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This study presents a correlative characterization of internal porosity within a
Ti-6Al-4V (Ti64) additively manufactured sample. An x-ray computed tomog-
raphy (XCT) reconstruction is compared to a mechanical polishing-based serial
sectioning (SS) reconstruction over the same volumetric region. A 10-mm-di-
ameter cylindrical additive manufactured sample was examined in this study,
which was manufactured by laser powder bed fusion out of Ti64 virgin powder.
Microfocus XCT imaging was conducted to characterize the internal porosity
within the sample, at a voxel resolution of approximately 23 lm. After XCT
imaging, a custom SS system was employed for optical microscopy characteri-
zation at a much finer spatial resolution—approximately 22 times—compared
to the XCT reconstruction. The SS data were correlated with the XCT images of
the sample. The methods used for segmentation of each data volume are dis-
cussed. The quantitative results of stereology, area fraction of porosity, and
equivalent pore diameters are presented. The comparative results for manual
data registration are also presented, as well as the future direction of research
resulting from this current study.

INTRODUCTION

Additive manufacturing (AM) of metallic compo-
nents is a subject of considerable current interest
due to the potential for this technology to positively
impact many aspects of the supply chain for high-
performance aerospace components.1 Due to the
complexity of metal AM processing and the rapidly
evolving state of this technology, there exists a need
for methods to quantify material inhomogeneities,
discontinuities, porosity, and other defects that are
present in metal AM parts.

Nondestructive evaluation (NDE) methods
employed within the metal AM community have
experienced varying degrees of success. X-ray
computed tomography (XCT) is the most widely
incorporated NDE method for metal AM, because
the method is capable of resolving volumetric

defects within components that have complex
internal structures. However, XCT has limitations,
and it is anticipated that it will inaccurately
characterize some defects. Some likely reasons for
potential inaccuracies for XCT include limits on
spatial resolution and the influence of a part’s
geometric complexity on the tomographic recon-
struction. An accepted sensitivity practice for the
detection of porosity in metal components via
radiography is that a ‘‘minimum of 3 effective
pixels cover the longest dimension of a defect.’’2 In
the context of characterization of mesoscale defects
in AM metals, due to the higher resolution capa-
bilities of optical microscopy, Romano et al. stated
that ‘‘characterizing the critical pores/defects by
means of analyzing polished sections and fractog-
raphy was found to be more efficient than by state-
of-the-art (SOTA) x-ray micro-CT.’’3 However, con-
ventional optical microscopes are limited to 2D or
surface observations in opaque materials, and thus
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the true size distribution of internal porosity or
defects cannot be ascertained without additional
effort.

One method to provide quantitative 3D informa-
tion on mesoscale microstructural features is by
serial sectioning (SS). This is a destructive charac-
terization process that removes a small amount of
material per section via a variety of preparation
methods, such as ion beam milling, laser ablation,
microtome milling, machining, or mechanical pol-
ishing. After each section, microscopy is performed
on the as-prepared surface to collect data on the
microstructural features of interest. The advantage
of SS is that many different microscopy methods are
optimized for 2D analysis, including automated
montage data collection, and these methods typi-
cally provide enhanced spatial resolution and/or
improved signal-to-noise ratios for selected feature
identification and segmentation compared to non-
destructive volumetric imaging methods. In this
way, feature characterization and identification are
completed on each individual cross-section, and the
collective stack of data can then be reconstructed
using computational methods to quantitatively
characterize microstructural features and ensem-
bles in 3D.4 SS has been previously used within the
aerospace industry to characterize a range of inter-
nal microstructural features to include both grain
microstructures and defects.5–10

The objective of this study is to explore both the
experimental and post-processing workflows to
enable a quantitative comparison of the size distri-
bution of internal porosity in metal AM samples
from both XCT and SS systems. As will be shown,
such experiments can be performed on cm-scale
samples to assess the accuracy of XCT imaging for
micron-scale porosity in this application. Addition-
ally, a desired outcome from this study is to
highlight both the SOTA and potential improve-
ments to the method for the evaluation of porosity
and defects in metallic AM parts.

