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In the field of ironmaking, it is crucial to predict the gas utilization rate
(GUR), which is strongly related to the product quality and the smooth
operation of a blast furnace (BF). The present work proposes a model based on
the multi-layer perceptron (MLP) algorithm and data-driven to predict GUR
after 1 h, 2 h, and 3 h, respectively. First, the collected data are preprocessed
using the 3r criterion. A maximal information coefficient (MIC) is then used
for feature selection. Meanwhile, a grid search is used to select best hyper-
parameters for the MLP and an extreme learning machine (ELM) algorithm.
Based on the above steps, the MLP and ELM models are built separately.
Finally, the prediction performance of the two models is compared in several
dimensions. The results show that the prediction result of both models is
excellent when the chosen output parameter is the GUR after 1 h. In addition,
when different output parameters are selected, the prediction accuracy of the
MLP model is always higher than that of the ELM model.

INTRODUCTION

The aim of blast furnace (BF) ironmaking is to
product high-quality iron with low production costs
and high energy efficiency,1 where the BF is a major
equipment for converting iron ore into hot metal.
The quality of the hot metal and other products is
directly influenced by the smelting condition of the
BF.2,3 The hot blast is blown into a BF from the
bottom to form an upward gas flow in BF ironmak-
ing.4 At the same time, the iron ore reacts with the
gas flow to yield molten iron, BF slag, and gas. BF
gas is an important product and energy substance in
the ironmaking process, and it can promote the
internal reaction of the BF and provide heat for the
BF reaction. At the same time, the waste heat of BF
gas can be used in the air heater and coke oven. The
gas utilization rate (GUR) is defined as the ratio of
the carbon dioxide content to the total content of

carbon monoxide and carbon dioxide in the top gas
flow, and it reflects the efficiency of energy utiliza-
tion and the distribution of gas flow in the BF.5

Improving GUR is of great importance to improve
the energy efficiency and to reduce smelting costs.6

Thus, it is extremely important to build a model
that accurately predicts GUR.

In the past few decades, data-driven and first-
principle methods have been two key methods for
predicting the GUR or other important parameters
of a BF.7,8 The first-principle model in metallurgy is
built based on metallurgical transport, metallurgi-
cal dynamics, and thermodynamics. Therefore, an
accurate and basic theory of metallurgy is needed to
build a reliable model.9 However, it is difficult to
master the condition of a BF due to the intricate
transport phenomena and extreme environ-
ments.2,10 In contrast, the data-driven model is
built on the basis of the underlying principles of
huge amounts of data and statistical theory. Mean-
while, with the increased power of computers, the
data-driven model is in the spotlight in BF iron-
making. For example, Bhattacharya used partial(Received October 7, 2021; accepted January 17, 2022;
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least squares to predict the hot metal silicon content
in a BF.11 Tang tried predicting the silicon content
of hot metal based a chaos particle swarm optimiza-
tion.12 The hot metal temperature and silicon
content were forecast on the basis of partial least
squares by Lin.13 Nurkkala proposed multiple
autoregressive models to predict the hot metal
silicon content.14 Gao predicted the thermal state
change of a BF based on a support vector regression
modeling method.15 In order to improve the GUR
and adjust burden distribution, Zhang constructed a
decision-making strategy.16 In addition, some schol-
ars have tried to predict the GUR based on neural
networks.17,18

In summary, data-driven models have yielded
excellent results with low computational complexity
compared to the first-principle model. In particular,
extensive data-driven models have been developed
in the past for BFs. In addition, many academics
have focused solely on the prediction methods used
in constructing a model, but have neglected to
consider when gas utilization should be predicted
using the current BF state parameters. In this
study, we propose a data-driven model and a MLP
algorithm to predict GUR after 1, 2, and 3 h in a BF,
respectively. MLP is a parallel combination of many
identical simple processing units, and, although the
function of each unit is simple, the parallel activity
of a large number of simple units makes it incred-
ibly powerful and effective in processing informa-
tion. In addition, MLP can be trained to acquire the
weights and structure of the network, presenting a
strong self-learning ability and adaptive capability
to the environment. These features of MLP are well
suited for use in the complex and extreme environ-
ments of a BF. The predicted results have demon-
strated that the constructed MLP model performs
better than the ELM model. The use of this method
to predict GUR has not previously been reported.
The remaining parts of this paper are structured as
follows.

