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Microtexture regions (MTRs) within titanium alloys are collections of grains
with similar crystallographic orientation. The presence of MTRs can be
detrimental to the life of an engine component; thus, a method for detecting
and characterizing MTR is needed. Eddy current testing, a nondestructive
evaluation method, is sensitive to changes in conductivity which are related to
local changes in crystallographic orientation. Previous work has demonstrated
the ability of eddy current testing to determine the orientation distribution
function (ODF) of a simulated MTR within a simulated microstructure using
approximate Bayesian computation techniques. This article will extend these
methods to realistic MTR configurations. We review the ODF estimation
technique, discuss modifications to the algorithm that are required to apply it
to realistic microstructures and then demonstrate its use on simulated eddy
current data of a real titanium specimen.

INTRODUCTION

Microtexture regions (MTR) within titanium
alloys are collections of grains with similar crystal-
lographic orientation. They have potential to have a
significant impact on the component fatigue life due
to their ability to drive early subsurface crack
nucleation and accelerated crack growth.1–4 Thus,
a method of characterizing MTR is crucial for safe
operation of components made from this material
system.

Of primary interest is the size of the MTR as well
as its primary orientation, described by a compo-
nent orientation distribution function (cODF). Scan-
ning electron microscopy (SEM) electron
backscatter diffraction (EBSD) is capable of mea-
suring the orientation of micron-scale surface grains
and their aggregation in MTR. However, practical
limitations prohibit the use of SEM EBSD for
component-scale structures; in particular, the sam-
ple has to be relatively small, typically< 100 � 100 in
area, with a flat, damage-free surface. One alterna-
tive to SEM EBSD is an electromagnetic inspection
method called eddy current testing (ECT). While

this method is sensitive to changes in local conduc-
tivity caused by spatially varying cODF, its spatial
resolution is too low to resolve MTR. However, it
was demonstrated in Ref. 5 that eddy current data
can be used to recover the cODF of an MTR provided
the boundaries of the MTR are known.

The methods developed in Ref. 5 utilized approx-
imate Bayesian computational techniques along
with simulated eddy current data to determine the
cODFs of a simulated microstructure with known
segmentation. The goal of this article is to extend
those techniques to realistic microtexture configu-
rations. As discussed in Ref. 5, the assumed grain
size of the underlying specimen impacts the out-
come of the inversion algorithm. While this is not an
issue for simulated specimens, where the grain size
is known, it does pose a challenge when applying
the technique to realistic microstructures. In this
article, we modify the inversion algorithm to accom-
modate the unknown grain size and develop a prior
for the unknown cODFs that incorporates charac-
teristics of realistic cODFs. The paper is organized
as follows: ‘‘Definition of the Problem’’ section
contains a detailed definition of the problem, ‘‘Meth-
ods’’ section describes the forward model, inversion
technique and prior distribution, ‘‘Effects of Grain
Size’’ section discusses the modification to the(Received January 21, 2022; accepted May 19, 2022;
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algorithm, ‘‘Numerical Examples’’ sectioin presents
numerical results, and ‘‘Conclusion’’ section pro-
vides conclusions and future work.

DEFINITION OF THE PROBLEM

Microstructure of Titanium

Most titanium alloys of interest to us consist
primarily of grains with hexagonal close-packed
crystal structure, as shown in Fig. 1. The hexagonal
prism shown in Fig. 1 represents the unit cell of
crystal orientation for grains with hexagonal
symmetry.

Crystallographic orientation is the set of rotations
that generates the orientation of a grain with
respect to the global frame of reference. In this
work, it will be described in terms of three Euler
angles: ðw1; h;w2Þ. The first angle, w1, describes the
rotation about the original z-axis, h describes the
subsequent rotation about the new x-axis, and w2
describes the final rotation about the new z-axis.
The axis parallel to the z-axis is referred to as the c-
axis of the crystal; the plane spanned by the x and y
axes is referred to as the basal plane. The first and
second Euler angles are referred to respectively as
the heading and tilt of the c-axis.

In general, w1 2 ½0; 2p�, h 2 ½0; p� and w2 2 ½0; 2p�.
However, due to the symmetry of the hexagonal
crystal, all rotations can be expressed using Euler
angles in the ranges of w1 2 ½0; 2p�, h 2 ½0; p=2� and
w2 2 ½0; p=3�. In addition, the sensitivity of eddy
current impacts the range of potential orientations.
In a-titanium, conductivity is isotropic in the basal
plane but differs along the c-axis. Since eddy
current is only sensitive to changes in conductivity,
it is not sensitive to changes in the third Euler
angle, which is simply a final rotation of the basal
plane. For further background on microstructure,
we refer to Ref. 6. For further information on the
microstructure of titanium specifically, we refer to
Ref. 7.

