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High-dimensional thermodynamic phase stability databases are becoming
increasingly common due to the convergence of three recent trends: (1) the
widespread interest in so-called “high-entropy” alloys, (2) the availability of
high-throughput computational assessments of phase stability in broad com-
position spaces, and (3) the ongoing development of ever-increasingly broad,
multicomponent, multiphase CALPHAD databases. Although automated
computational tools can readily process such high-dimensional data, scientists
are often unable to visualize the relevant phase relationships, an ability that
is crucial to gaining an intuitive understanding of the stability constraints
governing materials design. The present work addresses this need by pro-
viding algorithms that enable the interactive exploration of phase equilibria in
high-dimensional spaces. These algorithms concentrate the complex nonlinear
nonsmooth optimization needed into a preprocessing step that generates a
large number of high-dimensional yet elementary graphical primitives. These
primitives can then be cross-sectioned to yield 3-dimensional views in a
computationally efficient manner that enables an interactive exploration of
high-dimensional spaces. All of these operations are highly parallelizable,

thus facilitating scaling of this method to large datasets.

INTRODUCTION

Materials scientists and engineers are well-ac-
quainted with phase diagram handbooks that have
guided materials design for decades, but such
resources fall short when the number of components
is too large for the phase diagram to be effectively
represented on a 2-dimensional medium. This paper
presents software tools that enable the interactive
visualization and exploration of phase equilibria in
high-dimensional spaces, to provide a unique win-
dow into high-dimensional thermodynamic phase
stability databases.

Such databases are becoming increasingly com-
mon due to the convergence of three recent trends.
First, the concepts of high-entropy alloys or multiple
principal component alloys (e.g., Refs. 1 and 2) have
stimulated the exploration of a wide range of
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complex alloy chemistries, and these efforts are
generating high-dimensional phase stability data as
a by-product.

Second, the development of high-throughput com-
putational methods that enable the large-scale
discovery of stable and metastable phases produces,
by design, large amounts of high-dimensional phase
stability data. While initial efforts concentrated on
the exploration of ordered phase energetics at
absolute zero,>”’ these efforts are being extended
beyond stoichiometric compounds to yield more
complete free energy models that feature composi-
tion and temperature dependence.’12

Finally, the CALPHAD (CALculation of PHAse
Diagrams) community has been steadily expanding
the coverage of complex chemistries by developing
increasingly broad multicomponent multiphase
CALPHAD databases. These efforts have been
ongoing for decades, and the amount of available
data is vast and fuels a materials research and
development ecosystem. These developments have
taken place both in industry, via proprietary
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database development,'® ' and in the open scien-

tific literature.’®2° Efforts are under way to con-
solidate these data into centralized meta-
databases.?""??

In all of the above cases, the data take the form of
composition- and temperature-dependent free ener-
gies, and obtaining a phase diagram involves find-
ing the mixture of phases and their respective
compositions, such that the free energy is mini-
mized under given imposed conditions (e.g., overall
composition, temperature, and pressure).

The determination of equilibrium phase bound-
aries from free energy models is a problem that has
received considerable attention, and suitable algo-
rithms have been implemented in numerous com-
mercial'®>'®  and  open-source®®?®  software.
However, this task involves a constrained nonlinear
optimization problem (with possible multiple local
optima) with inequality constraints that are poten-
tially binding, and where solutions could depend
non-smoothly on the input conditions. As CAL-
PHAD practitioners are well aware, these features
make it difficult to devise algorithms that are both
rapid and reliable. Efficient boundary tracing tech-
niques do exist,”62® but require a starting point
equilibrium that often needs to be found by more
extensive calculations. The possibility of multiple
local optima prompts the need for brute-force linear
or grid searches that, while effective, are consider-
ably slower and less suitable for an interactive
software tool.