‘‘Data pre-processing and feature selection’’ sec-
tion gives a detailed description of the method of
data pre-processing and feature selection, then, a
modeling method is presented in ‘‘Construction of
the model’’ section. In ‘‘Analysis and comparison
using actual run data’’ section, the comparison of
the predictions of the two models are given, while
‘‘Conclusion’’ conclusion sets out the conclusions.

DATA PRE-PROCESSING AND FEATURE
SELECTION

Data Pre-Processing

Real production data including 35,198 continuous
samples were collected from a 4150-m3 BF. The
interval time between the samples was 1 h. The
collected parameters of each data sample are shown
in Table I.

Due to the complex conditions, such as high
temperature and pressure, multiphase fluid flows,

and mass and heat transfer, there are missing
values and outliers in the detection and collection of
related parameters. Previous studies have shown
that pre-processing of raw data followed by correla-
tion modeling and prediction is more effective than
using raw data directly for prediction modeling.
Therefore, pre-processing of the data is essential
and a 3r criterion has been used here to judge the
outliers and extreme outliers. Extreme outliers
have been replaced with missing values. In order
to ensure the continuity of time, extreme outliers
and vacancy data are usually filled, and linear
interpolation is selected to replace missing values.

Feature Selection

In order to improve the accuracy of the prediction,
we have selected the parameters in the current
state of the BF as inputs of the constructed models.
Meanwhile, GUR after 1 h (GUR-1h), GUR after 2 h
(GUR-2h), and GUR after 3 h (GUR-3h) have been
selected as the output parameters.

As the BF ironmaking is a systematic process, the
GUR is greatly influenced by many factors. Feature
selection selects important influencing factors as
input variables in order to reduce the complexity of
the model during computation, and to improve the
accuracy of the prediction of the model. A maximal
information coefficient (MIC) was used for feature
selection and to measure the correlation between
the feature parameters. The calculation process of
MIC is divided into the following three steps19:

(1) The scatter plot composed of X and Y is
gridded with m columns and n rows, and the
value of MIC is obtained for a given m and n.

(2) Normalization of the largest mutual informa-
tion value.

(3) Selecting the maximum value of mutual infor-
mation at different scales as the MIC value.

Based on the above steps, the MIC values between
the characteristic parameters and the output
parameters are shown in Fig. 1.

Finally, the characteristic parameters with MIC
values greater than 0.15 are selected as input
variables based on the above calculation results.
Therefore, 16 input parameters have been finally
selected and are shown in Table II.

CONSTRUCTION OF THE MODEL

MLP Algorithm

Multi-layer perceptron (MLP) is also known as
artificial neural networks. MLP takes the eigenma-
trix xm and obtains a predictor variable ~ym by
combining linear and nonlinear combinations for
the sample set D = {(xm,ym)}. In addition to the
input and output layers, there are multiple hidden
layers within the multilayer perceptron. The sim-
plest MLP requires only an input layer, a single
hidden layer, and an output layer, which at this

Dewen Jiang, Wang, Zhang, Dewen Jiang, Li, and Liu1634



point is also referred to as a single-layer feed-
forward neural network. For a dataset (xi, ti)
containing N samples, the mathematical model of
the single-layer feed-forward neural network is
shown in Eq. 1:

XN
�

i¼1

bigiðxkÞ ¼
XN

�

i¼1

bigðwi; bi; xkÞ ¼ tk; k ¼ 1; 2; . . . ;N

ð1Þ

where xi = [xi1,xi2, ……, xin] which denotes the N-
dimensional features of the ith sample, ti = [ti1,ti2,
……, tin] and that the corresponding target vector bi
is the output weight matrix for connecting the ith
hidden and output nodes, g(wi, bi, xk) is a nonlinear
segmented continuous function, and wi and bi are
determined model parameters. Each neuron in the
hidden layer is composed of a linear combination of
input features x. However, if it is just a linear
combination, the result will be linearly related to
the feature no matter how many layers are in this
neural network. After each neuron results in a
linear operation, an activation function is added
that changes the linearity rule to handle this
situation.

ELM Algorithm

ELM is a machine-learning method for single-
layer feed-forward neural network, which has three
layers of neurons, namely, the input, hidden, and
output. For a dataset (xi, ti) containing N samples,
the mathematical model of the single-layer feed-
forward neural network is shown in Eq. 1. It is
worth noting that g(wi, bi, xk) is a nonlinear
segmented continuous function, and that wi and bi
are randomly determined model parameters. Thus,
Eq. 1 can be written in the form of an implicit
output matrix, as shown in Eqs. 2 and 3:

Hb ¼ T ð2Þ

HðW;B;XÞ ¼

gðw1 � x1 þ b1Þ ::: gðw
N
� � x1 þ b

N
� Þ

..