EXPERIMENTAL PROCEDURE

The following section will detail the methods used
for the correlative study of XCT and SS in the
context of porosity in AM metal parts.

Sample Fabrication

The sample used in this study was a cylinder
manufactured by laser powder bed fusion (LPBF)
AM.11–13 Some advantages of this type of system
include its ability to produce high-resolution fea-
tures and internal passages, and to maintain
dimensional control.14 The cylindrical sample used
for this study was fabricated with AP&C virgin Ti-
6Al-4V (Ti64) powder using an EOS M280 3D
printer. Fabrication was carried out under argon
(Ar) shielding gas with a laser power of 290 W and a
raster speed of 1300 mm/s. The build plate temper-
ature was set at 80�C with a layer thickness of 30

lm and the distance between hatches set at 140 lm.
The scan path for this sample was generated by first
decomposing the part cross-sections into a series of
regions termed ‘‘stripes.’’ The interfaces between
neighboring stripes on a build surface are called
‘‘stripe boundaries.’’ The stripe width was set at 7
mm and each stripe is filled with individual scan
vectors which are perpendicular to the stripe
boundaries and separated from each other by the
‘‘hatch spacing.’’ All vectors in each stripe are
processed in sequence before the beam moves to
the next adjacent stripe. The direction of the scan
vectors was rotated by a prescribed angle (67�)
every layer to prevent alignment of the stripe
boundaries and hatch spacings throughout the
build.15 After fabrication, the cylindrical sample
was stress relief heat-treated at 650�C for 3 h in an
Ar environment and then separated from the build
plate using wire electrical discharge machining. The
post-AM dimensions of the sample were � 1 cm in
diameter and � 2.5 cm in height.

x-ray Computed Tomography (XCT)

After fabrication and stress relief, XCT was
performed using a North Star Imaging CXMM 50
metrological XCT system. The system is equipped
with a 225-kV reflection source including a tungsten
target, rotary stage, and a 10-inch 9 8-inch
(c.25 9 20 mm) flat-panel detector (� 3 million pix-
els at 127 lm/pixel). XCT acquisition parameters
are shown in Table I. An XCT reconstruction was
performed with the system manufacturer software,
and we note that no pre-processing, ring removal, or
beam-hardening corrections were included in the
reconstruction. As internal defects are the key
features important to this study, the spatial resolu-
tion is a critical parameter of interest. A previous
correlative analysis of both XCT and optical micro-
scopy data of this sample noted that ‘‘voids smaller
than � 50 lm (equivalent spherical diameter) are
generally undetected and voids smaller than � 200
lm do not have their shape well represented.’’15

Linear arrays of porosity were found at the stripe
boundaries on the printed layers as well as smaller
elongated voids lying between adjacent hatch vec-
tors.15 We note that the relatively large amount of

Table I. Selected data collection and
reconstruction parameters used for the North Star
Imaging (NSI) CXMM 50 metrological XCT system

Voltage (kV) 110
Current intensity (lA) 150
Focal spot size (lm) 7
Rotational step angle (deg) 0.25
Number of projections 1440
Reconstruction voxel resolution (lm) 23.1
Reconstructed sample volume (mm3) 116
Data size (GB) 0.103
Total collection time (days) 0.09
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porosity within this sample aided both in the
manual registration of the XCT and SS volumetric
data sets, and also provided sufficient numbers of
features for quantifying the differences in the size
distribution of pores for both XCT and SS.