To address this, we propose to carry out the
expensive computations of the thermodynamic equi-
libria as a preprocessing step taking place before the
interactive visualization. We rely on sampling
schemes to ensure better scaling to high dimensions
and to facilitate parallelization. Once the high-
dimensional phase boundaries have been deter-
mined and expressed as simple geometric primi-
tives, the interactive visualization step only
involves simple linear operations that can efficiently
be implemented to ensure a real-time feedback to
user input.

In the following sections, we first describe our
algorithms, along with their rationale, before pro-
viding a few examples inspired by high-entropy
alloy design.

METHODS

Let us first define some useful concepts. In a
phase diagram at constant temperature and pres-
sure, if there are e elements, there are e—1
compositional degrees of freedom, and the phase
diagram has dimension n =e—1 . To treat all
compositions symmetrically, they are traditionally
represented in a Gibbs triangle when e = 3. We
generalize this to a Gibbs simplex (a simplex in n =
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e — 1 dimensions is a polytope with n + 1 =e ver-
tices). When temperature is considered, another
dimension orthogonal to the Gibbs simplex is added,
so n = e, and the phase diagram is then contained
within a hyper-prism, with a “base” that is a
simplex with e vertices. One can proceed similarly
to include pressure, although we do not consider
this here.

The phase boundaries are, in general, (n — 1)-
dimensional curved hyper-surfaces, which will be
hereafter called manifolds. We represent these
manifolds by points interconnected to form a mesh.
The basic building block of that mesh is a (n — 1)-
dimensional simplex (e.g., in 3 dimensions, surfaces
can be meshed by triangles, i.e., 2-dimensional
simplexes). When n >3, we wish to perform a 3-
dimensional cross-section of the phase diagram for
plotting purposes. The remaining dimensions
(orthogonal to the 3-dimensional cross-section
hyper-plane) can be accessed as the user interac-
tively changes the hyper-plane of the cross-sec-
tion. (We use the term hyper-plane rather than
hyper-volume to emphasize that it is lower dimen-
sional than the full phase diagram.)

Let us now outline our computational approach,
which is also illustrated in Fig. 1 in a low-dimen-
sional setting for clarity. Each step will be detailed
further below.

1. Random sampling First, the temperature-com-
position space is randomly sampled from a
uniform distribution.

2. Equilibria calculations At every imposed con-
dition (overall composition and temperature),
the thermodynamic equilibrium is calculated.
All the calculations yielding a single-phase
equilibrium are discarded, while those yielding
a multi-phase equilibrium are kept (miscibility
gaps are also considered multi-phase equilib-
ria).

3. Phase boundary classification The remaining
data points provide, for each phase, a set of
points that samples its phase boundary in the
temperature-composition space. Points from dif-
ferent equilibria but associated with the same
phase are grouped. Within a group, the data
points are placed in sub-groups based on which
other phase(s) with which they are in equilib-
rium.

4. Meshing Within each subgroup, the sets of
points can be meshed to form polygonal hyper-
surfaces. The meshes for each subgroup are then
re-grouped with those associated with the same
phase. Of course, in an n-dimensional space,
these are actually (n — 1)-dimensional mani-
folds decomposed into n-point simplexes.

5. Cross-sectioning 3-dimensional cross-sections of
these manifolds are then computed. The prob-
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Fig. 1. Computational approach for the determination of low-
dimensional cross-sections of high-dimensional phase diagrams.
For plotting purposes, the “high” dimension is 2, while the “low”
dimension is 1, and an isothermal section is considered. Step
numbers correspond to those described in the main text. In Step 1,
composition points are drawn uniformly at random within the Gibbs
triangle. In Step 2, phase equilibria associated with each imposed
overall composition are calculated and those yielding a single phase
(encircled by a dotted line) equilibrium are discarded. In Step 3, end
points of the tie-lines are grouped (as shown by dotted lines) by
phase (distinguished by colors) and sub-grouped based on the
phase with which they are in equilibrium. In Step 4, each subgroup is
meshed and the resulting meshes are re-grouped by phase
(indicated by different colors). In Step 5, the cross-section (along
the red line) of each simplex (here shown as line segments)
constituting the meshes is calculated.

lem of calculating a cross-section of a manifold
decomposed into simplexes is a linear convex
programming problem that can be implemented

in a computationally efficient and reliable fash-
ion.