Definition of the ODF

Within this work, we will assume that the orien-
tation of each grain is an independent realization of
the random vector ðW1;H;W2Þ, whose joint proba-
bility distribution is given by the collection of cODFs

that comprise the specimen ODF. In particular, if
we assume that the underlying material V consists
of p regions V1;V2; . . .andVp such that

[p

h¼1

Vh ¼ V; Vi \ Vj ¼ ;; i 6¼ j; ð1Þ

and fh is the cODF for the region Vh; then, the ODF
is given by

f ðw1; h;w2 j x; yÞ ¼

f1ðw1; h;w2Þ; ðx; yÞ 2 V1

f2ðw1; h;w2Þ; ðx; yÞ 2 V2

..

.

fpðw1; h;w2Þ; ðx; yÞ 2 Vp

8
>>>><

>>>>:

: ð2Þ

Each cODF possesses the same properties as a
probability density function, that is, it is strictly
positive and integrates to 1.

METHODS

Eddy Current Forward Model

The forward model used to simulate data is the
approximate impedance integral (AII) model, devel-
oped in Ref. 8. The starting point for the forward
model is Maxwell’s equations; specifically, Ampere’s
law and Faraday’s law in differential form are given
by

r�H ¼ jx�Eþ r �E ð3Þ

r �E ¼ �jxlH; ð4Þ

where x is the angular frequency, l is the perme-
ability, � is the scalar permitivitty, and r is the
anisotropic conductivity tensor. It is assumed there
are no external fields; in addition, the only current
sources are the induced currents in the conductive
material and the displacement currents. As shown
in Ref. 9, Eqs. 3 and 4 can be combined to yield the
expression

I

S

ðE�HÞ � ndS ¼
Z

V

jxlH �Hþ jx�E �E

þE � ðr �EÞ�dV:

ð5Þ

where S is the surface enclosing a flaw in the
conductive medium and V is the volume of the flaw.
For our application, S is the entire surface of the
sample. From Ref. 10, this expression can be related
to the impedance of an eddy current coil to yield

DZ ¼ 1

I2

I

S

ðEb �Ha �Ea �HbÞ � ndS

¼ 1

I2

Z

V

jxlðHa �Ha �Hb �HbÞ½

þjx�ðEa �Ea �Eb �EbÞ
þEa � ðraI3�3 �EaÞ �Eb � ðrb �EbÞ�dV;

ð6Þ

Fig. 1. Unit cell of crystal orientation for grains with hexagonal
symmetry. The three rotations represent the three Euler angles used
to describe crystallographic orientation.
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where all fields with the subscript a are the result
of exciting the eddy current coil above an isotropic
homogeneous material with conductivity ra, while
all fields with the b subscript are the result of
exciting the coil above an anisotropic, polycrys-
talline material. Due to the relatively low conduc-
tivity changes in a rotated grain, the Born
approximation can be applied to Eq. 6. Under this
approximation, we find that Ha � Hb and Ea � Eb,
in which case Eq. 6 becomes

DZ ¼ 1

I2

Z

V

Ea � ðraI3�3 � rbÞ �Ea dV; ð7Þ

The rotated, anisotropic conductivity tensor rb is a
function of the local crystallographic orientation
and is given by

rb ¼
r11 r12 r13

r12 r22 r23

r13 r23 r33

2

64

3

75; ð8Þ

where

and ci and si are the sine and cosine of the ith Euler
angle, respectively. The fact that rb is dependent on
only w1 and h is consistent with the fact that eddy
current is not sensitive to changes in the third Euler
angle within a-titanium. For further details on this
model, we refer to Ref. 8.

We note that the AII model produces the same
response for orientations given by ðw1; hÞ and
ðw1 þ p; hÞ. As a result, the solution to the inverse
problem is non-unique. Thus, it is understood that
for any solution we obtain, the same distribution
with the first Euler angle rotated p radians is also a
solution.

In the numerical examples that follow, the data
are simulated using a shielded elliptical absolute
probe with axes equal to 750 lm and 250 lm. We
note that for numerical computation of the model,
the field Ea for this coil is pre-computed using
COMSOL.