Serial Sectioning (SS)

SS characterization was performed using a cus-
tom system constructed at the Air Force Research
Laboratory.6,7 Selected parameters of the auto-
mated operation can be seen in Table II. The SS
system incorporates a highly modified and cus-
tomized RoboMet.3D version 2 system for multi-
step-controlled material removal via mechanical
polishing, as well as sample cleaning and drying.
The SS system also incorporates automated optical
and scanning electron microscopes for microstruc-
tural characterization of the sample surface. The
materialographic samples are mounted on custom
stainless steel kinematic sample holders to facilitate
accurate placement within each of the individual
systems that collectively comprise the SS system,
and a Mitsubishi 6-axis robot is used to automate
the movement of the sample between sample prepa-
ration and microscopy operations. The system is
controlled via custom software scripts written pri-
marily in Python. Only optical microscopy was used
for this experiment, as this method is extremely
time-and-cost efficient for mesoscale image-based
measurements of porosity. The optical microscope
used in this study was a Zeiss AxioImager Z2m
outfitted with an Axiocam 506 color camera,
Marzhauser motorized stage, Zeiss T60N hardware
AutoFocus module, Enhanced Contrast Epiplan
Neuofluar lenses, and Zen2 control software.

Before SS characterization, the cylindrical Ti64
sample was embedded in a 1 ¼’’-diameter (c.32 mm)
materialographic mount for improved edge reten-
tion during the mechanical polishing experiment.
Struers PolyFast thermoset resin was used, which
contains a carbon filler that creates a random
microstructure that can be helpful for stack regis-
tration of SS data. After hot-mounting, the outer
rim of the sample mount was machined using a
lathe to create a ledge for enhanced depth removal
measurements, which are described later in this

section. The materialographic mount was affixed to
a SS stainless steel kinematic holder using both a
stainless steel screw and conductive silver epoxy
(Ted Pella, H-22 EPO-TEK).

Controlled material removal for the SS experi-
ment consisted of a single polishing step using a 1-
lm polycrystalline diamond suspension (Allied High
Tech) on a woven acetate polishing pad (DAC,
Struers). For this step, the 12’’-diameter
(c.305 mm) pad rotation rate was 100 rpm, the
sample was swept and rotated during polishing, the
polishing force was � 24 N, and the polishing time
was 320 s. Although not shown here, preliminary SS
experiments on this sample that employed both 6-
and 1-lm polycrystalline diamond media produced
noticeable ‘‘comet tail’’ polishing artifacts at pore
edges,16 and these artifacts were not observed when
only 1-lm media was used. During the SS experi-
ment, a second polishing pad (Final Pol, Allied High
Tech) with no media and flowing tap water was used
as a primary cleaning step by polishing at 75 rpm
for 30 s, which was followed by a 15-s immersion in
pure ethanol and forced dry using nitrogen gas. The
average time for this portion of the SS experiment
was 18 min, and, after completion, the sample was
transferred by the 6-axis robot to the Zeiss AxioI-
mager optical microscope.

The optical imaging step for this experiment
consisted of multiple activities. The primary activity
was to capture a � 1-lm resolution image of the
entire cross-section of the Ti64 sample using mon-
tage-based image acquisition. A 95 (0.13 NA)
objective, 91.6 Optivar, and LED-based white light
illumination were used to collect bright field epi-
illumination grayscale images (saved as 14-bit) with
a pixel dimension of � 1.1 lm. The montage acqui-
sition was a circular grid of image tiles � 1 cm in
diameter with tile overlap of 30% and required 201
tiles. Notably, the Zeiss AxioImager microscope
used in this experiment has both hardware and
software autofocusing (AF) capabilities. In this
experiment, the authors collected both hardware
and software AF data to compare the performance of
autofocusing strategies in real-world SS experi-
ments, but, for this paper, only the software auto-
focus data was utilized as there was sufficiently
distributed porosity within that data.

Table II. Selected parameters for AFRL’s automated serial sectioning system

Number of sections 940
Optical image tiles per section 201
Optical image pixel resolution (lm/pixel) 1.1
Montage region-of-interest (mm) 12.2 9 12.2
Average section thickness (lm/section) 1.07
Total thickness (mm) 1.006
Reconstructed volume of Ti64 sample (mm3) 79
Data size (GB) 450
Section cycle time (h:min:s) 00:18:00
Total collection time (days) 14
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Optical microscope data were used to assess the
depth of material removal during the SS experiment
by recording the change in the z-motor readout (that
controls the final objective lens position) during
montage data acquisition.17 One potential problem
with using only z-motor readings from the SS
surface is that the depth measurement is affected
by common experimental errors, such as those
introduced by the varied placement of the sample
on the optical microscope stage, or intermittent
initialization of the z-motor drive (as happens on
restart of the microscope control computer). To
address these issues, this experiment collected
additional images of the recessed ledge that was
unchanged by mechanical polishing. Note that the
same microscope objective is used for these addi-
tional measurements, so that only the microscope
stage and camera exposure times were changed for
these depth measurements. We use the term ‘‘focus
ring’’ for these reference measurements, as some of
the authors’ prior experiments inserted a polished
metal ring with easily identifiable features such as
hardness indents on the outside of the sample
mount for this purpose.

