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Scientific articles have long been the primary means of disseminating scien-
tific discoveries. Over the centuries, valuable data and potentially ground-
breaking insights have been collected and buried deep in the mountain of
publications. In materials engineering, such data are spread across technical
handbooks specification sheets, journal articles, and laboratory notebooks in
myriad formats. Extracting information from papers on a large scale has been
a tedious and time-consuming job to which few researchers have wanted to
devote their limited time and effort, yet is an activity that is essential for
modern data-driven design practices. However, in recent years, significant
progress has been made by the computer science community on techniques for
automated information extraction from free text. Yet, transformative appli-
cation of these techniques to scientific literature remains elusive—due not to a
lack of interest or effort but to technical and logistical challenges. Using the
challenges in the materials science literature as a driving motivation, we re-
view the gaps between state-of-the-art information extraction methods and
the practical application of such methods to scientific texts, and offer a com-
prehensive overview of work that can be undertaken to close these gaps.
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INTRODUCTION

‘‘There is an information overload in scientific
literature’’,1 according to Nature. A bibliometrics
study shows that approximately 2.5 million new
papers are published each year.2 Such enormous
volumes of new information are well beyond any
human’s ability to read, let alone digest and absorb.
Inevitably, valuable knowledge remains buried deep
in this publication mountain. As research tech-
niques that require large quantities of scientific
data gain popularity, automating the process of
retrieving pertinent information from free (i.e.,
natural language and unstructured) texts to feed
said techniques is expected to become crucial to
many research domains.

The need for well-organized and thoroughly vet-
ted data resources is particularly evident in mate-
rials engineering. On one level, identification of
appropriate materials for new technologies is
accomplished by searching through reams of certi-
fication and testing data—a process made better
only by making more data available to engineers.
The design of new materials is also intrinsically
limited by available data. Data are foundational to
devising and validating the core tools by which
materials are understood and engineered: struc-
ture–property relationships. Many computational
modeling tools, such as CALPHAD and phase-field
models, are parameterized using large amounts of
experimental data.3 In recent years, the Materials
Genome Initiative has further increased the promi-
nence of data-driven materials research.4 Overall,
high-quality resource of materials data have been
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critical to the development of materials engineering
and promise to become even more important in the
future.

Despite the central need for high-quality data,
building new databases remains a resource-inten-
sive task. Curated data repositories are only avail-
able as collections published after significant effort
(e.g., Polymer Handbook5 and the ASMHandbooks),
community-driven resources from specific research
communities (e.g., the Crystallographic Open Data-
base6 and CALPHAD databases3), and web-accessi-
ble databases created by individual research groups
(e.g., the Open Quantum Materials Database,7

Polymer Genome,8 and Materials Project9). Such
databases are the ideal case for research data:
vetted data presented in well-documented formats
with predictable structure. However, the majority of
important material property data remain strewn
throughout decades of journal articles in fields
spanning from fundamental materials physics to
myriad specialized industrial applications. Conse-
quently, maintaining the status quo with respect to
materials data curation would result in the depths
of historical data remaining uncatalogued and much
new data slipping into obscurity after publication.
New approaches are needed.

Automated information extraction (IE) tech-
niques offer a route for accelerating the curation of
data contained in scientific literature. IE, a process
for the automated extraction of structured informa-
tion, including entities and relations between enti-
ties, from text, is a highly developed topic in the
natural language processing (NLP) community.
Since the 1970s, a wide variety of techniques have
been proposed to tackle this problem.10 Traditional
methods often require considerable target-domain
knowledge and the development of sets of domain-
specific rules defined manually from experience.
More recently, with rapid growth in both data
volumes and computing power, statistical models
using machine learning (ML) or deep learning (DL)
have taken center stage.

Adoption of automated IE methods in science and
engineering varies greatly across disciplines. For
example, use in the life sciences is advanced due to
work on online biomedical bibliographic systems,
biomedical knowledge representation, and text min-
ing dating back to the 1960s,11–14 while work in
some other fields has barely started. Automated IE
in materials science and engineering is only in its
initial stages, with promising work in the ceramics
and polymers community15–17 and significant oppor-
tunities in other types of materials.

In this paper, we present an overview of the
scientific IE (SciIE) process with a particular
emphasis on the challenges and opportunities for
materials science and engineering. Our goal is to
examine the specific challenges and relevant
advances in applying state-of-the-art methods
developed by computer scientists to real-world

materials SciIE problems. Finally, we identify
important open research areas that should be
explored to advance the application of SciIE.

SCIENTIFIC INFORMATION EXTRACTION
WORKFLOW

Before diving into the specific barriers faced by
SciIE, we provide an overview of the common steps
involved in a SciIE pipeline (Fig. 1): data prepro-
cessing, curation and annotation, and learning.

The first step (preprocessing) is to break down
scientific articles into chunks of clean text for later
steps. In addition to text in the body of an article,
scientific documents may also include figures,
tables, and publisher embellishments (e.g., logos,
running titles, and page numbers). The first step in
preprocessing is thus to parse the document and
extract the body text. This is particularly compli-
cated in science due to the complex formats of
scientific articles, which we discuss in Challenge 1:
The Computer-(Un)friendly Format of Scientific
Texts section. While tables and figures may also
contain valuable facts, extracting information from
them relies on a completely different set of tech-
nologies, such as computer vision, which lie beyond
the scope of this review. Interested readers may
refer to19–22 for relevant research. After document
parsing, texts are then split into smaller units. This
step is called tokenization. Sentence tokenization
splits passages into sentences, which is the input
format expected for many later steps. Word tok-
enization further splits sentences into tokens to
reduce the entropy of the vocabulary (e.g., ‘‘is,’’
‘‘does,’’ ‘‘isn’t,’’ and ‘‘doesn’t’’ can be tokenized into
three tokens: ‘‘is,’’ ‘‘does,’’ and ‘‘n’t.’’)

Once text has been extracted and cleaned, the
next step is to create the tools that allow for so-
called intelligent processing of the language. The
entire process of extracting information from text is
accomplished by a pipeline of complementary tools
rather than a single program that produces data
directly from tokenized text. The steps in these
pipelines often include (Fig. 2):

1. Vocabulary generation to assign a vector to each
unique token in the corpus. The vectors are
referred to as word embeddings and are a key
prerequisite for other NLP tasks. Meanings are
often inferred by measuring similarity in the
contexts in which words appear, or the sub-
structure of words. Embeddings can even be
studied to predict materials properties.23

2. Text classification to assign a label or score to an
entire block of text. For example, they could
determine whether a block of text is an abstract
or whether it contains the desired data.

3. Named entity recognition (NER) to classify
whether a word or phrase belongs to a specific
category. Categories may be broad (e.g., noun)
or specific (e.g., place name or polymer).

4. Relationship extraction to produce pairs of
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named entities that are connected by a certain
relationship. A common example of IE in mate-
rials science and engineering is to associate
words that are materials with those that are
property names. Complex relationships can then
be built from multiple pair relationships, such
as the material ‘‘iron’’ has property ‘‘density’’
with value ‘‘7.9 g/cc.’’