Random sampling (Step 1) uniformly on the Gibbs
simplex can be accomplished in a number of ways.
For an e-component system, the simplest way is to
draw compositions x; for I = 1,...,e — 1 each from a
uniform distribution on [0,1] and to reject trial
draws summing to greater than 1 (the last compo-
sition x, is then determined by x, =1 — Zi;% x7).*
An efficient algorithm that does not involve rejec-
tions is to draw e random numbers from indepen-
dent exponential distributions and normalize them
to sum to 1. (The use of an exponential distribution
is critical in this scheme, as other distributions
would not yield a uniform distribution on the Gibbs
simplex.) It is also possible to replace purely random
sampling by deterministic quasi-random or mini-
mum discrepancy sequences with improved sam-
pling properties (in terms of avoiding unnecessarily
close points while maintaining probabilistic valid-
ity). A detailed discussion of the implementations
and of the relative merits of the above schemes can
be found in Ref. 29. Other popular uniform sam-
pling schemes, such as Latin hyper-cube sam-
pling,>** may be difficult to adapt to a Gibbs
simplex geometry.

Random sampling (or its deterministic alterna-
tives) provides a desirable way to sample high-
dimensional spaces due to favorable scaling as the
dimension of the space increases, as well as due to
the ability to better control the computational cost.
In contrast, in grid-type sampling, one has very
little choice in the number of sample points: the
jump in the number of points between two consec-
utive grid sizes can be very large, leaving the user
the unenviable choice between a too-coarse grid and
a very computationally demanding calculation.
With random sampling, the densest computation-
ally feasible sampling can always be selected. One
can simply stop point generation when an adequate
sampling has been achieved, without having to plan
in advance how many samples will have to be
drawn. As an added benefit, random sampling also
ensures that the probability of accidentally missing
a phase is proportional to the volume it, and its
associated multi-phase equilibria, occupy in the
temperature-composition space.’! The probability
of missing a phase also decays exponentially to zero
as the number of sample points is increased. Grid-
based methods do not possess these advantages.

During the equilibria calculations (Step 2), the
random sampling approach offers the advantage
that the expensive thermodynamic equilibria calcu-
lations can be very easily parallelized, without
requiring the different computing threads to

*This scheme produces genuine uniform sampling because (1) a
subregion of a uniformly sampled region is also uniformly sam-
pled and (2) a nondegenerate linear transformation preserves
uniform sampling.
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coordinate their actions, in contrast to boundary-
following approaches. The latter are also difficult to
generalize to arbitrary dimensions, and, in fact, to
our knowledge, these methods have so far not been
used to generate phase boundary manifolds in high
dimensions.

Once a large number of equilibria have been
calculated, the single-phase equilibria are discarded
(as they provide no information regarding the phase
boundaries), while the multi-phase equilibria are
classified (in Step 3) in terms of which phases take
part in each equilibrium. For instance, if there are
three phases («,f,7) in the phase diagram, the
equilibria  are classified in 4  groups:
(o, ), (B,7), (2,7), (o, B,7), which we shall denote by
the subscripts 1 to 4. Next, for each group, we
extract the 9 manifolds corresponding to each phase
boundary’ namely: %1, ﬁla ﬂZa V2, %35 V3, %4, ﬂ47 V4- The
tie-triangle data points (and higher-order equilibria,
if any) are then combined with the appropriate
group: o Uy, f1 U By, fo U By, 79 Uy, o3 Uaa, 73Uy
to ensure that each manifold has edges that just
touch the adjacent manifold. Each of these groups
will be meshed separately. The rationale for this
classification is that all points within one group
sample a smooth (i.e., continuously differentiable)
and connected manifold. In contrast, equilibria that
involve different phases are either disconnected in
the composition-temperature phase, or, when they
are connected, there will typically be a kink (i.e., a
discontinuous derivative) at the junction. The clas-
sification thus ensures that the phase diagram is
decomposed into smooth objects.**