Approximate Bayesian Computation

As discussed in Ref. 5, one of the major challenges
of the ODF estimation problem is the lack of a
deterministic forward model that generates a set of
simulated eddy current data given a fixed ODF.
That is, even if we know the true ODF that
generated a particular set of eddy current data, we
are unable to recreate that data. As a result,

traditional Bayesian inversion is not feasible since
we cannot form a likelihood function. To resolve this
issue, we instead make use of approximate Bayesian
computation (see, for instance, Refs. 11–14). This
method was first developed for problems where the
likelihood function is either computationally expen-
sive or does not exist. Recall that in traditional
Bayesian computation, the solution to the inverse
problem is the posterior distribution of the unknown
n conditioned on the measured data z, that is,

ppostðn j zÞ / pðz j nÞppriorðnÞ; ð9Þ

where pðz j nÞ is the likelihood distribution and
ppriorðnÞ is the prior distribution of the unknown.
With approximate Bayesian computation, we con-
sider a modified posterior distribution given by

ppostðn; q j zÞ / pðz j n; qÞpðq j nÞpðnÞ; ð10Þ

where q is a simulated dataset drawn from pðq j nÞ.
The function pðz j n; qÞ is a weight function which
attains high values when q is close to z. This is

essentially the analog to the likelihood function in
traditional Bayesian computation. The weight func-
tion can either compare q and z directly or it can
compare summary statistics generated from each.
Our approach is to compute summary statistics. To
generate a sample from the modified posterior, we
use a sequential Monte Carlo technique outlined in
Ref. 15.

Summary Statistics for EC Data

Data Model

We begin by reviewing the data model for the
inverse problem, originally developed in Ref. 5. The
EC response due to the underlying cODFs is
inherently random; that is, different draws from
the cODFs will generate different EC responses
even if the cODF within each region remains fixed.
Thus, a fixed set of cODFs will produce a distribu-
tion of EC responses. Combined with the assump-
tion that the individual grain orientations are
independent realizations of the underlying cODFs,
the averaging effect of the EC coil permits applica-
tion of the Central Limit Theorem, implying that
the EC measurements due to a fixed set of under-
lying cODFs follow a normal distribution.

r11 ¼ rxx þ ðrzz � rxxÞs2
1s

2
2 r12 ¼ s1c1s

2
2ðrxx � rzzÞ=2

r13 ¼ �s1c2s2ðrxx � rzzÞ r22 ¼ rxx þ ðrzz � rxxÞs2
2 þ ðrxx � rzzÞs2

1s
2
2

r23 ¼ c1c2s2ðrxx � rzzÞ r33 ¼ rzz þ ðrxx � rzzÞs2
2
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Thus, the noiseless EC measurements ez 2 Cm due
to the set of underlying cODFs f1; f2; . . . ; fp can be
written

ez ¼ ezre þ jezim; ð11Þ

where ezre and ezim are the real and imaginary
portions of ez, respectively. Using the Central Limit
Theorem, we can model ezre and ezim as realizations of
two standard normal random vectors Zre and Zim,

Zre � Nðlre;
eCreÞ; Zim � Nðlim; eCimÞ;

where

lre ¼E Zre j f ðw1; hÞ½ �;
eCre ¼E ðZre � lreÞðZre � lreÞ

T j f ðw1; hÞ
h i

:

The quantities lim and eCim are defined similarly.
Then, for a set of measured EC data z 2 Cm, we may
write

zre ¼lre þ xre þ �re;

xre � Nð0; eCreÞ;
�re � Nð0; d2

reIÞ;

where �re represents iid measurement noise.
Similarly,

zim ¼lim þ xim þ �im;

xim � Nð0; eCimÞ;
�im � Nð0; d2

imIÞ;

In the remaining calculations, define

Cre ¼ eCre þ d2
reI; Cim ¼ eCim þ d2

imI:

Summary Statistics

Given a set of measured EC data z 2 Cm, we
define the following quantities,

f ¼
zre

zim

� �
2 R2m; b ¼

lre

lim

� �
2 R2m; K ¼

Cre
bC

bC
T

Cim

" #
;

ð12Þ

where bC 2 Rm is given by

bC ¼ E ðZre � lreÞðZim � limÞT j f ðw1; hÞ
h i

:

Then, the model for the measured data is

f ¼ bþ e; e � Nð0;KÞ;

where e encompasses the variability due to both the
underlying cODFs and the measurement noise.