In principle, it should be possible to define rules
manually to perform each of the tasks just listed.
For example, units can be identified by matching
words that optionally begin with ‘‘k,’’ ‘‘m,’’ or ‘‘M’’
and end with a character from a known list (e.g.,
‘‘m,’’ ‘‘s,’’ or ‘‘X’’). The complexity of human lan-
guage, however, is too high to allow the enumera-
tion of a complete set of rules except in trivial cases

Fig. 1. The three steps in a scientific information extraction (SciIE) pipeline: preprocessing (blue), data curation (orange), and learning (green).
Components marked with a red alarm symbol are particularly challenging.

(a) Text Classification (b) Named Entity Recognition

(c) Relation Extraction

Fig. 2. Example tasks in SciIE (visualized with Prodi.gy18): (a) classifying sentences based on whether they mention polymers, (b) recognizing
named entities such as polymers, and (c) identifying relations between named entities (e.g., polymers, properties, and property values).
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(e.g., units). Rather, the modern approach is to use
ML techniques to learn such rules automatically
from many examples.

The second major step in performing IE is curat-
ing and annotating enough data to train ML models
for each SciIE subtask. Tokenized texts are first
selected and annotated to form a so-called gold-
standard training set for supervised models. Labels
could be per example (sentence) or per token,
depending on the task. A sentence could be given
the label ‘‘True’’ or ‘‘False’’ if we simply want to
classify whether it mentions any polymer. If we
want to find out which polymers are mentioned in a
sentence, then each word will need a separate label
indicating whether it is a polymer or not. The
annotation process is usually costly, and time-
consuming, and is especially difficult for scientific
data due to the expertise required, the limited
bandwidth of the people who do have the expertise
(Challenge 2: The Need for (and Lack of) Training
Data section), and the rarity of desired data across
the scientific literature (Challenge 3: The Sparsity
of Information of Interest in Literature section).

The final step in the pipeline is model learning.
ML models for NLP are classified into two cate-
gories: supervised and unsupervised models. Most
models used in IE are supervised, meaning labels
are required to accompany the training data. For
example, common NER approaches use the embed-
dings and other features of a word (e.g., length and
whether it contains digits) and those of its context
(i.e., words ahead of or behind it) as input into a
simple ML model such as a decision tree or support
vector machine (SVM) to predict whether that word
belongs to a category. State-of-the-art techniques
use neural networks that automatically account for
the context of a word (e.g., recurrent or convolu-
tional networks) and are flexible enough to express
the exquisitely complicated model forms required
for expressing language.24,25

Modern NLP research has focused on reducing
the amount of data required to train supervised
learning models. Fine-tuning methods take pre-
trained data from a previous NLP problem and
(re)train part of the model on annotated data
specific to the task at hand. Google’s Bidirectional
Encoder Representations from Transformers
(BERT) language model, which is trained on the
BooksCorpus26 (800M words) and English Wikipe-
dia (2500M words), when fine-tuned with just 2432
relevant paper abstracts, achieved an F-1 score of
74.7% on extracting and classifying chemical–pro-
tein interactions (e.g., ‘‘Regulator,’’ ‘‘Agonist,’’ ‘‘An-
tagonist,’’ etc.) from the CHEMPROT corpus.27 The
F-1 score, or F-score, is the harmonic mean of a
model’s precision (the fraction of correctly predicted
positive examples among all the examples that the
model predicted as positive) and recall (the fraction
of correctly predicted positive examples among all
the positive examples in the dataset). It is often
used to measure a model’s prediction accuracy.

Unsupervised models such as open information
extraction (openIE) systems have also been gaining
traction because they do not require labeled data.
Such systems have been demonstrated to outper-
form other traditional IE methods in multiple
studies.28–30 However promising, the use of these
small-dataset learning techniques for scientific
tasks is complicated by the esoteric language often
used in science as well as the variation in languages
used to describe the same concept (Challenge 4: The
Difficulties of Applying Models Trained on General
Corpora to Scientific Text section).

Finally, the difficulty in accurately extracting
information combined with the high standards for
success mandate that NLP tools must be used with
care. The key challenge in applying models is often
the sparsity of the desired information in literature,
which can lead to many false positives when the
pipeline is run on too many irrelevant papers. It is
difficult to know ahead of time which papers will
contain the target data and where to find them in
the paper. We detail approaches for preselecting
texts and postprocessing outputs to improve
extracted data in Challenge 3: The Sparsity of
Information of Interest in Literature section.

In the following sections, we carefully examine
the major challenges faced by SciIE, including the
scarcity of labeled data, the sparsity of interested
information in publications, and the difficulties of
applying ML or DL models trained on general
corpora to scientific texts. Relevant advances are
discussed as potential solutions to, or methods for
alleviating, these challenges.

CHALLENGE 1: THE
COMPUTER-(UN)FRIENDLY FORMAT

OF SCIENTIFIC TEXTS

The data needed to train or use NLP models are
texts, ideally clean, well-formed texts that can be
easily ingested by computers (and humans). Many
generic NLP datasets exist, such as the CoNLL-
2003 dataset for training NER models31 and the
TACRED dataset for relation extraction models.32

One common feature of these NLP datasets is that
they are distributed as plain text and have well-
defined, homogeneous internal formats. For exam-
ple, in the CoNLL dataset, each word is placed on a
separate line with an empty line at the end of each
sentence, and on each line, the word is followed by
three tags: a part-of-speech tag, a syntactic tag, and
a named entity tag. Such structured datasets can be
fed into a model with only a few lines of code and
without any extra preprocessing. Feeding scientific
literature into models, unfortunately, is quite a
different story.

Useful documents in materials engineering are
stored in a few different kinds of documents, each
presenting different processing challenges. Specifi-
cation sheets and handbooks often express data in
tabular formats instead of natural language and are
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best treated with special-purpose software tailored
to their specific formats given the predictable form
in which data are expressed. Information from
journal articles, conference proceedings, and tech-
nical reports are held in text in a variety of
document formats. Older articles are often only
available as scanned images, whereas more modern
articles are expressed in a variety of digital formats.
As we detail here, this multitude of formats for
engineering text presents a major barrier to extract-
ing knowledge.

Historical Relic: Portable Document Format

Most papers are shared digitally in the
portable document format (PDF). To strictly main-
tain document typesetting, PDF stores a fixed
layout of the content, including texts, figures, and
tables. However, it does not record structural
information (Fig. 3). While humans can tell whether
a number is part of the body, a page number, or a
line number based on visual clues, it is difficult to do
so programmatically. In the worst case (common for
papers published prior to 2000), a PDF file may be a
scanned image of the printed copy. In such cases,
optical character recognition (OCR) must be per-
formed to recognize the letters and numbers in the
paper, prior to proceeding with the rest of the
pipeline.

The complex layouts of scientific papers makes it
difficult to extract the actual narrative from PDF
files. The widely adopted double-column format can
confuse automated methods for identifying the flow
of text blocks. Pages are often decorated with
publisher names, running titles, page numbers,
etc. General-purpose toolkits such as PDF2Text33

are not equipped to handle such complexities and
thus often produce outputs in which useful body
text is mixed with typesetting embellishments.