To estimate the depth of material removal, dSS,
the z-motor values associated with the focus ring
images are averaged, ZFR, and subtracted from the
average of the z-motor values associated with the
images from the region-of-interest (ZROI).

di
SS ¼ ZROI �ZFR

Figure 1 shows a plot of the depth of material
removal with section number, showing the improve-
ment of this measurement using the ‘‘focus ring’’
method. One can also observe that the SS rate is
very constant for this long-term experiment that
lasted over 14 days, which involved multiple pad
changes and intermittent stops.

Post-processing of the SS data included the
following steps. First, the montage image tiles were
flatfielded (so-called retrospective flatfielding5,17)

using a custom approach that takes advantage of
the hundreds of thousands of image tiles that were
collected in the SS experiment. This was accom-
plished by calculating the background illumination
field via a custom averaging procedure, using a
multilevel (bandpass) threshold to identify pixels
associated with a specific feature or phase in a
representative image (in this particular situation,
the intensity values associated with the metallic
alloy as identified from manual observation of the
image histogram). The multilevel threshold was
applied to all the tiles in the SS data set, and a
background image was generated from the average
values associated with this intensity range on a per-
pixel basis, ignoring pixel data that were outside the
multilevel threshold. After generation of the back-
ground image, outlier pixels were removed with a
5 9 5 pixel median filter. Per-pixel division of each
original image tile by the background image mini-
mized non-uniformities in illumination and
improved the output of the montage stitching
algorithm.

After flatfielding, montage images were assem-
bled from each section using the ‘‘Grid/Collection
Stitching’’ plug-in within Fiji.18 This plug-in uses
normalized cross-correlation and an iterative opti-
mization procedure to determine the spatial regis-
tration of the tile ensemble and does not require
that the images reside on a rectangular grid as
long as the estimated initial tile positions are
provided in a text file format.19 For this plug-in,
linear blending was used for overlapping regions,
and alignment was performed with subpixel accu-
racy. As shown in Table II, there were 201 tiles
associated with each montage, which were col-
lected using a circular mask, and the assembled
montage covered an area of 12.2 9 12.2 mm
(10,958 9 10,958 pixels). Stack registration of the
montage images was performed with the ‘‘Register
Virtual Stack Slices’’ plug-in for Fiji allowing for
only translations.

Fig. 1. (a) Material removal plot for the SS experiment that shows a consistent rate of material removal. (b) Residual plot for the linear fit. (c)
Image of the sample with focus ring (red arrow) used for reference height measurements.
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Porosity Area Fraction Estimation Using
Stereological Point Counting

After stack registration, an estimation of the area
fraction of porosity on a single section was con-
ducted via stereological methods.20–22 This task was
performed to provide a quantitative estimate of the
area fraction of porosity that could be compared to
the results of the segmentation methods explored in
the next section. A point-probe counting method
was employed for the area fraction calculation,20

and an example of this data is shown in Fig. 2. The
random placement of the square grid and the
graphical user interface (GUI) used for point label-
ing and counting were both facilitated within Fiji,
using the Grid and Cell-Counter plug-ins, respec-
tively. The intersections of the square grid were
manually classified into 5 phases: (1) polymer
materialographic mount, (2) metal, (3) pore, (4)
pore/metal interface, or (5) metal/mount interface,
as shown in Fig. 2. The interface phases corre-
sponded to data where it was difficult to distinguish
to which of the first three phases the point should be
assigned, and, when recording the cumulative data
counts, these points were given a half count to each
bordering phase.