The meshing step (Step 4) is not as straightfor-
ward as it may appear to be at first. For a set of
points on a flat two-dimensional plane, Delaunay
triangulation®? is a standard method to construct
suitable connecting triangles. The geometric condi-
tion that such a construction must satisfy is simply
that the circumscribed circle around each triangle
must not contain any other points other than the
triangle’s vertices. This condition can be straight-
forwardly used to devise a constructive algorithm:
given a segment between two points, search for a
third point, such that the resulting circumscribed
circle satisfies the condition and forms a triangle.
The algorithm is then applied to the newly created
segments, etc. This algorithm straightforwardly
generalizes to n dimensions: one simply finds sim-
plexes connecting n + 1 points, such that the

**This statement assumes that the underlying thermodynamic
engine uses different labels for the phases on either side of a
higher-order phase transition.

"Note that this task cannot be accomplished by performing the n-
dimensional Delaunay triangulation and keeping all the (n — 1)-
dimensional faces that belong to only one n-dimensional simplex.
This would give a mesh for the convex hull of the boundary
points, while, in general, phase boundaries need not be convex.
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Fig. 2. Meshing a curved surface. The mesh intended to be
generated is shown in (a), with triangle normals shown to convey
curvature information. (b) shows that a straightforward application of
the Delaunay triangulation criterion for a flat surface incorrectly flags
an invalid mesh due to the point circled in red falling within the
circumscribed cylinder. (c) This problem is avoided if one instead
uses a circumscribed sphere whose center lies on the current facet.

circumscribed hyper-sphere does not contain any
other points. Implementations of this algorithm are
readily available.?

Our task is more complex, however: the meshing
we seek is not generated from points in a flat space.
We need to mesh a (n —1) -dimensional curved
manifold embedded in an n-dimensional space.’
Software packages able to handle both hyper-sur-
face curvature and spaces of general dimension
appear to not yet be available, to the best of the
authors’ knowledge. A direct application of one step
of Delaunay “simplexization” might find multiple
points to add to the mesh or no points at all, due to
the curvature of this manifold. The case of multiple
points can be easily addressed by a tie-breaking rule
(e.g. proximity to the previously meshed point).
However, the case of no suitable points, illustrated
in Fig. 2b, demands a modification to the algorithm.
Instead of checking if no other points belong to a
(n — 1)-dimensional sphere (extended to an n-di-
mensional cylinder, as shown in Fig. 2b), one checks
if no other points belong to an n-dimensional hyper-
sphere circumscribing the n points of the new
candidate (n — 1)-dimensional simplex with the
constraint that the hyper-sphere center lies along
the plane of that (n — 1)-dimensional simplex, as
shown in Fig. 2c. This modified algorithm is then
applicable to curved manifolds, as long as the
manifold’s radius of curvature does not approach
the radius of the circumscribed hyper-spheres. For a
continuously differentiable hyper-surface, the latter
condition is always eventually satisfied if the sam-
pling points are sufficiently close. Fortunately,
phase boundaries are typically continuously differ-
entiable, except at points where phases appear or
disappear.

This latter observation is what motivates group-
ing together phase boundary points that share the
same combination of phases in equilibrium. This
ensures that the resulting manifold to be meshed is
smooth. Once each group of points has been meshed
separately, they can be combined into a single mesh
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to create a continuous hyper-surface, with possible
kinks where there are changes in the combination of
phases that are in equilibrium.