Systems specifically designed to extract from
scientific articles commonly employ a layout-aware
(e.g., two-column versus one-column) approach.
Both manually defined rules and statistical models
may be used to estimate the structural information
missing in PDFs. For example, LA-PDFText34

detects words belonging to the same block based
on their font, height, and horizontal and vertical
distance from the nearest words. Then, a rule-based
classifier categorizes each block into sections (e.g.,
Abstract, Introduction, Methods, and Discussion),
and finally texts classified into the same sections are
stitched together to form the final clean output.
Although experimental evaluations have shown
that LA-PDFText can reach an F-1 score of 91% in
identifying and classifying text in scientific articles,
it is still not perfect and requires the manual
definition of rules according to the typesetting style,
which varies from journal to journal or even over
time for the same journal. Thus, applying LA-
PDFText to a large collection of heterogeneous
PDF papers is impractical for many purposes.

Rising Star: Markup Language Formats

With the development of the Internet and web-
based technologies, scientific papers are increas-
ingly available in hypertext markup language
(HTML) or extensible markup language (XML)
formats. HTML is by far the most popular format
on the web since it adapts to the browser screen
regardless of its form factor. Most importantly,
HTML tags unambiguously identify the different
elements on a page (e.g., < img> for images,
< table > for tables, and <p> for paragraphs)
(Fig. 3). These tags simplify the process of identify-
ing sections in a paper. Body texts can be extracted
without any of the ‘‘guesswork’’ involved with other
formats.

Title

Lorem ipsum

dolor sit amet

consectetur

adipiscing

elit, sed do

eiusmod

tempor

incididunt

<!DOCTYPE html>
<html>
<head>
<title>Title</title>
</head>
<body>

<h1>First Heading</h1>
<p>First paragraph.</p>

</body>
</html>

Fig. 3. PDF (left) files are designed to capture page layout, while HTML (right) files are designed to save logical structure. It is thus much easier
to identify which parts of a file are the desired body texts with the help of HTML tags.
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HTML-formatted papers are commonly used as
the source in many studies. BigGrams is a semisu-
pervised IE system designed to work with HTML
inputs.35 A series of research focusing on human–
machine hybrid IE pipelines uses HTML papers
from the journal Macromolecules to extract glass-
transition temperatures of polymers36,37 and create
a training dataset for ML models.38 Another study
uses HTML papers from Elsevier journals to
develop an NER model to extract and analyze
datasets used in sociology studies.39

CHALLENGE 2: THE NEED FOR (AND LACK
OF) TRAINING DATA

Modern artificial intelligence (AI) methods derive
their ‘‘intelligence’’ from the data on which they are
trained. No model architecture, regardless of its
sophistication, can do better than random guessing
without training data. Moreover, having the data
itself is often not sufficient. Many models are
created for predictive purposes, i.e., to respond to
a query: ‘‘Given x, predict y.’’ Having the data (x)
alone is of limited utility without the corresponding
labels (y). Such models are called supervised mod-
els, and modern ML tools can require thousands of
examples of (x, y) pairs.

The dearth of training data in materials engi-
neering can be simply attributed to IE in materials
being in its beginnings, though there are ways to
rapidly accelerate the development of training sets.
In this section, we first examine methods for
curation of labeled training data, discussing the
difficulties involved and presenting progress
towards solving the difficulties. Then, we discuss
models that can train on data without labels
(unsupervised models) and analyze their strengths
and limitations. Figure 4 shows a summary of the
pros and cons of different solutions to the data
collection and annotation problem.

Harvesting Existing Data

In many scientific fields, there are efforts to
compile useful databases from publications. For
example, the Polymer Property Predictor and
Database includes proprieties such as the polymer
interaction parameter (v) and glass-transition tem-
perature (Tg) extracted semiautomatically from
literature.40 In sociology, the Inter-university Con-
sortium for Political and Social Research (ICPSR)
maintains a database of sociology datasets and
related publications via manual curation.49 These
databases usually store the extracted data in a
structured format, but they often have an identifier,
e.g., a digital object identifier (DOI), pointing to the
source of the each entry, with which discovering the
source text is feasible programmatically. Combining
the curated data in the databases and their source
text provides a good gold-standard dataset for
training ML or DL models to extract similar data
automatically from literature.

Another potential source of existing data comes
from outside of academia. Scientific publications
have long been ignored by NLP research in indus-
try. Yet, in recent years, some companies have
developed models and datasets for scientific litera-
ture. For example, AllenAI developed SciBert50 and
published the data used to train the model, which
includes gold-standard annotations on papers from
semanticscholar.org for many common NLP tasks,
such as labeled entities in sentences to develop NER
models, syntactic tags for words in texts to train
syntax parsing models, and classification labels
with accompanying sentences for text classification.

Crowdsourcing

Traditionally, datasets have been curated via
slow and expensive manual processes. For example,
from 1989 to 1992, a team at the University of
Pennsylvania spent three years annotating a corpus
of over 4.5 million English words with part-of-
speech (POS) and sentence skeletal parsing infor-
mation.51 The resulting Penn Treebank dataset is
still widely used to train NLP models for POS
tagging and sentence parsing today, almost 30 years
later, because few can afford the high cost of
building a corpus of such scale.

With the increasing penetration rate of Internet-
connected devices among the population, crowd-
sourcing has become a more viable approach to a
number of labor-intensive tasks, corpus annotation
included. Online services such as Amazon Mechan-
ical Turk (AMT) and CrowdFlower (CF) offer plat-
forms to post crowdsourcing jobs and to engage the
public to contribute for monetary rewards. There
are also tools that help streamline the crowd-
sourcing process. The GATE crowdsourcing plugin
automates the mapping of documents to crowd-
sourcing units and generates user interfaces for
common NLP crowdsourcing tasks.52 Crowd-
sourcing has been shown to be effective at solving
the problem of training data annotation. Granted,
the quality of annotations produced by an untrained
crowd could vary, so it is common to assign the same
tasks to multiple workers and apply a majority
voting system to improve annotation quality. For
example, 145 AMT participants annotated a corpus
of 593 biological abstracts for disease mentions,
achieving an overall F-1 score of 87.2% with a cost of
$0.066 per abstract per worker.53 Another AMT
project adapted the reCAPTCHA idea41 to crowd-
source the digitization of satellite images and
demonstrated that an untrained population could
achieve an accuracy within 10% of that of geoinfor-
matics experts.42 MIT and Amazon conducted a
research on 10 widely used ML datasets including
text, image, and audio datasets, and found that the
labeling error rate ranges from 0.15% to 10.12%
with an average error rate of 3.4%.54

Crowdsourcing, nevertheless, is not without its
drawbacks, and applying it to annotate a scientific
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corpus requires careful planning. Crowdsourcing is
best suited to tasks that are microtasks, i.e., tasks
that are both relatively simple and modest in scale.
In contrast, scientific research often aims to solve
megatasks, such as building a database of all
material properties from all published literature.
Even extracting all polymer proprieties mentioned
in one paper is a megatask for crowdsourcing. One
solution to this mismatch is by crowdsourcing only
to people with enough scientific background. One
such effort engaged undergraduate students to
extract the Flory–Huggins (v) parameter of polymer
blends from the journal Macromolecules.55

CHEMDNER is another chemistry corpus that
contains 10,000 PubMed abstracts annotated by
about 50 scientists from around 30 institutions.56

The Synthesis Project from Massachusetts Institute
of Technology (MIT) offers annotations for 230
material science papers.57 The well-known Polymer
Handbook listed 96 contributors from universities
and research institutions worldwide.5 The National
Institute of Standards and Technology (NIST)
Thermodynamic Research Center (TRC) maintains
a large database of available thermophysical prop-
erty data extracted from articles manually selected
for relevant content.58

Crowdsourcing to people with relevant domain
expertise seems like a sure way to guarantee the
quality of the results, but it is not without its own
shortcomings. In addition to being drastically more

expensive, it also restricts the eligible ‘‘crowd’’ to a
small group, and such people typically have limited
bandwidth for such tasks. In our experience, it took
three materials scientists over 2 months to annotate
just 150 paragraphs for glass-transition tempera-
tures (Tg) of polymers, since it was difficult to find
time to work on it with their busy schedules.