The values needed to populate lre, lim and eCre,
eCim, bC can be computed numerically using the AII
model. In particular, let

lðhÞ‘ ¼
Z

Vh

E‘
a

� �T
raI3�3 � Efh rbðw1; hÞ½ �
� �

E‘
a dV; ð13Þ

where the term Efh rbðw1; hÞ½ � is computed by taking
the expectation of each term in rbðw1; hÞ with

respect to fh and E‘
a is the incident electric field

when the EC coil is centered at the ‘th measure-
ment location. Then,

l‘ ¼
Xp

h¼1

Z

Vh

lðhÞ‘ ; ð14Þ

and the ‘th entries of lre and lim are given by the
real and imaginary portions of l‘, respectively.
Similarly, define

c‘k ¼
Xp

h¼1

Z

R2

Z

Vh

gðE‘
a; rbÞdV

Z

Vh

gðEk
a; rbÞ dV

� �

fhðw1; hÞ dhdw1 � lðhÞ‘ lðhÞk

ð15Þ

where

gðE‘
a; rbÞ ¼ ðE‘

aÞ
TðraI3�3 � rbðw1; hÞÞE‘

a: ð16Þ

Then, the ð‘; kÞ and ðk; ‘Þ entries of eCre and eCim are
given by the real and imaginary portions, respec-

tively, of c‘k. Lastly, the ð‘; kÞ entry of bC is given by

bc‘k ¼
Xp

h¼1

Z

R2

Z

Vh

ReðgðE‘
a; rbÞÞdV

Z

Vh

ImðgðEk
a; rbÞÞ dV

� �

fhðw1; hÞ dhdw1 � Re lðhÞ‘

� 	
Im lðhÞk

� 	
;

ð17Þ

where Reð�Þ and Imð�Þ denote the real and imaginary
portions of a given quantity. Note that unlike Cre

and Cim, bC is not symmetric.
The summary statistics, defined in Ref. 5, are as

follows. First, define

w ¼ R�Tðf� bÞ 2 R2m; ð18Þ

where R is the Cholesky factor of K. Note that if K
and b are calculated using the set of cODFs that
generated f, then w � Nð0; IÞ, that is, w is a
standard normal random vector. In that case,

E kwk½ � �
ffiffiffiffiffiffiffi
2m

p
: ð19Þ

Furthermore, due to the Central Limit Theorem,

w � N 0;
1

2m

� �
: ð20Þ
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where w denotes the mean of w. Our two sum-
mary statistics for the inverse problem are thus kwk
and w.

For a candidate ODF bf , we compute K and b and
then compute w as in Eq. 18. Denote the vector w

computed using bf by wbf . If bf is close to the true

value, then Eq. 19 and 20 should hold for wbf . The

weight function used in the inversion, initially
developed in Ref. 5, is Gaussian,

pðz j f ; kwf k;wf Þ ¼ exp �2m wf

� �2�ðkwf k �
ffiffiffiffiffiffiffi
2m

p
Þ2

r2
norm

 !
;

ð21Þ

where r2
norm is the variance of the norm of a

standard normal random vector of length 2m.

Parametric Distribution

Each unknown cODF is represented in the
inverse problem using the Bingham distribution,
which is a probability distribution on the hyper-
sphere.16 It has been shown to represent different
texture components well17,18 and has been used to
successfully model the ODF of a strongly textured
specimen.19 The pdf for the Bingham distribution is
expressed in terms of quaternions; in terms of Euler
angles, the quaternion vector is given by

q ¼ cos
h
2

� �
cosðaÞ;� sin

h
2

� �
cosðbÞ;

�

sin
h
2

� �
sinðbÞ;� cos

h
2

� �
sinðaÞ

�
;

ð22Þ

where a ¼ 1
2 ðw1 þ w2Þ and b ¼ 1

2 ðw1 � w2Þ. The pdf is
then given by

pðxÞ / exp �
X4

j¼1

kjv
T
j x

 !
;

where x is a unit quaternion, vj 2 R4, 1 � i � 4 are
orthonormal directions, and kj < 0, 1 � i � 4.

In this work, we will apply the conventions
defined in Ref. 19. In particular, v1 ¼ q and v2 and
v3 are the partial derivatives of v1 with respect to w1
and h, respectively. In addition, we set k4 ¼ 0 and
assume that k1 	 k2 	 k3. Due to the lack of sensi-
tivity of EC in a-titanium to the third Euler angle,
we set w2 ¼ 0.

Prior Distribution

In the inverse problem, the Bingham distribution
representing each unknown cODF is defined in
terms of four parameters, as in Ref. 5. The first two,
lh and lw, are used to define the vectors v1, v2 and
v3. In particular,

q ¼ cos
lh
2

� 	
cosð

lw
2
Þ;� sin

lh
2

� 	
cosð

lw
2
Þ;

h

sin
lh
2

� 	
sinð

lw
2
Þ;� cos

lh
2

� 	
sinð

lw
2
Þ
i
;

and

v2 ¼ @v1

@lw
; v3 ¼ @v1

@lh
:

Furthermore, we fix k1 ¼ �0:5 and define two
auxiliary parameters,

g ¼ k1

k2
; j ¼ k2

k3
:

Then, in the inverse problem we require 0< g; j � 1.
Each cODF is thus defined by the four parameters:
lw; lh; g; j
� �

. The parameters ðlw; lhÞ indicate where
most of the weight of the distribution lies, while
ðg; jÞ determine the shape of the distribution.