The meshing step can be implemented in a
parallel architecture as follows. Each of the N
instances of the code keeps track of the mesh
constructed so far, and looks for simplex faces that
are at the boundary of the manifold meshed so far.
Each of these faces is assigned a numerical index 1.
Instance number ¢ of the code works on the face
with smallest I, such that I mod N =¢. Each
instance spends most of its time trying to find a
neighboring point that satisfies the circumscribed
hyper-sphere criterion. When an instance finds such
a point, it shares the information with all other
instances, and all of them update their internal
mesh. Only the point index and face index need to
be shared, so the communication overhead is kept to
a minimum. In addition, the number of faces on the
boundary of the mesh is large during most of the
calculations (except towards the beginning and the
end of the meshing process), so the potential for
parallelization is also large.

Thanks to the fact that the meshing step repre-
sents the phase boundary manifolds as a union of
simplexes, the process of computing a cross-section
of the phase diagram (Step 5) reduces to computing,
many times, the cross-section of a simplex. The c-
dimensional cross-section of an (n — 1)-dimensional
simplex could, in principle, be calculated by solving
a generic linear programing problem. However, this
task has a considerably more specific structure
which can be exploited to devise a more efficient
algorithm.

The vertices of a c-dimensional cross-section of an
(n — 1) -dimensional simplex can be obtained by
considering, in turn, any subset of n — ¢ + 1 of these
vertices. For each subset of vertices, one computes
which weighted average of these vertices yields a
point that lies along the cross-section hyper-plane.
If the weights are all positive, then this point is a
vertex of the cross-section, but, otherwise, this point
should be discarded. This algorithm is illustrated in
Fig. 3 for n =3 and ¢ =2 and is more formally
described in Appendix A. Note that there is no
guarantee that the cross-section of a simplex is itself
a (¢ — 1)-dimensional simplex, although it is at least
guaranteed to be convex. For each simplex cross-
section, the resulting points can be trivially meshed
because they lie on a flat surface and there are
typically very few of them. It is important to
emphasize that the cross-section operation essen-
tially involves repeatedly solving linear systems of
equations, a task that is very easy to vectorize,
parallelize, or perform via graphical processing
units (GPU). Another efficiency consideration is
that only a small fraction of the high-dimensional
simplexes is being cut through for a given visualized
cross-section. These simplexes relevant for visual-
ization can be very quickly identified by simply
looking at the pattern of signs of the vertices’

Fig. 3. Calculating the cross-section of a simplex. Example of a 2-
dimensional cross-section (¢ = 2) of a 2-dimensional simplex (n —
1 = 2) embedded in a 3-dimensional space (n = 3). One picks every
subset of n—c+1=2 vertices from the simplex and checks
whether the (n — c¢)-dimensional simplex (here, segments, since
n—c =1) generated by convex combinations of these vertices
intersects the cross-section plane (in gray). Here, two of the
segments meet this criterion while one (dotted) does not. The two
successful intersections yield two points in the plane that can be
meshed by (¢ — 1)-dimensional simplex(es) (here shown as a thick
blue segment, since c — 1 =1).

coordinates (once all coordinates have been trans-
formed so that the cross-section hyper-plane crosses
the origin and contains the first ¢ Cartesian axes).
This implies that the method scales well with the
dimension of the high-dimensional space.

Phase diagrams for more than 2 components
traditionally include tie-lines to clarify which
phases are in equilibrium. For a generic 3-dimen-
sional cross-section in an n-dimensional (n>3)
space, the probability that a tie-line lies exactly in
the subspace of the chosen cross-section is negligi-
ble. Although this would suggest that tie-lines
should not even be plotted in this context, this is
not entirely satisfying. It would be useful to visu-
alize how close the cross-section is to lining up with
a given tie-line, as this could help guide the user
towards cross-sections that are more informative or
easier to interpret. To this effect, we propose to
represent tie-lines by hyper-ellipsoids elongated
along the direction of the tie-line and narrowed
along directions perpendicular to it (see Fig. 4). This
has the effect of smoothly interpolating between a
small sphere (when the tie-line is perpendicular to
the cross-section) and an elongated ellipsoid resem-
bling a conventional tie-line (when the tie-line is
parallel to the cross-section). This lets the user
gauge how close the tie-line is to being co-planar
with the selected cross-section. A similar idea could
be used to represent tie-triangles (and, more gener-
ally, tie-simplexes), using hyper-ellipsoids whose
long principal axes lie in the hyper-plane of the tie-
simplex, and whose short principal axes are per-
pendicular to it. For rendering efficiency purposes,
these hyper-ellipsoids are triangulated into
simplexes.