To take full advantage of crowdsourcing, mega-
tasks must be divided into smaller and simpler
microtasks. One way of doing so is to create a game
with a purpose (GWAP).59 Carefully designed
GWAPs have been used to address many complex
scientific problems that would otherwise be incom-
prehensible to an untrained person. In biology, the
multiple gene sequence alignment problem has been
presented as a color-matching game to crowd-
sourced workers.60 GWAPs have also been used in
annotating complex language resources.61 When
designing GWAPs for complex scientific text anno-
tation, the key is to decompose the megatask. For
example, instead of assigning a worker a full paper,
one assigns them a paragraph or even a sentence;
instead of asking them to label every material
property, one assigns only the tasks pertaining to
a single property, so that they have less information
to remember. Partitioning megatasks into micro-
tasks also enables the mapping of microtasks to
different levels in a GWAP based on difficulty,
giving the workers a sense of achievement as they

Training Data Collection

Harvesting
Existing Data

Pros:

1) Minimum effort
required

Cons:

1) Such data may be
unavailable in the
desired domain

Examples:

1) Polymer Handbook [5]
2) PPPDB [40]

Crowd
Sourcing

Pros:

1) A fast, scalable way
to get large
amounts of data

2) Relatively low cost

Cons:

1) Requires careful
decomposition of
megatasks
into microtasks

2) Quality of collected
data may vary

Examples:
1) Annotating disease

mentions in abstracts [41]
2) Digitizing satellite

images [42]

Computer-aided
Data Collection

Pros:

1) Reduces or eliminates
manual workload

2) Interactively and iteratively
receives human input

Cons:

1) Updating model after
each loop takes time

2) Efficiency and effectiveness
depend on model quality

Examples:
1) Rule and dictionary-
based methods [43,44]
2) Model-in-the-pipeline [45,46]
3) Model-in-the-loop [38,47,48]

Distant-supervised and
Unsupervised Methods

Pros:

1) No manual labeling
required

Cons:

1) Output can be
uninformative and/or
incoherent.

2) Standardization and
normalization required.

Examples:

1) Standford OpenIE [30]
2) TextRunner [28]

Fig. 4. Comparison of data collection and annotation solutions: Harvesting existing data takes the least effort if such data are available;
crowdsourcing is the most straightforward, but requires careful task decomposition; computer-aided methods reduce manual workload, but
quality may vary; distant-supervised and unsupervised methods do not require manual labeling but may produce ambiguous or incoherent labels.
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increase their skill, which can contribute to keeping
them engaged.

Computer-Aided Training Data Collection

Rule-based and dictionary-based methods. Anno-
tating a corpus does not have to be done entirely by
humans. For certain tasks, the help of machines can
greatly reduce the manual effort required to anno-
tate a corpus. In many scientific domains, system-
atic nomenclatures and unique identifiers are
commonly used. In chemistry, there is the Interna-
tional Union of Pure and Applied Chemistry
(IUPAC) nomenclature62 and Chemical Abstracts
Service (CAS) registry numbers,63 both of which are
used to refer to chemicals in literature. In biology,
standardized nomenclature has been defined for
human gene mutations.44 Rule-based approaches
(e.g., regular expressions) are a great fit to auto-
matically annotate their mentions in texts.43,44

Rules can also be constructed with formal gram-
mars,43 which works best when there are commonly
adopted languages in a domain for presenting
certain types of information in literature.

Rule-based methods are not sufficient if the
information we want to annotate presents no obvi-
ous pattern. However, there are dictionaries avail-
able in many domains. For example, DBpedia—a
structured database built from Wikipedia that
includes categories such as chemical compound,
mineral, gene, and protein64—can be leveraged to
label such entities automatically in free text.
Granted, rules and dictionaries may not be 100%
accurate or comprehensive, so manual review is
often necessary, but reviewing is still much more
efficient than manual labeling.

Model-in-the-pipeline methods: Researchers have
recently explored the use of ML/DL models to create
datasets that are then used to train bigger and
better models. Their workflows begin with the
manual annotation of a small subset of the corpus.
The annotated texts are used to train a model,
which may be a simplified or a smaller version of the
full model to be trained on the fully annotated
corpus. The trained model is then applied to the rest
of the unlabeled corpus. For each sample in the
unlabeled corpus, the model’s prediction is used to
compute a metric that is then used to decide what
human annotators should do with that sample.45

For a classification model, for instance, the metric
could be the classifier output probabilities. Samples
with probabilities below a threshold should undergo
a thorough manual annotation process, while those
with higher probabilities could be assigned to a
different group of (perhaps less experienced) anno-
tators for a quick review.46

Model-in-the-loop methods. Model-in-the-pipeline
methods for corpus annotation have a major draw-
back: the quality of the model in the pipeline is
solely dependent on the choice of the initial training
examples. If the initially selected examples are not

representative of the overall distribution in the
corpus, which is not unlikely for large corpora with
hundreds of thousands of articles, the model will be
less effective, and the human annotators would
spend precious time correcting the same mistake
repeatedly. In contrast, model-in-the-loop methods
avoid this problem by adding a feedback loop
between humans and machine.

With the feedback loop, the initial selection of
training examples becomes less significant. The
annotation process is done in batches of m exam-
ples. The model runs prediction on a batch of
examples, and after human review of the results,
the m gold standards are added to the training set
and the model is retrained with the newly added
data. This process is sometimes also called active
learning, since the model actively requests new
inputs from humans in order to update itself.65

Model-in-the-loop methods have been used to create
training sets for detecting mentions of polymers38

and drug-like molecules,47 extract health determi-
nants,48 and detect named entities in financial
data.66

Distant-Supervised and Unsupervised
Methods

While the aforementioned methods focus on
reducing the cost of manual annotation through
crowdsourcing, others seek to eliminate manual
labor from the annotation process entirely. Distant-
supervised methods still have supervised models at
the core, but the labels are automatically generated
from an external source of knowledge such as
Wikipedia or Freebase. If two entities in the same
sentence match to an entry in the knowledge base,
then the sentence is labeled as having that
relation.67

Distant-supervised methods nevertheless suffer
from the noisy label problem. For example, if say
‘‘(Bill Gates, Microsoft)’’ is described via a ‘‘Foun-
derOf’’ relation in an external knowledge base, then
the sentence ‘‘Bill Gates steps down from Microsoft
board to focus on philanthropy’’ might be mislabeled
as expressing that relation since it mentions both
entities. Multi-instance learning (MIL) is designed
to mitigate this problem. Instead of assigning a
label to each training example, examples that would
get the same labels are put in a bag, and labels are
assigned to the bag rather than the examples. The
intuition is that some, but not necessarily all,
examples in the bag have that label.68 Multi-in-
stance multilabel learning takes this process one
step further, assigning multiple possible labels to
the same bag.69 However, neither approach fully
addresses the noisy label problem. In both methods,
labels are hard-coded to the bags and are
immutable after the distant-supervised labeling
process.