Assuming that the individual cODFs are inde-
pendent, the prior distribution for the unknown f is
given by

ppriorðf Þ ¼ ppriorðf1; f2; . . . ; fpÞ ¼
Yp

h¼1

ppriorðfhÞ;

which, in terms of parameters, is written

ppriorðf Þ ¼
Yp

h¼1

pprior lðhÞw ; lðhÞh ; gðhÞ; jðhÞ
� 	

;

where lðhÞw ; lðhÞh ; gðhÞ; jðhÞ
� 	

is the set of parameters
that defines fh.

Figure 2 shows a set of EBSD data recorded from
a specimen of Ti-6Al-4V along with the DREAM3D
segmentation, which was run assuming a 20


tolerance for misalignment in the c-axis between
neighboring grains. We treat each region in the
segmentation as being defined by its own cODF. To
construct a prior for these parameters, we fit a
single Bingham distribution to each of the cODFs in
this specimen. Rather than estimate g and j
directly, we estimate the log of each of these
parameters.

We found that the values of lh, g and j are highly
correlated; however, none of the parameters exhibit
any correlation with lw.The prior for ðlw; lh; g; jÞ is
thus written

ppriorðlw;lh; g; jÞ ¼ pðlwÞpðj j lh; gÞpðg j lhÞpðlhÞ:
ð23Þ

The prior for lw is a uniform distribution on the
interval ð0; pÞ; similarly, the prior for lh is a uniform
distribution on the interval ð0; p=2Þ.

To construct pðg j lhÞ, we consider the plot in
Fig. 3a, which shows the fitted values of lh versus
the fitted values of logðgÞ for each of the cODFs in
the specimen in Fig. 2. We desire a prior that for a
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fixed value of lh will allow for a range of values of g
without favoring any single value. To achieve this,
we use a generalized Gaussian distribution,

ppriorðg j lhÞ ¼ exp � g� gmidðlhÞ
qðgmaxðlhÞ � gminðlhÞÞ

� �m� �
;

ð24Þ

where gmaxðlhÞ and gminðlhÞ are the maximum and
minimum allowable values for g as a function of lh.
In Fig. 3a, they are given by the red and blue curves,
respectively. The function gmidðlhÞ is the midpoint of
these two curves. Note that m is a positive even
integer and q is a scalar chosen to ensure that for

any value of g that falls within the appropriate
bounds, the value of the prior is approximately
equal to 1.

Because we have only a few data points such that
lh < 0:5, we have limited information as to what the
allowable values of g should be for those values of lh.
As a result, the lower bound (blue curve) was chosen
to allow for a larger range of potential vaues of g for
values of lh < 0:5. Fitting the lower bound closer to
the data points for lh <0:5 would import a higher
degree of confidence in the range of allowable values
for g than we have based on these few data points.
We ultimately found that the upper bound was more
important as the ODF estimation algorithm tends
towards flatter distributions represented by higher
values of g.

Fig. 2. (a) Inverse pole figure map of a set of EBSD data recorded from a Ti-6Al-4V specimen. (b) Segmentation of these EBSD data into regions
defined by different cODFs using DREAM3D.

Fig. 3. Plots of the fitted parameters to each of the cODFs in Fig. 2 and the curves that define the bounds for the prior distribution. (a) The red and
blue lines are the maximum and minimum allowable values for logðgÞ as a function of lh. (b) The top and bottom surfaces are the maximum and
minimum allowable values for logðjÞ as a function of ðlh; logðgÞÞ (Color figure online).
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The distribution pðj j lh; gÞ is constructed in a
similar fashion to restrict the value of j as a
function of lh and g, that is,

pðj j lh; gÞ ¼ exp � jðlh; gÞ � jmidðlh; gÞ
qðjmaxðlh; gÞ � jminðlh; gÞÞ

� �m� �
:

ð25Þ

Figure 3b shows the surfaces which are the maxi-
mum and minimum allowable values for j for fixed
values of g and lh.

Posterior Distribution

Combining the weight function (21) with the
prior, we arrive at the following posterior
distribution,

ppostðf j zÞ ¼ exp �2m wf

� �2�ðkwf k �
ffiffiffiffiffiffiffi
2m

p
Þ2

r2
norm

 !

ppriorðf Þ;
ð26Þ

where ppriorðf Þ is as defined in the previous section.