IMPLEMENTATION

The above algorithms have been implemented
within the Alloy Theoretic Automated Toolkit
(ATAT).?*3% The main command for preprocessing
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Fig. 4. Tie-line representation by a hyper-ellipsoid and its cross-
section. Each hyper-ellipsoid (here shown as 3-dimensional
ellipsoid) is elongated along the direction of the tie-line (shown as
a dashed line) and narrowed perpendicular to it. When the tie-line is
almost perpendicular to the cross-section (here 2-dimensional), it
appears close to a circle, and, when the tie-line is almost parallel to
the cross-section, it appears as an ellipse.

is ocplotpd and takes the form of a Perl script that
calls OpenCalphad 3¢ to perform the thermody-
namic equilibrium calculations and various ATAT
commands (implemented in C++) that perform the
meshing (simplexize command) or generate coordi-
nate axes and labels (mkaxes command). The script
ocplotpd can spawn multiple instances of OpenCal-
phad to take advantage of multiple cores, while the
simplexize command can exploit parallelization via
MPL.

The command ocplotpd takes as an input a
thermodynamic database in the standard TDB
format and produces, as an output, one of the
following:

1. 2- or 3-dimensional output suitable for viewing
with gnuplot

2. 3-dimensional output in standard vtk format®’
suitable for viewing with ParaView.*®

3. n-dimensional output in the form of simplex-
meshed manifolds in ATAT’s “nd” format (which
stands for “n-dimensional”).

The outputs in the forms of item 1 and 2 above are
already being used to generate the graphical output
for thermodynamic databases,?” while the output in
the form of item 3 is the main novel contribution of
this article. Files in the “nd ” format can be viewed
with the ATAT command ndviewer, which gener-
ates 3-dimensional cross-sections interactively
while allowing the user to move and rotate in n
dimensions. This code is implemented in C++, with
graphical aspects handled using OpenGL via the
GLUT library. The parts of the code implementing
linear algebra operations can be linked with BLAS
and LAPACK, for which GPU-aware implementa-
tions are readily available.

APPLICATIONS

As a first example, we consider the well-known
Co-Cr-Fe-Ni-V high-entropy alloy, for which a ther-
modynamic database from experimental data has
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been recently developed.®® We compute this sys-
tem’s 4-dimensional phase diagram at 1500 K and
view various 3-dimensional cross-sections.

Let us first provide some statistics that convey an
order of magnitude of the computations involved.
Thermodynamic equilibrium calculations were per-
formed at 100,000 sample points, yielding about
50,000 points on the phase boundaries. We kept
about 10% of the calculated tie-lines for plotting
purposes, yielding about 2400 tie-lines. The meshed
boundary points resulted in about 320,000 sim-
plexes, while the representation of the tie-lines
added about 20,000 simplexes.

The calculations were performed on a single 24-
core node (Intel e5-2670; Skylake architecture). The
parallelized thermodynamic calculations took about
10 min of wall clock time, while the meshing took
about 30 min of wall clock time. Once this pre-
processing step was completed, the phase diagram
could be viewed interactively at about 5 frames per
second on a mid-range laptop (1.90GHz Intel i7-
8650U CPU without a discrete graphic card). These
software tools are still undergoing significant effi-
ciency improvements, however, and the timings we
report here are likely to continuously improve (e.g.,
our current implementation of the viewer does not
exploit multi-threading or the availability of multi-
ple cores).