More recently, distant-supervised learning with
soft labels has been used to correct labels
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dynamically, instead of trying only to minimize the
negative impact of mislabeled examples on model
training.70 Empirical data show that distant-super-
vised labeling assigns correct labels to a majority
(94.4%) of the examples in a benchmark.71 With
that assumption, the soft label of an example is
updated based on its syntax pattern similarity to
the examples both in the same bag and in other
bags.

Distant-supervised learning has been applied to
SciIE tasks. In one materials NLP task, the appli-
cation of distant supervision to a corpus of 3400
publicly accessible articles on ScienceDirect
resulted in the automatic labeling of about 5000
sentences as expressing process–structure or struc-
ture–property relations. The sentences were then
used to train several models that aim to generate
processing–structure–property–performance (PSPP)
design charts for desired properties from text.72 In
biology, a dataset consisting of 1728 examples
produced from PubMed abstracts by using the
Protein Data Bank (PDB) as the distant supervision
knowledge base was used to train a model for
mining protein–residue associations from litera-
ture.73 Another effort produced 450 examples of
intrasentence gene–drug relations from literature
using the Gene Drug Knowledge Database (GDKD)
as the knowledge base.74

A notable deficiency of distant-supervised learn-
ing is that relations not present in the knowledge
base cannot be recognized, no matter how prevalent
they are in the corpus. Open information extraction
(openIE) systems such as TextRunner28 and the
Wikipedia-based Open Extractor (WOE)29 represent
one approach to overcoming this deficiency. These
systems are not bound by a predefined vocabulary
because they extract entities and the relation term,
all from the text based on syntactic dependency.
OpenIE is especially advantageous in annotating
scientific articles describing cutting-edge or rapidly
evolving research, where structured knowledge
bases have not been compiled. In a study on a
collection of 12,007 abstracts, Stanford OpenIE30

extracted 3116 relations, 65% of which were missed
by other extraction tools.75 This result shows that
incorporating OpenIE systems into the automated
annotation pipeline can greatly expand the scope of
the resulting training set.

OpenIE can help with the noisy label problem
that plagues distant supervision. Because OpenIE
only gets the relation term from text, we can be
more confident that the relation extracted is actu-
ally expressed in that text. In the Bill Gates
example above, it is impossible for OpenIE to output
a ‘‘(Bill Gates, founder, Microsoft)’’ relation since
‘‘founder’’ does not exist in that sentence. Therefore,
OpenIE can be used to remove, and potentially
correct, the noisy labels derived from knowledge
bases in distant-supervised learning.

OpenIE systems also have shortcomings. They
may extract words too broad to be meaningful as

relations, such as ‘‘is’’, ‘‘has’’, and ‘‘got’’, rather than
the actual relations ‘‘is the author of,’’ ‘‘has a
population of,’’ and ‘‘got funding from.’’ Incoherent
words may be extracted as a relation, such as ‘‘was
central torpedo’’ from the sentence ‘‘The Mark 14
was central to the torpedo scandal of the fleet.’’76

Furthermore, the extracted relations can be difficult
for downstream models to use, such as when the
semantically equivalent phrases ‘‘melting point of’’
and ‘‘melting point is’’ are captured as distinct
relations. One solution to such problems is to
combine domain-independent OpenIE with
domain-specific knowledge. Domain-specific rela-
tion mapping rules, class recognizers, and SciIE
models can be used to cluster and categorize
relations detected by OpenIE systems.77–79

CHALLENGE 3: THE SPARSITY
OF INFORMATION OF INTEREST

IN LITERATURE

SciIE must address a challenging range of scales.
At one extreme, according to a bibliographical study
on global publications from 2000 to 2018 by the
National Science Foundation (NSF),80 scientific
literature published in that time span encompasses
some 35.5M articles, which ultimately we would like
to analyze in their entirety. At the other extreme,
the literature associated with individual disciplines
and subdisciplines, each characterized by distinct
vocabularies and conventions for communicating
information, are much smaller. For example, the
same study found that the materials science liter-
ature encompasses 1.1M articles during that period:
3.1% of the total. A particular subdiscipline, such as
polymer science, accounts for just a portion of those
1.1M articles, of which a yet smaller subset contain
information relevant to any specific question.

Thus, even if we can identify the relevant publi-
cations accurately and efficiently, the sparsity of
interesting information in text can be yet another
obstacle to efficacious IE from scientific litera-
ture.81,82 One study on extracting glass-transition
temperatures (Tg) showed that only 64 (0.67%) of
9518 sentences in 31 papers from Macromolecules
contain both a polymer and its Tg value.83 The
remaining 99.33% of sentences are just noise for
this task. Such imbalance is rare in standard NLP
datasets that most state-of-the-art models are
designed for and trained on, but will be common
when extracting data from other materials engi-
neering literature. For comparison, the widely used
SemEval 2010 Task 8 relation extraction dataset
has only 17.63% and 16.71% of ‘‘Other’’ sentences
(i.e., not belonging to known relations in the
dataset) in the training and test set, respectively.84

Extracting such sparse information will be difficult
for ML/DL models. The high percentage of noise in
texts will lead to more false positives and thus dilute
the extraction results. To avoid this problem, it is
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advisable to apply a filtering step during prepro-
cessing to remove as much noise as possible before
feeding the texts into an IE model.

In this section, we provide a review of the
techniques developed to filter noisy texts. We start
with traditional intuitive heuristic-based methods
and expand to modern statistical model-based
methods (Fig. 5).

Heuristic-Based Filtering

Article structure-based filtering. Scientific papers
usually follow a structured format made up of
sections and subsections. Sections such as ‘‘Intro-
duction,’’ ‘‘Related Work,’’ and ‘‘Experimental
Results’’ are widely used in many domains. Some
publishers even have standardized section headings
that every manuscript must have. With some back-
ground knowledge, we can tell with confidence that
some sections will not have the information we want
to extract: the ‘‘References’’ section is probably not
the best place to look if we want to extract the
synthesis process of a novel polymer. Therefore, a
filter can be applied to remove texts in irrelevant
sections to reduce potential noise in subsequent IE
tasks.

Papers in markup languages (HTML or XML) can
be easily dissected into sections because they have
rich metadata describing the document structure.
PDF files, however, cannot (Historical Relic:
Portable Document Format section). A multipass
sieve approach has been proposed to classify text in
PDF files into proper sections. It demonstrated
better performance (measured by F-scores) than
many ML classifiers, including SVM, naive Bayes,
J48, and logistic regression.85 Using this method,
structure-based filtering can also be applied to
articles in PDF format.