EFFECTS OF GRAIN SIZE

One issue raised in Ref. 5 is the effect of the
assumed grain size on the output of the algorithm.
In this context, grain size refers to the size of a pixel
(or group of neighboring pixels) defined by roughly
the same orientation. As an example, the simulated
specimen shown in Fig. 4 has a grain size of 12 lm.
That is, each pixel represents a 12lm �12lm area
and is defined by a different crystallographic
orientation.

In the inversion, the assumed grain size is the
discretization size used in the numerical integration
to compute (15) and (17). Let c‘kðf ; gÞ denote the
expression from (15) computed for the ODF f and
grain size g; then, as stated in Ref. 5,

c‘kðf ; g=sÞ ¼
c‘kðf ; gÞ

s2
;

where s is any real positive number. In the exam-
ples shown in Ref. 5, the true grain size was 12 lm,
while the assumed grain size in the inversion was
24 lm. Thus, in these examples, we set s ¼ 2.
However, with realistic samples, the grain size is
not constant and is likely not known. In fact,
determining the grain size distribution in a-tita-
nium is a research question in its own right; see, for
example.20–22 As a result, s becomes an unknown in
the inverse problem. In this work, we will demon-
strate how to estimate s.

As an example, we consider the simulated
microstructure and simulated eddy current signal
shown in Fig. 4. We generated multiple samples
from the posterior distribution (26) using the sim-
ulated data, assuming a different range for s each
time. The discretization size was held fixed at 24
lm. Given that the true grain size is 12 lm, the
correct value of s is roughly 2.

Figure 5 shows the pole figure of the posterior
mean for the cODF of the elliptical MTR generated
when s was allowed to range from 0.3 to 0.4 as well
as the pole figure of the posterior mean generated
when s was allowed to range from 1.9 to 2. The pole
figure for the true cODF is also shown. A similar set
of results for the background region is also shown in
Fig. 5.

In both cases, the posterior mean that results
when s is in the range of 0.3 to 0.4 is a poor estimate
of the true cODF. Clearly, the sample generated
with values close to s ¼ 2 yields a much better set of
approximations to the true cODF. However, since in
reality we will not have access to the true pole
figure, we require a method to determine which set
of values of s is correct.

This can be achieved by comparing the value of b,
the mean EC response computed using this esti-
mated cODF, to the measured data f. Figure 6
shows the computed value of lim using the posterior
means for 0:3 � s � 0:4 and 1:9 � s � 2 as well as

Fig. 4. Simulated data from a single elliptical MTR. (a) The inverse prole figure map of the simulated EBSD. The black outline indicates the region
where eddy current measurements were simulated. (b) Imaginary portion of the simulated eddy current data. (c) Real portion of the simulated
eddy current data.
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the true value zim for our example. Clearly, the
value of lim is much closer to the original data when
assuming 1:9 � s � 2 instead of 0:3 � s � 0:4.

In addition, Fig. 7 shows a parametric plot of the
value of the average negative log of the weight
function as given in Eq. 21 versus the log of the

average norm of the difference between the data
vector f and the computed mean b, that is,

log f� bk k2
� 	

, for each of the generated samples.

The different color points correspond to different
ranges for the value of s, as indicated by the legend.

Fig. 5. Posterior mean estimate of the cODF for the elliptical MTR with (a) 0:3 � s � 0:4 and (b) 1:9 � s � 2. The true pole figure for the region is
shown in (c). The images in (d–f) are the corresponding results for the background region.

Fig. 6. Computed values of lim using the posterior means from the samples generated with (a) 0:3 � s � 0:4 and (b) 1:9 � s � 2. The simulated
measured data zim are shown (c).
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We note that as the value of s increases, the average

value of kf� bk2 decreases. Furthermore, the val-
ues of s that land in the range roughly around the
correct value of s ¼ 2 minimize both the negative log
of the original weight function and the difference
between f and b. Thus, it appears that the statistic

kf� bk2 contains information about the value of s.
Fortunately, we do not need to regenerate the ‘-

curve shown in Fig. 7 every time we run the
algorithm to get the correct value of s. Rather, by
adding a penalty term to the original cost function,
and adding s as an unknown in the optimization,
the correct value of s will emerge naturally. Specif-
ically, we replace the original weight function in
Eq. 21 with

pðz j f ; kwfk;wf ; sÞ ¼ exp �2m wf

� �2
�

�ðkwf k �
ffiffiffiffiffiffiffi
2m

p
Þ2

r2
norm

� kf� bk2

kf� b�k2

!
;

ð27Þ

where b� is the mean vector that yields the mini-

mum of kf� bk2 only. Note that the term

kf� bk2

kf� b�k2
ð28Þ

serves as a penalty to discourage solutions that
maximize Eq. 21 but do not result in values of lre
and lim that resemble the measured data.