A typical output is shown in Fig. 5, where the
cross-section hyper-plane is slowly moved from the 0
at% V to 100 at% V. This type of exploration is
useful to identify regions of composition space
where the detrimental ¢ phase does not form.

As a second example, we consider the promising
Cr-Mo-Nb-V-W high-entropy alloy system.*® In this
example, the thermodynamic Calphad model is
generated from high-throughput ab initio calcula-
tions, following the method described in Ref. 8 and
the parameters listed in Appendix B. We focus on
the thermodynamics of the bce phase and obtain its
metastable phase diagram. This exercise enables us
to find which regions of composition space are free of
miscibility gaps, so that synthesizing a bcc alloy
that is at least metastable would be a possibility. Of
course, other phases based on other crystal struc-
tures could further reduce the set of feasible alloys if
one wishes to require a strict thermodynamic
equilibrium, but we leave the investigation of this
possibility to future communications.

The calculation process involved the computation
of 70 special quasirandom structures*'*? (with unit
cell sizes ranging from 32 to 48 atoms) spanning the
full composition range of the 5-component alloy. The
resulting random alloy formation energies were
then combined with short-range-order contributions
based on the cluster variation method,*® as
described in Ref 8 and used to build a Calphad
model.

Thermodynamic equilibrium calculations were
performed at 100,000 sample points, yielding about
60,000 points on the phase boundaries. We kept
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Fig. 5. Example of interactive exploration of the Co-Cr-Fe-Ni-V phase diagram (1500 K isothermal section). Surfaces indicate phase boundaries,
color coded by phase, while tie-lines are shown in white. The image sequence starts at the top left with the Gibbs tetrahedron associated with the
Co-Cr-Fe-Ni system and the remaining image sequence shows (from top to bottom and then left to right) cross-sections of constant V
concentration with V content gradually going from 0 to 100 at% in successive images.

about 10% of the calculated tie-lines for plotting
purposes, yielding about 5000 tie-lines (many of
which are actually the boundaries of tie-triangles).
The meshed boundary points resulted in about
360,000 simplexes, while the representation of the
tie-lines added about 45,000 simplexes.

In this example, we can explore how the shape of
the miscibility gaps changes along different cross-
sections. In Fig. 6a, we clearly see, from the tie-lines
and phase boundaries, that the 50 at% W alloy with
similar V and Nb content phase separates into a V-
rich and a Nb-rich alloy, while the addition of Cr to
this alloy does not lead to the precipitation of a Cr-
rich phase. In contrast, Fig. 6g also shows a
miscibility gap in another Cr-poor portion of the
phase diagram, but the tie-lines there actually point

to a phase separation that involves Cr-rich phases.
The figure also shows the gradual transition
between these two situations, and this type of
behavior would be very difficult to investigate
without an interactive tool such as the one proposed
here.

CONCLUSION

This paper has introduced software tools that
enable the interactive visualization and exploration
of phase equilibria in high-dimensional spaces, in
an effort to bring the traditional handbooks of phase
diagrams into the next century, and meet the needs
of the increasing community of researchers relying
on high-dimensional phase stability data. In anal-
ogy with the echographies used in medicine, where
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Fig. 6. Example of interactive exploration of the Cr-Mo-Nb-V-W
metastable bcc phase diagram. Blue surfaces indicate the bcc phase
boundary while tie-lines are shown in white. Compositional
coordinates of the vertices are indicated in red. The image
sequence starts at the top left with a cross-section at 50 at% W.
The remaining image sequence shows (from top to bottom and then
left to right) a rotation along the V-W hyper-plane.

interactive 2-dimensional cross-sections enable
viewing of a 3-dimensional body, our software tools
enable interactive 3-dimensional cross-sections that
facilitate the exploration of higher-dimensional
spaces. We have presented here a snapshot of the
current status of these tools—they are being con-
tinuously improved in terms of performance and
usability.