Sentence-level filtering. Section filtering alone is
not always sufficient, since noisy text exists in every
section, even potentially useful ones. Sentence
filtering offers more fine-grained control. With
manually defined rules or patterns, it can achieve
high precision, but often at the cost of recall due to
the small number of rules defined.86,87 Statistical
methods can automatically learn a large number of
rules and thus increase recall, but precision is lost
as a result. Many efforts have been made to improve
the quality of rule-based filters. Dropping rules
whose keywords triggers more false positives than
true positives, limiting the maximum length of
sentences that can be matched, and tuning the
threshold of what is considered as a match are
simple yet effective tricks that enabled a rule-based
filter to outperform a more sophisticated method
based on minimum description length from infor-
mation theory.88

Filtering with Statistical Models

Unlike heuristic-based filtering, statistical models
do not rely on explicit rules. They learn what is (and

is not) interesting information from the context
based on word embeddings. Traditional classifiers
are the most intuitive choice for this task, and more
sophisticated methods such as subjectivity analysis
and data programming have also been used
recently.

Classification models. Text fragment filtering is a
type of classification task, so intuitively ML classi-
fiers have been applied to this task. Popular tradi-
tional classifiers include decision tree, SVM, k-
nearest neighbors, naive Bayes, importance value
index (IVI), and C4.5.89,90 Over the years, amend-
ments have been made to such algorithms to
improve their performance, specifically on text
classification, and each method has its own advan-
tages. The naive Bayes classifier has been shown to
achieve the best performance without any feature
selection, whereas when features (words) were
selected by its capacity to independently character-
ize a class, the IVI classifier came out top.91 SVM
works well on two-class classification problems, and
decision trees do not require independent features
to be effective.92 In short, no single classifier has
significant advantages over all others, and the
choice of which classifier to use should be made
based on the features used and the task at hand.

Subjectivity analysis. Another common source of
error for IE systems is subjective language such as
opinions, arguments, and speculations, which
should be excluded when aiming to extract scientific
facts. Removing subjective sentences with a naive
Bayes classifier increased the precision of an IE
system by 10% while losing less than 2% of recall.93

Another series of study demonstrated that IE and
subjectivity analysis are mutually beneficial
because a subjectivity classifier can be bootstrapped
from clues learnt by IE techniques, and used to
improve the precision of IE systems.93–96

Data programming. This alternative ML-based
approach to filtering text fragments for IE is used in
Snorkel, a system for rapid collection of training
data.97,98 Snorkel is a weakly supervised method
since it does not require any manual labeling.
Instead, users write labeling functions (LFs). An
LF assigns labels to inputs. It can be based on
arbitrary rules or heuristics. Different LFs can have
unknown accuracy and may not be independent of
each other. For each input, Snorkel aggregates the
labels from all LFs, learning about the performance
of the different LFs in the process, and eventually
outputs a high-quality label for the input.

The ensemble labeling towards scientific informa-
tion extraction (ELSIE) system builds on Snorkel.
Its goal is not to extract relations from sentences,
but to determine whether a particular sentence
exists in a text fragment. Instead of having each LF
independently classify a sentence and then denois-
ing their outputs, it groups its LFs into buckets,
with each bucket responsible for determining
whether a part of the target relation exists in the
sentence. All buckets collectively aim to determine

Hong, Ward, Chard, Blaiszik, Foster3392



whether the target relation is expressed in the text.
ELSIE can successfully filter sentences with 94%
recall and 87% F-1.83

CHALLENGE 4: THE DIFFICULTIES
OF APPLYING MODELS TRAINED

ON GENERAL CORPORA TO SCIENTIFIC
TEXT

It is standard practice in most applications of
NLP to reuse ML models trained on plentifully
available text (e.g., websites or newspapers), with
only retraining performed to adapt the models to
new domains. For general NLP, there are many
datasets (e.g., Penn Treebank,51 CoNLL,99 and
OntoNotes100), pretrained word vectors (e.g.,
GloVe101 and FastText102), and pretrained models
(e.g., BERT103 and Turing-NLG104) available online.
However, their training corpora are usually taken
from general sources such as newspapers,51 Twitter
posts,105 online reviews,106 and Wikipedia pages107

rather than scientific publications. In addition to
common obstacles such as long-distance dependen-
cies108 and polysemant disambiguation,109 the
unique terminologies and language styles used in
scientific publications pose unique challenges to the
IE problem and make such model reuse problem-
atic. Elsevier has conducted an evaluation of openIE
systems on two datasets: one consisting of 200
sentences randomly selected from Wikipedia, and
the second made up of 220 sentences from the
scientific literature for the ten most published
disciplines. Extractions were checked manually by
five humans to guarantee evaluation accuracy, and
the results showed that the extractors performed
better on encyclopedic sentences (54% precision)
than on scientific sentences (34% precision).110

Many IE challenges observed in other fields of
science will certainly also be challenges in materials
engineering. There is plenty of terminology that is
not specific to materials engineering and yet is
critical to understanding the content of materials
text. In previous work, we have also encountered
many challenges in that the same materials can be
referred to by different names (e.g., trade names,
specification number, and composition), which com-
plicates both learning language models and orga-
nizing extracted data. Long-distance dependencies
are also common in materials article, such as when
the processing path for a material is described in a
separate section from where its properties are
discussed. Journal articles require significant train-
ing for humans to understand well, and it is similar
for machines.

In this section, we examine the many gaps that
prevent state-of-the-art NLP models from reaching
their full potential on scientific literature, as well as
techniques proposed to bridge the gaps (Fig. 6).

Standardized Datasets in NLP

As discussed in Challenge 2: The Need for (and
Lack of) Training Data section, assembling an NLP
dataset often requires considerable time and effort,
which makes many researchers turn to precompiled
datasets. Using these datasets saves NLP research-
ers valuable time and resources and provides a level
playing field for comparing model performance, so it
is no surprise to find that many models are solely
developed and tested on standardized datasets.
However, an often-overlooked problem is that these
carefully curated datasets are not representative of
text found ‘‘in the wild.’’ Understandably, curators
want their datasets to be of high quality, i.e.,
comprised of rich, balanced, and clean training
examples. However, this curation process can lead
to datasets and thus models that present a distorted
view of how language and text are used.

As an example, CoNLL-2003 is a widely used
dataset compiled from Reuters news stories to train
NER models.31 There are over 31,000 entities
(location, organization, person, and misc) among
its 22,000 sentences, averaging to about 1.5 entities
per sentence. In contrast, when developing a poly-
mer NER model, we found that around 84% of
12,000 sentences randomly selected from publica-
tions in the journal Macromolecules did not mention
any polymer names,39 resulting in a qualitatively
different predictive task. Besides, natural language
is rarely cut and dry. For example, in the polymer
NER example, should ‘‘polymer a’’ and ‘‘polymer 1’’
be classified as polymers or not? While meaningless
in isolation, these terms can be helpful for down-
stream tasks such as relation extraction with refer-
ence resolution. Such grey areas are usually
excluded from standardized datasets to keep the
dataset ‘‘clean.’’ Consequently, models developed on
such datasets expect all input to be as clean and
noise-free, often leading to performance degrada-
tion. Perhaps, the definition of dataset quality
should be reconsidered to include how well datasets
reflect languages as they are used naturally.

Transfer Learning

Unique domain-specific languages are at the root
of many incompatibilities between state-of-the-art
NLP models and scientific literature. As discussed
in the previous section, widely used datasets in the
NLP community are usually compiled from nonsci-
entific corpora. Yet the meaning of a word can vary
drastically in different domains; for example, ‘‘PS’’
could be polystyrene, PostScript, or PhotoShop,
depending on who you ask. Due to this variation,
models trained on a generic corpora cannot be
applied directly to extract information from scien-
tific literature.