With the addition of s as an unknown, the
posterior distribution becomes

pðf ; s j zÞ ¼ exp �2m wf

� �2
�

�ðkwf k �
ffiffiffiffiffiffiffi
2m

p
Þ2

r2
norm

� kf� bk2

kf� b�k2

!

ppriorðf ÞppriorðsÞ;

ð29Þ

where ppriorðf Þ is the same as given in Sect. 3.3.4.
The prior for s is constructed to ensure that s is
positive.

To demonstrate that this modified posterior does
find the correct value of s, we generated a sample
from Eq. 29. For comparison, we also generated a
sample from Eq. 29 without the penalty term Eq. 28.
In each case, the range of s was restricted so that
0:5 � s � 3. Figure 7 shows the resulting marginal
distribution of s with and without the penalty term.
As is evident from the resulting histogram, with the
penalty term, the marginal distribution of s is
centered around the correct value of 2. Without
the penalty, the possible values of s are more spread
out, with values near 0.5 being the most likely
choice for s. In general, we found that without the
penalty term, smaller values of s will be favored by
the posterior.

The penalty term relies on having access to the

vector b� that minimizes kf� bk2. Note that b� is
generally not associated with a single choice of
ODF. To find it, we minimize the function

hðf Þ ¼ kf� bðf Þk2: ð30Þ

In the examples that follow in ‘‘Numerical Exam-
ples’’ section, the set of ODFs that minimizes Eq. 30
is used as a starting point to maximize the posterior.

Fig. 7. (a) Parametric plot showing the average value of the negative log of the weight function in Eq. 21 versus the average value of kf� bk2 for
each of the samples generated using different values of s. Each point represents a different range for the value of s. The legend indicates the
values of s that are included in each point. (b) Resulting marginal distribution of s computed using samples drawn from the posterior with and
without the penalty term Eq. 28.
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NUMERICAL EXAMPLES

One of the main goals of this article is to apply the
techniques developed in Ref. 5 to realistic MTR
configurations; in Ref. 5, only simulated microstruc-
tures were used. Figure 8 shows a section of real
EBSD data taken of a titanium alloy specimen along
with the simulated eddy current data. The eddy
current data were simulated using a shielded
elliptical coil with axes equal to 250 lm and 750
lm at a frequency of 15 MHz with a measurement
step size of 75 lm in both the x and y directions.
Assuming that the long axis of the coil aligning with

the y-axis corresponds to a coil rotation of 0
, the coil
was rotated 30
 counterclockwise. We will apply the
ODF estimation algorithm to this data.

To proceed, we need a segmentation of the
material to feed in to the algorithm. The DREAM3D
segmentation of this specimen into regions defined
by different cODFs identified around 300 separate
regions. However, many of these regions are too
small to be independently resolved by the eddy
current coil. As such, we will not attempt to
estimate the cODF of each of these regions in the
inverse problem. We consolidated all of the regions
that fall below the resolution of the coil into a single

Fig. 8. (a) EBSD data of a realistic titanium alloy specimen. Data are recorded in the box indicated by the black lines in the specimen. (b)
DREAM3D segmentation with regions below the resolution of the coil consolidated into a single background region. (c) Imaginary portion of the
simulated eddy current data. (d) Real portion of the simulated eddy current data.
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Fig. 9. MAP estimates of several of the cODFs from the specimen in Fig. 8. Each row corresponds to a different region; the left column shows the
segmentation with the appropriate region labeled. The middle column is the pole figure for the estimated cODF, and the right column shows the
true cODF for each region.

Estimation of Realistic Microtexture Region Orientation Distribution Functions Using Eddy
Current Data

3703



background region; this reduced segmentation,
shown in Fig. 8, will be used in the inversion of
this data.

Figures 9 and 10 show the maximum a posteriori
(MAP) estimates of the cODF for seven different
regions. The algorithm performs well. With the
exception of region 3, the algorithm successfully
estimates the distribution of the second Euler angle
for each region. We suspect that the results for

region 3 are somewhat poor for two reasons: first,
this region is relatively small; second, its true cODF
may not be best described by a single Bingham
distribution. Although slightly less accurate than
the estimates of the second Euler angle, estimates of
the first Euler angle are generally good.