The point count method is most effective when the
grid spacing is such that adjacent points rarely fall
within the same feature, cell, or region in the
image.20 To account for this, the grid spacing for the
XCT and SS images was set to � 360 lm so that no
single pore would be counted twice. This grid
spacing correlated to � 640 locations overlaid on
the metal AM cross-section of each image to then be
labeled as described. To account for the variability
of this method for estimating the area fraction, five
measurements were accomplished on both cross-
sections of Fig. 2. Overlaying the grid before each
point count was accomplished by randomizing its
placement, as allowed within Fiji. Although more

time-consuming than automated methods of area
fraction determination, this analysis was used as a
2D benchmark for the automated segmentation
methods that are discussed later. For the selected
image, the area fraction of porosity was estimated
using the below equation with NP being the pore
point count, NPM being the point counts at the pore/
metal interface, NM being the point counts of metal,
and NMPol being the point counts at the metal/
polymer mount interface. This estimated value will
be used later for comparison with other methods
used to quantify the area fraction of porosity.

Segmentation of Porosity

To perform 3D microstructure analysis from the
two volumetric data sets using DREAM.3D soft-
ware,23 workflows for segmenting the porosity from
the metallic sample were developed. Image post-
processing and segmentation analysis can be quite
complicated, and no set of standard rules have been
established for image classification of porosity from
either volumetric or surface images of metal AM
image data. In this study, we have examined two
methods for segmentation of porosity that are
included with the open-source software, Fiji.19 First,
the performance of selected automated global
thresholding methods was evaluated, by comparing
both the area fraction derived from these histogram-
analysis methods, as well as by qualitative obser-
vation of the porosity.

Automated segmentation was accomplished for
both the SS and XCT data volumes, and different
methods were employed for each data set. Exami-
nation of the grayscale histograms from represen-
tative sections of the XCT and SS data sets
highlights why different segmentation methods
were employed for the two data sets (Fig. 3). For
the SS data (Fig. 3b), there is a clear separation
between the intensity values of the pixels that

Fig. 2. Estimation of area fraction of porosity via point count stereology on a manually registered cross-section of XCT (a) and SS (b) with
labeling examples for a pore (c) and a metal/mount interface (d) within the XCT data, and the pore/metal interface (e) and a pore (f) of the SS
data.
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correspond to porosity in the optical images and
pixels that correspond to the Ti64 alloy (Fig. 3d).
Within the XCT data (Fig. 3a), the intensity values
for these two features are not distinct in the
associated histogram (Fig. 3c). Many automated
global thresholding methods provide acceptable seg-
mentation results when the situation is similar to
the SS data (Fig. 3b), but perform poorly for
situations like the XCT data obtained in this study
(Fig. 3a).

To provide an acceptable segmentation of both
data sets using the same workflow, a form of
supervised machine learning was used. This was
accomplished using the ‘‘Trainable WEKA Segmen-
tation’’ (TWS) plug-in within Fiji,24 and the authors
employed the 2D version of this plug-in, which
allows the user to manually classify selected pixels
of the image, and the algorithm uses this labeling to
train a classifier to segment the remainder of the
image. After the classifier has been trained, it can
be used to process a stack of images. The default
parameters for this filter were employed for
classification.

Registration of XCT to SS

After segmentation of both data volumes had been
performed, the next task was to register and crop
the data volumes to facilitate quantitative compar-
ison of the pore populations. Registration involves
determining the transformation (e.g., translation,
rotation, scaling, shearing, and potentially non-
linear warping) to spatially align the two data sets.
Unfortunately, the authors’ attempts to register the
data sets utilizing the centroids of the largest pores
and a point set registration algorithm were unsuc-
cessful. Thus, this particular data set registration
was accomplished manually by examining both the
XCT and SS data sets to find common features, such
as linear porosity chains or large surface agglomer-
ations (as can be observed in Fig. 3). After identi-
fying similar sections in both data sets, additional
sections in the immediate vicinity were iteratively
identified to determine the sections in the XCT data
set that bound a common volume with the finer
resolution SS data set. The XCT data set was
cropped along the axial direction of the sample to
match the axial length of the SS data, and both data
sets were cropped in the other two orthogonal
directions to minimize data outside the metal
cylinder. After this manual process, the dimension