Transfer learning is an ML method that repur-
poses a model to a different task by reusing
(transferring) knowledge from the task on which it
was trained. Transfer learning has been applied to a
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variety of tasks, including image recognition,113

machine translation,114 and text classification.115 It
has also shown promising results in scientific
research, such as medical imaging,116 material
property prediction,117 and material defect detec-
tion.118 Roughly speaking, transfer learning strate-
gies can be divided into two classes, inductive and
transductive. Inductive learning reuses a model for
a different task in the same domain, whereas in
transductive learning, the model is applied to a
different domain but the task is similar to the one it
was trained on. Transductive learning is particu-
larly helpful in SciIE, since there is a plethora of
models designed for various tasks but trained on
generic texts. Common methods for transductive
learning in NLP include leveraging pretrained word
embeddings and fine-tuning pretrained models.

Word Embedding

Word embedding models map human-friendly
words to computer-friendly vectors, in which the
senses of words are embedded. With training, the

word embedding vectors are fit to capture the
meaning(s) of a word from the contexts it is used
in. Due to the difficulty of judging directly whether
a numeric vector accurately represents a word’s
semantic and syntactic information, most word
embedding models are trained for specifically
designed tasks that are closely related to how
languages are used. When vectors can achieve
satisfactory performance on the training task, they
are presumed to be accurate representations of the
original words. For example, Word2Vec, one of the
most popular traditional word embedding models, is
trained to predict a missing word based on its
context.119,120 After training, word vectors are
derived from the weights of the hidden layers in
the model and may be used in transfer learning
applications.

Since word vectors are learned from context, the
more often and accurately they are represented in
the training corpus, the higher quality they will be.
Although word embedding models can be trained
using unsupervised methods, training on a large

Text Filtering

Heuristic Methods

Article Structure Filtering

Pros:
1) Can quickly remove large chunks of irrelevant text
2) Computationally inexpensive

Cons:
1) Ineffective for articles not strictly following

conventional structures

Examples:
1) Filtering HTML texts by tags
2) A multi-pass approach for PDF files [85]

Sentence-level Filtering

Pros:
1) More fine-grained than Article Structure filtering.
2) Computationally inexpensive

Cons:
1) Requires more manually-defined rules than

Article Structure Filtering
2) Recall is often lower than statistical methods.

Examples:
1) Rule- and pattern-base sentence filtering [86–88]

Statistical Models

Classification Models

Pros:
1) Better recall than rule-based methods

Cons:
1) Requires additional labeled data

Examples:
1) SVN, KNN, naive Bayes [89,90]

Subjectivity Analysis

Pros:
1) Solving the problem from a unique perspective

often neglected by other methods

Cons:
1) Need to be used in conjunction with other

methods to achieve the best performance
2) Requires additional labeled data

Examples:
1)Applying subjectivity analysis in IE [91–94]

Data Programming

Pros:
1) Does not require that rules be independent

or highly accurate
2) Simple to implement

Cons:
1) Requires additional labeled data

Examples:
1) ELSIE [83]

Fig. 5. Comparison of text filtering techniques. Heuristic methods are simple to implement and often achieve higher precision but lower recall.
Statistical models are more complex and commonly have higher recall but lower precision.
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corpus is often infeasible because of the associated
computational requirements.121 Therefore, word
vectors are the primary form of transfer learning
in NLP, and a number of word embedding models
pretrained on large quantities of texts are available.
The Google News vectors are 300-dimensional
Word2Vec vectors pretrained on the Google News
dataset of over 100 billion words.122 The Global
Vectors (GloVe) model of word representations has
been used to produce word embeddings pretrained
on over 900 billion words from the Web.101 FastText
extends the Word2Vec model with character n-gram
embeddings and offers pretrained word vectors for
157 languages.123 In materials science specifically,
the Synthesis Project offers pretrained embeddings
of the Word2Vec, FastText, and ELMo models.111,112

Transfer learning with word embeddings is based
on the assumption that the meaning of a word is
invariant across corpora, so that the vector for a
word learned from one text or corporate can be used
to represent the same word in a different text. Also,
unlike human dictionaries, where one word can
have multiple definitions, dictionaries generated by
word embedding models only have one vector
(value) for each word (key) in the vocabulary.
However, multisense words are inherent in natural
languages, and discipline-specific jargon makes the
problem yet more complex. Sense2Vec, proposed to
disambiguate word vectors,109 creates multiple vec-
tors corresponding to the different senses of a word.
To this end, it requires the training corpus to have
disambiguation labels. Although some disambigua-
tion can be inferred automatically from POS labels
or sentence parsing information, other cases still

require manual annotation, sacrificing the most
valuable trait of word embedding—unsupervised
training.

Another, more widely adopted, solution to the
multisense word problem in transfer learning is
simply to increase the size of the word vectors, hoping
that the extra dimensions will allow a single vector to
embed multiple senses. This solution is more widely
used than the sense vector solution because it does not
affect the unsupervised training process. Instead,
responsibility for learning the proper weights for the
dimensions of the word vector space is handed off to
the downstream models. The downside of this method
is that it inflates downstream models, but with the
rapidly increasing computational power offered by
hardware accelerators such as graphical processing
units (GPUs) and tensor processing units (TPUs), this
trade-off is getting easier to bear.

Language Model Fine-Tuning

Many potentially valuable data are lost during
transfer learning with word embeddings. Specifi-
cally, only the vector outputs of the word embedding
model are kept and reused, while the parameters in
other hidden layers are discarded after training.
Also, word vectors are only used to initialize the first
layer of the downstream model and kept frozen
during training, thus knowledge gained from train-
ing with one downstream task cannot be transferred
to another with word vectors. Therefore, the fine-
tuning of pretrained language models has been
gaining more traction as an alternative transfer
learning method in NLP.

Applying Generic NLP Resources to SciIE

Standard datasets

Difficulty level: High

1) Datasets compiled from
news articles, web pages, etc.
cannot be used to develop
or test SciIE Models

Solutions

1) Compile SciIE datasets
from scientific texts

Examples

1) CoNLL-2003 [31]

Pre-trained embeddings

Difficulty level: Medium

1) Many words in scientific
articles have the same
meaning as in generic texts

2) Some terminologies may be
unique to their domain

Solutions
1) Train word embeddings

on scientific texts to
enrich the pre-trained
embeddings.

Examples
1) Global Vectors

(GloVe) [31]
2) Synthesis Project

Word Vectors [111,112]

Pre-trained language models

Difficulty level: Medium

1) Recent language models are
pre-trained on millions or billions
of texts, but with no special focus
on scientific articles.

Solutions

1) Pre-trained language models
can be fine-tuned on a
scientific corpus. Fine tuning
requires significantly less data
and computational power
compared to the initial training.