Ideally, we would like to be able to predict the
orientation of the c-axis with an error of no more
than 5
. To determine how well we estimated the tilt

Fig. 10. MAP estimates of several of the cODFs from the specimen in Fig. 8. Each row corresponds to a different region; the left column shows
the segmentation with the appropriate region labeled. The middle column is the pole figure for the estimated cODF, and the right column shows
the true cODF for each region.
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Fig. 11. Marginal cumulative distribution function (CDF) of the first and second Euler angles for each of the regions shown in Figs. 9 and 10. The
blue line is the true CDF, the red line is the MAP estimate, and the gray region represents the 95% predictive envelope (Color figure online).
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of the c-axis in each region, we compared the MAP
estimate of lh to the median of the true marginal
distribution of the second Euler angle. (We observed
that the median corresponds better to the peak of
the marginal distribution than the mean.) With the
exception of Region 3, the error in the estimate of
the tilt of the c-axis was< 9
. Most encouragingly,
the algorithm predicted the tilt of the c-axis for both
Regions 1 and 2 within 2
.

We repeated this process for the heading of the c-
axis by comparing the MAP estimate of lw to the
median of the true marginal distribution of the first
Euler angle. The error in the prediction for Region 1

was around 30
; in general, we found that the
algorithm struggles to predict the heading of the c-
axis when the tilt is close to 0
. The results are
better when the tilt is closer to p=2, as in Regions 2,
4, 6 and 7. In each of these regions, the error in the
prediction of the heading is < 10
. However, none
are within the desired 5
 tolerance.

Another factor to consider beyond the accuracy of
the MAP estimates is the uncertainty in these
estimates. Thus, in addition to computing the MAP
estimate for each cODF, we generated a sample
from the posterior distribution and used it to
generate 95% predictive envelopes (see Ref. 23).

Fig. 12. Marginal cumulative distribution function (CDF) of the first and second Euler angles for each of the regions shown in Figs. 9 and 10. The
blue line is the true CDF, the red line is the MAP estimate, and the gray region represents the 95% predictive envelope (Color figure online).
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Each sample point was weighted based on its value
of (29) and then sorted in order of descending
weight. The first n95 sample points in the sorted
sample with weights summing to approximately
0.95 were included in the predictive envelope. To
visualize the 95% predictive envelopes, we consider
the marginal cumulative distribution functions
(CDFs) for the first and second Euler angles, as in
Ref. 5.

Figures 11 and 12 show the estimated marginal
CDFs, along with the 95% predictive envelopes, for
each of the regions shown in Figs. 9 and 10. We note
that the MAP estimates of the marginal CDF for the
second Euler angle are generally in good agreement,
with the exception of Region 3. In addition, the true
CDF is contained within the 95% predictive enve-
lope. We note that for Region 1, a small portion of
the true CDF falls outside the 95% predictive
envelope. We attribute this to the fact that the true
cODF cannot be described by a single Bingham
distribution. However, our estimate does contain
the salient features of the distribution. Not surpris-
ingly, the largest regions, 1 and 2, have the smallest
predictive envelopes. Furthermore, the width of the
predictive envelope seems to increase when the size
of the region decreases. Region 3, where the algo-
rithm performs the worst, contains the largest
predictive envelope and is also the smallest region.

As mentioned previously, the AII model has the
same output for both ðw1; hÞ and ðw1 þ p; hÞ. Thus, to
compare the estimated CDF to the true CDF for the
first Euler angle, we subtracted p from each of the
true crystallographic orientations with a value of
w1 > p. This way, all of the true orientations can be
described on the interval w1 2 ½0; p�. Although in all
cases the true CDF is contained in the 95% predic-
tive envelope, there is a noticeably higher degree of
uncertainty in the estimate of the first Euler angle.
In the case of regions 6 and 7, the distribution of
potential values for lw is bimodal. Note that the two
modes of the distribution of lw share a reference
angle. While the correct value of lw does produce a
slightly closer match to the data, the difference is
small. Thus, we do not have a means of eliminating
the uncertainty between the two modes using a
single eddy current dataset; however, it is possible
that incorporating a second dataset recorded with a
different orientation of the coil could help with this
problem. This will be a topic of future work.

CONCLUSION

In this work, we successfully applied the algo-
rithm developed in Ref. 5 to realistic MTR config-
urations. In particular, we modified the inversion
method to account for unknown grain size and
added a prior distribution based on realistic cODFS.
The algorithm was then applied to eddy current
data simulated using real EBSD data; our method
was able to successfully recover the cODF of several
different regions in this specimen.

Moving forward, the next step is to apply this
method to real eddy current data. The AII model
that was used to simulate eddy current data in this
work assumes that any grain on the surface of the
specimen extends as a pillar through the specimen.
Thus, it does not consider any contributions from
regions below the surface. This will need to be
modified when applying the method to real data,
where regions below the surface may impact the
measurements. In addition, this method does
require a segmentation of the underlying material
into regions defined by different cODFs. Finding
this segmentation using either eddy current data or
another higher resolution NDE technique is a topic
of future work.
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