Fig 3. Image data representing a single section from both the XCT and SS data that approximately correspond to the same sample region of
interest and their respective histograms. (a) XCT data, (b) SS data, (c) histogram of the inset from the XCT data in (a), and (d) histogram of the
inset from the SS data in (b) reduced from 14-bit to 8-bit grayscale. The lower resolution XCT data show a lack of separation in intensity values
between porosity and metal
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of the XCT and SS data sets along the axial
direction of the AM cylinder was � 0.85 mm. The
authors recognize that automated data volume
registration processes exist,25–27 and the implemen-
tation of these processes will be explored in future
efforts.

Correlative Analysis of XCT and SS

After registration, quantitative characterization
of the pore populations was performed using both
the SS and XCT data sets with the area fraction of
porosity as a 2D measurement that could be com-
pared to stereological analysis. The cross-section
previously shown in Fig. 2 was selected to aid in
determining the area fraction of porosity for the
XCT and SS images. Both a common global thresh-
old method (the Otsu method28) and the TWS
method were selected for comparison. Examples of
the segmented SS and XCT images by these meth-
ods can be seen in Fig. 4. Visual analysis of the data
shows some discrepancy in the porosity segmenta-
tion, although we note that the registration has
been performed manually and therefore the 2D
images are from approximately the same region of
the sample. To quantify the discrepancy, the seg-
mented images were analyzed with a custom Python
script to calculate the area fraction of porosity, and
these results are reported in Table III.

Three-dimensional analysis of the pore popula-
tions was accomplished by a customized pipeline
using DREAM.3D23 and visualized with ParaView29

(see Fig. 5). A comparison of the overall number of
pores, the porosity volume, and their equivalent
diameter was conducted. The measurement of the
equivalent diameters (assuming a spherical geom-
etry) of the pore population was also generated. The
pipeline within DREAM.3D also assigned features
to each pore and placed the values of those features
into a text file. With this file format, a number count

histogram of the porosity was generated relative to
equivalent pore diameter to generate porosity dis-
tributions for each data set (see Fig. 6). To demon-
strate the differences in the representation after
segmentation, four large pores (that could be easily
identified by visual inspection because of their
spatial arrangement within a linear array of poros-
ity at a stripe boundary) were isolated within their
respective data sets for comparison (Fig. 5). In
addition, a global analysis of the porosity between
the data volumes was conducted. A local correlation
of the change in porosity metrics between XCT and
SS remains a topic for future study.

RESULTS

For this study, the SS data were considered as a
ground truth because of the much higher spatial
resolution (� 1 lm), and the large difference in the
pixel intensity values that corresponded to the
metal and internal porosity (Fig. 3). The porosity
area fraction results for the analysis of a represen-
tative 2D cross-section are shown below in Table III.

The frequency distribution of equivalent pore
diameter, the global porosity volume fraction, and
the total number of detected pores were compared
between the two data sets, as shown in Table IV and
Fig. 6. Some of the differences in the porosity data
as classified by XCT and supervised training of the
TWS filter are as follows. Fewer pores were mea-
sured for the XCT data, and examination of the size
distribution for the SS data (Fig. 6) shows the
presence of a significant number of small pores that
are comparable to and smaller than the voxel
dimensions of the XCT data, and therefore not
individually identified in the XCT data. Also, the
volumes of the largest pores were overestimated in
the XCT/TWS data, as shown in the histogram of
equivalent pore diameter (Fig. 6), as well as from
examination of the four manually identified com-

Fig. 4. Representative examples of (a) segmentation of XCT image data using the ‘‘Trainable WEKA Segmentation’’ (TWS), compared to (b) the
much-higher spatial resolution SS image that has been segmented using an Otsu threshold.
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mon pores in both data sets (Fig. 5). For example,
the largest of the four pores in Fig. 5 was reported to
have an equivalent diameter of � 240 lm in the
XCT data, and this same feature was reported as
� 180-lm equivalent diameter in the SS data.
Another difference observed from Fig. 5 was that,
although the XCT reconstruction represented the
third pore from the left as one pore, the SS
represented this as multiple smaller pores (< 100
lm) in very close proximity to each other. These
observed differences suggest there are likely addi-
tional discrepancies in the morphology and spatial

arrangement of pores between the two data sets.
This will be explored in future efforts by aligning
the SS and XCT data sets with improved experi-
mental methods and advanced registration
procedures.