In addition to various algorithmic innovations,
our contribution is to observe that the complex
process of rendering high-dimensional phase dia-
grams can be broken down into (1) a computation-
ally intensive pre-processing step handling all the
complex, nonlinear, and nonsmooth operations that
can be performed in advance, and (2) an interactive
visualization step in which only simple linear
operations on elementary graphical primitives have
to be carried out. Such operations can be easily
vectorized, parallelized, or performed by graphical
processing units (GPU).

The interactive high-dimensional viewer pre-
sented here is actually agnostic regarding the type
of data to be viewed. Hence, a by-product of our
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efforts is to provide general tools to view general
high-dimensional scientific data through -cross-
sections.
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APPENDIX A:
CROSS-SECTION CALCULATION
ALGORITHM

This section describes in more detail how to
compute a c-dimensional cross-section of an
(n — 1)-dimensional simplex.

An (n — 1)-dimensional simplex can be defined as
the set of all convex combinations of its n vertices (a
convex combination is a linear combination with
positive weights that sum to one). Similarly, its
(n — s)-dimensional facets (for some s>1) are
defined by convex combination of n —s+1 of its
vertices. (To fix the ideas, 2-dimensional facets
correspond to the usual facets, while the 1-dimen-
sional facets correspond to edges.)

These (n — s)-dimensional facets are mapped onto
lower-dimensional objects by the cross-section oper-
ation. Our task is to find the s, such that the (n — s)-
dimensional facets will be mapped to single points
by a c-dimensional cross-section operation. These
points then correspond to the vertices of the cross-
section. These vertices, once connected by a (¢ — 1)-
dimensional mesh, yield the cross-section of
interest.

A c-dimensional cross-section is defined by n — ¢
linear constraints, and we thus need n — ¢ degrees
of freedom to be able to uniquely satisfy these
constraints (i.e., obtain a single point). A convex
combination of n — s + 1 vertices of the simplex has
n — s degrees of freedom (because the weights must
sum to 1), and we conclude that s = c.

The algorithm is then simply:

1. Consider every group of n — ¢ + 1 vertices out of
the n vertices of the original simplex.

2. For each group, solve for which linear combina-
tion (with weights summing to 1) of these
vertices yields a point p within the given c-
dimensional cross-section hyper-plane.

3. If the weights are all positive, place the point p
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in the list of vertices.

4. Mesh the resulting vertices to form a (¢ — 1)-
dimensional manifold (which is a flat manifold
bounded by a convex boundary).

APPENDIX B: AB INITIO CALCULATION
PARAMETERS

The ab initio calculations were performed with
the VASP code,***® which implements the projector
augmented wave.*® The pseudopotentials used had
the following number of electrons included as
valence: Cr: 6, Mo: 6, Nb: 11, V: 5, W: 6. The PBE
47 exchange—correlation functional was used. A
kinetic energy cutoff of 300 eV and k-point mesh of
density of at least 8000 points per reciprocal atom
was automatically generated*® for each structure,
and Fermi level smearing of 0.1 eV was performed
using the Methfessel-Paxton scheme of order 1. All
relaxation calculations allowed all cell parameters
and atomic coordinates to vary. They were followed
by a static run, where Brillouin zone integrations
were performed using the tetrahedron method with
Blochl corrections.*®

The Calphad model was built using special
quasirandom structure structural energies on a
composition grid corresponding to “level 4” in
sqs2tdb,® this including compositions of the form
A, A19B1j2, AzuBijs , Aq3B1/3Cyiy3, Aq/2B1/4Crys
with A,B,C standing for any 3-element subset of the
system’s five elements. The interaction coefficients
of the Calphad model include polynomials of binary
and ternary compositions up to order 3. The cross-
validation score of the fit was 11 meV. Short-range-
order corrections were included.
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