS using chemical composition and
rolling process data of V–N steel hot-rolled plates.
The framework presented includes industrial big
data collection and cleaning, data dimensionality
reduction and introduction of PM elements, multi-
ple ML model building, hyperparameter optimiza-
tion of ML models and evaluation of ML models. The
data were obtained from the actual production
process of domestic steel mills, and the high-dimen-
sional data were reduced to low-dimensional data
after cleaning and dimensionality reduction and
passed to KNN, SVR, MLP, RFR, GBR and XGBoost
models. The model was compared in two stages,
including using six original models to ensure pre-
diction results’ comparability under the default
parameters and using Bayesian optimization meth-
ods to find the hyperparameters of XGBoost and
RFR models efficiently. The above two models
integrated learning models that were widely used
in related fields. Finally, the prediction results of
BO-XGBoost and BO-RFR models were compared,
and the effects of data dimensionality reduction and
PM parameters on the modeling were discussed.
The following key conclusions could be drawn from
the above analysis.

(1) Data preprocessing methods such as data
cleaning, data normalization, Pauta criterion
and RFR filling could significantly improve
data quality and highlight data’s regularity,
which dramatically influenced data-driven
modeling methods. In addition, the feature
importance analysis based on the XGBoost
model and Pearson correlation analysis re-
duced the dimensionality and introduced four
physical metallurgical parameters, Ac1, Ac3,
e1, e2, which could fully explore the guiding
laws on PM.

(2) The prediction and generalization of the
XGBoost and RFR models were perfect with-
out the hyperparameter search. The BO-
XGBoost was the best model by Bayesian
optimization (Er = 93.52%, MAE = 13.56
MPa, RMSE = 20.19 MPa). One possible rea-
son is that the BO-XGBoost model can effec-
tively solve the modeling problem of high-
dimensional data sets and learn the correla-
tion between chemical composition-rolling pro-
cess-yield strength.

(3) Feature processing and PM parameter calcula-
tion were introduced into this study; the former
could improve the modeling efficiency signifi-
cantly, and the latter could increase the model’s
interpretability and effectiveness. Therefore,
studying different feature processing methods
and PM parameters is an essential element and
direction for modeling steel data.

ML models for the actual production of V–N steel
hot-rolled plates can provide a powerful way to
predict the expected mechanical properties in a
relatively fast way with the chemical composition
parameters and rolling process parameters
designed by the researchers, and more production
data will augment the training data and facilitate
the generalization of the model.
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