. . .
. ..

.

gðw1 � xN þ b1Þ ::: gðw
N
� � xN þ b

N
� Þ

0

BB@

1

CCA

N�N
�

ð3Þ

According to the least squares method, combined
with the singular value decomposition method, the
solution of the ELM can be expressed as Eq. 4:

Table I. The related parameters involved in the research

Actual physical meaning Parameter name Actual physical meaning Parameter name

Blast volume BV Wind pressure WP
Pop pressure TP Pressure differential PD
Air permeability resistance coefficient ARC Wind temperature WT
Oxygen content OC wind velocity WV
Coal injection quantity CIQ Ventilating index VI
Theoretical combustion temperature TCT Center strength Z
Edge strength W Intensity ratio (IR) Z/W
Temperature of cross-temperature measuring TOCTM Marginal mean MM
Content of carbon monoxide COCM Content of carbon dioxide COCD
Bosh gas index BGI Kinetic energy KE
Inlet water temperature IWT Outlet water temperature OWT
Gas utilization rate GUR

Fig. 1. The MIC of the selected feature parameters with GUR (the
definitions of the abbreviations for each feature parameter can be
found in Table I).

Table II. Final characteristic parameters of GUR

BV IWT Z BGI

TP CIQ GUR OC
WP W MM IR
WT COCD COCM PD

Definitions of the abbreviations for each feature parameter can be
found in Table I.
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b
^
¼ ðHTHÞ�1HTT ð4Þ

The raw data is pre-processed and all data are
normalized. The MLP and ELM algorithms were
used for modeling. The dataset used in this paper is
from 35,198 sets of data collected by the online
detection system of BFs in China. In addition, 75%
of the dataset is used for the training model and the
remaining data are used for the testing model.

ANALYSIS AND COMPARISON USING
ACTUAL RUN DATA

Comparison of the Predictions of the Two
Models

In order to achieve accurate prediction, the ELM
and MLP models were established. A total of 26,398
samples were used for training the two models.
Meanwhile, the remaining 8800 samples were used
for testing the two models. The best hyperparame-
ters for the two models were obtained by a grid
search. When the output parameter of the two
models is the GUR-1h, the first hidden layer of the
ELM model has 140 nodes and the activation
function is a linear function, while the second
hidden layer has 40 nodes and the activation
function is a tanh function. In addition, the MLP
model has 50 hidden layers and the activation
function is the tanh function.

With the predicted parameter of GUR-1h, the
results are expressed in Fig. 2a and b. In order to
show the comparison results clearly, 100 data points
were randomly selected for comparison. Figure 2
indicates that the fit of both models is excellent and
that the fitting of the predicted and measured
values of MLP is better than those of ELM.

Figure 3a and b provides the scatter plots of the
two methods in terms of the predicted and mea-
sured GUR. It can be seen that ELM and MLP fit
the data very well, since the data are distributed
compactly along the diagonal direction. In compar-
ison, MLP fitted the data better than the ELM
method, since the data are distributed more closely
along the diagonal direction, as shown in Fig. 3a
and b. In addition, the probability density of the
predicted error of the MLP model is much smaller

than that of the ELM method, as shown in Fig. 3c
and d.

When the output parameter of the two models is
the GUR-2h, the first hidden layer of the ELM
model has 140 nodes and the activation function is a
linear function, while the second hidden layer has
10 nodes and the activation function is the tanh
function. In addition, the MLP model has 250
hidden layers and the activation function is the
relu function. For the predicted parameter of GUR-
2h, the results are expressed in Fig. 4a and b.

Both Figs. 4 and 5 demonstrate that the MLP
model is more accurate for predicting the GUR-2h
than the ELM model.

When the output parameter of the two models is
the GUR-3h, the first hidden layer of the ELM
model has 220 nodes and the activation function is a
linear function, while the second hidden layer has
80 nodes and the activation function is a tanh
function. In addition, the MLP model has 50 hidden
layers and the activation function is the tanh
function. For the predicted parameter of GUR-3h,
the results are expressed in Fig. 6a and b

A full comparison of the predicted results of the
two methods is shown in Fig. 7a and b, where the
predicted GUR values were plotted against the
observed GUR values. As shown in the figure, the
data are distributed more closely along the diagonal
direction, indicating that the MLP model fits the
data better than the ELM model. The same results
can also be observed in Fig. 7c and d. Compared
with the ELM model, the predicted GUR values of
the MLP model are in better agreement with the
actual observed GUR values.