Examples

1) BERT [103]
2) SciBERT [50]

Fig. 6. Challenges with applying generic NLP methods to SciIE: datasets compiled from nonscientific sources cannot be applied to train SciIE
models; word embeddings pretrained on generic texts need to be enriched with embeddings trained on scientific texts to include terminologies;
pretrained language models require fine-tuning on scientific texts to achieve better understanding of domain-specific language.
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State-of-the-art language models such as
BERT103 and SciBERT50 are transformer models
based on the encoder–decoder architecture.124 Like
word embedding models, they are pretrained for
generic language tasks (such as predicting a miss-
ing word). However, unlike word embedding mod-
els, they keep all the learnt weights after
pretraining, with their model architecture allowing
the same model to be applied to various tasks (e.g.,
sentence classification and NER) via fine-tuning.
Fine-tuning is the process of retraining a model
with new data specific to the task at hand. Since the
model has been pretrained, fine-tuning only takes a
fraction of the data and time needed to train the
model from scratch. Fine-tuning can be done on all
the layers, or, for encoder–decoder models, only on
the top few layers near the output while all other
layers are kept frozen. In this way, more valuable
information is transferred from pretraining to
specific downstream tasks. This method is espe-
cially helpful for using large models effectively.
BERT is trained from scratch on a corpus of over 3.3
billion words on 16 TPUs in four days. Not every
downstream task has a sufficiently large corpus or
enough computation power to train such large
models from scratch. Fine-tuning BERT, on the
other hand, takes just a couple of hours on one GPU;
thus, fine-tuning provides an efficient way for other
tasks to reap the benefits of large, complex models.

ENABLING BETTER IE IN MATERIALS
RESEARCH

As described above, significant challenges must
be addressed before the data published over decades
in various scientific literatures can be made readily
accessible. Many challenges require improvements
in NLP techniques, which are not necessarily the
domain of researchers working in disciplines such
as materials science and engineering. However, we
note a few actions that the materials community can
perform to make the most of the current state of the
art and to ensure steady innovation in the future.

Access to Well-Formatted Versions of Articles

Access to machine-readable full-text articles (i.e.,
in HTML, XML, or JSON formats) is a prerequisite
for robust SciIE, but obtaining such access, when
possible at all, often involves lengthy negotiations
with publishers. Such barriers limit growth of this
field. Moves towards open publication of articles in
ways that enable unfettered access, whether by
traditional publishers or via technical-society-spon-
sored preprint repositories (e.g., ChemRxiv), will
have major benefits for the NLP community and for
science and engineering more broadly. Where full
open access is not possible, streamlined licensing
agreements or the establishment of repositories
where researchers can perform analyses would
make a big difference.

Open software practices can also contribute to
lowering the cost of entry for scientific NLP
research. Many NLP efforts begin by creating tools
to streamline access to publisher application pro-
gramming interfaces (APIs) or to handle the
idiosyncratic formats in which articles are provided.
Sharing such tools in a community-wide reposi-
tory—which has been done with atomic-scale sim-
ulation outputs125—would remove the need for
individual research groups repeatedly to recreate
and maintain such tools.

Open Science Practices in Materials NLP
Research

Building an IE pipeline to solve a specific problem
involves much work that can be repurposed for
other tasks. Tools to process articles in the formats
used by different journals, word embeddings created
from text from a specific literature, and ML models
trained on relevant data can all be useful to others
for new tasks. Of course, some elements of the
pipeline (e.g., typeset versions of journal articles)
are protected intellectual property (IP), but most
are not. We have created a checklist of components
that should be released for a paper to best ensure
progress by the community:

1. Preprocessing codes to render journal articles or
other text into a form ready to be used in IE
pipelines.

2. Training sets, employed to develop NER and
association models, are not just needed for
reproducibility but are also critical to speeding
development of NLP tools. Labeled datasets are
often the most resource-intensive step (Sect. 4)
in NLP, which makes them particularly valu-
able to share.

3. Word embeddings, which underpin most NLP
models, are useful both to analyze for new
materials23 and to bootstrap new NLP efforts.

4. Trained models, the final product of NLP devel-
opment, should be published to ensure that
access to data does not backslide as tool devel-
opers move on to new projects.

Fortunately, the materials IE community has
already established a culture of sharing such tools.
The CHEMDNER datasets that were crucial in
launching the field of NLP for chemical data
extraction are open.56 Swain and Cole also released
their SciIE pipeline as an open-source tool,
ChemDataExtractor,126 that many teams have
found useful36 and that has been used to build a
battery chemicals and properties database with over
290,000 records.17 The Synthesis Project has also
produced useful training datasets and tool
releases.57,111,112 Kononova et al. published a data-
set of nearly 20,000 inorganic materials synthesis
recipes extracted from text.16 We hope that these
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early, excellent examples of open science will set the
stage for establishing a vibrant research community
in NLP for materials science and engineering.

Publishing Structured Data

Ultimately, human language is an imperfect way
to communicate materials data. Automated process-
ing of large quantities of data works best when data
are in identical formats and co-located with all the
metadata needed to understand them. Homogeneity
and conciseness are not features of human lan-
guages. Accordingly, better access to materials data
may ultimately be achieved best not by processing
text documents but by encouraging humans to
record data in computer languages.

We already see adoption of such processes within
certain subfields and projects in materials science
and engineering. For example, inorganic crystal
structures must be reported in the Crystallographic
Information File (CIF)127 format when published in
journals of the International Union of Crystallogra-
phy (IUCr). Density functional theory (DFT) com-
putations are starting to be shared in their native
formats via domain-specific databases that provide
such data in searchable formats, such as
NOMAD128 and the Materials Data Facility.129,130

Further, many individuals are beginning to publish
their data as machine-accessible resources. Such
activities focused on publishing data in computer-
readable formats are important131,132 but lie beyond
the scope of this review. We do note that many
subdisciplines within materials science, such as
thermochemistry133 and atomic-scale modeling,134

are establishing community standards needed to
bring order to a larger proportion of materials
engineering data.

In short, scientists can reduce the need for SciIE
by publishing information in computer-accessible
forms. Ideally, all data would be published in a
format that includes descriptions of how they were
collected, presented according to the standards of a
science community, as in the IUCr and NOMAD
examples above. Publishing a large fraction of
materials data in such structured formats will be a
formidable challenge, but one that can be performed
thoughtfully and in parallel with advancements in
NLP. Electronic laboratory notebooks, laboratory
information management systems, and robotics are
particularly promising technologies to make digital
data and metadata more prevalent in materials
engineering.135

CONCLUSIONS AND OUTLOOK

Data are taking center stage in materials engi-
neering and an increasing number of scientific
fields, yet vast amounts of data remain and continue
to be buried in written papers, inaccessible to
humans and machines. In this paper, we have
examined the major factors obstructing practical
applications of computer-aided information

extraction on scientific corpora, including the file
formats of scientific publications, the lack of
domain-specific training data, the sparsity of inter-
esting information in papers, as well as the difficul-
ties inherent in transferring a model trained on
generic texts to scientific literature. We reviewed
potential solutions or remedies for the problems,
and discussed their strengths and weaknesses. We
intend that this paper provide a clear overview of
the current landscape of scientific information
extraction and shed light on the many obstacles
that future research efforts can take on.

Information extraction represents only an initial
step towards using NLP to aid research in science
and engineering by taking on tasks currently per-
formed by human scientists. Outside science, mod-
ern NLP technologies are being used for
increasingly complex tasks, such as answering
questions in prose (e.g., Google’s question-answer-
ing search engine136). A future NLP tool could use
facts and qualitative relationships extracted from
papers to enable autonomous reasoning engines
capable of producing and testing hypotheses from
the literature, or identifying anomalies worthy of
further investigation. Solving the challenges cur-
rently inhibiting our ability to extract information
from papers would unlock such a potential future
for AI in materials science and engineering.
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