DISCUSSION

There is a need for a ‘‘reliable, consistent, com-
putationally efficient, and automated method (no
operator bias) to characterize defects within metal-
lic AM.’’30 Currently, XCT is the most widely used
NDE method for porosity characterization in metal

Table III. Correlative 2D results of a manually registered cross section.

Area fraction results Serial sectioning X-ray computed tomography

Stereology (%) 0.7 ± 0.1 0.5 ± 0.1
Otsu (%) 0.74 N.A.a

WEKA (%) 0.74 0.68

aOtsu’s method resulted in gross and clearly observable porosity segmentation errors that were not consistent with the SS data and its
result was determined not applicable for the XCT data

Fig. 5. 3D renderings of four pores within the Ti64 AM sample that were identified as common features in both data sets. (a) Segmentation via
the Fiji TWS filter of the XCT data, and (b) Otsu threshold of the SS data. Note that the legend coloring is the same for both figures.
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AM. This study highlights the limitations of that
method by correlating those results with much
higher-resolution SS data from the same sample.
The XCT data and TWS segmentation missed or
miscategorized a portion of the porosity in the metal
AM sample analyzed. Fewer volumetric defects
were observed via XCT than by SS analysis, and
the sizes of the largest pores were overestimated.

XCT data may contain imaging artifacts such as
beam-hardening, ring artifacts, blurring, and
streaking that impact quantitative image analysis.
These types of artifacts affect the intensity values in
individual voxels and localized regions in the XCT
reconstruction, which can result in porosity classi-
fication errors. For more complex-shaped AM parts
(as compared to the cylindrical sample of this
study), these artifacts occur more frequently, and
the corresponding artifact corrections, as well as

improved reconstruction algorithms, can be used to
enhance the reconstruction accuracy and contrast.
To this point, enhancement of the difference in
grayscale intensity values between porosity and the
metallic part should improve the accuracy of XCT
data segmentation workflows. The quantitative
analysis of the improvement in porosity character-
ization due to the collective application of these
methods remains a subject for future research. The
present study demonstrates that correlative analy-
sis can be performed on centimeter-scale AM
printed objects with ground truth SS data, and
potentially the method can be extended to larger
volumes while maintaining micron-scale spatial
resolution. It should be noted that the significant
difference in spatial resolution for the present study
provided an advantage for the detection of fine-scale
porosity via SS, and we anticipate that the

Table IV. Correlative results from the volumetric region

Serial sectioning X-ray computed tomography

Pore count 974 218
Max pore size (eqv. diam) 183 lm 265 lm
Minimum pore size (eqv. diam) 7 lm 29 lm
Mean ± SD (eqv. diam) 39 lm ± 28 lm 103 lm ± 47 lm
Total porosity volume 0.095 mm3 0.207 mm3

Fig. 6. Equivalent pore diameter measurements from the Ti64 AM sample (XCT segmented by TWS, SS segmented by an Otsu threshold).
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differences between the data modes would be
reduced when the spatial resolution for the methods
are more closely matched. This consideration has
been included in the design of correlative experi-
ments that are currently in progress.

Further development of this correlative analysis
methodology should provide an enhanced quantita-
tive assessment of XCT capability for porosity
characterization, and may refine the accepted sen-
sitivity practice of detecting porosity larger than 3
times the voxel size.2 In addition, the use of such
correlative analysis to guide the standardization of
XCT post-processing and analysis workflow for
metal AM applications should be a subject of future
research.
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