All of the above analysis results demonstrate that
the proposed MLP model is more accurate for GUR
prediction compared with the ELM model.

Evaluation of Forecast Results

In order to characterize the accuracy of the two
models in predicting GUR from several aspects, the
root mean squared error (RMSE) and hit rate (HR)
were used. RMSE and HR are defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
Xn

i¼1

hðxiÞ � yið Þ2

s
ð5Þ

Fig. 2. Comparison of the predictions of the ELM (a) and MLP (b) model when the output parameter is GUR-1h
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HR ¼ 1

n
�
Xn

i¼1

HRi � 100%

HRi ¼
1; hðxiÞ � yij j � c

0; hðxiÞ � yij j> c

(

8
>>>><

>>>>:

ð6Þ

where n denotes the total number of samples in the
test set. yi the measured value, h(xi) the predicted
value, while c is the boundary value of the hit rate.
In this paper, the value of c was selected as 2%.

The MLP model obtained the highest prediction
accuracy between the two approaches, as shown in
Table III. When GUR-1h, GUR-2h, and GUR-3h are
predicted by the two models, the RMSE values of
the MLP model are 0.022, 0.063, and 0.071 lower
than the RMSE values of the ELM model, respec-
tively. Consequently, compared with the ELM
method, the predicted GUR values of the MLP
model are in better agreement with the actual
observed GUR values. All of the above analysis
results demonstrate that the proposed MLP model

Fig. 3. (a–d) Comparison of the prediction errors of the two models when the output parameter is GUR-1h

Fig. 4. Comparison of the predictions of the ELM (a) and MLP (b) model when the output parameter is GUR-2h
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is more accurate for GUR prediction compared with
the ELM method. Furthermore, ELM and MLP are
highly suitable for predicting the GUR after 1 h,
while ELM and MLP proved to be highly unsuit-
able for predicting GUR after 3 h. Finally, we chose
to predict the gas utilization after 1, 2, and 3 h, and
there was a decreasing trend in the accuracy of the
predictions. It is worth noting that Yu analyzed the

residence time of the gas in a BF through numerical
simulation, and that his study showed that the
mean residence time and space time of gas fluids
were predicted as 13.5 s and 16.3 s, respectively.20

This phenomenon suggests that the impact of the
time that the gas is retained in a BF does not exceed
1 h.

Fig. 5. (a–d) Comparison of the prediction errors of the two models when the output parameter is GUR-2h

Fig. 6. Comparison of the predictions of the ELM (a) and MLP (b) model when the output parameter is GUR-3h
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CONCLUSION

The gas utilization rate of a BF is an important
indicator of its energy consumption and smooth
operation. Constructing a prediction model for the
gas utilization rate is an important step in achiev-
ing highly efficient production. In this paper, two
data-driven models are proposed for predicting gas
utilization rate in a BF-based multi-layer percep-
tron and an extreme learning machine algorithm,
which accurately predicted the gas utilization rates
after 1, 2, and 3 h, according to the real production
data for a BF. The simulation results show that both
the multi-layer perceptron model and the extreme
learning machine model achieved accurate predic-
tions for BF gas utilization rate after 1 h based on
the collected data. When the predicted parameter is
the gas utilization rate after 1 h, the prediction
accuracy of the multi-layer perceptron model

reaches 96.4%. In addition, the multi-layer percep-
tron model is more accurate for the prediction of the
BF gas utilization rate than the extreme learning
machine model, while the predicted parameters are
the gas utilization rates after 1, 2, and 3 h. Overall,
a better prediction of the gas utilization rate after
1 h can be achieved using the multi-layer percep-
tron model based on the data and modeling
approach used. More BF production data for differ-
ent volumes and different production states will be
used to verify these conclusions the future work.

ACKNOWLEDGEMENTS

This work was supported by the National Natural
Science Foundation of China [Project No.: 51904026]
and the China Postdoctoral Science Foundation
funded project [Project No.: BX20200045 and
2021M690370].

Fig. 7. (a–d) Comparison of the prediction errors of the two models when the output parameter is GUR-3h

Table III. Comparison of evaluation indicators of the two models

Output parameter RMSE (MLP) RMSE (ELM) HR (MLP) HR (ELM)

GUR-1h 0.955 0.977 0.964 0.961
GUR-2h 1.237 1.300 0.921 0.911
GUR-3h 1.321 1.392 0.902 0.893
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